1
|
Valdés H, Alpuente N, Salvador P, Hashmi ASK, Ribas X. CCC-NHC Au(iii) pincer complexes as a reliable platform for isolating elusive species. Chem Sci 2024:d4sc02999b. [PMID: 39386905 PMCID: PMC11459386 DOI: 10.1039/d4sc02999b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024] Open
Abstract
The reactivity of unprecedented CCC-NHC Au(iii) pincer complexes has been investigated, employing a novel methodology for their preparation. Notably, this marks the inaugural case of CCC-NHC Au(iii) pincer complexes with a central aryl moiety where the two arms of the pincer ligand consist of N-heterocyclic carbenes (NHC). The stability conferred by the CCC-NHC ligand facilitated the isolation of elusive Au(iii) species, encompassing Au(iii)-formate, Au(iii)-F, Au(iii)-Me, and Au(iii)-alkynyl. Our study also unveiled the elusive Au(iii)-H species, offering valuable insights into its formation, stability, and reactivity. While the CCC-NHC Au(iii)-H complex remains stable at room temperature, its decomposition becomes conspicuous at elevated temperatures (>60 °C), exhibiting a more pronounced tendency under acidic conditions compared to basic ones. Through comprehensive experiments, we indirectly demonstrated the potential of Au(iii)-formate to undergo β-hydride elimination, becoming a key step in the dehydrogenation of formic acid. Theoretical calculations revealed variations in the reactivity of Au(iii)-H species towards sodium hydride and formic acid, highlighting a link between σ-donation from the pincer ligand and reaction energetics. Pincers with lower electron donation favored the reaction with sodium hydride but impeded the reaction with formic acid, whereas those with higher electron donation exhibited the opposite behavior. Additionally, the CCC-NHC Au(iii) pincer complex exhibited Lewis acid behavior, catalyzing the synthesis of phenols. In summary, the CCC-NHC Au(iii) pincer complex emerges as a versatile platform for isolating reactive species and unraveling elementary catalytic steps.
Collapse
Affiliation(s)
- Hugo Valdés
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andrés M. del Río" (IQAR), Facultad de Farmacia, Universidad de Alcalá Alcalá de Henares 28805 Madrid Spain
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus de Montilivi Girona E-17003 Catalonia Spain
| | - Nora Alpuente
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus de Montilivi Girona E-17003 Catalonia Spain
| | - Pedro Salvador
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus de Montilivi Girona E-17003 Catalonia Spain
| | - A Stephen K Hashmi
- Organisch-Chemisches Institut, Heidelberg University 69120 Heidelberg Germany
- Chemistry Department, Faculty of Science, King Abdulaziz University (KAU) Jeddah 21589 Saudi Arabia
| | - Xavi Ribas
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus de Montilivi Girona E-17003 Catalonia Spain
| |
Collapse
|
2
|
Poveda D, Vivancos Á, Bautista D, González-Herrero P. Luminescent Platinum(II) Complexes with Terdentate N∧C∧C Ligands. Inorg Chem 2023; 62:20987-21002. [PMID: 38051299 PMCID: PMC10751801 DOI: 10.1021/acs.inorgchem.3c02399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023]
Abstract
The synthesis, structure, and luminescence of Pt(II) complexes of the type [Pt(N∧C∧C)(L)] are reported, where N∧C∧C is a terdentate ligand resulting from the cycloplatination of 2-(3,5-diphenoxyphenyl)pyridine or 2-(4,4″-dimethyl-[1,1':3',1″-terphenyl]-5'-yl)pyridine, and L represents a monodentate ancillary ligand, which can be γ-picoline, 4-pyridinecarboxaldehyde, PPh3, n-butyl or 2,6-dimethylphenyl isocyanide, CO, or the N-heterocyclic carbenes 1-butyl-3-methylimidazol-2-ylidene or 4-butyl-3-methyl-1-phenyl-1H-1,2,3-triazol-5-ylidene. Derivatives bearing CO, isocyanides, or carbenes showed the highest stabilities in solution, whereas the pyridine and PPh3 derivatives establish ligand-exchange equilibria in acetonitrile. Different supramolecular structures are observed in the solid state, which largely depend on the nature of the ancillary ligand. Isocyanides and CO favor π interactions between the aromatic rings, metallophilic Pt···Pt contacts, or a combination of both. In contrast, pyridine ligands may lead to bimolecular assemblies driven by C-H···O, C-H···Pt, or C-H/π hydrogen bonds. Luminescence was examined in fluid solution, poly(methyl methacrylate) matrices, and the solid state at 298 K, and in 2-methyltetrahydrofuran glasses at 77 K. The majority of derivatives show highly efficient emissions from 3ILCT/MLCT or 3ILCT/MLCT/LLCT excited states of monomeric species. The formation of excimers and different types of emissive aggregates are demonstrated, which lead to red-shifted emissions of different origins and characteristics depending on the involved noncovalent interactions.
Collapse
Affiliation(s)
- Dionisio Poveda
- Departamento
de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 19, 30100 Murcia, Spain
| | - Ángela Vivancos
- Departamento
de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 19, 30100 Murcia, Spain
| | - Delia Bautista
- Área
Científica y Técnica de Investigación, Universidad de Murcia, Campus de Espinardo, 21, 30100 Murcia, Spain
| | - Pablo González-Herrero
- Departamento
de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 19, 30100 Murcia, Spain
| |
Collapse
|
3
|
Franzke Y, Holzer C, Andersen JH, Begušić T, Bruder F, Coriani S, Della Sala F, Fabiano E, Fedotov DA, Fürst S, Gillhuber S, Grotjahn R, Kaupp M, Kehry M, Krstić M, Mack F, Majumdar S, Nguyen BD, Parker SM, Pauly F, Pausch A, Perlt E, Phun GS, Rajabi A, Rappoport D, Samal B, Schrader T, Sharma M, Tapavicza E, Treß RS, Voora V, Wodyński A, Yu JM, Zerulla B, Furche F, Hättig C, Sierka M, Tew DP, Weigend F. TURBOMOLE: Today and Tomorrow. J Chem Theory Comput 2023; 19:6859-6890. [PMID: 37382508 PMCID: PMC10601488 DOI: 10.1021/acs.jctc.3c00347] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Indexed: 06/30/2023]
Abstract
TURBOMOLE is a highly optimized software suite for large-scale quantum-chemical and materials science simulations of molecules, clusters, extended systems, and periodic solids. TURBOMOLE uses Gaussian basis sets and has been designed with robust and fast quantum-chemical applications in mind, ranging from homogeneous and heterogeneous catalysis to inorganic and organic chemistry and various types of spectroscopy, light-matter interactions, and biochemistry. This Perspective briefly surveys TURBOMOLE's functionality and highlights recent developments that have taken place between 2020 and 2023, comprising new electronic structure methods for molecules and solids, previously unavailable molecular properties, embedding, and molecular dynamics approaches. Select features under development are reviewed to illustrate the continuous growth of the program suite, including nuclear electronic orbital methods, Hartree-Fock-based adiabatic connection models, simplified time-dependent density functional theory, relativistic effects and magnetic properties, and multiscale modeling of optical properties.
Collapse
Affiliation(s)
- Yannick
J. Franzke
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| | - Christof Holzer
- Institute
of Theoretical Solid State Physics, Karlsruhe
Institute of Technology (KIT), Wolfgang-Gaede-Str. 1, 76131 Karlsruhe, Germany
| | - Josefine H. Andersen
- DTU
Chemistry, Department of Chemistry, Technical
University of Denmark, Kemitorvet Building 207, DK-2800 Kongens Lyngby, Denmark
| | - Tomislav Begušić
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Florian Bruder
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| | - Sonia Coriani
- DTU
Chemistry, Department of Chemistry, Technical
University of Denmark, Kemitorvet Building 207, DK-2800 Kongens Lyngby, Denmark
| | - Fabio Della Sala
- Institute
for Microelectronics and Microsystems (CNR-IMM), Via Monteroni, Campus Unisalento, 73100 Lecce, Italy
- Center for
Biomolecular Nanotechnologies @UNILE, Istituto
Italiano di Tecnologia, Via Barsanti, 73010 Arnesano, Italy
| | - Eduardo Fabiano
- Institute
for Microelectronics and Microsystems (CNR-IMM), Via Monteroni, Campus Unisalento, 73100 Lecce, Italy
- Center for
Biomolecular Nanotechnologies @UNILE, Istituto
Italiano di Tecnologia, Via Barsanti, 73010 Arnesano, Italy
| | - Daniil A. Fedotov
- DTU
Chemistry, Department of Chemistry, Technical
University of Denmark, Kemitorvet Building 207, DK-2800 Kongens Lyngby, Denmark
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Susanne Fürst
- Institut
für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Technische Universität Berlin, Straße des 17 Juni 135, 10623, Berlin, Germany
| | - Sebastian Gillhuber
- Institute
of Inorganic Chemistry, Karlsruhe Institute
of Technology (KIT), Engesserstr. 15, 76131 Karlsruhe, Germany
| | - Robin Grotjahn
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Martin Kaupp
- Institut
für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Technische Universität Berlin, Straße des 17 Juni 135, 10623, Berlin, Germany
| | - Max Kehry
- Institute
of Physical Chemistry, Karlsruhe Institute
of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Marjan Krstić
- Institute
of Theoretical Solid State Physics, Karlsruhe
Institute of Technology (KIT), Wolfgang-Gaede-Str. 1, 76131 Karlsruhe, Germany
| | - Fabian Mack
- Institute
of Physical Chemistry, Karlsruhe Institute
of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Sourav Majumdar
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Brian D. Nguyen
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Shane M. Parker
- Department
of Chemistry, Case Western Reserve University, 10900 Euclid Ave, Cleveland, Ohio 44106 United States
| | - Fabian Pauly
- Institute
of Physics, University of Augsburg, Universitätsstr. 1, 86159 Augsburg, Germany
| | - Ansgar Pausch
- Institute
of Physical Chemistry, Karlsruhe Institute
of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Eva Perlt
- Otto-Schott-Institut
für Materialforschung, Friedrich-Schiller-Universität
Jena, Löbdergraben
32, 07743 Jena, Germany
| | - Gabriel S. Phun
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Ahmadreza Rajabi
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Dmitrij Rappoport
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Bibek Samal
- Department
of Chemical Sciences, Tata Institute of
Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Tim Schrader
- Otto-Schott-Institut
für Materialforschung, Friedrich-Schiller-Universität
Jena, Löbdergraben
32, 07743 Jena, Germany
| | - Manas Sharma
- Otto-Schott-Institut
für Materialforschung, Friedrich-Schiller-Universität
Jena, Löbdergraben
32, 07743 Jena, Germany
| | - Enrico Tapavicza
- Department
of Chemistry and Biochemistry, California
State University, Long Beach, 1250 Bellflower Boulevard, Long
Beach, California 90840-9507, United States
| | - Robert S. Treß
- Lehrstuhl
für Theoretische Chemie, Ruhr-Universität
Bochum, 44801 Bochum, Germany
| | - Vamsee Voora
- Department
of Chemical Sciences, Tata Institute of
Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Artur Wodyński
- Institut
für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Technische Universität Berlin, Straße des 17 Juni 135, 10623, Berlin, Germany
| | - Jason M. Yu
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Benedikt Zerulla
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz-Platz
1, 76344 Eggenstein-Leopoldshafen Germany
| | - Filipp Furche
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Christof Hättig
- Lehrstuhl
für Theoretische Chemie, Ruhr-Universität
Bochum, 44801 Bochum, Germany
| | - Marek Sierka
- Otto-Schott-Institut
für Materialforschung, Friedrich-Schiller-Universität
Jena, Löbdergraben
32, 07743 Jena, Germany
| | - David P. Tew
- Physical
and Theoretical Chemistry Laboratory, University
of Oxford, South Parks
Road, Oxford OX1 3QZ, United Kingdom
| | - Florian Weigend
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| |
Collapse
|
4
|
Höhn V, Feuerstein W, Rehak FR, Kehry M, Lebedkin S, Kappes MM, Klopper W, Breher F. Non-Palindromic C∧C∧P Platinum and Palladium Pincer Complexes Showing Intense Phosphorescence via Direct Spin-Forbidden S 0 → T 1 Excitation. Inorg Chem 2023; 62:15627-15640. [PMID: 37682719 DOI: 10.1021/acs.inorgchem.3c02339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
The synthesis of C∧C∧P pre-ligands based on a dicyclohexylphosphine-substituted biphenyl framework is reported. The pre-ligands form the respective non-palindromic pincer complexes of PtII and PdII via double oxidative addition and subsequent comproportionation or C-H activation. The complexes of PtII as well as PdII emit similar green phosphorescence efficiently in the solid state, the former also in solution albeit with less intensity. The most fascinating photophysical feature, however, is a direct singlet-triplet (S0 → T1) excitation of this phosphorescence in the spectral window between the emission and the major singlet-singlet UV absorption. The S0 → T1 excitation spectra show a rich vibronic pattern, which is especially pronounced for the solid samples at cryogenic temperatures. The molar extinction of the lowest-energy singlet-triplet absorption band of the homologous Pt and Pd complexes as well as that of the Pt complex with a different (NHC) ancillary ligand were determined in tetrahydrofuran solutions. Quantum efficiencies of triplet formation (by intersystem crossing) via the "standard" excitation pathway S0 → Sn → T1 were determined for the Pt complexes and found to be different in dependence of the ancillary ligand.
Collapse
Affiliation(s)
- Verena Höhn
- Karlsruhe Institute of Technology (KIT), Institute of Inorganic Chemistry, Engesserstraße 15, 76131 Karlsruhe, Germany
| | - Wolfram Feuerstein
- Karlsruhe Institute of Technology (KIT), Institute of Inorganic Chemistry, Engesserstraße 15, 76131 Karlsruhe, Germany
| | - Florian R Rehak
- Karlsruhe Institute of Technology (KIT), Institute of Physical Chemistry, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Max Kehry
- Karlsruhe Institute of Technology (KIT), Institute of Physical Chemistry, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Sergei Lebedkin
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Manfred M Kappes
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Wim Klopper
- Karlsruhe Institute of Technology (KIT), Institute of Physical Chemistry, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Frank Breher
- Karlsruhe Institute of Technology (KIT), Institute of Inorganic Chemistry, Engesserstraße 15, 76131 Karlsruhe, Germany
| |
Collapse
|
5
|
Poveda D, Vivancos Á, Bautista D, González-Herrero P. Photochemically Induced Cyclometalations at Simple Platinum(II) Precursors. Inorg Chem 2023; 62:6207-6213. [PMID: 37043617 PMCID: PMC10131227 DOI: 10.1021/acs.inorgchem.3c00688] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Photochemical cycloplatinations of 2-arylpyridines and related C∧N ligands, as well as terdentate heteroaromatic N∧N∧C, N∧C∧N, and N∧C∧C compounds, are demonstrated using (Bu4N)2[Pt2Cl6] or [PtCl2(NCPh)2] as precursors at room temperature. Mono- or bis-cyclometalated Pt(II) complexes with C∧N ligands are obtained depending on excitation wavelength and precursor. Monitoring experiments show that photoexcitation enables both the N-coordination and the subsequent C-H metalation. Photochemical synthetic protocols have been developed, which are advantageous with respect to the established thermal procedures and have allowed the synthesis of the first Pt(II) complexes with N∧C∧C ligands.
Collapse
Affiliation(s)
- Dionisio Poveda
- Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 19, 30100 Murcia, Spain
| | - Ángela Vivancos
- Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 19, 30100 Murcia, Spain
| | - Delia Bautista
- Área Científica y Técnica de Investigación, Universidad de Murcia, Campus de Espinardo, 21, 30100 Murcia, Spain
| | - Pablo González-Herrero
- Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 19, 30100 Murcia, Spain
| |
Collapse
|
6
|
Rosero-Mafla MA, Zapata-Rivera J, Gimeno MC, Visbal R. Steric and Electronic Effects in N-Heterocyclic Carbene Gold(III) Complexes: An Experimental and Computational Study. Molecules 2022; 27:molecules27238289. [PMID: 36500397 PMCID: PMC9740751 DOI: 10.3390/molecules27238289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
A series of neutral acridine-based gold(III)-NHC complexes containing the pentafluorophenyl (-C6F5) group were synthesized. All of the complexes were fully characterized by analytical techniques. The square planar geometry around the gold center was confirmed by X-ray diffraction analysis for complexes 1 (Trichloro [1-methyl-3-(9-acridine)imidazol-2-ylidene]gold(III)) and 2 (Chloro-bis(pentafluorophenyl)[1-methyl-3-(9-acridine)imidazol-2-ylidene]gold(III)). In both cases, the acridine rings play a key role in the crystal packing of the solid structures by mean of π-π stacking interactions, with centroid-centroid and interplanar distances being similar to those found in other previously reported acridine-based Au(I)-NHC complexes. A different reactivity when using a bulkier N-heterocyclic carbene ligand such as 1,3-bis-(2,6-diisopropylphenyl)-2-imidazolidinylidene (SIPr) was observed. While the use of the acridine-based NHC ligand led to the expected organometallic gold(III) species, the steric hindrance of the bulky SIPr ligand led to the formation of the corresponding imidazolinium cation stabilized by the tetrakis(pentafluorophenyl)aurate(III) [Au(C6F5)4]- anion. Computational experiments were carried out in order to figure out the ground state electronic structure and the binding formation energy of the complexes and, therefore, to explain the observed reactivity.
Collapse
Affiliation(s)
- Miguel A. Rosero-Mafla
- Departamento de Química, Facultad de Ciencias Naturales y Exactas, Universidad del Valle, A.A. 25360, Cali 760042, Colombia
| | - Jhon Zapata-Rivera
- Departamento de Química, Facultad de Ciencias, Universidad de los Andes, Cra 1 No 18A—12, Bogotá 111711, Colombia
| | - M. Concepción Gimeno
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Correspondence: (M.C.G.); (R.V.)
| | - Renso Visbal
- Departamento de Química, Facultad de Ciencias Naturales y Exactas, Universidad del Valle, A.A. 25360, Cali 760042, Colombia
- Centro de Excelencia en Nuevos Materiales (CENM), Universidad del Valle, A.A. 25360, Cali 760031, Colombia
- Correspondence: (M.C.G.); (R.V.)
| |
Collapse
|
7
|
Fluorescence vs. Phosphorescence: Which Scenario Is Preferable in Au(I) Complexes with Benzothiadiazoles? Molecules 2022; 27:molecules27238162. [PMID: 36500253 PMCID: PMC9741114 DOI: 10.3390/molecules27238162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
The photoluminescence of Au(I) complexes is generally characterized by long radiative lifetimes owing to the large spin-orbital coupling constant of the Au(I) ion. Herein, we report three brightly emissive Au(I) coordination compounds, 1, 2a, and 2b, that reveal unexpectedly short emission lifetimes of 10-20 ns. Polymorphs 2a and 2b exclusively exhibit fluorescence, which is quite rare for Au(I) compounds, while compound 1 reveals fluorescence as the major radiative pathway, and a minor contribution of a microsecond-scale component. The fluorescent behaviour for 1-2 is rationalized by means of quantum chemical (TD)-DFT calculations, which reveal the following: (1) S0-S1 and S0-T1 transitions mainly exhibit an intraligand nature. (2) The calculated spin-orbital coupling (SOC) between the states is small, which is a consequence of overall small metal contribution to the frontier orbitals. (3) The T1 state features much lower energy than the S1 state (by ca. 7000 cm-1), which hinders the SOC between the states. Thus, the S1 state decays in the form of fluorescence, rather than couples with T1. In the specific case of complex 1, the potential energy surfaces for the S1 and T2 states intersect, while the vibrationally resolved S1-S0 and T2-S0 calculated radiative transitions show substantial overlap. Thus, the microsecond-scale component for complex 1 can stem from the coupling between the S1 and T2 states.
Collapse
|
8
|
Prabhala P, Sutar SM, Kalkhambkar RG, Jeong YT. Ultrasonication Assisted α‐Arylation of
N‐
heteroarenes Employing 1‐Aryltriazenes Promoted by Brønsted Acidic Ionic Liquid under Aerobic Conditions. ChemistrySelect 2022. [DOI: 10.1002/slct.202201428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pavankumar Prabhala
- Department of Chemistry Karnatak University's Karnatak Science College Dharwad Karnataka 580001 India
| | - Suraj M. Sutar
- Department of Chemistry Karnatak University's Karnatak Science College Dharwad Karnataka 580001 India
| | - Rajesh G. Kalkhambkar
- Department of Chemistry Karnatak University's Karnatak Science College Dharwad Karnataka 580001 India
| | - Yeon T. Jeong
- Department of Image Science and Engineering Pukyong National University Busan 608737, Republic of Korea
| |
Collapse
|
9
|
Conceptual advances in the preparation and excited-state properties of neutral luminescent (C^N) and (C^C*) monocyclometalated gold(III) complexes. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
10
|
Malmberg R, Suter D, Blacque O, Venkatesan K. Monocyclometalated (C N) Gold(III) Metallacycles: Tunable Emission and Singlet Oxygen ( 1 O 2 ) Generation Properties. Chemistry 2021; 27:14410-14417. [PMID: 34406672 DOI: 10.1002/chem.202102331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Indexed: 11/10/2022]
Abstract
The synthesis, characterization and photoluminescent properties of four cyclometalated (C N)-type gold(III) complexes bearing a bidentate diacetylide ligand, tolan-2,2'-diacetylide (tda), are reported. The complexes exhibit highly tunable excited state properties and show photoluminescence (PL) across the entire visible spectrum from sky-blue (λPL =493 nm) to red (λPL =675 nm) with absolute PL quantum yields (PLQY) of up to 75 % in solution, the highest PLQY found for any monocyclometalated Au(III) complex in solution. As a consequence of the use of the strongly rigidifying diacetylide bidentate ligand, a significant increase in the excited state lifetimes (τ0 =16-258 μs) was found in solution and in thin films. The complexes showed remarkable singlet oxygen generation in aerated solution with absolute singlet oxygen quantum yield (ϕ1Δ ) values reaching up to 7.5×10-5 and singlet oxygen lifetimes (τ0 1Δ ) in the range of 66-95 μs. Furthermore, the radiative and non-radiative rates of singlet oxygen were determined using the ϕ1Δ and τ0 1Δ values and correlations are drawn between the formation of singlet oxygen and its interaction with cyclometalated (C N) gold(III) complexes.
Collapse
Affiliation(s)
- Robert Malmberg
- Department of Molecular Sciences, MQ Photonics Research Centre and MQ Sustainable Energy Research Centre, Macquarie University, Sydney, NSW, 2109, Australia
| | - Dominik Suter
- Department of Molecular Sciences, MQ Photonics Research Centre and MQ Sustainable Energy Research Centre, Macquarie University, Sydney, NSW, 2109, Australia.,Department of Chemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Olivier Blacque
- Department of Chemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Koushik Venkatesan
- Department of Molecular Sciences, MQ Photonics Research Centre and MQ Sustainable Energy Research Centre, Macquarie University, Sydney, NSW, 2109, Australia.,Department of Chemistry, University of Zurich, 8057, Zurich, Switzerland
| |
Collapse
|
11
|
Sawamura M, Shimizu Y, Niizeki R, Higashida K, Mejri E. Synthesis of C,N,N-Cyclometalated Gold(III) Complexes with Anionic Amide Ligands. Synlett 2021. [DOI: 10.1055/a-1673-9236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractA series of neutral C,N,N Au(III) complexes were synthesized with N-(8-quinolinyl)benzamide derivatives or chiral N-[2-(1,3-oxazolin-2-yl)phenyl]benzamide derivatives. The convenient synthesis method for the amide ligands, together with their operationally simple complexation by direct C–H auration, permitted changes to both the steric and electronic properties of Au(III) complexes for promoting the catalytic three-component couplings of an aldehyde, an amine, and an alkyne.
Collapse
Affiliation(s)
- Masaya Sawamura
- Department of Chemistry, Faculty of Science, Hokkaido University
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University
| | - Yohei Shimizu
- Department of Chemistry, Faculty of Science, Hokkaido University
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University
| | - Ryotaro Niizeki
- Department of Chemistry, Faculty of Science, Hokkaido University
| | - Kosuke Higashida
- Department of Chemistry, Faculty of Science, Hokkaido University
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University
| | - Emna Mejri
- Department of Chemistry, Faculty of Science, Hokkaido University
| |
Collapse
|
12
|
Feuerstein W, Breher F. Non-palindromic (C^C^D) gold(III) pincer complexes are not accessible by intramolecular oxidative addition of biphenylenes - an experimental and quantum chemical study. Dalton Trans 2021; 50:9754-9767. [PMID: 34169955 DOI: 10.1039/d1dt00953b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We herein report on the synthesis of biphenylenes substituted with a pyridine (N), a phosphine (P) and a carbene (C') donor as well as a carbene donor with additional pyridine in the lateral position. We describe the synthesis and structures of derived gold(i) complexes, which we tried to use for the synthesis of non-palindromic [(C^C^D)AuIII] pincer complexes by means of an intramolecular oxidative addition of the strained biphenylene ring. However, the anticipated formation of gold(iii) complexes failed due to kinetic and thermodynamic reasons, which we extensively investigated by quantum chemical calculations. Furthermore, we shed light on the oxidative addition of biphenylene to two different gold(i) systems reported in the literature. Our comprehensive quantum-chemical analysis is complemented by NMR experiments.
Collapse
Affiliation(s)
- Wolfram Feuerstein
- Karlsruhe Institute of Technology (KIT), Institute of Inorganic Chemistry, Division Molecular Chemistry, Engesserstr. 15, 76131 Karlsruhe, Germany.
| | - Frank Breher
- Karlsruhe Institute of Technology (KIT), Institute of Inorganic Chemistry, Division Molecular Chemistry, Engesserstr. 15, 76131 Karlsruhe, Germany.
| |
Collapse
|
13
|
Tang MC, Chan MY, Yam VWW. Molecular Design of Luminescent Gold(III) Emitters as Thermally Evaporable and Solution-Processable Organic Light-Emitting Device (OLED) Materials. Chem Rev 2021; 121:7249-7279. [DOI: 10.1021/acs.chemrev.0c00936] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Man-Chung Tang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P.R. China
| | - Mei-Yee Chan
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P.R. China
| | - Vivian Wing-Wah Yam
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P.R. China
| |
Collapse
|
14
|
Malmberg R, von Arx T, Hasan M, Blacque O, Shukla A, McGregor SKM, Lo SC, Namdas EB, Venkatesan K. Tunable Light-Emission Properties of Solution-Processable N-Heterocyclic Carbene Cyclometalated Gold(III) Complexes for Organic Light-Emitting Diodes. Chemistry 2021; 27:7265-7274. [PMID: 33527569 DOI: 10.1002/chem.202100215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Indexed: 11/08/2022]
Abstract
N-Heterocyclic carbene (NHC) cyclometalated gold(III) complexes remain very scarce and therefore their photophysical properties remain currently underexplored. Moreover, gold(III) complexes emitting in the blue region of the electromagnetic spectrum are rare. In this work, a series of four phosphorescent gold(III) complexes was investigated bearing four different NHC monocyclometalated (C^C*)-type ligands and a dianionic (N^N)-type ancillary ligand ((N^N)=5,5'-(propane-2,2-diyl)bis(3-(trifluoromethyl)-1 H-pyrazole) (mepzH2 )). The complexes exhibit strong phosphorescence when doped in poly(methyl methacrylate) (PMMA) at room temperature, which were systematically tuned from sky-blue [λPL =456 nm, CIE coordinates: (0.20, 034)] to green [λPL =516 nm, CIE coordinates: (0.31, 0.54)] by varying the monocyclometalated (C^C*) ligand framework. The complexes revealed high quantum efficiencies (ϕPL ) of up to 43 % and excited-state lifetimes (τ0 ) between 15-266 μs. The radiative rate constant values found for these complexes (kr =103 -104 s-1 ) are the highest found in comparison to previously known best-performing monocyclometalated gold(III) complexes. Density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations of these complexes further lend support to the excited-state nature of these complexes. The calculations showed a significant contribution of the gold(III) metal center in the lowest unoccupied molecular orbitals (LUMOs) of up to 18 %, which was found to be unique for this class of cyclometalated gold(III) complexes. Additionally, organic light-emitting diodes (OLEDs) were fabricated by using a solution process to provide the first insight into the electroluminescent (EL) properties of this new class of gold(III) complexes.
Collapse
Affiliation(s)
- Robert Malmberg
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Tobias von Arx
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia.,Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Monirul Hasan
- Centre for Organic Photonics and Electronics, The University of Queensland, Brisbane, QLD, 4072, Australia.,School of Mathematics and Physics, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Olivier Blacque
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Atul Shukla
- Centre for Organic Photonics and Electronics, The University of Queensland, Brisbane, QLD, 4072, Australia.,School of Mathematics and Physics, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Sarah K M McGregor
- Centre for Organic Photonics and Electronics, The University of Queensland, Brisbane, QLD, 4072, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Shih-Chun Lo
- Centre for Organic Photonics and Electronics, The University of Queensland, Brisbane, QLD, 4072, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ebinazar B Namdas
- Centre for Organic Photonics and Electronics, The University of Queensland, Brisbane, QLD, 4072, Australia.,School of Mathematics and Physics, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Koushik Venkatesan
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia.,MQ Photonics Research Centre, MQ Sustainable Research Centre, Macquarie University, Sydney, NSW, 2109, Australia.,Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| |
Collapse
|
15
|
Martínez-Junquera M, Lalinde E, Moreno MT, Alfaro-Arnedo E, López IP, Larráyoz IM, Pichel JG. Luminescent cyclometalated platinum(ii) complexes with acyclic diaminocarbene ligands: structural, photophysical and biological properties. Dalton Trans 2021; 50:4539-4554. [PMID: 33729268 DOI: 10.1039/d1dt00480h] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Four new cyclometalated Pt(ii) complexes bearing acyclic diaminocarbene (ADC) ligands, [Pt(C^N)Cl{C(NHXyl)(NHR)}] [C^N = 2,6-difluorophenylpyridine (dfppy), phenylquinoline (pq); R = Pr 3a, 4a, CH2Ph 3b, 4b], were prepared by the nucleophilic attack on the isocyanide [Pt(C^N)Cl(CNXyl)] (C^N = dfppy 1, pq 2) by the corresponding amine RNH2 (R = Pr, CH2Ph). Complexes 3 show in their 1H NMR spectra in CDCl3 a notable concentration dependence, with a clear variation of the δH (NHXyl) signal, suggesting an assembling process implying donor-acceptor NHXylCl bonding, also supported by 1D-PGSE (Pulse Field Gradient Spin Echo) and 2D-DOSY (Diffusion Ordered Spectroscopy) NMR experiments in solution and X-ray diffraction studies. The intermolecular interactions in compounds 3a and 3b were studied by using Hirshfeld surface analysis and Non-Covalent Interaction (NCI) methods on their X-ray structures. Their photophysical properties were investigated by absorption and emission spectroscopies and also by TD-DFT calculations performed on 3a and 4b. These complexes show green (3) or orange (4) phosphorescence, attributed to a mixed 3IL/3MLCT excited state. The carbene ligand does not affect the emission maxima but it produces an increase of the quantum yields in relation to the isocyanide in the precursors. In fluid solutions, the emission is not concentration-dependent, but the complexes may show aggregation induced emission as detailed for complexes 3a and 4a. In addition, cytotoxicity studies in the human cell lines A549 (lung carcinoma) and HeLa (cervix carcinoma) showed good activity for these complexes and 3a, 3b and 4a exhibit a strong effect on DNA electrophoretic mobility. To the best of our knowledge, compounds 3 and 4 represent the first examples of cycloplatinated complexes bearing acyclic diamino carbenes with antiproliferative properties.
Collapse
Affiliation(s)
- Mónica Martínez-Junquera
- Departamento de Química-Centro de Síntesis Química de La Rioja, (CISQ), Universidad de La Rioja, 26006, Logroño, Spain.
| | | | | | | | | | | | | |
Collapse
|
16
|
Feuerstein W, Holzer C, Gui X, Neumeier L, Klopper W, Breher F. Synthesis of New Donor-Substituted Biphenyls: Pre-ligands for Highly Luminescent (C^C^D) Gold(III) Pincer Complexes. Chemistry 2020; 26:17156-17164. [PMID: 32735695 PMCID: PMC7821303 DOI: 10.1002/chem.202003271] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/31/2020] [Indexed: 12/31/2022]
Abstract
We herein report on new synthetic strategies for the preparation of pyridine and imidazole substituted 2,2'-dihalo biphenyls. These structures are pre-ligands suitable for the preparation of respective stannoles. The latter can successfully be transmetalated to K[AuCl4 ] forming non-palindromic [(C^C^D)AuIII ] pincer complexes featuring a lateral pyridine (D=N) or N-heterocyclic carbene (NHC, D=C') donor. The latter is the first report on a pincer complex with two formally anionic sp2 and one carbenic carbon donor. The [(C^C^D)AuIII ] complexes show intense phosphorescence in solution at room temperature. We discuss the developed multistep strategy and touch upon synthetic challenges. The prepared complexes have been fully characterized including X-ray diffraction analysis. The gold(III) complexes' photophysical properties have been investigated by absorption and emission spectroscopy as well as quantum chemical calculations on the quasi-relativistic two-component TD-DFT and GW/Bethe-Salpeter level including spin-orbit coupling. Thus, we shed light on the electronic influence of the non-palindromic pincer ligand and reveal non-radiative relaxation pathways of the different ligands employed.
Collapse
Affiliation(s)
- Wolfram Feuerstein
- Institute of Inorganic ChemistryKarlsruhe Institute of, Technology (KIT)Engesserstr. 1576131KarlsruheGermany
| | - Christof Holzer
- Institute of Theoretical Solid State PhysicsKarlsruhe Institute of, Technology (KIT)Wolfgang-Gaede-Straße 176131KarlsruheGermany
| | - Xin Gui
- Institute of Physical ChemistryKarlsruhe Institute of, Technology (KIT)Fritz-Haber-Weg 276131KarlsruheGermany
| | - Lilly Neumeier
- Institute of Inorganic ChemistryKarlsruhe Institute of, Technology (KIT)Engesserstr. 1576131KarlsruheGermany
| | - Wim Klopper
- Institute of Physical ChemistryKarlsruhe Institute of, Technology (KIT)Fritz-Haber-Weg 276131KarlsruheGermany
| | - Frank Breher
- Institute of Inorganic ChemistryKarlsruhe Institute of, Technology (KIT)Engesserstr. 1576131KarlsruheGermany
| |
Collapse
|
17
|
Feuerstein W, Breher F. Synthetic access to a phosphorescent non-palindromic pincer complex of palladium by a double oxidative addition – comproportionation sequence. Chem Commun (Camb) 2020; 56:12589-12592. [DOI: 10.1039/d0cc04065g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A highly phosphorescent non-palindromic (C^C^N) palladium complex may be prepared by means of a double oxidative addition – comproportionation sequence, which is a new approach for the synthesis of non-palindromic pincer complexes.
Collapse
Affiliation(s)
- Wolfram Feuerstein
- Karlsruhe Institute of Technology (KIT)
- Institute of Inorganic Chemistry
- Division Molecular Chemistry
- 76131 Karlsruhe
- Germany
| | - Frank Breher
- Karlsruhe Institute of Technology (KIT)
- Institute of Inorganic Chemistry
- Division Molecular Chemistry
- 76131 Karlsruhe
- Germany
| |
Collapse
|