1
|
Li J, Wang X, Lin Y, Li Z, Xiong W. Integrative eQTL and Mendelian randomization analysis reveals key genetic markers in mesothelioma. Respir Res 2025; 26:140. [PMID: 40223054 PMCID: PMC11995628 DOI: 10.1186/s12931-025-03219-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 04/02/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND Mesothelioma is a rare cancer that originates from the pleura and peritoneum, with its incidence increasing due to asbestos exposure. Patients are frequently diagnosed at advanced stages, resulting in poor survival rates. Therefore, the identification of molecular markers for early detection and diagnosis is essential. METHODS Three mesothelioma datasets were downloaded from the GEO database for differential gene expression analysis. Instrumental variables (IVs) were identified based on expression quantitative trait locus (eQTL) data for Mendelian randomization (MR) analysis using mesothelioma Genome-Wide Association Study (GWAS) data from the FINNGEN database. The intersecting genes from MR-identified risk genes and differentially expressed genes were identified as key co-expressed genes for mesothelioma. Functional enrichment analyses, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA), as well as immune cell correlation analysis, were performed to elucidate the roles of key genes in mesothelioma. Additionally, the differential expression of key genes in mesothelioma was validated in independent GEO datasets and TCGA datasets. This integrative research combining multiple databases and analytical methods established a robust model for identifying mesothelioma risk genes. RESULTS The research conducted in our study identified 1608 genes that were expressed differentially in mesothelioma GEO datasets. By combining these genes with 192 genes from MR analysis, we identified 14 key genes. Notably, MPZL1, SOAT1, TACC3, and CYBRD1 are linked to a high risk of mesothelioma, while TGFBR3, NDRG2, EPAS1, CPA3, MNDA, PRKCD, MTUS1, ALOX15, LRRN3, and ITGAM are associated with a lower risk. These genes were found to be enriched in pathways associated with superoxide metabolism, cell cycle regulation, and proteasome function, all of which are linked to the development of mesothelioma. Noteworthy observations included a significant infiltration of M1 macrophages and CD4 + T cells in mesothelioma, with genes SOAT1, MNDA, and ITGAM showing a positive correlation with the level of M1 macrophage infiltration. Furthermore, the differential expression analyses conducted on the GEO validation set and TCGA data confirmed the significance of the identified key genes. CONCLUSION This integrative eQTL and Mendelian randomization analysis provides evidence of a positive causal association between 14 key co-expressed genes and mesothelioma genetically. These disease critical genes are implicated in correlations with biological processes and infiltrated immune cells related to mesothelioma. Moreover, our study lays a theoretical foundation for further research into the mechanisms of mesothelioma and potential clinical applications.
Collapse
Affiliation(s)
- Jinsong Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dali University, Dali, Yunnan, China
- Key Laboratory of Clinical Biochemistry Testing in Universities of Yunnan Province, College of Basic Medical Sciences, Dali University, Dali, Yunnan, China
| | - Xingmeng Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dali University, Dali, Yunnan, China
- Key Laboratory of Clinical Biochemistry Testing in Universities of Yunnan Province, College of Basic Medical Sciences, Dali University, Dali, Yunnan, China
| | - Yaru Lin
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dali University, Dali, Yunnan, China
- Key Laboratory of Clinical Biochemistry Testing in Universities of Yunnan Province, College of Basic Medical Sciences, Dali University, Dali, Yunnan, China
| | - Zhengliang Li
- Department of Radiology, The First Affiliated Hospital of Dali University, Dali University, Dali, Yunnan, China.
| | - Wei Xiong
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dali University, Dali, Yunnan, China.
- Key Laboratory of Clinical Biochemistry Testing in Universities of Yunnan Province, College of Basic Medical Sciences, Dali University, Dali, Yunnan, China.
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China.
| |
Collapse
|
2
|
Merle C, Rodrigues C, Pourkhalili Langeroudi A, Journot R, Rost F, Dang Y, Rulands S, Fre S. Transcriptional landscapes underlying Notch-induced lineage conversion and plasticity of mammary basal cells. EMBO J 2025:10.1038/s44318-025-00424-1. [PMID: 40186028 DOI: 10.1038/s44318-025-00424-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/12/2025] [Accepted: 03/19/2025] [Indexed: 04/07/2025] Open
Abstract
The mammary epithelium derives from multipotent mammary stem cells (MaSCs) that engage into differentiation during embryonic development. However, adult MaSCs maintain the ability to reactivate multipotency in non-physiological contexts. We previously reported that Notch1 activation in committed basal cells triggers a basal-to-luminal cell fate switch in the mouse mammary gland. Here, we report conservation of this mechanism and found that in addition to the mammary gland, constitutive Notch1 signaling induces a basal-to-luminal cell fate switch in adult cells of the lacrimal gland, the salivary gland, and the prostate. Since the lineage transition is progressive in time, we performed single-cell transcriptomic analysis on index-sorted mammary cells at different stages of lineage conversion, generating a temporal map of changes in cell identity. Combining single-cell analyses with organoid assays, we demonstrate that cell proliferation is indispensable for this lineage conversion. We also reveal the individual transcriptional landscapes underlying the cellular plasticity switching of committed mammary cells in vivo with spatial and temporal resolution. Given the roles of Notch signaling in cancer, these results may help to better understand the mechanisms that drive cellular transformation.
Collapse
Affiliation(s)
- Candice Merle
- Institut Curie, Laboratory of Genetics and Developmental Biology, INSERM U934, CNRS UMR3215, PSL University, Sorbonne University, Paris, France
| | - Calvin Rodrigues
- Institut Curie, Laboratory of Genetics and Developmental Biology, INSERM U934, CNRS UMR3215, PSL University, Sorbonne University, Paris, France
| | - Atefeh Pourkhalili Langeroudi
- Institut Curie, Laboratory of Genetics and Developmental Biology, INSERM U934, CNRS UMR3215, PSL University, Sorbonne University, Paris, France
| | - Robin Journot
- Institut Curie, Laboratory of Genetics and Developmental Biology, INSERM U934, CNRS UMR3215, PSL University, Sorbonne University, Paris, France
| | - Fabian Rost
- Max-Planck-Institute for the Physics of Complex Systems, Dresden, Germany
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | - Yiteng Dang
- Max-Planck-Institute for the Physics of Complex Systems, Dresden, Germany
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
- Center for Systems Biology, Dresden, Germany
| | - Steffen Rulands
- Ludwig-Maximilians-Universität München, Arnold-Sommerfeld-Center for Theoretical Physics, München, Germany
| | - Silvia Fre
- Institut Curie, Laboratory of Genetics and Developmental Biology, INSERM U934, CNRS UMR3215, PSL University, Sorbonne University, Paris, France.
| |
Collapse
|
3
|
Lengerli D, Çalışkan ÖA, Çalışkan K, Saatci Ö, Lim C, Vempati S, Çalışkan B, Şahin Ö, Banoglu E. Isoxazole-pyrimidine derivatives as TACC3 inhibitors: A novel modality to targeted cancer therapy. Bioorg Chem 2025; 156:108204. [PMID: 39889548 DOI: 10.1016/j.bioorg.2025.108204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/10/2025] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
Inhibiting the function of transforming acidic coiled-coil 3 (TACC3) offers a promising therapeutic approach for various cancers, such as breast, ovarian, and lung cancers.Our previous work introduced BO-264 as a novel chemotype for inhibiting TACC3 function, though it exhibited relatively low metabolic stability. In this study, sixty-two compounds were designed and synthesized to modify the structure of BO-264 to improve its metabolic stability while maintaining its potency. The tractable SAR results obtained by these novel analogs indicated that appropriate substitutions on the left-end phenyl-isoxazole and right-end morpholine groups improved metabolic stability while preserving potency. Among these, compound 13b exhibited approximately sevenfold improvement in metabolic stability and bioavailability while maintaining strong potency and a favorable safety profile. 13b markedly increased the levels of p-Histone H3 (Ser10), cleaved PARP, and p-H2AX (Ser139), indicative of mitotic arrest, apoptosis, and DNA damage, respectively. In addition, the protein-drug binding assay, DARTS, identified TACC3 as a biologically significant target of 13b, positioning it as an advanced lead compound for further development of clinically relevant TACC3 inhibitors in cancers with elevated TACC3 expression.
Collapse
Affiliation(s)
- Deniz Lengerli
- Gazi University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 06560 Ankara, Turkey
| | - Özge Akbulut Çalışkan
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Kübra Çalışkan
- Gazi University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 06560 Ankara, Turkey
| | - Özge Saatci
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Chaemin Lim
- A2A Pharmaceuticals, Inc., 1185 Avenue of the Americas, New York, NY 10036, USA
| | - Sridhar Vempati
- A2A Pharmaceuticals, Inc., 1185 Avenue of the Americas, New York, NY 10036, USA
| | - Burcu Çalışkan
- Gazi University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 06560 Ankara, Turkey
| | - Özgür Şahin
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Erden Banoglu
- Gazi University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 06560 Ankara, Turkey.
| |
Collapse
|
4
|
Pouyan A, Ghorbanlo M, Eslami M, Jahanshahi M, Ziaei E, Salami A, Mokhtari K, Shahpasand K, Farahani N, Meybodi TE, Entezari M, Taheriazam A, Hushmandi K, Hashemi M. Glioblastoma multiforme: insights into pathogenesis, key signaling pathways, and therapeutic strategies. Mol Cancer 2025; 24:58. [PMID: 40011944 DOI: 10.1186/s12943-025-02267-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/07/2025] [Indexed: 02/28/2025] Open
Abstract
Glioblastoma multiforme (GBM) is the most prevalent and aggressive primary brain tumor in adults, characterized by a poor prognosis and significant resistance to existing treatments. Despite progress in therapeutic strategies, the median overall survival remains approximately 15 months. A hallmark of GBM is its intricate molecular profile, driven by disruptions in multiple signaling pathways, including PI3K/AKT/mTOR, Wnt, NF-κB, and TGF-β, critical to tumor growth, invasion, and treatment resistance. This review examines the epidemiology, molecular mechanisms, and therapeutic prospects of targeting these pathways in GBM, highlighting recent insights into pathway interactions and discovering new therapeutic targets to improve patient outcomes.
Collapse
Affiliation(s)
- Ashkan Pouyan
- Department of Neurosurgery, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Masoud Ghorbanlo
- Department of Anesthesiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Eslami
- Department of Neurosurgery, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Jahanshahi
- Department of Neurosurgery, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ehsan Ziaei
- Department of Neurosurgery, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Salami
- Department of Neurosurgery, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khatere Mokhtari
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Koorosh Shahpasand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Laboratory Medicine and Pathology, Institute for Translational Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Tohid Emami Meybodi
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Functional Neurosurgery Research Center, Shohada Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kiavash Hushmandi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Department of Epidemiology, University of Tehran, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
5
|
Bai W, Zhao X, Ning Q. Development and validation of a radiomic prediction model for TACC3 expression and prognosis in non-small cell lung cancer using contrast-enhanced CT imaging. Transl Oncol 2025; 51:102211. [PMID: 39603208 PMCID: PMC11635781 DOI: 10.1016/j.tranon.2024.102211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/10/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUNDS Non-small cell lung cancer (NSCLC) prognosis remains poor despite treatment advances, and classical prognostic indicators often fall short in precision medicine. Transforming acidic coiled-coil protein-3 (TACC3) has been identified as a critical factor in tumor progression and immune infiltration across cancers, including NSCLC. Predicting TACC3 expression through radiomic features may provide valuable insights into tumor biology and aid clinical decision-making. However, its predictive value in NSCLC remains unexplored. Therefore, we aimed to construct and validate a radiomic model to predict TACC3 levels and prognosis in patients with NSCLC. MATERIALS AND METHODS Genomic data and contrast-enhanced computed tomography (CT) images were sourced from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) database, and The Cancer Imaging Archive (TCIA). A total of 320 cases of lung adenocarcinoma from TCGA and 122 cases of NSCLC from GEO were used for prognostic analysis. Sixty-three cases from TCIA and GEO were included for radiomics feature extraction and model development. The radiomics model was constructed using logistic regression (LR) and support vector machine (SVM) algorithms. We predicted TACC3 expression and evaluated its correlation with NSCLC prognosis using contrast-enhanced CT-based radiomics. RESULTS TACC3 expression significantly influenced NSCLC prognosis. High TACC3 levels were associated with reduced overall survival, potentially mediated by immune microenvironment and tumor progression regulation. LR and SVM algorithms achieved AUC of 0.719 and 0.724, respectively, which remained at 0.701 and 0.717 after five-fold cross-validation. CONCLUSION Contrast-enhanced CT-based radiomics can non-invasively predict TACC3 expression and provide valuable prognostic information, contributing to personalized treatment strategies.
Collapse
Affiliation(s)
- Weichao Bai
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Xinhan Zhao
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Qian Ning
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China.
| |
Collapse
|
6
|
Prichard K, Chau N, Xue J, Krauss M, Sakoff JA, Gilbert J, Bahnik C, Muehlbauer M, Radetzki S, Robinson PJ, Haucke V, McCluskey A. Inhibition Clathrin Mediated Endocytosis: Pitstop 1 and Pitstop 2 Chimeras. ChemMedChem 2024; 19:e202400253. [PMID: 38894585 DOI: 10.1002/cmdc.202400253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/21/2024]
Abstract
Twenty-five chimera compounds of Pitstop 1 and 2 were synthesised and screened for their ability to block the clathrin terminal domain-amphiphysin protein-protein interaction (NTD-PPI using an ELISA) and clathrin mediated endocytosis (CME) in cells. Library 1 was based on Pitstop 2, but no notable clathrin PPI or in-cell activity was observed. With the Pitstop 1, 16 analogues were produced with 1,8-naphthalic imide core as a foundation. Analogues with methylene spaced linkers and simple amides showed a modest to good range of PPI inhibition (7.6-42.5 μM, naphthyl 39 and 4-nitrophenyl 40 respectively) activity. These data reveal the importance of the naphthalene sulfonate moiety, with no des-SO3 analogue displaying PPI inhibition. This was consistent with the observed analogue docked poses within the clathrin terminal domain Site 1 binding pocket. Further modifications targeted the naphthalene imide moiety, with the installation of 5-Br (45 a), 5-OH (45 c) and 5-propyl ether (45 d) moieties. Among them, the OH 45 c and propyl ether 45 d retained PPI inhibition, with propyl ether 45 d being the most active with a PPI inhibition IC50=7.3 μM. This is 2x more potent than Pitstop 2 and 3x more potent than Pitstop 1.
Collapse
Affiliation(s)
- Kate Prichard
- Chemistry, School of Environmental & Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - Ngoc Chau
- Cell Signalling Unit, Children's Medical Research Institute, The University of Sydney, Hawkesbury Road, Westmead, Sydney, Australia
| | - Jing Xue
- Cell Signalling Unit, Children's Medical Research Institute, The University of Sydney, Hawkesbury Road, Westmead, Sydney, Australia
| | - Michael Krauss
- Leibniz Institute fur Molecular Pharmacologie, Department of Biology, Chemistry, Pharmacy, Robert-Roessle-Strasse 10, Berlin, 13125, Germany
| | - Jennette A Sakoff
- Experimental Therapeutics Group, Medical Oncology, Calvary Mater Newcastle Hospital, Edith Street, Waratah, NSW, 2298, Australia
| | - Jayne Gilbert
- Experimental Therapeutics Group, Medical Oncology, Calvary Mater Newcastle Hospital, Edith Street, Waratah, NSW, 2298, Australia
| | - Claudia Bahnik
- Leibniz Institute fur Molecular Pharmacologie, Department of Biology, Chemistry, Pharmacy, Robert-Roessle-Strasse 10, Berlin, 13125, Germany
| | - Maria Muehlbauer
- Leibniz Institute fur Molecular Pharmacologie, Department of Biology, Chemistry, Pharmacy, Robert-Roessle-Strasse 10, Berlin, 13125, Germany
| | - Silke Radetzki
- Leibniz Institute fur Molecular Pharmacologie, Department of Biology, Chemistry, Pharmacy, Robert-Roessle-Strasse 10, Berlin, 13125, Germany
| | - Phillip J Robinson
- Cell Signalling Unit, Children's Medical Research Institute, The University of Sydney, Hawkesbury Road, Westmead, Sydney, Australia
| | - Volker Haucke
- Leibniz Institute fur Molecular Pharmacologie, Department of Biology, Chemistry, Pharmacy, Robert-Roessle-Strasse 10, Berlin, 13125, Germany
| | - Adam McCluskey
- Chemistry, School of Environmental & Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| |
Collapse
|
7
|
Bogale DE. The roles of FGFR3 and c-MYC in urothelial bladder cancer. Discov Oncol 2024; 15:295. [PMID: 39031286 PMCID: PMC11264706 DOI: 10.1007/s12672-024-01173-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/16/2024] [Indexed: 07/22/2024] Open
Abstract
Bladder cancer is one of the most frequently occurring cancers worldwide. At diagnosis, 75% of urothelial bladder cancer cases have non-muscle invasive bladder cancer while 25% have muscle invasive or metastatic disease. Aberrantly activated fibroblast growth factor receptor (FGFR)-3 has been implicated in the pathogenesis of bladder cancer. Activating mutations of FGFR3 are observed in around 70% of NMIBC cases and ~ 15% of MIBCs. Activated FGFR3 leads to ligand-independent receptor dimerization and activation of downstream signaling pathways that promote cell proliferation and survival. FGFR3 is an important therapeutic target in bladder cancer, and clinical studies have shown the benefit of FGFR inhibitors in a subset of bladder cancer patients. c-MYC is a well-known major driver of carcinogenesis and is one of the most commonly deregulated oncogenes identified in human cancers. Studies have shown that the antitumor effects of FGFR inhibition in FGFR3 dependent bladder cancer cells and other FGFR dependent cancers may be mediated through c-MYC, a key downstream effector of activated FGFR that is involved tumorigenesis. This review will summarize the current general understanding of FGFR signaling and MYC alterations in cancer, and the role of FGFR3 and MYC dysregulation in the pathogenesis of urothelial bladder cancer with the possible therapeutic implications.
Collapse
Affiliation(s)
- Dereje E Bogale
- School of Medicine, Department of Oncology, Addis Ababa University, Addis Ababa, Ethiopia.
| |
Collapse
|
8
|
Liu G, Hou Y, Jin X, Zhang Y, Sun C, Huang C, Ren Y, Gao J, Wang X, Jiang X. PI3K/HSCB axis facilitates FOG1 nuclear translocation to promote erythropoiesis and megakaryopoiesis. eLife 2024; 13:RP95815. [PMID: 38757931 PMCID: PMC11101173 DOI: 10.7554/elife.95815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024] Open
Abstract
Erythropoiesis and megakaryopoiesis are stringently regulated by signaling pathways. However, the precise molecular mechanisms through which signaling pathways regulate key transcription factors controlling erythropoiesis and megakaryopoiesis remain partially understood. Herein, we identified heat shock cognate B (HSCB), which is well known for its iron-sulfur cluster delivery function, as an indispensable protein for friend of GATA 1 (FOG1) nuclear translocation during erythropoiesis of K562 human erythroleukemia cells and cord-blood-derived human CD34+CD90+hematopoietic stem cells (HSCs), as well as during megakaryopoiesis of the CD34+CD90+HSCs. Mechanistically, HSCB could be phosphorylated by phosphoinositol-3-kinase (PI3K) to bind with and mediate the proteasomal degradation of transforming acidic coiled-coil containing protein 3 (TACC3), which otherwise detained FOG1 in the cytoplasm, thereby facilitating FOG1 nuclear translocation. Given that PI3K is activated during both erythropoiesis and megakaryopoiesis, and that FOG1 is a key transcription factor for these processes, our findings elucidate an important, previously unrecognized iron-sulfur cluster delivery independent function of HSCB in erythropoiesis and megakaryopoiesis.
Collapse
Affiliation(s)
- Gang Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal UniversityChangchunChina
| | - Yunxuan Hou
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal UniversityChangchunChina
| | - Xin Jin
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal UniversityChangchunChina
| | - Yixue Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal UniversityChangchunChina
| | - Chaoyue Sun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal UniversityChangchunChina
| | - Chengquan Huang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal UniversityChangchunChina
| | - Yujie Ren
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal UniversityChangchunChina
| | - Jianmin Gao
- School of Chemistry, Northeast Normal UniversityChangchunChina
| | - Xiuli Wang
- School of Life Science, Northeast Normal UniversityChangchunChina
| | - Xiumei Jiang
- School of Chemistry, Northeast Normal UniversityChangchunChina
| |
Collapse
|
9
|
Gedik ME, Saatci O, Oberholtzer N, Uner M, Akbulut Caliskan O, Cetin M, Aras M, Ibis K, Caliskan B, Banoglu E, Wiemann S, Üner A, Aksoy S, Mehrotra S, Sahin O. Targeting TACC3 Induces Immunogenic Cell Death and Enhances T-DM1 Response in HER2-Positive Breast Cancer. Cancer Res 2024; 84:1475-1490. [PMID: 38319231 PMCID: PMC11063689 DOI: 10.1158/0008-5472.can-23-2812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/27/2023] [Accepted: 01/25/2024] [Indexed: 02/07/2024]
Abstract
Trastuzumab emtansine (T-DM1) was the first and one of the most successful antibody-drug conjugates (ADC) approved for treating refractory HER2-positive breast cancer. Despite its initial clinical efficacy, resistance is unfortunately common, necessitating approaches to improve response. Here, we found that in sensitive cells, T-DM1 induced spindle assembly checkpoint (SAC)-dependent immunogenic cell death (ICD), an immune-priming form of cell death. The payload of T-DM1 mediated ICD by inducing eIF2α phosphorylation, surface exposure of calreticulin, ATP and HMGB1 release, and secretion of ICD-related cytokines, all of which were lost in resistance. Accordingly, ICD-related gene signatures in pretreatment samples correlated with clinical response to T-DM1-containing therapy, and increased infiltration of antitumor CD8+ T cells in posttreatment samples was correlated with better T-DM1 response. Transforming acidic coiled-coil containing 3 (TACC3) was overexpressed in T-DM1-resistant cells, and T-DM1 responsive patients had reduced TACC3 protein expression whereas nonresponders exhibited increased TACC3 expression during T-DM1 treatment. Notably, genetic or pharmacologic inhibition of TACC3 restored T-DM1-induced SAC activation and induction of ICD markers in vitro. Finally, TACC3 inhibition in vivo elicited ICD in a vaccination assay and potentiated the antitumor efficacy of T-DM1 by inducing dendritic cell maturation and enhancing intratumoral infiltration of cytotoxic T cells. Together, these results illustrate that ICD is a key mechanism of action of T-DM1 that is lost in resistance and that targeting TACC3 can restore T-DM1-mediated ICD and overcome resistance. SIGNIFICANCE Loss of induction of immunogenic cell death in response to T-DM1 leads to resistance that can be overcome by targeting TACC3, providing an attractive strategy to improve the efficacy of T-DM1.
Collapse
Affiliation(s)
- Mustafa Emre Gedik
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| | - Ozge Saatci
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, South Carolina
| | - Nathaniel Oberholtzer
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| | - Meral Uner
- Department of Pathology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | | | - Metin Cetin
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, South Carolina
| | - Mertkaya Aras
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, South Carolina
| | - Kubra Ibis
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Burcu Caliskan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Erden Banoglu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Stefan Wiemann
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), INF580, Heidelberg, Germany
| | - Ayşegül Üner
- Department of Pathology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Sercan Aksoy
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Shikhar Mehrotra
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| | - Ozgur Sahin
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
10
|
Conway PJ, Dao J, Kovalskyy D, Mahadevan D, Dray E. Polyploidy in Cancer: Causal Mechanisms, Cancer-Specific Consequences, and Emerging Treatments. Mol Cancer Ther 2024; 23:638-647. [PMID: 38315992 PMCID: PMC11174144 DOI: 10.1158/1535-7163.mct-23-0578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/19/2023] [Accepted: 01/30/2024] [Indexed: 02/07/2024]
Abstract
Drug resistance is the major determinant for metastatic disease and fatalities, across all cancers. Depending on the tissue of origin and the therapeutic course, a variety of biological mechanisms can support and sustain drug resistance. Although genetic mutations and gene silencing through epigenetic mechanisms are major culprits in targeted therapy, drug efflux and polyploidization are more global mechanisms that prevail in a broad range of pathologies, in response to a variety of treatments. There is an unmet need to identify patients at risk for polyploidy, understand the mechanisms underlying polyploidization, and to develop strategies to predict, limit, and reverse polyploidy thus enhancing efficacy of standard-of-care therapy that improve better outcomes. This literature review provides an overview of polyploidy in cancer and offers perspective on patient monitoring and actionable therapy.
Collapse
Affiliation(s)
- Patrick J Conway
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
- Department of Molecular Immunology & Microbiology, University of Texas Health San Antonio, San Antonio, Texas
| | - Jonathan Dao
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
- Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas
| | - Dmytro Kovalskyy
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, Texas
| | - Daruka Mahadevan
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
- Department of Molecular Immunology & Microbiology, University of Texas Health San Antonio, San Antonio, Texas
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas
| | - Eloise Dray
- Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas
| |
Collapse
|
11
|
Shen H, Chen Y, Xu M, Zhou J, Huang C, Wang Z, Shao Y, Zhang H, Lu Y, Li S, Fu Z. Cellular senescence gene TACC3 associated with colorectal cancer risk via genetic and DNA methylated alteration. Arch Toxicol 2024; 98:1499-1513. [PMID: 38480537 DOI: 10.1007/s00204-024-03702-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 02/06/2024] [Indexed: 03/27/2024]
Abstract
Cell senescence genes play a vital role in the pathogenesis of colorectal cancer, a process that may involve the triggering of genetic variations and reversible phenotypes caused by epigenetic modifications. However, the specific regulatory mechanisms remain unclear. Using CellAge and The Cancer Genome Atlas databases and in-house RNA-seq data, DNA methylation-modified cellular senescence genes (DMCSGs) were validated by Support Vector Machine and correlation analyses. In 1150 cases and 1342 controls, we identified colorectal cancer risk variants in DMCSGs. The regulatory effects of gene, variant, and DNA methylation were explored through dual-luciferase and 5-azacytidine treatment experiments, complemented by multiple database analyses. Biological functions of key gene were evaluated via cell proliferation assays, SA-β-gal staining, senescence marker detection, and immune infiltration analyses. The genetic variant rs4558926 in the downstream of TACC3 was significantly associated with colorectal cancer risk (OR = 1.35, P = 3.22 × 10-4). TACC3 mRNA expression increased due to rs4558926 C > G and decreased DNA methylation levels. The CpG sites in the TACC3 promoter region were regulated by rs4558926. TACC3 knockdown decreased proliferation and senescence in colorectal cancer cells. In addition, subjects with high-TACC3 expression presented an immunosuppressive microenvironment. These findings provide insights into the involvement of genetic variants of cellular senescence genes in the development and progression of colorectal cancer.
Collapse
Affiliation(s)
- Hengyang Shen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yang Chen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Menghuan Xu
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jieyu Zhou
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Changzhi Huang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhenling Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yu Shao
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongqiang Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yunfei Lu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shuwei Li
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Zan Fu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
12
|
Simerly C, Robertson E, Harrison C, Ward S, George C, Deleon J, Hartnett C, Schatten G. Male meiotic spindle poles are stabilized by TACC3 and cKAP5/chTOG differently from female meiotic or somatic mitotic spindles in mice. Sci Rep 2024; 14:4808. [PMID: 38413710 PMCID: PMC10899211 DOI: 10.1038/s41598-024-55376-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/22/2024] [Indexed: 02/29/2024] Open
Abstract
Transforming acidic acid coiled-coil protein 3 (TACC3) and cytoskeleton associated protein 5 (cKAP5; or colonic hepatic tumor overexpressed gene, chTOG) are vital for spindle assembly and stabilization initiated through TACC3 Aurora-A kinase interaction. Here, TACC3 and cKAP5/chTOG localization with monospecific antibodies is investigated in eGFP-centrin-2- expressing mouse meiotic spermatocytes. Both proteins bind spermatocyte spindle poles but neither kinetochore nor interpolar microtubules, unlike in mitotic mouse fibroblasts or female meiotic oocyte spindles. Spermatocytes do not display a liquid-like spindle domain (LISD), although fusing them into maturing oocytes generates LISD-like TACC3 condensates around sperm chromatin but sparse microtubule assembly. Microtubule inhibitors do not reduce TACC3 and cKAP5/chTOG spindle pole binding. MLN 8237 Aurora-A kinase inhibitor removes TACC3, not cKAP5/chTOG, disrupting spindle organization, chromosome alignment, and impacting spindle pole γ-tubulin intensity. The LISD disruptor 1,6-hexanediol abolished TACC3 in spermatocytes, impacting spindle bipolarity and chromosome organization. Cold microtubule disassembly and rescue experiments in the presence of 1,6-hexanediol reinforce the concept that spermatocyte TACC3 spindle pole presence is not required for spindle pole microtubule assembly. Collectively, meiotic spermatocytes without a LISD localize TACC3 and cKAP5/chTOG exclusively at spindle poles to support meiotic spindle pole stabilization during male meiosis, different from either female meiosis or mitosis.
Collapse
Affiliation(s)
- Calvin Simerly
- Departments of Cell Biology, Ob-Gyn-Repro Sci, and Bioengineering, Pittsburgh Development Center of Magee-Womens Research Institute, University of Pittsburgh Medical Center, 204 Craft Avenue, Pittsburgh, PA, 15213, USA
| | - Emily Robertson
- Departments of Cell Biology, Ob-Gyn-Repro Sci, and Bioengineering, Pittsburgh Development Center of Magee-Womens Research Institute, University of Pittsburgh Medical Center, 204 Craft Avenue, Pittsburgh, PA, 15213, USA
| | - Caleb Harrison
- Departments of Cell Biology, Ob-Gyn-Repro Sci, and Bioengineering, Pittsburgh Development Center of Magee-Womens Research Institute, University of Pittsburgh Medical Center, 204 Craft Avenue, Pittsburgh, PA, 15213, USA
| | - Sydney Ward
- Departments of Cell Biology, Ob-Gyn-Repro Sci, and Bioengineering, Pittsburgh Development Center of Magee-Womens Research Institute, University of Pittsburgh Medical Center, 204 Craft Avenue, Pittsburgh, PA, 15213, USA
| | - Charlize George
- Departments of Cell Biology, Ob-Gyn-Repro Sci, and Bioengineering, Pittsburgh Development Center of Magee-Womens Research Institute, University of Pittsburgh Medical Center, 204 Craft Avenue, Pittsburgh, PA, 15213, USA
| | - Jasmine Deleon
- Departments of Cell Biology, Ob-Gyn-Repro Sci, and Bioengineering, Pittsburgh Development Center of Magee-Womens Research Institute, University of Pittsburgh Medical Center, 204 Craft Avenue, Pittsburgh, PA, 15213, USA
| | - Carrie Hartnett
- Departments of Cell Biology, Ob-Gyn-Repro Sci, and Bioengineering, Pittsburgh Development Center of Magee-Womens Research Institute, University of Pittsburgh Medical Center, 204 Craft Avenue, Pittsburgh, PA, 15213, USA
| | - Gerald Schatten
- Departments of Cell Biology, Ob-Gyn-Repro Sci, and Bioengineering, Pittsburgh Development Center of Magee-Womens Research Institute, University of Pittsburgh Medical Center, 204 Craft Avenue, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
13
|
Peng L, He Y, Wang W, Dai J, Li Q, Ju S. PAK1-Dependent Regulation of Microtubule Organization and Spindle Migration Is Essential for the Metaphase I-Metaphase II Transition in Porcine Oocytes. Biomolecules 2024; 14:237. [PMID: 38397472 PMCID: PMC10886677 DOI: 10.3390/biom14020237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
P21-activated kinase 1 (PAK1) is a critical downstream target that mediates the effect of small Rho GTPase on the regulation of cytoskeletal kinetics, cell proliferation, and cell migration. PAK1 has been identified as a crucial regulator of spindle assembly during the first meiotic division; however, its roles during the metaphase I (MI) to metaphase II (MII) transition in oocytes remain unclear. In the present study, the potential function of PAK1 in regulating microtubule organization and spindle positioning during the MI-MII transition was addressed in porcine oocytes. The results showed that activated PAK1 was co-localized with α-tubulin, and its expression was increased from the MI to MII stage (p < 0.001). However, inhibiting PAK1 activity with an inhibitor targeting PAK1 activation-3 (IPA-3) at the MI stage decreased the first polar body (PB1) extrusion rate (p < 0.05), with most oocytes arrested at the anaphase-telophase (ATI) stage. IPA-3-treated oocytes displayed a decrease in actin distribution in the plasma membrane (p < 0.001) and an increase in the rate of defects in MII spindle reassembly with abnormal spindle positioning (p < 0.001). Nevertheless, these adverse effects of IPA-3 on oocytes were reversed when the disulfide bond between PAK1 and IPA-3 was reduced by dithiothreitol (DTT). Co-immunoprecipitation revealed that PAK1 could recruit activated Aurora A and transform acidic coiled-coil 3 (TACC3) to regulate spindle assembly and interact with LIM kinase 1 (LIMK1) to facilitate actin filament-mediated spindle migration. Together, PAK1 is essential for microtubule organization and spindle migration during the MI-MII transition in porcine oocytes, which is associated with the activity of p-Aurora A, p-TACC3 and p-LIMK1.
Collapse
Affiliation(s)
- Lei Peng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (L.P.); (Y.H.); (W.W.)
| | - Yijing He
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (L.P.); (Y.H.); (W.W.)
| | - Weihan Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (L.P.); (Y.H.); (W.W.)
| | - Jianjun Dai
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China;
| | - Qiao Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (L.P.); (Y.H.); (W.W.)
| | - Shiqiang Ju
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (L.P.); (Y.H.); (W.W.)
| |
Collapse
|
14
|
Gedik ME, Saatci O, Oberholtzer N, Uner M, Akbulut O, Cetin M, Aras M, Ibis K, Caliskan B, Banoglu E, Wiemann S, Uner A, Aksoy S, Mehrotra S, Sahin O. Reviving immunogenic cell death upon targeting TACC3 enhances T-DM1 response in HER2-positive breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557273. [PMID: 37745348 PMCID: PMC10515808 DOI: 10.1101/2023.09.12.557273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Immunogenic cell death (ICD), an immune-priming form of cell death, has been shown to be induced by several different anti-cancer therapies. Despite being the first and one of the most successful antibody-drug conjugates (ADCs) approved for refractory HER2-positive breast cancer, little is known if response and resistance to trastuzumab emtansine (T-DM1) involves ICD modulation that can be leveraged to enhance T-DM1 response. Here, we report that T-DM1 induces spindle assembly checkpoint (SAC)-dependent ICD in sensitive cells by inducing eIF2α phosphorylation, surface exposure of calreticulin, ATP and HMGB1 release, and secretion of ICD-related cytokines, all of which are lost in resistance. Accordingly, an ICD-related gene signature correlates with clinical response to T-DM1-containing therapy. We found that transforming acidic coiled-coil containing 3 (TACC3) is overexpressed in T-DM1 resistant cells, and that T-DM1 responsive patients have reduced TACC3 protein while the non-responders exhibited increased TACC3 expression during T-DM1 treatment. Notably, genetic or pharmacological inhibition of TACC3 revives T-DM1-induced SAC activation and induction of ICD markers in vitro. Finally, TACC3 inhibition elicits ICD in vivo shown by vaccination assay, and it potentiates T-DM1 by inducing dendritic cell (DC) maturation and enhancing infiltration of cytotoxic T cells in the human HER2-overexpressing MMTV.f.huHER2#5 (Fo5) transgenic model. Together, our results show that ICD is a key mechanism of action of T-DM1 which is lost in resistance, and that targeting TACC3 restores T-DM1-mediated ICD and overcomes resistance.
Collapse
Affiliation(s)
- Mustafa Emre Gedik
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Ozge Saatci
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Nathaniel Oberholtzer
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Meral Uner
- Department of Pathology, Faculty of Medicine, Hacettepe University, 06100, Ankara, TURKEY
| | - Ozge Akbulut
- Department of Molecular Biology and Genetics, Bilkent University, 06800, Ankara, TURKEY
| | - Metin Cetin
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Mertkaya Aras
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Kubra Ibis
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06560, Ankara, TURKEY
| | - Burcu Caliskan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06560, Ankara, TURKEY
| | - Erden Banoglu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06560, Ankara, TURKEY
| | - Stefan Wiemann
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), INF580, Heidelberg, 69120, Germany
| | - Aysegul Uner
- Department of Pathology, Faculty of Medicine, Hacettepe University, 06100, Ankara, TURKEY
| | - Sercan Aksoy
- Department of Medical Oncology, Hacettepe University Cancer Institute, 06100, Ankara, TURKEY
| | - Shikhar Mehrotra
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Ozgur Sahin
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC, 29208, USA
| |
Collapse
|
15
|
Hsueh HW, Kao HJ, Chao CC, Hsueh SJ, Huang YN, Lin WJ, Su JP, Shy HT, Yeh TY, Lin CC, Kwok PY, Lee NC, Hsieh ST. Identification of an 85-kb Heterozygous 4p Microdeletion With Full Genome Analysis in Autosomal Dominant Charcot-Marie-Tooth Disease. Neurol Genet 2023; 9:e200078. [PMID: 37346931 PMCID: PMC10281236 DOI: 10.1212/nxg.0000000000200078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/06/2023] [Indexed: 06/23/2023]
Abstract
Background and Objectives Charcot-Marie-Tooth disease (CMT) is a syndrome of a hereditary neurodegenerative condition affecting the peripheral nervous system and is a single gene disorder. Deep phenotyping coupled with advanced genetic techniques is critical in discovering new genetic defects of rare genetic disorders such as CMT. Methods We applied multidisciplinary investigations to examine the neurophysiology and nerve pathology in a family that fulfilled the diagnosis of CMT2. When phenotype-guided first-tier genetic tests and whole-exome sequencing did not yield a molecular diagnosis, we conducted full genome analysis by examining phased whole-genome sequencing and whole-genome optical mapping data to search for the causal variation. We then performed a systematic review to compare the reported patients with interstitial microdeletion in the short arm of chromosome 4. Results In this family with CMT2, we reported the discovery of a heterozygous 85-kb microdeletion in the short arm of chromosome 4 (4p16.3)[NC_000004.12:g.1733926_1819031del] spanning 3 genes [TACC3 (intron 6-exon 16), FGFR3 (total deletion), and LETM1 (intron 10-exon14)] that cosegregated with disease phenotypes in family members. The clinical features of peripheral nerve degeneration in our family are distinct from the well-known 4p microdeletion syndrome of Wolf-Hirschhorn syndrome, in which brain involvement is the major phenotype. Discussion In summary, we used the full genome analysis approach to discover a new microdeletion in a family with CMT2. The deleted segment contains 3 genes (TACC3, FGFR3, and LETM1) that likely play a role in the pathogenesis of nerve degeneration.
Collapse
Affiliation(s)
- Hsueh Wen Hsueh
- From the Department of Neurology (H.W.H., C.-C.C., Y.-N.H., S.-T.H.), Department of Anatomy and Cell Biology (H.W.H., H.-T.S., T.-Y.Y., C.-C.L., S.-T.H.), National Taiwan University College of Medicine; Institute of Biomedical Sciences (H.-J.K., W.-J.L., J.-P.S., P.-Y.K.), Academia Sinica, Taipei; Department of Neurology (S.-J.H.), National Taiwan University Hospital Yunlin Branch; Institute for Human Genetics (P.-Y.K.), Cardiovascular Research Institute, and Department of Dermatology, University of California, San Francisco; and Department of Medical Genetics (N.-C.L.), National Taiwan University Hospital, Taipei
| | - Hsiao-Jung Kao
- From the Department of Neurology (H.W.H., C.-C.C., Y.-N.H., S.-T.H.), Department of Anatomy and Cell Biology (H.W.H., H.-T.S., T.-Y.Y., C.-C.L., S.-T.H.), National Taiwan University College of Medicine; Institute of Biomedical Sciences (H.-J.K., W.-J.L., J.-P.S., P.-Y.K.), Academia Sinica, Taipei; Department of Neurology (S.-J.H.), National Taiwan University Hospital Yunlin Branch; Institute for Human Genetics (P.-Y.K.), Cardiovascular Research Institute, and Department of Dermatology, University of California, San Francisco; and Department of Medical Genetics (N.-C.L.), National Taiwan University Hospital, Taipei
| | - Chi-Chao Chao
- From the Department of Neurology (H.W.H., C.-C.C., Y.-N.H., S.-T.H.), Department of Anatomy and Cell Biology (H.W.H., H.-T.S., T.-Y.Y., C.-C.L., S.-T.H.), National Taiwan University College of Medicine; Institute of Biomedical Sciences (H.-J.K., W.-J.L., J.-P.S., P.-Y.K.), Academia Sinica, Taipei; Department of Neurology (S.-J.H.), National Taiwan University Hospital Yunlin Branch; Institute for Human Genetics (P.-Y.K.), Cardiovascular Research Institute, and Department of Dermatology, University of California, San Francisco; and Department of Medical Genetics (N.-C.L.), National Taiwan University Hospital, Taipei
| | - Sung-Ju Hsueh
- From the Department of Neurology (H.W.H., C.-C.C., Y.-N.H., S.-T.H.), Department of Anatomy and Cell Biology (H.W.H., H.-T.S., T.-Y.Y., C.-C.L., S.-T.H.), National Taiwan University College of Medicine; Institute of Biomedical Sciences (H.-J.K., W.-J.L., J.-P.S., P.-Y.K.), Academia Sinica, Taipei; Department of Neurology (S.-J.H.), National Taiwan University Hospital Yunlin Branch; Institute for Human Genetics (P.-Y.K.), Cardiovascular Research Institute, and Department of Dermatology, University of California, San Francisco; and Department of Medical Genetics (N.-C.L.), National Taiwan University Hospital, Taipei
| | - Yu-Ning Huang
- From the Department of Neurology (H.W.H., C.-C.C., Y.-N.H., S.-T.H.), Department of Anatomy and Cell Biology (H.W.H., H.-T.S., T.-Y.Y., C.-C.L., S.-T.H.), National Taiwan University College of Medicine; Institute of Biomedical Sciences (H.-J.K., W.-J.L., J.-P.S., P.-Y.K.), Academia Sinica, Taipei; Department of Neurology (S.-J.H.), National Taiwan University Hospital Yunlin Branch; Institute for Human Genetics (P.-Y.K.), Cardiovascular Research Institute, and Department of Dermatology, University of California, San Francisco; and Department of Medical Genetics (N.-C.L.), National Taiwan University Hospital, Taipei
| | - Wan-Jia Lin
- From the Department of Neurology (H.W.H., C.-C.C., Y.-N.H., S.-T.H.), Department of Anatomy and Cell Biology (H.W.H., H.-T.S., T.-Y.Y., C.-C.L., S.-T.H.), National Taiwan University College of Medicine; Institute of Biomedical Sciences (H.-J.K., W.-J.L., J.-P.S., P.-Y.K.), Academia Sinica, Taipei; Department of Neurology (S.-J.H.), National Taiwan University Hospital Yunlin Branch; Institute for Human Genetics (P.-Y.K.), Cardiovascular Research Institute, and Department of Dermatology, University of California, San Francisco; and Department of Medical Genetics (N.-C.L.), National Taiwan University Hospital, Taipei
| | - Jen-Ping Su
- From the Department of Neurology (H.W.H., C.-C.C., Y.-N.H., S.-T.H.), Department of Anatomy and Cell Biology (H.W.H., H.-T.S., T.-Y.Y., C.-C.L., S.-T.H.), National Taiwan University College of Medicine; Institute of Biomedical Sciences (H.-J.K., W.-J.L., J.-P.S., P.-Y.K.), Academia Sinica, Taipei; Department of Neurology (S.-J.H.), National Taiwan University Hospital Yunlin Branch; Institute for Human Genetics (P.-Y.K.), Cardiovascular Research Institute, and Department of Dermatology, University of California, San Francisco; and Department of Medical Genetics (N.-C.L.), National Taiwan University Hospital, Taipei
| | - Horng-Tzer Shy
- From the Department of Neurology (H.W.H., C.-C.C., Y.-N.H., S.-T.H.), Department of Anatomy and Cell Biology (H.W.H., H.-T.S., T.-Y.Y., C.-C.L., S.-T.H.), National Taiwan University College of Medicine; Institute of Biomedical Sciences (H.-J.K., W.-J.L., J.-P.S., P.-Y.K.), Academia Sinica, Taipei; Department of Neurology (S.-J.H.), National Taiwan University Hospital Yunlin Branch; Institute for Human Genetics (P.-Y.K.), Cardiovascular Research Institute, and Department of Dermatology, University of California, San Francisco; and Department of Medical Genetics (N.-C.L.), National Taiwan University Hospital, Taipei
| | - Ti-Yen Yeh
- From the Department of Neurology (H.W.H., C.-C.C., Y.-N.H., S.-T.H.), Department of Anatomy and Cell Biology (H.W.H., H.-T.S., T.-Y.Y., C.-C.L., S.-T.H.), National Taiwan University College of Medicine; Institute of Biomedical Sciences (H.-J.K., W.-J.L., J.-P.S., P.-Y.K.), Academia Sinica, Taipei; Department of Neurology (S.-J.H.), National Taiwan University Hospital Yunlin Branch; Institute for Human Genetics (P.-Y.K.), Cardiovascular Research Institute, and Department of Dermatology, University of California, San Francisco; and Department of Medical Genetics (N.-C.L.), National Taiwan University Hospital, Taipei
| | - Cheng-Chen Lin
- From the Department of Neurology (H.W.H., C.-C.C., Y.-N.H., S.-T.H.), Department of Anatomy and Cell Biology (H.W.H., H.-T.S., T.-Y.Y., C.-C.L., S.-T.H.), National Taiwan University College of Medicine; Institute of Biomedical Sciences (H.-J.K., W.-J.L., J.-P.S., P.-Y.K.), Academia Sinica, Taipei; Department of Neurology (S.-J.H.), National Taiwan University Hospital Yunlin Branch; Institute for Human Genetics (P.-Y.K.), Cardiovascular Research Institute, and Department of Dermatology, University of California, San Francisco; and Department of Medical Genetics (N.-C.L.), National Taiwan University Hospital, Taipei
| | - Pui-Yan Kwok
- From the Department of Neurology (H.W.H., C.-C.C., Y.-N.H., S.-T.H.), Department of Anatomy and Cell Biology (H.W.H., H.-T.S., T.-Y.Y., C.-C.L., S.-T.H.), National Taiwan University College of Medicine; Institute of Biomedical Sciences (H.-J.K., W.-J.L., J.-P.S., P.-Y.K.), Academia Sinica, Taipei; Department of Neurology (S.-J.H.), National Taiwan University Hospital Yunlin Branch; Institute for Human Genetics (P.-Y.K.), Cardiovascular Research Institute, and Department of Dermatology, University of California, San Francisco; and Department of Medical Genetics (N.-C.L.), National Taiwan University Hospital, Taipei
| | - Ni-Chung Lee
- From the Department of Neurology (H.W.H., C.-C.C., Y.-N.H., S.-T.H.), Department of Anatomy and Cell Biology (H.W.H., H.-T.S., T.-Y.Y., C.-C.L., S.-T.H.), National Taiwan University College of Medicine; Institute of Biomedical Sciences (H.-J.K., W.-J.L., J.-P.S., P.-Y.K.), Academia Sinica, Taipei; Department of Neurology (S.-J.H.), National Taiwan University Hospital Yunlin Branch; Institute for Human Genetics (P.-Y.K.), Cardiovascular Research Institute, and Department of Dermatology, University of California, San Francisco; and Department of Medical Genetics (N.-C.L.), National Taiwan University Hospital, Taipei
| | - Sung-Tsang Hsieh
- From the Department of Neurology (H.W.H., C.-C.C., Y.-N.H., S.-T.H.), Department of Anatomy and Cell Biology (H.W.H., H.-T.S., T.-Y.Y., C.-C.L., S.-T.H.), National Taiwan University College of Medicine; Institute of Biomedical Sciences (H.-J.K., W.-J.L., J.-P.S., P.-Y.K.), Academia Sinica, Taipei; Department of Neurology (S.-J.H.), National Taiwan University Hospital Yunlin Branch; Institute for Human Genetics (P.-Y.K.), Cardiovascular Research Institute, and Department of Dermatology, University of California, San Francisco; and Department of Medical Genetics (N.-C.L.), National Taiwan University Hospital, Taipei
| |
Collapse
|
16
|
Pal D, De K, Yates TB, Kolape J, Muchero W. Mutating novel interaction sites in NRP1 reduces SARS-CoV-2 spike protein internalization. iScience 2023; 26:106274. [PMID: 36910328 PMCID: PMC9957656 DOI: 10.1016/j.isci.2023.106274] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 01/13/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
The global pandemic of coronavirus disease 2019 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has become a severe global health problem because of its rapid spread. Both Ace2 and NRP1 provide initial viral binding sites for SARS-CoV-2. Here, we show that cysteine residues located in the vestigial plasminogen-apple-nematode (PAN) domain of NRP1 are necessary for SARS-CoV-2 spike protein internalization. Mutating novel cysteine residues in the PAN altered NRP1 stability and downstream activation of extracellular signal-regulated kinase (ERK) signaling pathway and impaired its interaction with the spike protein. This resulted in a significant reduction in spike protein abundance in Vero-E6 cells for the original, alpha, and delta SARS-CoV-2 variants even in the presence of the Ace2. Moreover, mutating these cysteine residues in NRP1 significantly lowered its association with Plexin-A1. As the spike protein is a critical component for targeted therapy, our biochemical study may represent a distinct mechanism to develop a path for future therapeutic discovery.
Collapse
Affiliation(s)
- Debjani Pal
- Radioisotope Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
- Bioscience Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Kuntal De
- Bioscience Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Timothy B. Yates
- Bioscience Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
- Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, TN 37996, USA
| | - Jaydeep Kolape
- Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Wellington Muchero
- Bioscience Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
- Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, TN 37996, USA
- Corresponding author
| |
Collapse
|
17
|
Saatci O, Akbulut O, Cetin M, Sikirzhytski V, Uner M, Lengerli D, O'Quinn EC, Romeo MJ, Caliskan B, Banoglu E, Aksoy S, Uner A, Sahin O. Targeting TACC3 represents a novel vulnerability in highly aggressive breast cancers with centrosome amplification. Cell Death Differ 2023; 30:1305-1319. [PMID: 36864125 PMCID: PMC10154422 DOI: 10.1038/s41418-023-01140-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 03/04/2023] Open
Abstract
Centrosome amplification (CA) is a hallmark of cancer that is strongly associated with highly aggressive disease and worse clinical outcome. Clustering extra centrosomes is a major coping mechanism required for faithful mitosis of cancer cells with CA that would otherwise undergo mitotic catastrophe and cell death. However, its underlying molecular mechanisms have not been fully described. Furthermore, little is known about the processes and players triggering aggressiveness of cells with CA beyond mitosis. Here, we identified Transforming Acidic Coiled-Coil Containing Protein 3 (TACC3) to be overexpressed in tumors with CA, and its high expression is associated with dramatically worse clinical outcome. We demonstrated, for the first time, that TACC3 forms distinct functional interactomes regulating different processes in mitosis and interphase to ensure proliferation and survival of cancer cells with CA. Mitotic TACC3 interacts with the Kinesin Family Member C1 (KIFC1) to cluster extra centrosomes for mitotic progression, and inhibition of this interaction leads to mitotic cell death via multipolar spindle formation. Interphase TACC3 interacts with the nucleosome remodeling and deacetylase (NuRD) complex (HDAC2 and MBD2) in nucleus to inhibit the expression of key tumor suppressors (e.g., p21, p16 and APAF1) driving G1/S progression, and its inhibition blocks these interactions and causes p53-independent G1 arrest and apoptosis. Notably, inducing CA by p53 loss/mutation increases the expression of TACC3 and KIFC1 via FOXM1 and renders cancer cells highly sensitive to TACC3 inhibition. Targeting TACC3 by guide RNAs or small molecule inhibitors strongly inhibits growth of organoids and breast cancer cell line- and patient-derived xenografts with CA by induction of multipolar spindles, mitotic and G1 arrest. Altogether, our results show that TACC3 is a multifunctional driver of highly aggressive breast tumors with CA and that targeting TACC3 is a promising approach to tackle this disease.
Collapse
Affiliation(s)
- Ozge Saatci
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC, 29208, USA.,Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Ozge Akbulut
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Metin Cetin
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC, 29208, USA.,Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Vitali Sikirzhytski
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Meral Uner
- Department of Pathology, Faculty of Medicine, Hacettepe University, 06100, Ankara, Turkey
| | - Deniz Lengerli
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06100, Ankara, Turkey
| | - Elizabeth C O'Quinn
- Translational Science Laboratory, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Martin J Romeo
- Translational Science Laboratory, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Burcu Caliskan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06100, Ankara, Turkey
| | - Erden Banoglu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06100, Ankara, Turkey
| | - Sercan Aksoy
- Department of Medical Oncology, Hacettepe University Cancer Institute, 06100, Ankara, Turkey
| | - Aysegul Uner
- Department of Pathology, Faculty of Medicine, Hacettepe University, 06100, Ankara, Turkey
| | - Ozgur Sahin
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC, 29208, USA. .,Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
18
|
Fang Z, Lin M, Chen S, Liu H, Zhu M, Hu Y, Han S, Wang Y, Sun L, Zhu F, Xu C, Gong C. E2F1 promotes cell cycle progression by stabilizing spindle fiber in colorectal cancer cells. Cell Mol Biol Lett 2022; 27:90. [PMID: 36221072 PMCID: PMC9552509 DOI: 10.1186/s11658-022-00392-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 09/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND E2F1 is a transcription factor that regulates cell cycle progression. It is highly expressed in most cancer cells and activates transcription of cell cycle-related kinases. Stathmin1 and transforming acidic coiled-coil-containing protein 3 (TACC3) are factors that enhance the stability of spindle fiber. METHODS The E2F1-mediated transcription of transforming acidic coiled-coil-containing protein 3 (TACC3) and stathmin1 was examined using the Cancer Genome Atlas (TCGA) analysis, quantitative polymerase chain reaction (qPCR), immunoblotting, chromatin immunoprecipitation (ChIP), and luciferase reporter. Protein-protein interaction was studied using co-IP. The spindle structure was shown by immunofluorescence. Phenotype experiments were performed through MTS assay, flow cytometry, and tumor xenografts. Clinical colorectal cancer (CRC) specimens were analyzed based on immunohistochemistry. RESULTS The present study showed that E2F1 expression correlates positively with the expression levels of stathmin1 and TACC3 in colorectal cancer (CRC) tissues, and that E2F1 transactivates stathmin1 and TACC3 in CRC cells. Furthermore, protein kinase A (PKA)-mediated phosphorylation of stathmin1 at Ser16 is essential to the phosphorylation of TACC3 at Ser558, facilitating the assembly of TACC3/clathrin/α-tubulin complexes during spindle formation. Overexpression of Ser16-mutated stathmin1, as well as knockdown of stathmin1 or TACC3, lead to ectopic spindle poles including disorganized and multipolar spindles. Overexpression of wild-type but not Ser16-mutated stathmin1 promotes cell proliferation in vitro and tumor growth in vivo. Consistently, a high level of E2F1, stathmin1, or TACC3 not only associates with tumor size, lymph node metastasis, TNM stage, and distant metastasis, but predicts poor survival in CRC patients. CONCLUSIONS E2F1 drives the cell cycle of CRC by promoting spindle assembly, in which E2F1-induced stathmin1 and TACC3 enhance the stability of spindle fiber.
Collapse
Affiliation(s)
- Zejun Fang
- Central Laboratory, Sanmen People's Hospital of Zhejiang Province, Sanmen, 317100, China
- Department of Clinical Laboratory, Sanmen People's Hospital of Zhejiang Province, No. 15 Taihe Road, Hairun Street, Sanmen, 317100, China
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, China
| | - Min Lin
- Central Laboratory, Sanmen People's Hospital of Zhejiang Province, Sanmen, 317100, China
| | - Shenghui Chen
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, China
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Hong Liu
- Department of Microbiology, Immunology and Inflammation, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Minjing Zhu
- Department of Clinical Laboratory, Sanmen People's Hospital of Zhejiang Province, No. 15 Taihe Road, Hairun Street, Sanmen, 317100, China
| | - Yanyan Hu
- Department of Clinical Laboratory, Sanmen People's Hospital of Zhejiang Province, No. 15 Taihe Road, Hairun Street, Sanmen, 317100, China
| | - Shanshan Han
- Department of Clinical Laboratory, Sanmen People's Hospital of Zhejiang Province, No. 15 Taihe Road, Hairun Street, Sanmen, 317100, China
| | - Yizhang Wang
- Department of Clinical Laboratory, Sanmen People's Hospital of Zhejiang Province, No. 15 Taihe Road, Hairun Street, Sanmen, 317100, China
| | - Long Sun
- Department of Gastrointestinal Surgery, Sanmen People's Hospital of Zhejiang Province, Sanmen, 317100, China
| | - Fengjiao Zhu
- Department of Clinical Laboratory, Sanmen People's Hospital of Zhejiang Province, No. 15 Taihe Road, Hairun Street, Sanmen, 317100, China.
| | - Chengfu Xu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, China.
| | - Chaoju Gong
- Central Laboratory, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, No. 19 Zhongshan Bei Road, Xuzhou, 221100, China.
| |
Collapse
|
19
|
High Expression of TACC3 Is Associated with the Poor Prognosis and Immune Infiltration in Lung Adenocarcinoma Patients. DISEASE MARKERS 2022; 2022:8789515. [PMID: 35855850 PMCID: PMC9288335 DOI: 10.1155/2022/8789515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/17/2022] [Indexed: 12/02/2022]
Abstract
Background Lung adenocarcinoma (LUAD) has been recognized as one of the commonest aggressive malignant tumors occurring in humans. The transforming acidic coiled-coil-containing protein 3 (TACC3) seems to be a probable prognostic marker and treatment target for non-small-cell lung cancer (NSCLC). Nevertheless, there exist no reports on the association between TACC3 and immunotherapy or other therapeutic interventions in LUAD. Methods Premised on the data accessed from The Cancer Genome Atlas- (TCGA-) LUAD, we carried out bioinformatics analysis. The TACC3 expression in LUAD was analyzed utilizing the GEPIA. A survival module was constructed to evaluate the effect of TACC3 on the survival of patients with LUAD. Logistic regression was undertaken to examine the relationship between TACC3 expression and clinical factors. Protein-protein interaction analysis was performed in the GeneMANIA database, and enrichment analysis and identification of predicted signaling pathways were performed using Gene Ontology and Kyoto Encyclopedia of Genes. Additionally, the Cox regression was used to assess the clinicopathologic features linked to the overall survival in TCGA patients. Lastly, we investigated the link between TACC3 and tumor-infiltrating immune cells (TIICs) through CIBERSORT and the “Correlation” module of GEPIA. The association between TACC3 gene expression and drug response was analyzed using the CellMiner database to predict drug sensitivity. Results The outcomes illustrated that TACC3 was upregulated and considerably correlated with dismal prognosis in LUAD patients. Moreover, the multivariate Cox regression analysis depicted TACC3 as an independent prognostic marker in LUAD patients. It was also revealed that the expression of TACC3 was related to clinical stage (P = 0.014), age (P = 0.002), and T classification (P ≤ 0.018). Moreover, we discovered that the expression of TACC3 was considerably linked to a wide range of TIICs, especially the T cells and NK cells. Single-cell results found that TACC3 was mainly expressed in the immune cells (especially tprolif cells) and malignant cells. TACC3 gene expression was positively correlated with TMB and MSI, and TACC3 may provide a prediction of the efficacy of immunotherapy. Moreover, the correlation analysis between TACC3 gene expression and immune checkpoint gene expression revealed that TACC3 may coordinate the activities of these ICP genes in different signal transduction pathways. TACC3 is related to biological progress (BP), cellular component (CC), and molecular function (MF). The pathways involved in the interaction network involving TACC3 include nonhomologous end-joining, RNA transport, pantothenate and CoA biosynthesis, homologous recombination, and nucleotide excision repair. Furthermore, we investigated the association between the expression of TACC3 and the use of antitumor drugs, and TACC3 was positively correlated with response to most drugs. Conclusion The findings from this research offer robust proof that the expression of TACC3 could be a prognostic marker correlated with TIICs in LUAD. TACC3 can also provide new ideas for immunotherapy as a potential therapeutic target.
Collapse
|
20
|
Centrosome Defects in Hematological Malignancies: Molecular Mechanisms and Therapeutic Insights. BLOOD SCIENCE 2022; 4:143-151. [DOI: 10.1097/bs9.0000000000000127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/07/2022] [Indexed: 11/26/2022] Open
|
21
|
Furey C, Astar H, Walsh D. Human Cytomegalovirus Exploits TACC3 To Control Microtubule Dynamics and Late Stages of Infection. J Virol 2021; 95:e0082121. [PMID: 34191581 PMCID: PMC8387038 DOI: 10.1128/jvi.00821-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/25/2021] [Indexed: 01/23/2023] Open
Abstract
While it is well established that microtubules (MTs) facilitate various stages of virus replication, how viruses actively control MT dynamics and functions remains less well understood. Recent work has begun to reveal how several viruses exploit End-Binding (EB) proteins and their associated microtubule plus-end tracking proteins (+TIPs), in particular to enable loading of viral particles onto MTs for retrograde transport during early stages of infection. Distinct from other viruses studied to date, at mid- to late stages of its unusually protracted replication cycle, human cytomegalovirus (HCMV) increases the expression of all three EB family members. This occurs coincident with the formation of a unique structure, termed the assembly compartment (AC), which serves as a Golgi-derived MT organizing center. Together, the AC and distinct EB proteins enable HCMV to increase the formation of dynamic and acetylated microtubule subsets to regulate distinct aspects of the viral replication cycle. Here, we reveal that HCMV also exploits EB-independent +TIP pathways by specifically increasing the expression of transforming acidic coiled coil protein 3 (TACC3) to recruit the MT polymerase, chTOG, from initial sites of MT nucleation in the AC out into the cytosol, thereby increasing dynamic MT growth. Preventing TACC3 increases or depleting chTOG impaired MT polymerization, resulting in defects in early versus late endosome organization in and around the AC as well as defects in viral trafficking and spread. Our findings provide the first example of a virus that actively exploits EB-independent +TIP pathways to regulate MT dynamics and control late stages of virus replication. IMPORTANCE Diverse viruses rely on host cell microtubule networks to transport viral particles within the dense cytoplasmic environment and to control the broader architecture of the cell to facilitate their replication. However, precisely how viruses regulate the dynamic behavior and function of microtubule filaments remains poorly defined. We recently showed that the assembly compartment (AC) formed by human cytomegalovirus (HCMV) acts as a Golgi-derived microtubule organizing center. Here, we show that at mid- to late stages of infection, HCMV increases the expression of transforming acidic coiled coil protein 3 (TACC3) to control the localization of the microtubule polymerase, chTOG. This, in turn, enables HCMV to generate dynamic microtubule subsets that organize endocytic vesicles in and around the AC and facilitate the transport of new viral particles released into the cytosol. Our findings reveal the first instance of viral targeting of TACC3 to control microtubule dynamics and virus spread.
Collapse
Affiliation(s)
- Colleen Furey
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Helen Astar
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Derek Walsh
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
22
|
Brennan S, Baird AM, O’Regan E, Sheils O. The Role of Human Papilloma Virus in Dictating Outcomes in Head and Neck Squamous Cell Carcinoma. Front Mol Biosci 2021; 8:677900. [PMID: 34250016 PMCID: PMC8262095 DOI: 10.3389/fmolb.2021.677900] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/10/2021] [Indexed: 12/29/2022] Open
Abstract
The Human Papilloma Virus (HPV) is an oncogenic virus which is associated with the development of head and neck squamous cell carcinoma (HNSCC), predominantly within the oropharynx. Approximately 25% of oropharyngeal squamous cell carcinoma (OPSCC) cases worldwide are attributable to HPV infection, with an estimated 65% in the United States. Transmission is via exposure during sexual contact, with distinctive anatomical features of the tonsils providing this organ with a predilection for infection by HPV. No premalignant lesion is identifiable on clinical examination, thus no comparative histological features to denote the stages of carcinogenesis for HPV driven HNSCC are identifiable. This is in contrast to HPV-driven cervical carcinoma, making screening a challenge for the head and neck region. However, HPV proffers a favorable prognosis in the head and neck region, with better overall survival rates in contrast to its HPV negative counterparts. This has resulted in extensive research into de-intensifying therapies aiming to minimize the morbidity induced by standard concurrent chemo-radiotherapy without compromising efficacy. Despite the favorable prognosis, cases of recurrence and/or metastasis of HPV positive HNSCC do occur, and are linked with poor outcomes. HPV 16 is the most frequent genotype identified in HNSCC, yet there is limited research to date studying the impact of other HPV genotype with respect to overall survival. A similar situation pertains to genetic aberrations associated in those with HPV positive HNSCC who recur, with only four published studies to date. Somatic mutations in TSC2, BRIP1, NBN, TACC3, NFE2l2, STK11, HRAS, PIK3R1, TP63, and FAT1 have been identified in recurrent HPV positive OPSCC. Finding alternative therapeutic strategies for this young cohort may depend on upfront identification of HPV genotypes and mutations which are linked with worse outcomes, thus ensuring appropriate stratification of treatment regimens.
Collapse
Affiliation(s)
- Shane Brennan
- School of Medicine, Faculty of Health Sciences, Trinity College, Dublin, Ireland
| | - Anne-Marie Baird
- School of Medicine, Faculty of Health Sciences, Trinity College, Dublin, Ireland
| | - Esther O’Regan
- Department of Histopathology, St. James’s Hospital, Dublin, Ireland
| | - Orla Sheils
- School of Medicine, Faculty of Health Sciences, Trinity College, Dublin, Ireland
| |
Collapse
|
23
|
Xing GQ, Yun T, Zhao GG. Relationship of TACC3 gene expression with prognosis in hepatocellular carcinoma. Shijie Huaren Xiaohua Zazhi 2021; 29:577-584. [DOI: 10.11569/wcjd.v29.i11.577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Transforming acidic coiled coil protein 3 (TACC3) is an important member of the TACC family. Studies have shown that TACC3 gene is highly expressed in breast cancer, non-small cell lung cancer, and gastric cancer, and is associated with poor prognosis. However, its expression in liver cancer and its relationship with prognosis are rarely reported.
AIM To explore the clinical significance of TACC3 gene expression in liver cancer.
METHODS The expression of TACC3 gene in normal human tissues, liver cancer tissues, and liver cancer cell lines was mined by searching databases including BioGPS, Oncomine, and Cancer Cell Line Encyclopedia (CCLE), respectively. Kaplan-Meier plotter and GEPIA were used to analyze the effect of TACC3 gene expression on the prognosis of liver cancer patients.
RESULTS BioGPS database analysis showed that TACC3 gene was expressed in all normal tissues and TACC3 gene expression in the liver was slightly higher than that in other normal tissues (median expression value, 8.95 vs 7.1). A total of 290 studies on TACC3 gene were retrieved from Oncomine database, showing four studies with high expression and one with low expression of TACC3 gene in liver cancer tissues. Meta-analysis showed that TACC3 gene was highly expressed in liver cancer tissues compared with normal liver tissues (Median rank = 442.5, P < 0.05). CCLE database analysis showed that TACC3 mRNA was highly expressed in liver cancer cell lines. The survival analysis results by Kaplan-Meier plotter based on the GEPIA database showed that the overall survival time (OS) and progression-free survival time (PFS) of liver cancer patients in the TACC3 high expression group were worse than those of the low expression group (P < 0.05).
CONCLUSION TACC3 gene is highly expressed in liver cancer tissues. And the high expression of TACC3 gene is associated with poor survival prognosis in liver cancer patients.
Collapse
Affiliation(s)
- Guo-Qiang Xing
- Department of General Surgery, The Fifth Central Hospital of Tianjin, Tianjin 300450, China
| | - Tao Yun
- Department of General Surgery, The Fifth Central Hospital of Tianjin, Tianjin 300450, China
| | - Guo-Gang Zhao
- Department of General Surgery, The Fifth Central Hospital of Tianjin, Tianjin 300450, China
| |
Collapse
|
24
|
Furey C, Jovasevic V, Walsh D. TACC3 Regulates Microtubule Plus-End Dynamics and Cargo Transport in Interphase Cells. Cell Rep 2021; 30:269-283.e6. [PMID: 31914393 PMCID: PMC6980831 DOI: 10.1016/j.celrep.2019.12.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 09/13/2019] [Accepted: 12/06/2019] [Indexed: 12/12/2022] Open
Abstract
End-binding proteins (EBs) are widely viewed as master regulators of microtubule dynamics and function. Here, we show that while EB1 mediates the dynamic microtubule capture of herpes simplex virus type 1 (HSV-1) in fibroblasts, in neuronal cells, infection occurs independently of EBs through stable microtubules. Prompted by this, we find that transforming acid coiled-coil protein 3 (TACC3), widely studied in mitotic spindle formation, regulates the cytoplasmic localization of the microtubule polymerizing factor chTOG and influences microtubule plus-end dynamics during interphase to control infection in distinct cell types. Furthermore, perturbing TACC3 function in neuronal cells resulted in the formation of disorganized stable, detyrosinated microtubule networks and changes in cellular morphology, as well as impaired trafficking of both HSV-1 and transferrin. These trafficking defects in TACC3-depleted cells were reversed by the depletion of kinesin-1 heavy chains. As such, TACC3 is a critical regulator of interphase microtubule dynamics and stability that influences kinesin-1-based cargo trafficking. While EB proteins are widely studied as master regulators of microtubule plus-end dynamics, Furey et al. report EB-independent regulation of microtubule arrays and cargo trafficking by the transforming acid coiled-coil-containing protein, TACC3. By controlling the formation of detyrosinated stable microtubule networks, TACC3 influences kinesin-1-based sorting of both host and pathogenic cargoes.
Collapse
Affiliation(s)
- Colleen Furey
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Vladimir Jovasevic
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Derek Walsh
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
25
|
Abstract
The identification of mutations in FGFR3 in bladder tumors in 1999 led to major interest in this receptor and during the subsequent 20 years much has been learnt about the mutational profiles found in bladder cancer, the phenotypes associated with these and the potential of this mutated protein as a target for therapy. Based on mutational and expression data, it is estimated that >80% of non-muscle-invasive bladder cancers (NMIBC) and ∼40% of muscle-invasive bladder cancers (MIBC) have upregulated FGFR3 signalling, and these frequencies are likely to be even higher if alternative splicing of the receptor, expression of ligands and changes in regulatory mechanisms are taken into account. Major efforts by the pharmaceutical industry have led to development of a range of agents targeting FGFR3 and other FGF receptors. Several of these have entered clinical trials, and some have presented very encouraging early results in advanced bladder cancer. Recent reviews have summarised the drugs and related clinical trials in this area. This review will summarise what is known about the effects of FGFR3 and its mutant forms in normal urothelium and bladder tumors, will suggest when and how this protein contributes to urothelial cancer pathogenesis and will highlight areas that may benefit from further study.
Collapse
Affiliation(s)
- Margaret A. Knowles
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James’s, St James’s University Hospital, Leeds LS9 7TF, UK
| |
Collapse
|
26
|
Mucke HA. Patent highlights December 2019-January 2020. Pharm Pat Anal 2020; 9:67-74. [PMID: 32539539 DOI: 10.4155/ppa-2020-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/02/2020] [Indexed: 11/17/2022]
Abstract
A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical research and development.
Collapse
|
27
|
Chou VT, Johnson S, Long J, Vounatsos M, Van Vactor D. dTACC restricts bouton addition and regulates microtubule organization at the Drosophila neuromuscular junction. Cytoskeleton (Hoboken) 2020; 77:4-15. [PMID: 31702858 PMCID: PMC7027520 DOI: 10.1002/cm.21578] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/11/2019] [Accepted: 11/05/2019] [Indexed: 12/20/2022]
Abstract
Regulation of the synaptic cytoskeleton is essential to proper neuronal development and wiring. Perturbations in neuronal microtubules (MTs) are associated with numerous pathologies, yet it remains unclear how changes in MTs may be coupled to synapse morphogenesis. Studies have identified many MT regulators that promote synapse growth. However, less is known about the factors that restrict growth, despite the potential links of synaptic overgrowth to severe neurological conditions. Here, we report that dTACC, which is implicated in MT assembly and stability, prevents synapse overgrowth at the Drosophila neuromuscular junction by restricting addition of new boutons throughout larval development. dTACC localizes to the axonal MT lattice and is required to maintain tubulin levels and the integrity of higher-order MT structures in motor axon terminals. While previous reports have demonstrated the roles of MT-stabilizing proteins in promoting synapse growth, our findings suggest that in certain contexts, MT stabilization may correlate with restricted growth.
Collapse
Affiliation(s)
- Vivian T. Chou
- Department of Cell Biology and Program in NeuroscienceBlavatnik Institute, Harvard Medical SchoolBostonMassachusetts
| | - Seth Johnson
- Department of Cell Biology and Program in NeuroscienceBlavatnik Institute, Harvard Medical SchoolBostonMassachusetts
| | - Jennifer Long
- Department of Cell Biology and Program in NeuroscienceBlavatnik Institute, Harvard Medical SchoolBostonMassachusetts
| | - Maxime Vounatsos
- Department of Cell Biology and Program in NeuroscienceBlavatnik Institute, Harvard Medical SchoolBostonMassachusetts
| | - David Van Vactor
- Department of Cell Biology and Program in NeuroscienceBlavatnik Institute, Harvard Medical SchoolBostonMassachusetts
| |
Collapse
|
28
|
The effect and mechanism of millepachine-disrupted spindle assembly in tumor cells. Anticancer Drugs 2019; 29:449-456. [PMID: 29649038 DOI: 10.1097/cad.0000000000000618] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Millepachine (MIL) is a bioactive natural product that shows great potential for cancer treatment. Previous studies showed that MIL was a novel cancer drug candidate with a special structure. To provide reference for the research and development of MIL, we further investigated the mechanism of MIL inducing G2/M arrest and found MIL disrupted spindle assembly in tumor cells. In this study, we investigated the disrupting spindle assembly effects of MIL with a focus on its potential mechanism of action. First, we indicated that MIL did not inhibit microtubule polymerization from the results of in-vivo microtubule nucleation assay and microtubule polymerization in-vitro assay but delayed this process by inhibiting the production of ATP in tumor cells. Thereafter, we investigated the effect of MIL on the mitotic spindle. We found that MIL induced multipolar spindles by inhibiting the activity of Eg5 and inhibited mitotic spindle formation and chromatin condensation by the activation of the spindle assembly checkpoint (SAC) in tumor cells. These results established a novel function of MIL in regulating the assembly of mitotic spindle. As Eg5 and SAC are antitumor targets, effect of MIL on the Eg5 protein and SAC activation hinted that MIL has novel application in the development of antitumor drugs.
Collapse
|
29
|
Kumari A, Panda D. Regulation of microtubule stability by centrosomal proteins. IUBMB Life 2018; 70:602-611. [DOI: 10.1002/iub.1865] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Anuradha Kumari
- Department of Biosciences and Bioengineering; Indian Institute of Technology Bombay; Mumbai India
| | - Dulal Panda
- Department of Biosciences and Bioengineering; Indian Institute of Technology Bombay; Mumbai India
| |
Collapse
|