1
|
Brown JJ, Pascual M, Wimberly MC, Johnson LR, Murdock CC. Humidity - The overlooked variable in the thermal biology of mosquito-borne disease. Ecol Lett 2023; 26:1029-1049. [PMID: 37349261 DOI: 10.1111/ele.14228] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 04/05/2023] [Indexed: 06/24/2023]
Abstract
Vector-borne diseases cause significant financial and human loss, with billions of dollars spent on control. Arthropod vectors experience a complex suite of environmental factors that affect fitness, population growth and species interactions across multiple spatial and temporal scales. Temperature and water availability are two of the most important abiotic variables influencing their distributions and abundances. While extensive research on temperature exists, the influence of humidity on vector and pathogen parameters affecting disease dynamics are less understood. Humidity is often underemphasized, and when considered, is often treated as independent of temperature even though desiccation likely contributes to declines in trait performance at warmer temperatures. This Perspectives explores how humidity shapes the thermal performance of mosquito-borne pathogen transmission. We summarize what is known about its effects and propose a conceptual model for how temperature and humidity interact to shape the range of temperatures across which mosquitoes persist and achieve high transmission potential. We discuss how failing to account for these interactions hinders efforts to forecast transmission dynamics and respond to epidemics of mosquito-borne infections. We outline future research areas that will ground the effects of humidity on the thermal biology of pathogen transmission in a theoretical and empirical framework to improve spatial and temporal prediction of vector-borne pathogen transmission.
Collapse
Affiliation(s)
- Joel J Brown
- Department of Entomology, Cornell University, Ithaca, New York, USA
| | - Mercedes Pascual
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, USA
| | - Michael C Wimberly
- Department of Geography and Environmental Sustainability, University of Oklahoma, Norman, Oklahoma, USA
| | - Leah R Johnson
- Department of Statistics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | | |
Collapse
|
2
|
Rojas V, Ortiz YY, Rodríguez S, Araque V, Rodríguez-Acosta A, Figarella K, Uzcátegui NL. Rhinella marina oocytes: a suitable alternative expression system for functional characterization of aquaglyceroporins. Sci Rep 2019; 9:18. [PMID: 30631140 PMCID: PMC6328568 DOI: 10.1038/s41598-018-37069-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/29/2018] [Indexed: 01/25/2023] Open
Abstract
Amphibian oocytes have been extensively used for heterologous expression of membrane proteins for studying their biochemical and biophysical properties. So far, Xenopus laevis is the main amphibian used as oocytes source to express aquaglyceroporins in order to assess water and solutes permeability. However, this well-established amphibian model represents a threat to the biodiversity in many countries, especially in those from tropical regions. For that reason, the import of Xenopus laevis is subjected to strict control, which essentially has restricted its use in these regions. Therefore, a wider variety of expression systems for aquaglyceroporins is needed. Rhinella marina is extensively distributed in the Americas and its native range spreads from South America to Texas, US. Here we report the use of Rhinella marina oocytes as an alternative expression system for aquaglyceroporins and demonstrated its suitability to determine the permeability to water and non-ionic solutes. Rhinella marina oocytes were able to functionally express channels from human and the protozoan pathogen Trypanosoma brucei, two very distant organisms on the evolutionary scale. Permeability values obtained from Rhinella marina oocytes expressing members of aquaporin family were similar and comparable to those values reported in the literature for the same channels expressed in Xenopus laevis oocytes.
Collapse
Affiliation(s)
- Vania Rojas
- Laboratorio de Inmunoquímica y Ultraestructura, Instituto Anatómico "José Izquierdo", Universidad Central de Venezuela, Caracas, Venezuela
| | - Yulexi Y Ortiz
- Laboratorio de Inmunoquímica y Ultraestructura, Instituto Anatómico "José Izquierdo", Universidad Central de Venezuela, Caracas, Venezuela
| | - Sheridan Rodríguez
- Laboratorio de Inmunoquímica y Ultraestructura, Instituto Anatómico "José Izquierdo", Universidad Central de Venezuela, Caracas, Venezuela
| | - Vladimir Araque
- Laboratorio de Inmunoquímica y Ultraestructura, Instituto Anatómico "José Izquierdo", Universidad Central de Venezuela, Caracas, Venezuela
| | - Alexis Rodríguez-Acosta
- Laboratorio de Inmunoquímica y Ultraestructura, Instituto Anatómico "José Izquierdo", Universidad Central de Venezuela, Caracas, Venezuela
| | - Katherine Figarella
- Institute of Physiology, Department of Neurophysiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Néstor L Uzcátegui
- Laboratorio de Inmunoquímica y Ultraestructura, Instituto Anatómico "José Izquierdo", Universidad Central de Venezuela, Caracas, Venezuela.
| |
Collapse
|
3
|
Ni ZX, Cui JM, Zhang NZ, Fu BQ. Structural and evolutionary divergence of aquaporins in parasites (Review). Mol Med Rep 2017; 15:3943-3948. [PMID: 28440467 PMCID: PMC5436202 DOI: 10.3892/mmr.2017.6505] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 02/28/2017] [Indexed: 11/05/2022] Open
Abstract
Aquaporins are ubiquitous proteins that belong to the major intrinsic protein family. Previous studies have indicated that aquaporins are involved in multiple physiological processes in parasites, such as nutrient absorption and end product efflux, and thus, would be promising pharmacological agents in the fight against parasite infection. In the present paper, the authors analyzed the evolutionary relationship of parasitic aquaporins by re‑constructing of a phylogenic tree using neighbor‑joining and maximum likelihood methods. In addition, the authors discussed the variation of the conserved functional sites impacting on the transportation of water molecules. The protein was concluded to be a potential drug target in parasites.
Collapse
Affiliation(s)
- Zi-Xin Ni
- College of Veterinary Medicine, China Agricultural University, Beijing 100083, P.R. China
| | - Jian-Min Cui
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P.R. China
| | - Nian-Zhang Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P.R. China
| | - Bao-Quan Fu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P.R. China
| |
Collapse
|
4
|
Ishibashi K, Morishita Y, Tanaka Y. The Evolutionary Aspects of Aquaporin Family. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 969:35-50. [PMID: 28258564 DOI: 10.1007/978-94-024-1057-0_2] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aquaporins (AQPs ) are a family of transmembrane proteins present in almost all species including virus. They are grossly divided into three subfamilies based on the sequence around a highly conserved pore-forming NPA motif: (1) classical water -selective AQP (CAQP), (2) glycerol -permeable aquaglyceroporin (AQGP) and (3) AQP super-gene channel, superaquaporin (SAQP). AQP is composed of two tandem repeats of conserved three transmembrane domains and a NPA motif. AQP ancestors probably started in prokaryotes by the duplication of half AQP genes to be diversified into CAQPs or AQGPs by evolving a subfamily-specific carboxyl-terminal NPA motif. Both AQP subfamilies may have been carried over to unicellular eukaryotic ancestors, protists and further to multicellular organisms. Although fungus lineage has kept both AQP subfamilies, the plant lineage has lost AQGP after algal ancestors with extensive diversifications of CAQPs into PIP, TIP, SIP, XIP, HIP and LIP with a possible horizontal transfer of NIP from bacteria. Interestingly, the animal lineage has obtained new SAQP subfamily with highly deviated NPA motifs, especially at the amino-terminal halves in both prostomial and deuterostomial animals. The prostomial lineage has lost AQGP after hymenoptera, while the deuterostomial lineage has kept all three subfamilies up to the vertebrate with diversified CAQPs (AQP0, 1, 2, 4, 5, 6, 8) and AQGPs (AQP3, 7, 9, 10) with limited SAQPs (AQP11, 12) in mammals. Whole-genome duplications, local gene duplications and horizontal gene transfers may have produced the AQP diversity with adaptive selections and functional alternations in response to environment changes. With the above evolutionary perspective in mind, the function of each AQP could be speculated by comparison among species to get new insights into physiological roles of AQPs . This evolutionary guidance in AQP research will lead to deeper understandings of water and solute homeostasis.
Collapse
Affiliation(s)
- Kenichi Ishibashi
- Division of Pathophysiology, Meiji Pharmaceutical University, Kiyose, Tokyo, 204-8588, Japan.
| | - Yoshiyuki Morishita
- Division of Nephrology, Saitama Medical Center, Jichi Medical University, 1-847 Ohmiya, Saitama-City, Saitama, 330-8503, Japan
| | - Yasuko Tanaka
- Division of Pathophysiology, Meiji Pharmaceutical University, Kiyose, Tokyo, 204-8588, Japan
| |
Collapse
|
5
|
Farlora R, Valenzuela-Muñoz V, Chávez-Mardones J, Gallardo-Escárate C. Aquaporin family genes exhibit developmentally-regulated and host-dependent transcription patterns in the sea louse Caligus rogercresseyi. Gene 2016; 585:119-127. [DOI: 10.1016/j.gene.2016.03.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 03/11/2016] [Accepted: 03/18/2016] [Indexed: 01/21/2023]
|
6
|
Von Bülow J, Beitz E. Number and regulation of protozoan aquaporins reflect environmental complexity. THE BIOLOGICAL BULLETIN 2015; 229:38-46. [PMID: 26338868 DOI: 10.1086/bblv229n1p38] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Protozoa are a diverse group of unicellular eukaryotes. Evidence has accumulated that protozoan aquaporin water and solute channels (AQP) contribute to adaptation in changing environments. Intracellular protozoan parasites live a well-sheltered life. Plasmodium spp. express a single AQP, Toxoplasma gondii two, while Trypanosoma cruzi and Leishamnia spp. encode up to five AQPs. Their AQPs are thought to import metabolic precursors and simultaneously to dispose of waste and to help parasites survive osmotic stress during transmission to and from the insect vector or during kidney passages. Trypanosoma brucei is a protozoan parasite that swims freely in the human blood. Expression and intracellular localization of the three T. brucei AQPs depend on the stage of differentiation during the life cycle, suggesting distinct roles in energy generation, metabolism, and cell motility. Free-living amoebae are in direct contact with the environment, encountering severe and sudden changes in the availability of nutrition, and in the osmotic conditions due to rainfall or drought. Amoeba proteus expresses a single AQP that is present in the contractile vacuole complex required for osmoregulation, whereas Dictyostelium discoideum expresses four AQPs, of which two are present in the single-celled amoeboidal stage and two more in the later multicellular stages preceding spore formation. The number and regulation of protozoan aquaporins may reflect environmental complexity. We highlight the gated AqpB from D. discoideum as an example of how life in the wild is challenged by a complex AQP structure-function relationship.
Collapse
Affiliation(s)
- Julia Von Bülow
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany
| | - Eric Beitz
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany
| |
Collapse
|
7
|
Mukhopadhyay R, Bhattacharjee H, Rosen BP. Aquaglyceroporins: generalized metalloid channels. Biochim Biophys Acta Gen Subj 2013; 1840:1583-91. [PMID: 24291688 DOI: 10.1016/j.bbagen.2013.11.021] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 11/11/2013] [Accepted: 11/20/2013] [Indexed: 01/08/2023]
Abstract
BACKGROUND Aquaporins (AQPs), members of a superfamily of transmembrane channel proteins, are ubiquitous in all domains of life. They fall into a number of branches that can be functionally categorized into two major sub-groups: i) orthodox aquaporins, which are water-specific channels, and ii) aquaglyceroporins, which allow the transport of water, non-polar solutes, such as urea or glycerol, the reactive oxygen species hydrogen peroxide, and gases such as ammonia, carbon dioxide and nitric oxide and, as described in this review, metalloids. SCOPE OF REVIEW This review summarizes the key findings that AQP channels conduct bidirectional movement of metalloids into and out of cells. MAJOR CONCLUSIONS As(OH)3 and Sb(OH)3 behave as inorganic molecular mimics of glycerol, a property that allows their passage through AQP channels. Plant AQPs also allow the passage of boron and silicon as their hydroxyacids, boric acid (B(OH)3) and orthosilicic acid (Si(OH)4), respectively. Genetic analysis suggests that germanic acid (GeO2) is also a substrate. While As(III), Sb(III) and Ge(IV) are toxic metalloids, borate (B(III)) and silicate (Si(IV)) are essential elements in higher plants. GENERAL SIGNIFICANCE The uptake of environmental metalloids by aquaporins provides an understanding of (i) how toxic elements such as arsenic enter the food chain; (ii) the delivery of arsenic and antimony containing drugs in the treatment of certain forms of leukemia and chemotherapy of diseases caused by pathogenic protozoa; and (iii) the possibility that food plants such as rice could be made safer by genetically modifying them to exclude arsenic while still accumulating boron and silicon. This article is part of a Special Issue entitled Aquaporins.
Collapse
Affiliation(s)
- Rita Mukhopadhyay
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL 33199, USA
| | - Hiranmoy Bhattacharjee
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL 33199, USA
| | - Barry P Rosen
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL 33199, USA.
| |
Collapse
|
8
|
Aquaporins in drug discovery and pharmacotherapy. Mol Aspects Med 2012; 33:691-703. [DOI: 10.1016/j.mam.2012.01.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 01/13/2012] [Accepted: 01/15/2012] [Indexed: 11/18/2022]
|
9
|
Molecular dynamics simulations of PfAQP from the malarial parasite Plasmodium falciparum. Mol Med Rep 2012; 5:1197-201. [PMID: 22395337 PMCID: PMC3787859 DOI: 10.3892/mmr.2012.822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 02/28/2012] [Indexed: 11/25/2022] Open
Abstract
Aquaporins (AQPs) are widely distributed in all kingdoms of life and act as facilitators in the transport of water and other small solutes through cell membranes. Since the plasmodial and human AQPs are different in their primary and secondary structure, an intervention targeting plasmodial AQP without affecting human AQPs is discussed to identify an attractive novel target against malaria. Therefore, it is crucial to understand the action mechanisms of these plasmodial AQPs. To explore the progression of the plasmodial real AQPs in vivo at work, a molecular dynamic simulation system was successfully developed for a PfAQP tetramer in silico. The results showed that the transporting work was not synchronous in the four channels at the same time, and that it was different at different times in the same channel. The hole sizes varied in different channels with time. The structure analysis showed that both hydrophobic and hydrophilic residues composed the inner surface of the channels, and the asparagines Asn-193 and Asn-70 assembled into two motifs of NLA and NPS in the center of the channel in place of the signature motifs of NPA in other AQPs. In brief, we successfully developed an equilibrated PfAQP-lipid system by molecular dynamics simulations, and investigated the structure of the PfAQP channel, which should aid our understanding of the AQP structure and its functional implications.
Collapse
|
10
|
Ishibashi K, Kondo S, Hara S, Morishita Y. The evolutionary aspects of aquaporin family. Am J Physiol Regul Integr Comp Physiol 2011; 300:R566-76. [DOI: 10.1152/ajpregu.90464.2008] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Aquaporins (AQPs) were originally identified as channels facilitating water transport across the plasma membrane. They have a pair of highly conserved signature sequences, asparagine-proline-alanine (NPA) boxes, to form a pore. However, some have little conserved amino acid sequences around the NPA boxes unclassifiable to two previous AQP subfamilies, classical AQPs and aquaglyceroporins. These will be called unorthodox AQPs in this review. Interestingly, these unorthodox AQPs have a highly conserved cysteine residue downstream of the second NPA box. AQPs also have a diversity of functions: some related to water transport such as fluid secretion, fluid absorption, and cell volume regulation, and the others not directly related to water transport such as cell adhesion, cell migration, cell proliferation, and cell differentiation. Some AQPs even permeate nonionic small molecules, ions, metals, and possibly gasses. AQP gene disruption studies have revealed their physiological roles: water transport in the kidney and exocrine glands, glycerol transport in fat metabolism and in skin moisture, and nutrient uptakes in plants. Furthermore, AQPs are also present at intracellular organelles, including tonoplasts, mitochondria, and the endoplasmic reticulum. This review focuses on the evolutionary aspects of AQPs from bacteria to humans in view of the structural and functional diversities of AQPs.
Collapse
Affiliation(s)
- Kenichi Ishibashi
- Department of Medical Physiology, Meiji Pharmaceutical University, Kiyose, Tokyo; and
| | - Shintaro Kondo
- Department of Medical Physiology, Meiji Pharmaceutical University, Kiyose, Tokyo; and
| | - Shigeki Hara
- Department of Medical Physiology, Meiji Pharmaceutical University, Kiyose, Tokyo; and
| | | |
Collapse
|
11
|
Mukhopadhyay R, Mandal G, Atluri VSR, Figarella K, Uzcategui NL, Zhou Y, Beitz E, Ajees AA, Bhattacharjee H. The role of alanine 163 in solute permeability of Leishmania major aquaglyceroporin LmAQP1. Mol Biochem Parasitol 2010; 175:83-90. [PMID: 20888371 DOI: 10.1016/j.molbiopara.2010.09.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 09/20/2010] [Accepted: 09/22/2010] [Indexed: 11/29/2022]
Abstract
Leishmania major aquaglyceroporin LmAQP1 allows adventitious passage of antimonite, an activated form of the drug Pentostam, which is used as the first line treatment for leishmaniasis. The extracellular C-loop of an aquaglyceroporin confers substrate specificity. Alteration of Glu125 to serine in the Plasmodium falciparum aquaglyceroporin PfAQP has been shown to selectively affect water but not glycerol permeability. The C-loop of LmAQP1 is twelve residues longer than PfAQP, and Ala163 is at an equivalent position as Glu125 of PfAQP. The role of Ala163 in LmAQP1 solute permeability was investigated. Alteration of Ala163 to serine or threonine did not significantly affect conduction of solutes. However, alteration to aspartate, glutamate, and glutamine blocked passage of water, glycerol, and other organic solutes. While LmAQP1 is a mercurial insensitive water channel, mutation of the adjacent threonine (Thr164) to cysteine led to inhibition of water passage by Hg(2+). This inhibition could be reversed upon addition of β-mercaptoethanol. These data suggest that, unlike Glu125 (PfAQP), Ala163 is not involved in stabilization of the C-loop and selective solute permeability. Ala163 is located near the pore mouth of the channel, and replacement of Ala163 by bulkier residue sterically hinders the passage of solutes. Alteration of Ala163 to serine or threonine affected metalloid uptake in the order, wild-type>A163S>A163T. Metalloid conduction was near completely blocked when Ala163 was mutagenized to aspartate, glutamate, or glutamine. Mutations such as A163S and A163T that reduced the permeability to antimonite, without a significant loss in water or solute conductivity raises the possibility that, subtle changes in the side chain of the amino acid residue in position 163 of LmAQP1 may play a role in drug resistance.
Collapse
Affiliation(s)
- Rita Mukhopadhyay
- Department of Molecular Microbiology and Infectious Diseases, Florida International University, Herbert Wertheim College of Medicine, 11200 SW 8th Street, Miami, FL 33199, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Aponte-Santamaría C, Hub JS, de Groot BL. Dynamics and energetics of solute permeation through the Plasmodium falciparum aquaglyceroporin. Phys Chem Chem Phys 2010; 12:10246-54. [DOI: 10.1039/c004384m] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Fadiel A, Isokpehi RD, Stambouli N, Hamza A, Benammar-Elgaaied A, Scalise TJ. Protozoan parasite aquaporins. Expert Rev Proteomics 2009; 6:199-211. [PMID: 19385945 DOI: 10.1586/epr.09.10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Protozoan parasites are a major threat to human health with millions of fatalities worldwide, especially in nonindustrialized countries. Currently, there is no cure for many of these parasitic diseases. Consequently, there is an imperative to find treatment targets and develop novel drugs based on the proteins encoded in the genomes of these parasites. Aquaporins, members of membrane proteins discovered and characterized within the past 20 years, are the mechanism through which water is transported through living membranes. The presence of aquaporins explains disease etiology related to water physiology and presents new pharmacogenomic targets. In this article, we review the literature on aquaporins found in Apicomplexan, Kinetoplastida and Microsporidia parasites as potential drug targets. Furthermore, by analyzing protein motion dynamics, we identify impediments that need to be surmounted for developing effective drugs targeting the aquaglyceroporin of Plasmodium falciparum, the causative agent of the most fatal form of human malaria.
Collapse
Affiliation(s)
- Ahmed Fadiel
- Department of OBGYN, New York University School of Medicine, Bellevue Hospital Center, New York, NY 10016, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Benga G. Water channel proteins (later called aquaporins) and relatives: past, present, and future. IUBMB Life 2009; 61:112-33. [PMID: 19165894 DOI: 10.1002/iub.156] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Water channels or water channel proteins (WCPs) are transmembrane proteins that have a specific three-dimensional structure with a pore that can be permeated by water molecules. WCPs are large families (over 450 members) that are present in all kingdoms of life. The first WCP was discovered in the human red blood cell (RBC) membrane in 1980s. In 1990s other WCPs were discovered in plants, microorganisms, various animals, and humans; and it became obvious that the WCPs belong to the superfamily of major intrinsic proteins (MIPs, over 800 members). WCPs include three subfamilies: (a) aquaporins (AQPs), which are water specific (or selective water channels); (b) aquaglyceroporins (and glycerol facilitators), which are permeable to water and/or other small molecules; and (c) "superaquaporins" or subcellular AQPs. WCPs (and MIPs) have several structural characteristics which were better understood after the atomic structure of some MIPs was deciphered. The structure-function relationships of MIPs expressed in microorganisms (bacteria, archaea, yeast, and protozoa), plants, and some multicellular animal species [nematodes, insects, fishes, amphibians, mammals (and humans)] are described. A synthetic overview on the WCPs from RBCs from various species is provided. The physiological roles of WCPs in kidney, gastrointestinal system, respiratory apparatus, central nervous system, eye, adipose tissue, skin are described, and some implications of WCPs in various diseases are briefly presented. References of detailed reviews on each topic are given. This is the first review providing in a condensed form an overview of the whole WCP field that became in the last 20 years a very hot area of research in biochemistry and molecular cell biology, with wide and increasing implications.
Collapse
Affiliation(s)
- Gheorghe Benga
- Department of Cell and Molecular Biology, Iuliu HaTieganu University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania.
| |
Collapse
|
15
|
Abstract
The human aquaporins,AQP3,AQP7, AQP8,AQP9, and possibly AQP10, are permeable to ammonia, and AQP7, AQP9, and possibly AQP3, are permeable to urea. In humans, these aquaporins supplement the ammonia transport of the Rhesus (Rh) proteins and the urea transporters (UTs). The mechanism by which ammonium is transported by aquaporins is not fully resolved. A comparison of transport equations, models, and experimental data shows that ammonia is transported in its neutral form, NH(3). In the presence of NH(3), the aquaporin stimulates H(+) transport. Consequently, this transport of H(+) is only significant at alkaline pH. It is debated whether the H(+) ion passes via the aquaporin or by some external route; the investigation of this problem requires the aquaporin-expressing cell to be voltage-clamped. The ammonia-permeable aquaporins differ from other aquaporins by having a less restrictive aromatic/arginine region, and an exclusively water-permeable aquaporin can be transformed into an ammonia-permeable aquaporin by single point mutations in this region. The ammonia-permeable aquaporins fall into two groups: those that are permeable (AQP3, 7, 9, 10) and those that are impermeable (AQP8) to glycerol. The two groups differ in the amino acid composition of their aromatic/arginine regions. The location of the ammonia-permeable aquaporins in the body parallels that of the Rh proteins. This applies to erythrocytes and to cells associated with nitrogen homeostasis and high rates of anabolism. In the liver, AQPs 8 and 9 are found together with Rh proteins in cells exposed to portal blood coming from the intestine. In the kidney, AQP3 might participate in the excretion of NH(4) (+) in the collecting duct. The interplay between the ammonia-permeable aquaporins and the other types of ammonia- and urea-permeable proteins is not well understood.
Collapse
Affiliation(s)
- Thomas Litman
- Exiqon A/S, Department of Biomarker Discovery, Bygstubben 16, Vedbaek, 2950, Denmark
| | | | | |
Collapse
|
16
|
Abstract
Salivary, lacrimal and pancreatic secretions are known to account for multiple physiological functions. These exocrine secretions are watery fluids containing electrolytes, and a mixture of proteins, and can be stimulated by a number of agonists. Since water movement is involved in exocrine secretion, aquaporins (AQPs) have been hypothesised to contribute to fluid production in exocrine glands. This chapter will focus on the expression, localisation and function of AQPs in salivary and lacrimal glands and pancreas. The role of multiple water and ion transporters and channels in exocrine fluid secretion will also be reviewed. Finally, this chapter will address the potential role of AQPs in Sjögren's syndrome.
Collapse
|
17
|
Invertebrate aquaporins: a review. J Comp Physiol B 2008; 178:935-55. [DOI: 10.1007/s00360-008-0288-2] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 06/03/2008] [Accepted: 06/10/2008] [Indexed: 10/25/2022]
|
18
|
Figarella K, Uzcategui NL, Zhou Y, LeFurgey A, Ouellette M, Bhattacharjee H, Mukhopadhyay R. Biochemical characterization of Leishmania major aquaglyceroporin LmAQP1: possible role in volume regulation and osmotaxis. Mol Microbiol 2007; 65:1006-17. [PMID: 17640270 DOI: 10.1111/j.1365-2958.2007.05845.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The Leishmania major aquaglyceroporin, LmAQP1, is responsible for the transport of trivalent metalloids, arsenite and antimonite. We have earlier shown that downregulation of LmAQP1 provides resistance to trivalent antimony compounds whereas increased expression of LmAQP1 in drug-resistant parasites can reverse the resistance. In this paper we describe the biochemical characterization of LmAQP1. Expression of LmAQP1 in Xenopus oocytes rendered them permeable to water, glycerol, methylglyoxal, dihydroxyacetone and sugar alcohols. The transport property of LmAQP1 was severely affected when a critical Arg230, located inside the pore of the channel, was altered to either alanine or lysine. Immunofluorescence and immuno-electron microscopy revealed LmAQP1 to be localized to the flagellum of Leishmania promastigotes and in the flagellar pocket membrane and contractile vacuole/spongiome complex of amastigotes. This is the first report of an aquaglyceroporin being localized to the flagellum of any microbe. Leishmania promastigotes and amastigotes expressing LmAQP1 could regulate their volume in response to hypoosmotic stress. Additionally, Leishmania promastigotes overexpressing LmAQP1 were found to migrate faster towards an osmotic gradient. These results taken together suggest that Leishmania LmAQP1 has multiple physiological roles, being involved in solute transport, volume regulation and osmotaxis.
Collapse
Affiliation(s)
- Katherine Figarella
- Department of Biochemistry and Molecular Biology, Wayne State University, School of Medicine, Detroit, MI, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Robin A, Brown F, Bahamontes-Rosa N, Wu B, Beitz E, Kun JFJ, Flitsch SL. Microwave-Assisted Ring Opening of Epoxides: A General Route to the Synthesis of 1-Aminopropan-2-ols with Anti Malaria Parasite Activities. J Med Chem 2007; 50:4243-9. [PMID: 17665900 DOI: 10.1021/jm070553l] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of 1-aminopropan-2-ols were synthesized and evaluated against two strains of malaria, Plasmodium falciparum FCR3 (chloroquine-resistant) and 3D7 (chloroquine-sensitive). Microwave-assisted ring opening of epoxides (aryl and alkyl glycidyl ethers, glycidol, epichlorohydrin) with various amines without catalysts generated the desired library of beta-amino alcohols rapidly and efficiently. Most of the compounds showed micromolar potency against malaria, with seven of them having IC50 values between 1 and 10 microM against both Plasmodium falciparum strains.
Collapse
Affiliation(s)
- Aélig Robin
- Manchester Interdisciplinary Biocentre (MIB), The University of Manchester, 131 Princess street, Manchester M1 7ND, UK
| | | | | | | | | | | | | |
Collapse
|