1
|
Gao B, Tan C, Roshani D, Yang R, Lv Z, Li P, Shang N. Microbial collagenases: an updated review on their characterization, degradation mechanisms, and current applications. Crit Rev Food Sci Nutr 2024:1-25. [PMID: 39673346 DOI: 10.1080/10408398.2024.2438408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2024]
Abstract
Collagen, recognized as a fundamental protein present in biological tissues and structures, plays a crucial role in maintaining organ structure and tissue integrity. Microbial collagenases are specific for the degradation of collagen. The specific three-stranded helix region of natural collagen can be identified and hydrolyzed by microbial collagenases under physiological conditions, producing collagen peptides with high physiological activity. This article describes microbial collagenases, providing an introduction to the structure, physiological characteristics, factors affecting enzyme activity, and hydrolysis mechanisms of various classes of these enzymes. Microbial collagenase is the most widely used class of collagenase and plays an important role in all aspects of human life, and various applications of microbial collagenases in food industry, healthcare and environmental protection will be addressed in this review. In addition to its beneficial functions, microbial collagenase can exist as a virulence factor for pathogenic bacteria, and enhanced research on its structure and mechanism of action will help us to investigate more effective inhibitors as well as therapeutic agents and tools for the treatment of the corresponding diseases. Finally, this review critically analyses existing challenges and outlines prospects for future advancements in the field.
Collapse
Affiliation(s)
- Boya Gao
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Chunming Tan
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- School of Health, Jiangxi Normal University, Jiangxi, China
| | - Dumila Roshani
- College of Engineering, China Agricultural University, Beijing, China
| | - Ruoqiu Yang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Zhihao Lv
- College of Engineering, China Agricultural University, Beijing, China
| | - Pinglan Li
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Nan Shang
- College of Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Targeting the phosphoserine phosphatase MtSerB2 for tuberculosis drug discovery, an hybrid knowledge based /fragment based approach. Eur J Med Chem 2022; 245:114935. [DOI: 10.1016/j.ejmech.2022.114935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
|
3
|
Arshad JZ, Hanif M. Hydroxypyrone derivatives in drug discovery: from chelation therapy to rational design of metalloenzyme inhibitors. RSC Med Chem 2022; 13:1127-1149. [PMID: 36325396 PMCID: PMC9579940 DOI: 10.1039/d2md00175f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/28/2022] [Indexed: 07/31/2023] Open
Abstract
The versatile structural motif of hydroxypyrone is found in natural products and can be easily converted into hydroxypyridone and hydroxythiopyridone analogues. The favourable toxicity profile and ease of functionalization to access a vast library of compounds make them an ideal structural scaffold for drug design and discovery. This versatile scaffold possesses excellent metal chelating properties that can be exploited for chelation therapy in clinics. Deferiprone [1,2-dimethyl-3-hydroxy-4(1H)-one] was the first orally active chelator to treat iron overload in thalassemia major. Metal complexes of hydroxy-(thio)pyr(id)ones have been investigated as magnetic resonance imaging contrast agents, and anticancer and antidiabetic agents. In recent years, this compound class has demonstrated potential in discovering and developing metalloenzyme inhibitors. This review article summarizes recent literature on hydroxy-(thio)pyr(id)ones as inhibitors for metalloenzymes such as histone deacetylases, tyrosinase and metallo-β-lactamase. Different approaches to the design of hydroxy-(thio)pyr(id)ones and their biological properties against selected metalloenzymes are discussed.
Collapse
Affiliation(s)
- Jahan Zaib Arshad
- Department of Chemistry, Government College Women University Sialkot Sialkot Pakistan
| | - Muhammad Hanif
- School of Chemical Sciences, University of Auckland Private Bag 92019 Auckland 1142 New Zealand (+64) 9 373 7599 ext. 87422
- MacDiarmid Institute for Advanced Materials and Nanotechnology Wellington New Zealand
| |
Collapse
|
4
|
The Quinazoline Otaplimastat (SP-8203) Reduces the Hemorrhagic Transformation and Mortality Aggravated after Delayed rtPA-Induced Thrombolysis in Cerebral Ischemia. Int J Mol Sci 2022; 23:ijms23031403. [PMID: 35163322 PMCID: PMC8835804 DOI: 10.3390/ijms23031403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/24/2022] [Indexed: 02/01/2023] Open
Abstract
Acute ischemic stroke is the leading cause of morbidity and mortality worldwide. Recombinant tissue plasminogen activator (rtPA) is the only agent clinically approved by FDA for patients with acute ischemic stroke. However, delayed treatment of rtPA (e.g., more than 3 h after stroke onset) exacerbates ischemic brain damage by causing intracerebral hemorrhage and increasing neurotoxicity. In the present study, we investigated whether the neuroprotant otaplimastat reduced delayed rtPA treatment-evoked neurotoxicity in male Sprague Dawley rats subjected to embolic middle cerebral artery occlusion (eMCAO). Otaplimastat reduced cerebral infarct size and edema and improved neurobehavioral deficits. In particular, otaplimastat markedly reduced intracerebral hemorrhagic transformation and mortality triggered by delayed rtPA treatment, consequently extending the therapeutic time window of rtPA. We further found that ischemia-evoked extracellular matrix metalloproteases (MMPs) expression was closely correlated with cerebral hemorrhagic transformation and brain damage. In ischemic conditions, delayed rtPA treatment further increased brain injury via synergistic expression of MMPs in vascular endothelial cells. In oxygen-glucose-deprived endothelial cells, otaplimastat suppressed the activity rather than protein expression of MMPs by restoring the level of tissue inhibitor of metalloproteinase (TIMP) suppressed in ischemia, and consequently reduced vascular permeation. This paper shows that otaplimastat under clinical trials is a new drug which can inhibit stroke on its own and extend the therapeutic time window of rtPA, especially when administered in combination with rtPA.
Collapse
|
5
|
Sharma S, Baral M, Kanungo BK. Recent advances in therapeutical applications of the versatile hydroxypyridinone chelators. J INCL PHENOM MACRO 2022. [DOI: 10.1007/s10847-021-01114-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
6
|
Ivkovic J, Jha S, Lembacher-Fadum C, Puschnig J, Kumar P, Reithofer V, Gruber K, Macheroux P, Breinbauer R. Efficient Entropy-Driven Inhibition of Dipeptidyl Peptidase III by Hydroxyethylene Transition-State Peptidomimetics. Chemistry 2021; 27:14108-14120. [PMID: 34314529 PMCID: PMC8518066 DOI: 10.1002/chem.202102204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Indexed: 12/30/2022]
Abstract
Dipeptidyl peptidase III (DPP3) is a ubiquitously expressed Zn‐dependent protease, which plays an important role in regulating endogenous peptide hormones, such as enkephalins or angiotensins. In previous biophysical studies, it could be shown that substrate binding is driven by a large entropic contribution due to the release of water molecules from the closing binding cleft. Here, the design, synthesis and biophysical characterization of peptidomimetic inhibitors is reported, using for the first time an hydroxyethylene transition‐state mimetic for a metalloprotease. Efficient routes for the synthesis of both stereoisomers of the pseudopeptide core were developed, which allowed the synthesis of peptidomimetic inhibitors mimicking the VVYPW‐motif of tynorphin. The best inhibitors inhibit DPP3 in the low μM range. Biophysical characterization by means of ITC measurement and X‐ray crystallography confirm the unusual entropy‐driven mode of binding. Stability assays demonstrated the desired stability of these inhibitors, which efficiently inhibited DPP3 in mouse brain homogenate.
Collapse
Affiliation(s)
- Jakov Ivkovic
- Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 9, 8010, Graz, Austria
| | - Shalinee Jha
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | | | - Johannes Puschnig
- Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 9, 8010, Graz, Austria
| | - Prashant Kumar
- Institute of Molecular Biosciences, University of Graz, Humboldtstr. 50, 8010, Graz, Austria
| | - Viktoria Reithofer
- Institute of Molecular Biosciences, University of Graz, Humboldtstr. 50, 8010, Graz, Austria
| | - Karl Gruber
- Institute of Molecular Biosciences, University of Graz, Humboldtstr. 50, 8010, Graz, Austria
| | - Peter Macheroux
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Rolf Breinbauer
- Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 9, 8010, Graz, Austria
| |
Collapse
|
7
|
Baronas D, Dudutienė V, Paketurytė V, Kairys V, Smirnov A, Juozapaitienė V, Vaškevičius A, Manakova E, Gražulis S, Zubrienė A, Matulis D. Structure and mechanism of secondary sulfonamide binding to carbonic anhydrases. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2021; 50:993-1011. [PMID: 34328515 DOI: 10.1007/s00249-021-01561-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/02/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Zinc-containing metalloenzyme carbonic anhydrase (CA) binds primary sulfonamides with extremely high, up to picomolar, affinity by forming a coordination bond between the negatively charged amino group and the zinc ion and making hydrogen bonds and hydrophobic contacts with other parts of the inhibitor molecule. However, N-methyl-substituted, secondary or tertiary sulfonamides bind CA with much lower affinity. In search for an explanation for this diminished affinity, a series of secondary sulfonamides were synthesized and, together with analogous primary sulfonamides, the affinities for 12 recombinant catalytically active human CA isoforms were determined by the fluorescent thermal shift assay, stopped-flow assay of the inhibition of enzymatic activity and isothermal titration calorimetry. The binding profile of secondary sulfonamides as a function of pH showed the same U-shape dependence seen for primary sulfonamides. This dependence demonstrated that there were protein binding-linked protonation reactions that should be dissected for the estimation of the intrinsic binding constants to perform structure-thermodynamics analysis. X-ray crystallographic structures of secondary sulfonamides and computational modeling dissected the atomic contributions to the binding energetics. Secondary sulfonamides bind to carbonic anhydrases via coordination bond between the negatively charged nitrogen of alkylated amino group and Zn(II) in the active site of CA. The binding reaction is linked to deprotonation of the amino group and protonation of the Zn(II)-bound hydroxide. To perform the structure-thermodynamics analysis, contributions of these linked reactions must be subtracted to determine the intrinsic energetics. In this aspect, the secondary sulfonamides are similar to primary sulfonamides as CA inhibitors.
Collapse
Affiliation(s)
- Denis Baronas
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, 10257, Vilnius, Lithuania
| | - Virginija Dudutienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, 10257, Vilnius, Lithuania
| | - Vaida Paketurytė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, 10257, Vilnius, Lithuania
| | - Visvaldas Kairys
- Department of Bioinformatics, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, 10257, Vilnius, Lithuania
| | - Alexey Smirnov
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, 10257, Vilnius, Lithuania
| | - Vaida Juozapaitienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, 10257, Vilnius, Lithuania
| | - Aivaras Vaškevičius
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, 10257, Vilnius, Lithuania
| | - Elena Manakova
- Department of Protein-DNA Interactions, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, 10257, Vilnius, Lithuania
| | - Saulius Gražulis
- Department of Protein-DNA Interactions, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, 10257, Vilnius, Lithuania
| | - Asta Zubrienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, 10257, Vilnius, Lithuania
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, 10257, Vilnius, Lithuania.
| |
Collapse
|
8
|
Design concepts of half-sandwich organoruthenium anticancer agents based on bidentate bioactive ligands. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213950] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Shakil MS, Parveen S, Rana Z, Walsh F, Movassaghi S, Söhnel T, Azam M, Shaheen MA, Jamieson SMF, Hanif M, Rosengren RJ, Hartinger CG. High Antiproliferative Activity of Hydroxythiopyridones over Hydroxypyridones and Their Organoruthenium Complexes. Biomedicines 2021; 9:biomedicines9020123. [PMID: 33513800 PMCID: PMC7912191 DOI: 10.3390/biomedicines9020123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Hydroxypyr(id)ones are a pharmaceutically important class of compounds that have shown potential in diverse areas of drug discovery. We investigated the 3-hydroxy-4-pyridones 1a-1c and 3-hydroxy-4-thiopyridones 1d-1f as well as their Ru(η6-p-cymene)Cl complexes 2a-2f, and report here the molecular structures of 1b and 1d as determined by X-ray diffraction analysis. Detailed cell biological investigations revealed potent cytotoxic activity, in particular of the 3-hydroxy-4-thiopyridones 1d-1f, while the Ru complexes of both compound types were less potent, despite still showing antiproliferative activity in the low μM range. The compounds did not modulate the cell cycle distribution of cancer cells but were cytostatic in A549 and cytotoxic in NCI-H522 non-small lung cancer cells, among other effects on cancer cells.
Collapse
Affiliation(s)
- Md. Salman Shakil
- Department of Pharmacology and Toxicology, University of Otago, PO Box 56, Dunedin 9016, New Zealand; (M.S.S.); (Z.R.); (M.A.)
| | - Shahida Parveen
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; (S.P.); (F.W.); (S.M.); (T.S.)
- Department of Chemistry, University of Sargodha, Sargodha 40100, Pakistan;
| | - Zohaib Rana
- Department of Pharmacology and Toxicology, University of Otago, PO Box 56, Dunedin 9016, New Zealand; (M.S.S.); (Z.R.); (M.A.)
| | - Fearghal Walsh
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; (S.P.); (F.W.); (S.M.); (T.S.)
| | - Sanam Movassaghi
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; (S.P.); (F.W.); (S.M.); (T.S.)
| | - Tilo Söhnel
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; (S.P.); (F.W.); (S.M.); (T.S.)
| | - Mayur Azam
- Department of Pharmacology and Toxicology, University of Otago, PO Box 56, Dunedin 9016, New Zealand; (M.S.S.); (Z.R.); (M.A.)
| | | | - Stephen M. F. Jamieson
- Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand;
| | - Muhammad Hanif
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; (S.P.); (F.W.); (S.M.); (T.S.)
- Correspondence: (M.H.); (R.J.R.); (C.G.H.)
| | - Rhonda J. Rosengren
- Department of Pharmacology and Toxicology, University of Otago, PO Box 56, Dunedin 9016, New Zealand; (M.S.S.); (Z.R.); (M.A.)
- Correspondence: (M.H.); (R.J.R.); (C.G.H.)
| | - Christian G. Hartinger
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; (S.P.); (F.W.); (S.M.); (T.S.)
- Correspondence: (M.H.); (R.J.R.); (C.G.H.)
| |
Collapse
|
10
|
Non-hydroxamate inhibitors of 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR): A critical review and future perspective. Eur J Med Chem 2020; 213:113055. [PMID: 33303239 DOI: 10.1016/j.ejmech.2020.113055] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 12/22/2022]
Abstract
1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR) catalyzes the second step of the non-mevalonate (or MEP) pathway that functions in several organisms and plants for the synthesis of isoprenoids. DXR is essential for the survival of multiple pathogenic bacteria/parasites, including those that cause tuberculosis and malaria in humans. DXR function is inhibited by fosmidomycin (1), a natural product, which forms a chelate with the active site divalent metal (Mg2+/Mn2+) through its hydroxamate metal-binding group (MBG). Most of the potent DXR inhibitors are structurally similar to 1 and retain hydroxamate despite the unfavourable pharmacokinetic and toxicity profile of the latter. We provide our perspective on the lack of non-hydroxamate DXR inhibitors. We also highlight the fundamental flaws in the design of MBG in these molecules, primarily responsible for their failure to inhibit DXR. We also suggest that for designing next-generation non-hydroxamate DXR inhibitors, approaches followed for other metalloenzymes targets may be exploited.
Collapse
|
11
|
Ye R, Tan C, Chen B, Li R, Mao Z. Zinc-Containing Metalloenzymes: Inhibition by Metal-Based Anticancer Agents. Front Chem 2020; 8:402. [PMID: 32509730 PMCID: PMC7248183 DOI: 10.3389/fchem.2020.00402] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 04/16/2020] [Indexed: 01/13/2023] Open
Abstract
DNA is considered to be the primary target of platinum-based anticancer drugs which have gained great success in clinics, but DNA-targeted anticancer drugs cause serious side-effects and easily acquired drug resistance. This has stimulated the search for novel therapeutic targets. In the past few years, substantial research has demonstrated that zinc-containing metalloenzymes play a vital role in the occurrence and development of cancer, and they have been identified as alternative targets for metal-based anticancer agents. Metal complexes themselves have also exhibited a lot of appealing features for enzyme inhibition, such as: (i) the facile construction of 3D structures that can increase the enzyme-binding selectivity and affinity; (ii) the intriguing photophysical and photochemical properties, and redox activities of metal complexes can offer possibilities to design enzyme inhibitors with multiple modes of action. In this review, we discuss recent examples of zinc-containing metalloenzyme inhibition of metal-based anticancer agents, especially three zinc-containing metalloenzymes overexpressed in tumors, including histone deacetylases (HDACs), carbonic anhydrases (CAs), and matrix metalloproteinases (MMPs).
Collapse
Affiliation(s)
- Ruirong Ye
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China.,MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Caiping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Bichun Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Rongtao Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Zongwan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
12
|
Khodaverdian V, Tapadar S, MacDonald IA, Xu Y, Ho PY, Bridges A, Rajpurohit P, Sanghani BA, Fan Y, Thangaraju M, Hathaway NA, Oyelere AK. Deferiprone: Pan-selective Histone Lysine Demethylase Inhibition Activity and Structure Activity Relationship Study. Sci Rep 2019; 9:4802. [PMID: 30886160 PMCID: PMC6423038 DOI: 10.1038/s41598-019-39214-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 12/17/2018] [Indexed: 11/09/2022] Open
Abstract
Deferiprone (DFP) is a hydroxypyridinone-derived iron chelator currently in clinical use for iron chelation therapy. DFP has also been known to elicit antiproliferative activities, yet the mechanism of this effect has remained elusive. We herein report that DFP chelates the Fe2+ ion at the active sites of selected iron-dependent histone lysine demethylases (KDMs), resulting in pan inhibition of a subfamily of KDMs. Specifically, DFP inhibits the demethylase activities of six KDMs - 2A, 2B, 5C, 6A, 7A and 7B - with low micromolar IC50s while considerably less active or inactive against eleven KDMs - 1A, 3A, 3B, 4A-E, 5A, 5B and 6B. The KDM that is most sensitive to DFP, KDM6A, has an IC50 that is between 7- and 70-fold lower than the iron binding equivalence concentrations at which DFP inhibits ribonucleotide reductase (RNR) activities and/or reduces the labile intracellular zinc ion pool. In breast cancer cell lines, DFP potently inhibits the demethylation of H3K4me3 and H3K27me3, two chromatin posttranslational marks that are subject to removal by several KDM subfamilies which are inhibited by DFP in cell-free assay. These data strongly suggest that DFP derives its anti-proliferative activity largely from the inhibition of a sub-set of KDMs. The docked poses adopted by DFP at the KDM active sites enabled identification of new DFP-based KDM inhibitors which are more cytotoxic to cancer cell lines. We also found that a cohort of these agents inhibited HP1-mediated gene silencing and one lead compound potently inhibited breast tumor growth in murine xenograft models. Overall, this study identified a new chemical scaffold capable of inhibiting KDM enzymes, globally changing histone modification profiles, and with specific anti-tumor activities.
Collapse
Affiliation(s)
- Verjine Khodaverdian
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA
| | - Subhasish Tapadar
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA
| | - Ian A MacDonald
- The University of North Carolina Eshelman School of Pharmacy, Chapel Hill, NC, 27599, USA
| | - Yuan Xu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA
| | - Po-Yi Ho
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA
| | - Allison Bridges
- Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Pragya Rajpurohit
- Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Bhakti A Sanghani
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA
| | - Yuhong Fan
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA
| | | | - Nathaniel A Hathaway
- The University of North Carolina Eshelman School of Pharmacy, Chapel Hill, NC, 27599, USA.
| | - Adegboyega K Oyelere
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA.
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA.
| |
Collapse
|
13
|
Pardo-Jiménez V, Navarrete-Encina P, Díaz-Araya G. Synthesis and Biological Evaluation of Novel Thiazolyl-Coumarin Derivatives as Potent Histone Deacetylase Inhibitors with Antifibrotic Activity. Molecules 2019; 24:molecules24040739. [PMID: 30791388 PMCID: PMC6412891 DOI: 10.3390/molecules24040739] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 01/04/2023] Open
Abstract
New histone deacetylases (HDAC) inhibitors with low toxicity to non-cancerous cells, are a prevalent issue at present because these enzymes are actively involved in fibrotic diseases. We designed and synthesized a novel series of thiazolyl-coumarins, substituted at position 6 (R = H, Br, OCH3), linked to classic zinc binding groups, such as hydroxamic and carboxylic acid moieties and alternative zinc binding groups such as disulfide and catechol. Their in vitro inhibitory activities against HDACs were evaluated. Disulfide and hydroxamic acid derivatives were the most potent ones. Assays with neonatal rat cardiac fibroblasts demonstrated low cytotoxic effects for all compounds. Regarding the parameters associated to cardiac fibrosis development, the compounds showed antiproliferative effects, and triggered a strong decrease on the expression levels of both α-SMA and procollagen I. In conclusion, the new thiazolyl-coumarin derivatives inhibit HDAC activity and decrease profibrotic effects on cardiac fibroblasts.
Collapse
Affiliation(s)
- Viviana Pardo-Jiménez
- Laboratory of Advanced Organic Chemistry, Department of Organic Chemistry and Physical Chemistry, Faculty of Chemical and Pharmaceutical Sciences; University of Chile, Santiago 8380000, Chile.
- Laboratory of Molecular Pharmacology, Department of Pharmacological & Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences; University of Chile, Santiago 8380000, Chile.
| | - Patricio Navarrete-Encina
- Laboratory of Advanced Organic Chemistry, Department of Organic Chemistry and Physical Chemistry, Faculty of Chemical and Pharmaceutical Sciences; University of Chile, Santiago 8380000, Chile.
| | - Guillermo Díaz-Araya
- Laboratory of Molecular Pharmacology, Department of Pharmacological & Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences; University of Chile, Santiago 8380000, Chile.
- Advanced Center of Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago 8380000, Chile.
| |
Collapse
|
14
|
Galster M, Löppenberg M, Galla F, Börgel F, Agoglitta O, Kirchmair J, Holl R. Phenylethylene glycol-derived LpxC inhibitors with diverse Zn2+-binding groups. Tetrahedron 2019. [DOI: 10.1016/j.tet.2018.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
15
|
Myasoedova VA, Chistiakov DA, Grechko AV, Orekhov AN. Matrix metalloproteinases in pro-atherosclerotic arterial remodeling. J Mol Cell Cardiol 2018; 123:159-167. [PMID: 30172754 DOI: 10.1016/j.yjmcc.2018.08.026] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 08/07/2018] [Accepted: 08/29/2018] [Indexed: 12/20/2022]
Abstract
Matrix metalloproteinases (MMPs) is a family of Zn2+ endopeptidases that process various components of the extracellular matrix. These enzymes are also involved in activation and inhibition of signaling cascades through proteolytic cleavage of surface receptors. Moreover, MMPs play a key role in tissue remodeling and and repair. Dysregulation of MMPs is observed in patholofgical conditions, including atherosclerosis, which is associated with hyperactivation of MMPs, aberrant tissue remodeling and neovascularization of the growing atherosclerotic plaques. This makes MMPs interesting therapeutic targets that can be employed for developing novel therapies to treat atherosclerosis and its complications. Currently, a growing number of synthetic MMP inhibitors is available. In this review, we will discuss the role of these enzymes in atherosclerosis pathology and the ways of their pothential therapeutic use.
Collapse
Affiliation(s)
- Veronika A Myasoedova
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | - Dimitry A Chistiakov
- Department of Basic and Applied Neurobiology, Serbsky Federal Medical Research Center for Psychiatry and Narcology, 119991 Moscow, Russia
| | - Andrey V Grechko
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 109240 Moscow, Russia
| | - Alexander N Orekhov
- Department of Basic and Applied Neurobiology, Serbsky Federal Medical Research Center for Psychiatry and Narcology, 119991 Moscow, Russia; Institute for Atherosclerosis Research, Skolkovo Innovative Center, 121609 Moscow, Russia.
| |
Collapse
|
16
|
Bird MJ, Silvestri AP, Dawson PE. Expedient on-resin synthesis of peptidic benzimidazoles. Bioorg Med Chem Lett 2018; 28:2679-2681. [PMID: 29739642 DOI: 10.1016/j.bmcl.2018.04.062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 04/25/2018] [Indexed: 12/13/2022]
Abstract
The benzimidazole moiety is a ubiquitous pharmacophore present in numerous anthelmintic, antibacterial, antiviral, antineoplastic, and antifungal drugs. While the polypharmacology of this heterocycle has spurred the development of numerous solution-phase syntheses, only a handful of disparate and inefficient methods detailing its synthesis on-resin have been reported. Here we report the concise and expedient syntheses of internal and C-terminal peptidic benzimidazoles - an emerging class of peptide deformylase (PDF)-inhibiting antimicrobials. This method benefits from being performed wholly on solid-phase at room temperature resulting in minimal purification and tolerance of temperature-sensitive functionality.
Collapse
Affiliation(s)
- Michael J Bird
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Anthony P Silvestri
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Philip E Dawson
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States.
| |
Collapse
|
17
|
Affiliation(s)
- Jae Eun Cheong
- Center for Drug Discovery and Translational Research and Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Anil Ekkati
- Center for Drug Discovery and Translational Research and Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Lijun Sun
- Center for Drug Discovery and Translational Research and Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Schönauer E, Kany AM, Haupenthal J, Hüsecken K, Hoppe IJ, Voos K, Yahiaoui S, Elsässer B, Ducho C, Brandstetter H, Hartmann RW. Discovery of a Potent Inhibitor Class with High Selectivity toward Clostridial Collagenases. J Am Chem Soc 2017; 139:12696-12703. [PMID: 28820255 PMCID: PMC5607459 DOI: 10.1021/jacs.7b06935] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
Secreted virulence
factors like bacterial collagenases are conceptually
attractive targets for fighting microbial infections. However, previous
attempts to develop potent compounds against these metalloproteases
failed to achieve selectivity against human matrix metalloproteinases
(MMPs). Using a surface plasmon resonance-based screening complemented
with enzyme inhibition assays, we discovered an N-aryl mercaptoacetamide-based inhibitor scaffold that showed
sub-micromolar affinities toward collagenase H (ColH) from the human
pathogen Clostridium histolyticum. Moreover, these
inhibitors also efficiently blocked the homologous bacterial collagenases,
ColG from C. histolyticum, ColT from C. tetani, and ColQ1 from the Bacillus cereus strain Q1,
while showing negligible activity toward human MMPs-1, -2, -3, -7,
-8, and -14. The most active compound displayed a more than 1000-fold
selectivity over human MMPs. This selectivity can be rationalized
by the crystal structure of ColH with this compound, revealing a distinct
non-primed binding mode to the active site. The non-primed binding
mode presented here paves the way for the development of selective
broad-spectrum bacterial collagenase inhibitors with potential therapeutic
application in humans.
Collapse
Affiliation(s)
- Esther Schönauer
- Division of Structural Biology, Department of Molecular Biology, University of Salzburg , Billrothstrasse 11, 5020 Salzburg, Austria
| | - Andreas M Kany
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) , Campus E8.1, 66123 Saarbrücken, Germany
| | - Jörg Haupenthal
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) , Campus E8.1, 66123 Saarbrücken, Germany
| | - Kristina Hüsecken
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) , Campus E8.1, 66123 Saarbrücken, Germany
| | - Isabel J Hoppe
- Division of Structural Biology, Department of Molecular Biology, University of Salzburg , Billrothstrasse 11, 5020 Salzburg, Austria
| | - Katrin Voos
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University , Campus C2.3, 66123 Saarbrücken, Germany
| | - Samir Yahiaoui
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) , Campus E8.1, 66123 Saarbrücken, Germany
| | - Brigitta Elsässer
- Division of Structural Biology, Department of Molecular Biology, University of Salzburg , Billrothstrasse 11, 5020 Salzburg, Austria
| | - Christian Ducho
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University , Campus C2.3, 66123 Saarbrücken, Germany
| | - Hans Brandstetter
- Division of Structural Biology, Department of Molecular Biology, University of Salzburg , Billrothstrasse 11, 5020 Salzburg, Austria
| | - Rolf W Hartmann
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) , Campus E8.1, 66123 Saarbrücken, Germany.,Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University , Campus C2.3, 66123 Saarbrücken, Germany
| |
Collapse
|
19
|
Shin WS, Bergstrom A, Xie J, Bonomo RA, Crowder MW, Muthyala R, Sham YY. Discovery of 1-Hydroxypyridine-2(1H)-thione-6-carboxylic Acid as a First-in-Class Low-Cytotoxic Nanomolar Metallo β-Lactamase Inhibitor. ChemMedChem 2017; 12:845-849. [PMID: 28482143 PMCID: PMC6034706 DOI: 10.1002/cmdc.201700182] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/08/2017] [Indexed: 11/06/2022]
Abstract
VIM-2 is one of the most common carbapenem-hydrolyzing metallo β-lactamases (MBL) found in many drug-resistant Gram-negative bacterial strains. Currently, there is a lack of effective lead compounds with optimal therapeutic potential within our drug development pipeline. Here we report the discovery of 1-hydroxypyridine-2(1H)-thione-6-carboxylic acid (3) as a first-in-class metallo β-lactamase inhibitor (MBLi) with a potent inhibition Ki of 13 nm against VIM-2 that corresponds to a remarkable 0.99 ligand efficiency. We further established that 3 can restore the antibiotic activity of amoxicillin against VIM-2-producing E. coli in a whole cell assay with an EC50 of 110 nm. The potential mode of binding of 3 from molecular modeling provided structural insights that could corroborate the observed changes in the biochemical activities. Finally, 3 possesses a low cytotoxicity (CC50 ) of 97 μm with a corresponding therapeutic index of 880, making it a promising lead candidate for further optimization in combination antibacterial therapy.
Collapse
Affiliation(s)
- Woo Shik Shin
- Center for Drug Design, University of Minnesota, Minneapolis, MN 55455
- Biomedical Informatics and Computational Biology Program
| | - Alexander Bergstrom
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056
| | - Jiashu Xie
- Center for Drug Design, University of Minnesota, Minneapolis, MN 55455
| | - Robert A. Bonomo
- Medical Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106
| | - Michael W. Crowder
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056
| | - Ramaiah Muthyala
- Center for Orphan Drug Research, University of Minnesota, Minneapolis, MN 55455
- Department of Experimental & Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455
| | - Yuk Yin Sham
- Center for Drug Design, University of Minnesota, Minneapolis, MN 55455
- Biomedical Informatics and Computational Biology Program
| |
Collapse
|
20
|
El Khoury L, Naseem-Khan S, Kwapien K, Hobaika Z, Maroun RG, Piquemal JP, Gresh N. Importance of explicit smeared lone-pairs in anisotropic polarizable molecular mechanics. Torture track angular tests for exchange-repulsion and charge transfer contributions. J Comput Chem 2017; 38:1897-1920. [DOI: 10.1002/jcc.24830] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/18/2017] [Accepted: 04/03/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Léa El Khoury
- Laboratoire de Chimie Théorique, Sorbonne Universités, UPMC; UMR7616 CNRS Paris France
- Centre d'Analyses et de Recherche, UR EGFEM, LSIM, Faculté des Sciences, Saint Joseph University of Beirut; BP 11-514, Riad El Solh Beirut 1116-2050 Lebanon
| | - Sehr Naseem-Khan
- Laboratoire de Chimie Théorique, Sorbonne Universités, UPMC; UMR7616 CNRS Paris France
| | - Karolina Kwapien
- Chemistry and Biology, Nucleo(s)tides and Immunology for Therapy (CBNIT); UMR 8601 CNRS, UFR Biomédicale Paris France
- Institut Charles-Gerhardt, UMR 5253, CNRS-UM2-UM1-ENSM; Montpellier France
| | - Zeina Hobaika
- Centre d'Analyses et de Recherche, UR EGFEM, LSIM, Faculté des Sciences, Saint Joseph University of Beirut; BP 11-514, Riad El Solh Beirut 1116-2050 Lebanon
| | - Richard G. Maroun
- Centre d'Analyses et de Recherche, UR EGFEM, LSIM, Faculté des Sciences, Saint Joseph University of Beirut; BP 11-514, Riad El Solh Beirut 1116-2050 Lebanon
| | - Jean-Philip Piquemal
- Laboratoire de Chimie Théorique, Sorbonne Universités, UPMC; UMR7616 CNRS Paris France
- Institut Universitaire de France; Paris Cedex 05 75231 France
- Department of Biomedical Engineering; The University of Texas at Austin; Texas 78712
| | - Nohad Gresh
- Laboratoire de Chimie Théorique, Sorbonne Universités, UPMC; UMR7616 CNRS Paris France
| |
Collapse
|
21
|
Matrix Metalloproteinase Inhibitors as Investigational and Therapeutic Tools in Unrestrained Tissue Remodeling and Pathological Disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 148:355-420. [PMID: 28662828 DOI: 10.1016/bs.pmbts.2017.04.003] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Matrix metalloproteinases (MMPs) are zinc-dependent proteolytic enzymes that degrade various proteins in the extracellular matrix (ECM). MMPs may also regulate the activity of membrane receptors and postreceptor signaling mechanisms and thereby affect cell function. The MMP family includes collagenases, gelatinases, stromelysins, matrilysins, membrane-type MMPs, and other MMPs. Inactive proMMPs are cleaved by other MMPs or proteases into active MMPs, which interact with various protein substrates in ECM and cell surface. MMPs regulate important biological processes such as vascular remodeling and angiogenesis and may be involved in the pathogenesis of cardiovascular disorders such as hypertension, atherosclerosis, and aneurysm. The role of MMPs is often assessed by measuring their mRNA expression, protein levels, and proteolytic activity using gel zymography. MMP inhibitors are also used to assess the role of MMPs in different biological processes and pathological conditions. MMP activity is regulated by endogenous tissue inhibitors of metalloproteinases (TIMPs), and the MMP/TIMP balance could determine the net MMP activity, ECM turnover, and tissue remodeling. Also, several synthetic MMP inhibitors have been developed. Synthetic MMP inhibitors include a large number of zinc-binding globulins (ZBGs), in addition to non-ZBGs and mechanism-based inhibitors. MMP inhibitors have been proposed as potential tools in the management of osteoarthritis, cancer, and cardiovascular disorders. However, most MMP inhibitors have broad-spectrum actions on multiple MMPs and could cause undesirable musculoskeletal side effects. Currently, doxycycline is the only MMP inhibitor approved by the Food and Drug Administration. New generation biological and synthetic MMP inhibitors may show greater MMP specificity and fewer side effects and could be useful in targeting specific MMPs, reducing unrestrained tissue remodeling, and the management of MMP-related pathological disorders.
Collapse
|
22
|
Dick BL, Patel A, McCammon JA, Cohen SM. Effect of donor atom identity on metal-binding pharmacophore coordination. J Biol Inorg Chem 2017; 22:605-613. [PMID: 28389830 DOI: 10.1007/s00775-017-1454-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 03/28/2017] [Indexed: 01/03/2023]
Abstract
The inhibition and binding of three metal-binding pharmacophores (MBPs), 2-hydroxycyclohepta-2,4,6-trien-1-one (tropolone), 2-mercaptopyridine-N-oxide (1,2-HOPTO), and 2-hydroxycyclohepta-2,4,6-triene-1-thione (thiotropolone) to human carbonic anhydrase II (hCAII) and a mutant protein hCAII L198G were investigated. These MBPs displayed bidentate coordination to the active site Zn(II) metal ion, but the MBPs respond to the mutation of L198G differently, as characterized by inhibition activity assays and X-ray crystallography. The L198G mutation increases the active site volume thereby decreasing the steric pressure exerted on MBPs upon binding, allowing changes in MBP coordination to be observed. When comparing the binding mode of tropolone to thiotropolone or 1,2-HOPTO (O,O versus O,S donor sets), structural modifications of the hCAII active site were shown to have a stronger effect on MBPs with an O,O versus O,S donor set. These findings were corroborated with density functional theory (DFT) calculations of model coordination complexes. These results suggest that the MBP binding geometry is a malleable interaction, particularly for certain ligands, and that the identity of the donor atoms influences the response of the ligand to changes in the protein active site environment. Understanding underlying interactions between a MBP and a metalloenzyme active site may aid in the design and development of potent metalloenzyme inhibitors.
Collapse
Affiliation(s)
- Benjamin L Dick
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA
| | - Ashay Patel
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA
| | - J Andrew McCammon
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA.,Department of Pharmacology, University of California San Diego, La Jolla, CA, USA.,Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA, USA.,National Biomedical Computation Resource, University of California San Diego, La Jolla, CA, USA
| | - Seth M Cohen
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA.
| |
Collapse
|
23
|
Hanif M, Meier SM, Adhireksan Z, Henke H, Martic S, Movassaghi S, Labib M, Kandioller W, Jamieson SMF, Hejl M, Jakupec MA, Kraatz HB, Davey CA, Keppler BK, Hartinger CG. Functionalization of Ruthenium(II)(η 6 -p-cymene)(3-hydroxy-2-pyridone) Complexes with (Thio)Morpholine: Synthesis and Bioanalytical Studies. Chempluschem 2017; 82:841-847. [PMID: 31961568 DOI: 10.1002/cplu.201700050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/16/2017] [Indexed: 02/06/2023]
Abstract
Hydroxypyr(id)ones constitute an emerging platform for the design of drug molecules, owing to their favorable biocompatibility and toxicity profiles. Herein, [RuII (η6 -p-cymene)] complexes with 3-hydroxy-2-pyridinone functionalized with morpholine and thiomorpholine, as a means often used in medicinal chemistry to alter the physicochemical properties of drug compounds, are reported. The compounds underwent hydrolysis of the Ru-Cl bond and the aqua species were stable for up to 48 h in aqueous solution, as observed by 1 H NMR spectroscopy and ESI-MS. The compounds formed adducts with amino acids and proteins through cleavage of the pyridinone ligand. Binding experiments to the nucleosome core particle by means of X-ray crystallography revealed similar reactivity and exclusive binding to histidine moieties of the histone proteins. Preliminary cyclin-dependent kinase 2 (CDK2)/cyclin A kinase inhibitory studies revealed promising activity similar to that of structurally related organometallic compounds.
Collapse
Affiliation(s)
- Muhammad Hanif
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.,Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090, Vienna, Austria
| | - Samuel M Meier
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090, Vienna, Austria.,Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090, Vienna, Austria
| | - Zenita Adhireksan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Helena Henke
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090, Vienna, Austria
| | - Sanela Martic
- Department of Chemistry, Oakland University, 2200 North Squirrel Road, Rochester, MI, 48309, USA
| | - Sanam Movassaghi
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Mahmoud Labib
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, M5S 3H2, Canada
| | - Wolfgang Kandioller
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090, Vienna, Austria.,Research Platform "Translational Cancer Therapy Research", University of Vienna, Waehringer Strasse 42, 1090, Vienna, Austria
| | - Stephen M F Jamieson
- Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Michaela Hejl
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090, Vienna, Austria
| | - Michael A Jakupec
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090, Vienna, Austria.,Research Platform "Translational Cancer Therapy Research", University of Vienna, Waehringer Strasse 42, 1090, Vienna, Austria
| | - Heinz-Bernhard Kraatz
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada.,Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - Curt A Davey
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090, Vienna, Austria.,Research Platform "Translational Cancer Therapy Research", University of Vienna, Waehringer Strasse 42, 1090, Vienna, Austria
| | - Christian G Hartinger
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.,Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090, Vienna, Austria
| |
Collapse
|
24
|
Li J, Yakushi T, Parlati F, Mackinnon AL, Perez C, Ma Y, Carter KP, Colayco S, Magnuson G, Brown B, Nguyen K, Vasile S, Suyama E, Smith LH, Sergienko E, Pinkerton AB, Chung TDY, Palmer AE, Pass I, Hess S, Cohen SM, Deshaies RJ. Capzimin is a potent and specific inhibitor of proteasome isopeptidase Rpn11. Nat Chem Biol 2017; 13:486-493. [PMID: 28244987 DOI: 10.1038/nchembio.2326] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/23/2017] [Indexed: 12/28/2022]
Abstract
The proteasome is a vital cellular machine that maintains protein homeostasis, which is of particular importance in multiple myeloma and possibly other cancers. Targeting of proteasome 20S peptidase activity with bortezomib and carfilzomib has been widely used to treat myeloma. However, not all patients respond to these compounds, and those who do eventually suffer relapse. Therefore, there is an urgent and unmet need to develop new drugs that target proteostasis through different mechanisms. We identified quinoline-8-thiol (8TQ) as a first-in-class inhibitor of the proteasome 19S subunit Rpn11. A derivative of 8TQ, capzimin, shows >5-fold selectivity for Rpn11 over the related JAMM proteases and >2 logs selectivity over several other metalloenzymes. Capzimin stabilized proteasome substrates, induced an unfolded protein response, and blocked proliferation of cancer cells, including those resistant to bortezomib. Proteomic analysis revealed that capzimin stabilized a subset of polyubiquitinated substrates. Identification of capzimin offers an alternative path to develop proteasome inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Jing Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Tanya Yakushi
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, California, USA
| | - Francesco Parlati
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Andrew L Mackinnon
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Christian Perez
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| | - Yuyong Ma
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| | - Kyle P Carter
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, Colorado, USA
| | - Sharon Colayco
- Conrad Prebys Center for Chemical Genomics at Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Gavin Magnuson
- Conrad Prebys Center for Chemical Genomics at Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Brock Brown
- Conrad Prebys Center for Chemical Genomics at Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Kevin Nguyen
- Sanford-Burnham Center for Chemical Genomics at Sanford-Burnham Medical Research Institute Lake Nona, Orlando, Florida, USA
| | - Stefan Vasile
- Sanford-Burnham Center for Chemical Genomics at Sanford-Burnham Medical Research Institute Lake Nona, Orlando, Florida, USA
| | - Eigo Suyama
- Sanford-Burnham Center for Chemical Genomics at Sanford-Burnham Medical Research Institute Lake Nona, Orlando, Florida, USA
| | - Layton H Smith
- Sanford-Burnham Center for Chemical Genomics at Sanford-Burnham Medical Research Institute Lake Nona, Orlando, Florida, USA
| | - Eduard Sergienko
- Conrad Prebys Center for Chemical Genomics at Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Anthony B Pinkerton
- Conrad Prebys Center for Chemical Genomics at Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Thomas D Y Chung
- Conrad Prebys Center for Chemical Genomics at Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Amy E Palmer
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, Colorado, USA
| | - Ian Pass
- Conrad Prebys Center for Chemical Genomics at Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Sonja Hess
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, California, USA
| | - Seth M Cohen
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| | - Raymond J Deshaies
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA.,Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
25
|
Richardson-Sanchez T, Tieu W, Codd R. Reverse Biosynthesis: Generating Combinatorial Pools of Drug Leads from Enzyme-Mediated Fragmentation of Natural Products. Chembiochem 2017; 18:368-373. [DOI: 10.1002/cbic.201600636] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Tomas Richardson-Sanchez
- School of Medical Sciences (Pharmacology); The University of Sydney; Camperdown NSW 2006 Australia
| | - William Tieu
- School of Medical Sciences (Pharmacology); The University of Sydney; Camperdown NSW 2006 Australia
| | - Rachel Codd
- School of Medical Sciences (Pharmacology); The University of Sydney; Camperdown NSW 2006 Australia
| |
Collapse
|
26
|
Shin JA, Kim HS, Vargas A, Yu WQ, Eom YS, Craft CM, Lee EJ. Inhibition of Matrix Metalloproteinase 9 Enhances Rod Survival in the S334ter-line3 Retinitis Pigmentosa Model. PLoS One 2016; 11:e0167102. [PMID: 27893855 PMCID: PMC5125676 DOI: 10.1371/journal.pone.0167102] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/08/2016] [Indexed: 12/31/2022] Open
Abstract
Retinitis Pigmentosa (RP) is one of the most common forms of inherited visual loss with the initial degeneration of rod photoreceptors, followed by a progressive cone photoreceptor deterioration. Coinciding with this visual loss, the extracellular matrix (ECM) is reorganized, which alters matrix metalloproteinase (MMP) activity levels. A potential pathological role of MMPs, MMP-9 in particular, involves an excitotoxicity-mediated physiological response. In the current study, we examine the MMP-9 and MMP-2 expression levels in the rhodopsin S334ter-line3 RP rat model and investigate the impact of treatment with SB-3CT, a specific MMP-9 and MMP-2 inhibitor, on rod cell survival was tested. Retinal MMP-9 and MMP-2 expression levels were quantified by immunoblot analysis from S334ter-line3 rats compared to controls. Gelatinolytic activities of MMP-9 and MMP-2 by zymography were examined. The geometry of rod death was further evaluated using Voronoi analysis. Our results revealed that MMP-9 was elevated while MMP-2 was relatively unchanged when S334ter-line 3 retinas were compared to controls. With SB-3CT treatment, we observed gelatinolytic activity of both MMPs was decreased and diminished clustering associated with rod death, in addition to a robust preservation of rod photoreceptors. These results demonstrate that up-regulation of MMP-9 in retinas of S334ter-line3 are associated with rod death. The application of SB-3CT dramatically interferes with mechanisms leading to apoptosis in an MMP-9-dependent manner. Future studies will determine the feasibility of using SB-3CT as a potential therapeutic strategy to slow progression of vision loss in genetic inherited forms of human RP.
Collapse
Affiliation(s)
- Jung-A Shin
- Mary D. Allen Laboratory for Vision Research, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
- Department of Anatomy, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Hwa Sun Kim
- Mary D. Allen Laboratory for Vision Research, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
| | - Andrew Vargas
- Mary D. Allen Laboratory for Vision Research, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
| | - Wan-Qing Yu
- Mary D. Allen Laboratory for Vision Research, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
- Department of Biological Structure, University of Washington, Seattle, Washington, United States of America
| | - Yun Sung Eom
- Mary D. Allen Laboratory for Vision Research, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
| | - Cheryl Mae Craft
- Mary D. Allen Laboratory for Vision Research, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
- Department of Cell & Neurobiology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California, United States of America
| | - Eun-Jin Lee
- Mary D. Allen Laboratory for Vision Research, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
- Department of Biomedical Engineering, University of Southern California Viterbi School of Engineering, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
27
|
Gresh N, Perahia D, de Courcy B, Foret J, Roux C, El-Khoury L, Piquemal JP, Salmon L. Complexes of a Zn-metalloenzyme binding site with hydroxamate-containing ligands. A case for detailed benchmarkings of polarizable molecular mechanics/dynamics potentials when the experimental binding structure is unknown. J Comput Chem 2016; 37:2770-2782. [DOI: 10.1002/jcc.24503] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/31/2016] [Accepted: 09/04/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Nohad Gresh
- Laboratoire de Chimie Théorique; Sorbonne Universités; UPMC, UMR 7616 CNRS Paris France
- Chemistry and Biology, Nucleo(s)tides and Immunology for Therapy (CBNIT); UMR 8601 CNRS, UFR Biomédicale; Paris France
| | - David Perahia
- Laboratoire de Biologie et Pharmacologie Appliquées (LBPA), UMR 8113; Ecole Normale Supérieure Cachan France
| | - Benoit de Courcy
- Laboratoire de Chimie Théorique; Sorbonne Universités; UPMC, UMR 7616 CNRS Paris France
- Chemistry and Biology, Nucleo(s)tides and Immunology for Therapy (CBNIT); UMR 8601 CNRS, UFR Biomédicale; Paris France
| | - Johanna Foret
- Laboratoire de Chimie Bioorganique et Bioinorganique; Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Univ Paris-Saclay, Univ Paris-Sud, UMR 8182 CNRS; rue du Doyen Georges Poitou Orsay F-91405 France
| | - Céline Roux
- Laboratoire de Chimie Bioorganique et Bioinorganique; Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Univ Paris-Saclay, Univ Paris-Sud, UMR 8182 CNRS; rue du Doyen Georges Poitou Orsay F-91405 France
| | - Lea El-Khoury
- Laboratoire de Chimie Théorique; Sorbonne Universités; UPMC, UMR 7616 CNRS Paris France
- Centre d'Analyses et de Recherche; UR EGFEM, LSIM, Faculté de Sciences, Saint Joseph University of Beirut; BP 11-514, Riad El Solh Beirut 1116-2050 Lebanon
| | - Jean-Philip Piquemal
- Laboratoire de Chimie Théorique; Sorbonne Universités; UPMC, UMR 7616 CNRS Paris France
- Department of Biomolecular Engineering; The University of Texas at Austin; Texas 78712
| | - Laurent Salmon
- Laboratoire de Chimie Bioorganique et Bioinorganique; Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Univ Paris-Saclay, Univ Paris-Sud, UMR 8182 CNRS; rue du Doyen Georges Poitou Orsay F-91405 France
| |
Collapse
|
28
|
Tauro M, Laghezza A, Loiodice F, Piemontese L, Caradonna A, Capelli D, Montanari R, Pochetti G, Di Pizio A, Agamennone M, Campestre C, Tortorella P. Catechol-based matrix metalloproteinase inhibitors with additional antioxidative activity. J Enzyme Inhib Med Chem 2016; 31:25-37. [PMID: 27556138 DOI: 10.1080/14756366.2016.1217853] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
New catechol-containing chemical entities have been investigated as matrix metalloproteinase inhibitors as well as antioxidant molecules. The combination of the two properties could represent a useful feature due to the potential application in all the pathological processes characterized by increased proteolytic activity and radical oxygen species (ROS) production, such as inflammation and photoaging. A series of catechol-based molecules were synthesized and tested for both proteolytic and oxidative inhibitory activity, and the detailed binding mode was assessed by crystal structure determination of the complex between a catechol derivative and the matrix metalloproteinase-8. Surprisingly, X-ray structure reveals that the catechol oxygens do not coordinates the zinc atom.
Collapse
Affiliation(s)
- Marilena Tauro
- a Department of Tumor Biology , H. Lee Moffitt Cancer Center and Research Institute , Tampa , FL , USA
| | - Antonio Laghezza
- b Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi "A. Moro" di Bari , Bari , Italy
| | - Fulvio Loiodice
- b Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi "A. Moro" di Bari , Bari , Italy
| | - Luca Piemontese
- b Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi "A. Moro" di Bari , Bari , Italy
| | - Alessia Caradonna
- b Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi "A. Moro" di Bari , Bari , Italy
| | - Davide Capelli
- c Istituto di Cristallografia, CNR , Monterotondo Stazione (Roma) , Italy
| | - Roberta Montanari
- c Istituto di Cristallografia, CNR , Monterotondo Stazione (Roma) , Italy
| | - Giorgio Pochetti
- c Istituto di Cristallografia, CNR , Monterotondo Stazione (Roma) , Italy
| | - Antonella Di Pizio
- d Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem , Rehovot , Israel , and
| | | | - Cristina Campestre
- e Dipartimento di Farmacia, Università "G. d'Annunzio" Chieti , Chieti , Italy
| | - Paolo Tortorella
- b Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi "A. Moro" di Bari , Bari , Italy
| |
Collapse
|
29
|
Song J, Peng P, Chang J, Liu MM, Yu JM, Zhou L, Sun X. Selective non-zinc binding MMP-2 inhibitors: Novel benzamide Ilomastat analogs with anti-tumor metastasis. Bioorg Med Chem Lett 2016; 26:2174-8. [PMID: 27038494 DOI: 10.1016/j.bmcl.2016.03.064] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/14/2016] [Accepted: 03/16/2016] [Indexed: 12/31/2022]
Abstract
Novel Ilomastat analogs with substituted benzamide groups, instead of hydroxamic acid groups, were designed, synthesized and evaluated against MMP-2 and MMP-9. Among these analogs, the most potent compound 10a exhibited potent inhibitory activity against MMP-2 with IC50 value of 0.19 nM, which is 5 times more potent than that of Ilomastat (IC50=0.94 nM). Importantly, 10a exhibited more than 8300 fold selectivity for MMP-2 versus MMP-9 (IC50=1.58 μM). Molecular docking studies showed that 10a bond to the catalytic active pocket of MMP-2 by a non-zinc-chelating mechanism which was different from that of Ilomastat. Furthermore, the invasion assay showed that 10a was effective in reducing HEY cells invasion at 84.6% in 50 μM concentration. For 10a, the pharmacokinetic properties had been improved and especially the more desirable t1/2z was achieved compared with these of the lead compound Ilomastat.
Collapse
Affiliation(s)
- Jiao Song
- Department of Natural Products Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Peng Peng
- Department of Natural Products Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Jun Chang
- Department of Natural Products Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Ming-Ming Liu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Jian-Ming Yu
- Department of Natural Products Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Lu Zhou
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| | - Xun Sun
- Department of Natural Products Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China; Shanghai Key Lab of Clinical Geriatric Medicine, 221 West Yanan Road, Shanghai 200040, China.
| |
Collapse
|
30
|
Schönauer E, Brandstetter H. Inhibition and Activity Regulation of Bacterial Collagenases. TOPICS IN MEDICINAL CHEMISTRY 2016. [DOI: 10.1007/7355_2016_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Skrypnyk NI, Sanker S, Skvarca LB, Novitskaya T, Woods C, Chiba T, Patel K, Goldberg ND, McDermott L, Vinson PN, Calcutt MW, Huryn DM, Vernetti LA, Vogt A, Hukriede NA, de Caestecker MP. Delayed treatment with PTBA analogs reduces postinjury renal fibrosis after kidney injury. Am J Physiol Renal Physiol 2015; 310:F705-F716. [PMID: 26661656 DOI: 10.1152/ajprenal.00503.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 12/03/2015] [Indexed: 02/07/2023] Open
Abstract
No therapies have been shown to accelerate recovery or prevent fibrosis after acute kidney injury (AKI). In part, this is because most therapeutic candidates have to be given at the time of injury and the diagnosis of AKI is usually made too late for drugs to be efficacious. Strategies to enhance post-AKI repair represent an attractive approach to address this. Using a phenotypic screen in zebrafish, we identified 4-(phenylthio)butanoic acid (PTBA), which promotes proliferation of embryonic kidney progenitor cells (EKPCs), and the PTBA methyl ester UPHD25, which also increases postinjury repair in ischemia-reperfusion and aristolochic acid-induced AKI in mice. In these studies, a new panel of PTBA analogs was evaluated. Initial screening was performed in zebrafish EKPC assays followed by survival assays in a gentamicin-induced AKI larvae zebrafish model. Using this approach, we identified UPHD186, which in contrast to UPHD25, accelerates recovery and reduces fibrosis when administered several days after ischemia-reperfusion AKI and reduces fibrosis after unilateral ureteric obstruction in mice. UPHD25 and 186 are efficiently metabolized to the active analog PTBA in liver and kidney microsome assays, indicating both compounds may act as PTBA prodrugs in vivo. UPHD186 persists longer in the circulation than UPHD25, suggesting that sustained levels of UPHD186 may increase efficacy by acting as a reservoir for renal metabolism to PTBA. These findings validate use of zebrafish EKPC and AKI assays as a drug discovery strategy for molecules that reduce fibrosis in multiple AKI models and can be administered days after initiation of injury.
Collapse
Affiliation(s)
- Nataliya I Skrypnyk
- Division of Nephrology, Department of Medicine, Vanderbilt University, Nashville, Tennessee
| | - Subramaniam Sanker
- Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Tatiana Novitskaya
- Division of Nephrology, Department of Medicine, Vanderbilt University, Nashville, Tennessee
| | - Clara Woods
- Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Takuto Chiba
- Division of Nephrology, Department of Medicine, Vanderbilt University, Nashville, Tennessee.,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| | - Kevin Patel
- Division of Nephrology, Department of Medicine, Vanderbilt University, Nashville, Tennessee
| | - Natasha D Goldberg
- Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lee McDermott
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Paige N Vinson
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee
| | - M Wade Calcutt
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee
| | - Donna M Huryn
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lawrence A Vernetti
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Andreas Vogt
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Neil A Hukriede
- Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Center for Critical Care Nephrology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mark P de Caestecker
- Division of Nephrology, Department of Medicine, Vanderbilt University, Nashville, Tennessee; .,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
32
|
Crystal Structure of Feline Infectious Peritonitis Virus Main Protease in Complex with Synergetic Dual Inhibitors. J Virol 2015; 90:1910-7. [PMID: 26656689 DOI: 10.1128/jvi.02685-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 11/24/2015] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED Coronaviruses (CoVs) can cause highly prevalent diseases in humans and animals. Feline infectious peritonitis virus (FIPV) belongs to the genus Alphacoronavirus, resulting in a lethal systemic granulomatous disease called feline infectious peritonitis (FIP), which is one of the most important fatal infectious diseases of cats worldwide. No specific vaccines or drugs have been approved to treat FIP. CoV main proteases (M(pro)s) play a pivotal role in viral transcription and replication, making them an ideal target for drug development. Here, we report the crystal structure of FIPV M(pro) in complex with dual inhibitors, a zinc ion and a Michael acceptor. The complex structure elaborates a unique mechanism of two distinct inhibitors synergizing to inactivate the protease, providing a structural basis to design novel antivirals and suggesting the potential to take advantage of zinc as an adjunct therapy against CoV-associated diseases. IMPORTANCE Coronaviruses (CoVs) have the largest genome size among all RNA viruses. CoV infection causes various diseases in humans and animals, including severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS). No approved specific drugs or vaccinations are available to treat their infections. Here, we report a novel dual inhibition mechanism targeting CoV main protease (M(pro)) from feline infectious peritonitis virus (FIPV), which leads to lethal systemic granulomatous disease in cats. M(pro), conserved across all CoV genomes, is essential for viral replication and transcription. We demonstrated that zinc ion and a Michael acceptor-based peptidomimetic inhibitor synergistically inactivate FIPV M(pro). We also solved the structure of FIPV M(pro) complexed with two inhibitors, delineating the structural view of a dual inhibition mechanism. Our study provides new insight into the pharmaceutical strategy against CoV M(pro) through using zinc as an adjuvant therapy to enhance the efficacy of an irreversible peptidomimetic inhibitor.
Collapse
|
33
|
Discovery of 1-hydroxypyridine-2-thiones as selective histone deacetylase inhibitors and their potential application for treating leukemia. Bioorg Med Chem Lett 2015; 25:4320-4. [DOI: 10.1016/j.bmcl.2015.07.065] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/16/2015] [Accepted: 07/21/2015] [Indexed: 11/19/2022]
|
34
|
Structural basis for 18-β-glycyrrhetinic acid as a novel non-GSH analog glyoxalase I inhibitor. Acta Pharmacol Sin 2015; 36:1145-50. [PMID: 26279158 DOI: 10.1038/aps.2015.59] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 04/30/2015] [Indexed: 01/18/2023]
Abstract
AIM Glyoxalase I (GLOI), a glutathione (GSH)-dependent enzyme, is overexpressed in tumor cells and related to multi-drug resistance in chemotherapy, making GLOI inhibitors as potential anti-tumor agents. But the most studied GSH analogs exhibit poor pharmacokinetic properties. The aim of this study was to discover novel non-GSH analog GLOI inhibitors and analyze their binding mechanisms. METHODS Mouse GLOI (mGLOI) was expressed in BL21 (DE3) pLysS after induction with isopropyl-β-D-1-thiogalactopyranoside and purified using AKTA FPLC system. An in vitro mGLOI enzyme assay was used to screen a small pool of compounds containing carboxyl groups. Crystal structure of the mGLOI-inhibitor complex was determined at 2.3 Å resolution. Molecular docking study was performed using Discovery Studio 2.5 software package. RESULTS A natural compound 18-β-glycyrrhetinic acid (GA) and its derivative carbenoxolone were identified as potent competitive non-GSH analog mGLOI inhibitors with Ki values of 0.29 μmol/L and 0.93 μmol/L, respectively. Four pentacyclic triterpenes (ursolic acid, oleanolic acid, betulic acid and tripterine) showed weak activities (mGLOI inhibition ratio <25% at 10 μmol/L) and other three (maslinic acid, corosolic acid and madecassic acid) were inactive. The crystal structure of the mGLOI-GA complex showed that the carboxyl group of GA mimicked the γ-glutamyl residue of GSH by hydrogen bonding to the glutamyl sites (residues Arg38B, Asn104B and Arg123A) in the GSH binding site of mGLOI. The extensive van der Waals interactions between GA and the surrounding residues also contributed greatly to the binding of GA and mGLOI. CONCLUSION This work demonstrates a carboxyl group to be an important functional feature of non-GSH analog GLOI inhibitors.
Collapse
|
35
|
Starus A, Nocek B, Bennett B, Larrabee JA, Shaw DL, Sae-Lee W, Russo MT, Gillner DM, Makowska-Grzyska M, Joachimiak A, Holz RC. Inhibition of the dapE-Encoded N-Succinyl-L,L-diaminopimelic Acid Desuccinylase from Neisseria meningitidis by L-Captopril. Biochemistry 2015; 54:4834-44. [PMID: 26186504 DOI: 10.1021/acs.biochem.5b00475] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Binding of the competitive inhibitor L-captopril to the dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase from Neisseria meningitidis (NmDapE) was examined by kinetic, spectroscopic, and crystallographic methods. L-Captopril, an angiotensin-converting enzyme (ACE) inhibitor, was previously shown to be a potent inhibitor of the DapE from Haemophilus influenzae (HiDapE) with an IC50 of 3.3 μM and a measured Ki of 1.8 μM and displayed a dose-responsive antibiotic activity toward Escherichia coli. L-Captopril is also a competitive inhibitor of NmDapE with a Ki of 2.8 μM. To examine the nature of the interaction of L-captopril with the dinuclear active site of DapE, we have obtained electron paramagnetic resonance (EPR) and magnetic circular dichroism (MCD) data for the enzymatically hyperactive Co(II)-substituted forms of both HiDapE and NmDapE. EPR and MCD data indicate that the two Co(II) ions in DapE are antiferromagnetically coupled, yielding an S = 0 ground state, and suggest a thiolate bridge between the two metal ions. Verification of a thiolate-bridged dinuclear complex was obtained by determining the three-dimensional X-ray crystal structure of NmDapE in complex with L-captopril at 1.8 Å resolution. Combination of these data provides new insights into binding of L-captopril to the active site of DapE enzymes as well as important inhibitor-active site residue interaction's. Such information is critical for the design of new, potent inhibitors of DapE enzymes.
Collapse
Affiliation(s)
- Anna Starus
- †Department of Chemistry and Biochemistry, Loyola University-Chicago, 1068 West Sheridan Road, Chicago, Illinois 60626, United States
| | - Boguslaw Nocek
- ‡Center for Structural Genomics of Infectious Diseases, Computation Institute, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Brian Bennett
- §Department of Physics, Marquette University, Milwaukee, Wisconsin 53201, United States
| | - James A Larrabee
- ∥Department of Chemistry and Biochemistry, Middlebury College, Middlebury, Vermont 05753, United States
| | - Daniel L Shaw
- ∥Department of Chemistry and Biochemistry, Middlebury College, Middlebury, Vermont 05753, United States
| | - Wisath Sae-Lee
- ∥Department of Chemistry and Biochemistry, Middlebury College, Middlebury, Vermont 05753, United States
| | - Marie T Russo
- ∥Department of Chemistry and Biochemistry, Middlebury College, Middlebury, Vermont 05753, United States
| | - Danuta M Gillner
- ⊥Department of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Magdalena Makowska-Grzyska
- ‡Center for Structural Genomics of Infectious Diseases, Computation Institute, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Andrzej Joachimiak
- ‡Center for Structural Genomics of Infectious Diseases, Computation Institute, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Richard C Holz
- #Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States
| |
Collapse
|
36
|
Paritala H, Suzuki Y, Carroll KS. Design, synthesis and evaluation of Fe-S targeted adenosine 5'-phosphosulfate reductase inhibitors. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2015; 34:199-220. [PMID: 25710356 DOI: 10.1080/15257770.2014.978012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Adenosine 5'-phosphosulfate reductase (APR) is an iron-sulfur enzyme that is vital for survival of Mycobacterium tuberculosis during dormancy and is an attractive target for the treatment of latent tuberculosis (TB) infection. The 4Fe-4S cluster is coordinated to APR by sulfur atoms of four cysteine residues, is proximal to substrate, adenosine 5'-phopsphosulfate (APS), and is essential for catalytic activity. Herein, we present an approach for the development of a new class of APR inhibitors. As an initial step, we have employed an improved solid-phase chemistry method to prepare a series of N(6)-substituted adenosine analogues and their 5'-phosphates as well as adenosine 5'-phosphate diesters bearing different Fe and S binding groups, such as thiols or carboxylic and hydroxamic acid moieties. Evaluation of the resulting compounds indicates a clearly defined spacing requirement between the Fe-S targeting group and adenosine scaffold and that smaller Fe-S targeting groups are better tolerated. Molecular docking analysis suggests that the S atom of the most potent inhibitor may establish a favorable interaction with an S atom in the cluster. In summary, this study showcases an improved solid-phase method that expedites the preparation of adenosine and related 5'-phosphate derivatives and presents a unique Fe-S targeting strategy for the development of APR inhibitors.
Collapse
|
37
|
Revelant G, Al-Lakkis-Wehbe M, Schmitt M, Alavi S, Schmitt C, Roux L, Al-Masri M, Schifano-Faux N, Maiereanu C, Tarnus C, Albrecht S. Exploring S1 plasticity and probing S1′ subsite of mammalian aminopeptidase N/CD13 with highly potent and selective aminobenzosuberone inhibitors. Bioorg Med Chem 2015; 23:3192-207. [DOI: 10.1016/j.bmc.2015.04.066] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/22/2015] [Accepted: 04/24/2015] [Indexed: 01/22/2023]
|
38
|
Effects of metalloprotease anthrax lethal factor on its peptide-based inhibitor R9LF-1. Mol Cell Biochem 2015; 406:293-9. [PMID: 25981534 DOI: 10.1007/s11010-015-2447-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 05/07/2015] [Indexed: 10/23/2022]
Abstract
The metalloprotease lethal factor (LF) from Bacillus anthracis plays a vital role in anthrax toxin action, and thus becomes a target for anti-anthrax therapy. Following the guidelines based on existing metalloprotease inhibitors, we designed a 'first-generation' LF inhibitor R9LF-1. This inhibitor was shown to be very stable by itself in a wide range of pH and temperature and able to inhibit LF activity in vitro. However, as we reported previously in the presence of LF, this inhibitor was degraded to a small molecular weight species, resulting in a significantly decreased ability to protect MAPKK from cleavage by LF as well as to protect murine macrophages from lethal toxin. In order to elucidate this unusual phenomenon to build solid basis for high-efficiency LF inhibitor development, we performed extensive research to study the effect of LF on its peptide-based inhibitor. Effects of temperature and incubation period of time on generation of the smaller peptide (short version R9LF-1) by LF as well as its catalytic domain were analyzed. We found that LF degraded R9LF-1 with maximum efficiency in the pH range of 7.0-8.5, which correlates well with the range of LF enzymatic activity with its native substrate. The degradation showed a deviation from normal hyperbolic kinetics but a similarity to the kinetics profile of an enzyme-catalyzed reaction with positive cooperativity. The short version R9LF-1 had decreased inhibitory activity toward LF; surprisingly, BIAcore results suggested a better affinity for its binding to LF. In addition, R9LF-1 was not hydrolyzed by other common proteases, such as chymotrypsin and pepsin, suggesting hydrolysis of the bond between amino acid and hydroxamate groups is unique to LF. This study calls for caution when designing peptide-based LF inhibitors and when interpreting effects of these types of inhibitors.
Collapse
|
39
|
Yang L, Liu W, Mei H, Zhang Y, Yu X, Xu Y, Li H, Huang J, Zhao Z. Synthesis and biological evaluation of pentanedioic acid derivatives as farnesyltransferase inhibitors. MEDCHEMCOMM 2015. [DOI: 10.1039/c4md00498a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The present study reports a series of novel potent farnesyltransferase inhibitors from chemical modifications of the lead compounds, such as compound 13n with an IC50 value of 0.0029 μM.
Collapse
Affiliation(s)
- Liuqing Yang
- Shanghai Key Laboratory of New Drug Design
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Wei Liu
- Shanghai Key Laboratory of New Drug Design
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Hanbing Mei
- Shanghai Key Laboratory of New Drug Design
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Yuan Zhang
- Shanghai Key Laboratory of New Drug Design
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Xiaojuan Yu
- Shanghai Key Laboratory of New Drug Design
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Yufang Xu
- Shanghai Key Laboratory of New Drug Design
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Jin Huang
- Shanghai Key Laboratory of New Drug Design
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Zhenjiang Zhao
- Shanghai Key Laboratory of New Drug Design
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
- China
| |
Collapse
|
40
|
Li MH, Zhang YF, Tian HR, Zheng MH, Yang MY, Fang HL, Xie YZ, Jin JY. Nitro-based selective inhibitors against matrix metalloproteinase-7 over matrix metalloproteinase-1. RSC Adv 2015. [DOI: 10.1039/c5ra22271k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A series of nitro-based dipeptidic compounds were synthesized and evaluated as matrix metalloproteinase (MMP) inhibitors, with improved selectivity for the inhibition of MMP-7 over MMP-1.
Collapse
Affiliation(s)
- Mei-Hua Li
- Department of Chemistry
- College of Science
- Yanbian University
- Yanji City
- China
| | - Yan-Feng Zhang
- Department of Chemistry
- College of Science
- Yanbian University
- Yanji City
- China
| | - Hong-Rui Tian
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules
- Ministry of Education
- Yanbian University
- Yanji City
- China
| | - Ming-Hua Zheng
- Department of Chemistry
- College of Science
- Yanbian University
- Yanji City
- China
| | - Ming-Yang Yang
- Department of Chemistry
- College of Science
- Yanbian University
- Yanji City
- China
| | - Hu-Lin Fang
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules
- Ministry of Education
- Yanbian University
- Yanji City
- China
| | - Yu-Zhong Xie
- Department of Chemistry
- College of Science
- Yanbian University
- Yanji City
- China
| | - Jing-Yi Jin
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules
- Ministry of Education
- Yanbian University
- Yanji City
- China
| |
Collapse
|
41
|
|
42
|
Chaskar P, Zoete V, Röhrig UF. Toward On-The-Fly Quantum Mechanical/Molecular Mechanical (QM/MM) Docking: Development and Benchmark of a Scoring Function. J Chem Inf Model 2014; 54:3137-52. [DOI: 10.1021/ci5004152] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Prasad Chaskar
- Swiss Institute of Bioinformatics, Molecular Modeling Group,
Quartier Sorge, Bâtiment
Génopode, CH-1015 Lausanne, Switzerland
| | - Vincent Zoete
- Swiss Institute of Bioinformatics, Molecular Modeling Group,
Quartier Sorge, Bâtiment
Génopode, CH-1015 Lausanne, Switzerland
| | - Ute F. Röhrig
- Swiss Institute of Bioinformatics, Molecular Modeling Group,
Quartier Sorge, Bâtiment
Génopode, CH-1015 Lausanne, Switzerland
| |
Collapse
|
43
|
Allyl molybdenum(II) and tungsten(II) compounds bearing bidentate and tridentate pyrazolylmethane ligands. Polyhedron 2014. [DOI: 10.1016/j.poly.2014.06.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
44
|
Santos-Martins D, Forli S, Ramos MJ, Olson AJ. AutoDock4(Zn): an improved AutoDock force field for small-molecule docking to zinc metalloproteins. J Chem Inf Model 2014; 54:2371-9. [PMID: 24931227 PMCID: PMC4144784 DOI: 10.1021/ci500209e] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Indexed: 12/14/2022]
Abstract
Zinc is present in a wide variety of proteins and is important in the metabolism of most organisms. Zinc metalloenzymes are therapeutically relevant targets in diseases such as cancer, heart disease, bacterial infection, and Alzheimer's disease. In most cases a drug molecule targeting such enzymes establishes an interaction that coordinates with the zinc ion. Thus, accurate prediction of the interaction of ligands with zinc is an important aspect of computational docking and virtual screening against zinc containing proteins. We have extended the AutoDock force field to include a specialized potential describing the interactions of zinc-coordinating ligands. This potential describes both the energetic and geometric components of the interaction. The new force field, named AutoDock4Zn, was calibrated on a data set of 292 crystal complexes containing zinc. Redocking experiments show that the force field provides significant improvement in performance in both free energy of binding estimation as well as in root-mean-square deviation from the crystal structure pose. The new force field has been implemented in AutoDock without modification to the source code.
Collapse
Affiliation(s)
- Diogo Santos-Martins
- Department of Integrative Structural and Computational
Biology, The Scripps Research Institute, La Jolla, California 92037, United States
- REQUIMTE, Departamento
de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Stefano Forli
- Department of Integrative Structural and Computational
Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Maria João Ramos
- REQUIMTE, Departamento
de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Arthur J. Olson
- Department of Integrative Structural and Computational
Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
45
|
Martin DP, Blachly PG, Marts AR, Woodruff TM, de Oliveira CAF, McCammon JA, Tierney DL, Cohen SM. 'Unconventional' coordination chemistry by metal chelating fragments in a metalloprotein active site. J Am Chem Soc 2014; 136:5400-6. [PMID: 24635441 PMCID: PMC4104174 DOI: 10.1021/ja500616m] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
![]()
The
binding of three closely related chelators: 5-hydroxy-2-methyl-4H-pyran-4-thione (allothiomaltol, ATM), 3-hydroxy-2-methyl-4H-pyran-4-thione (thiomaltol, TM), and 3-hydroxy-4H-pyran-4-thione (thiopyromeconic acid, TPMA) to the active
site of human carbonic anhydrase II (hCAII) has been investigated.
Two of these ligands display a monodentate mode of coordination to
the active site Zn2+ ion in hCAII that is not recapitulated
in model complexes of the enzyme active site. This unprecedented binding
mode in the hCAII-thiomaltol complex has been characterized by both
X-ray crystallography and X-ray spectroscopy. In addition, the steric
restrictions of the active site force the ligands into a ‘flattened’
mode of coordination compared with inorganic model complexes. This
change in geometry has been shown by density functional computations
to significantly decrease the strength of the metal–ligand
binding. Collectively, these data demonstrate that the mode of binding
by small metal-binding groups can be significantly influenced by the
protein active site. Diminishing the strength of the metal–ligand
bond results in unconventional modes of metal coordination not found
in typical coordination compounds or even carefully engineered active
site models, and understanding these effects is critical to the rational
design of inhibitors that target clinically relevant metalloproteins.
Collapse
Affiliation(s)
- David P Martin
- Department of Chemistry and Biochemistry, §Pharmacology, and ∥Howard Hughes Medical Institute, University of California, San Diego , La Jolla, California 92093, United States
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Tauro M, Laghezza A, Loiodice F, Agamennone M, Campestre C, Tortorella P. Arylamino methylene bisphosphonate derivatives as bone seeking matrix metalloproteinase inhibitors. Bioorg Med Chem 2013; 21:6456-65. [PMID: 24071448 DOI: 10.1016/j.bmc.2013.08.054] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 07/29/2013] [Accepted: 08/23/2013] [Indexed: 11/24/2022]
Abstract
The complexity of matrix metalloproteinase inhibitors (MMPIs) design derives from the difficulty in carefully addressing their inhibitory activity towards the MMP isoforms involved in many pathological conditions. In particular, specific metalloproteinases, such as MMP-2 and MMP-9, are key regulators of the 'vicious cycle' occurring between tumor metastases growth and bone remodeling. In an attempt to devise new approaches to selective inhibitor derivatives, we describe novel bisphosphonate bone seeking MMP inhibitors (BP-MMPIs), capable to be selectively targeted and to overcome undesired side effects of broad spectrum MMPIs. In vitro activity (IC50 values) for each inhibitor was determined against MMP-2, -8, -9 and -14, because of their relevant role in skeletal development and renewal. The results show that BP-MMPIs reached IC50 values of enzymatic inhibition in the low micromolar range. Computational studies, used to rationalize some trends in the observed inhibitory profiles, suggest a possible differential binding mode in MMP-2 that explains the selective inhibition of this isoform. In addition, survival assay was conducted on J774 cell line, a well known model system used to evaluate the structure-activity relationship of BPs for inhibiting bone resorption. The resulting data, confirming the specific activity of BP-MMPIs, and their additional proved propensity to bind hydroxyapatite powder in vitro, suggest a potential use of BP-MMPIs in skeletal malignancies.
Collapse
Affiliation(s)
- Marilena Tauro
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi 'Aldo Moro' di Bari, Via Orabona 4, 70126 Bari, Italy
| | | | | | | | | | | |
Collapse
|
47
|
Kurbanov EK, Leverentz HR, Truhlar DG, Amin EA. Analysis of the Errors in the Electrostatically Embedded Many-Body Expansion of the Energy and the Correlation Energy for Zn and Cd Coordination Complexes with Five and Six Ligands and Use of the Analysis to Develop a Generally Successful Fragmentation Strategy. J Chem Theory Comput 2013; 9:2617-2628. [PMID: 23814509 DOI: 10.1021/ct4001872] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the present paper, we apply the electrostatically embedded many-body expansion of the correlation energy (EE-MB-CE) to the calculation of zinc-ligand and cadmium-ligand bond dissociation energies, and we analyze the errors due to various fragmentation schemes in a variety of neutral, positively charged, and negatively charged Zn2+ and Cd2+ coordination complexes. As a result of the analysis, we are able to present a new, simple, and unambiguous fragmentation strategy. Following this strategy, we show that both methods perform well for zinc-ligand and cadmium-ligand bond dissociation energies for all systems studied in the paper, including a model of the catalytic site of the zinc-bearing anthrax toxin lethal factor (LF), which has garnered substantial attention as a target for drug development. To draw general conclusions we consider ten pentacoordinate and hexacoordinate zinc and cadmium containing coordination complexes, each with 10 or 15 different fragmentation schemes. By analyzing errors, we developed a prescription for the optimal fragmentation strategy. With this scheme, and using MP2 correlation energies as a test, we find that the electrostatically embedded three-body expansion of the correlation energy (EE-3B-CE) method is able to reproduce all 53 conventionally calculated bond energies with an average absolute error of only 0.59 kcal/mol. The paper also presents EE-MB-CE calculations using the CCSD(T) level of theory on an LF model system. With CCSD(T), EE-3B-CE has an average error of 0.30 kcal/mol.
Collapse
Affiliation(s)
- Elbek K Kurbanov
- Department of Medicinal Chemistry, Department of Chemistry, and Supercomputing Institute, University of Minnesota, Minneapolis, MN 55414
| | | | | | | |
Collapse
|
48
|
Patil V, Sodji QH, Kornacki JR, Mrksich M, Oyelere AK. 3-Hydroxypyridin-2-thione as novel zinc binding group for selective histone deacetylase inhibition. J Med Chem 2013; 56:3492-506. [PMID: 23547652 DOI: 10.1021/jm301769u] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Small molecules bearing hydroxamic acid as the zinc binding group (ZBG) have been the most effective histone deacetylase inhibitors (HDACi) to date. However, concerns about the pharmacokinetic liabilities of the hydroxamic acid moiety have stimulated research efforts aimed at finding alternative nonhydroxamate ZBGs. We have identified 3-hydroxypyridin-2-thione (3-HPT) as a novel ZBG that is compatible with HDAC inhibition. 3-HPT inhibits HDAC 6 and HDAC 8 with an IC50 of 681 and 3675 nM, respectively. Remarkably, 3-HPT gives no inhibition of HDAC 1. Subsequent optimization led to several novel 3HPT-based HDACi that are selective for HDAC 6 and HDAC 8. Furthermore, a subset of these inhibitors induces apoptosis in various cancer cell lines.
Collapse
Affiliation(s)
- Vishal Patil
- School of Chemistry and Biochemistry, Georgia Institute of Technology , Atlanta, Georgia 30332-0400, United States
| | | | | | | | | |
Collapse
|
49
|
Amino Acid derivatives as new zinc binding groups for the design of selective matrix metalloproteinase inhibitors. JOURNAL OF AMINO ACIDS 2013; 2013:178381. [PMID: 23555050 PMCID: PMC3608355 DOI: 10.1155/2013/178381] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 01/28/2013] [Indexed: 11/18/2022]
Abstract
A number of matrix metalloproteinases (MMPs) are important medicinal targets for conditions ranging from rheumatoid arthritis to cardiomyopathy, periodontal disease, liver cirrhosis, multiple sclerosis, and cancer invasion and metastasis, where they showed to have a dual role, inhibiting or promoting important processes involved in the pathology. MMPs contain a zinc (II) ion in the protein active site. Small-molecule inhibitors of these metalloproteins are designed to bind directly to the active site metal ions. In an effort to devise new approaches to selective inhibitors, in this paper, we describe the synthesis and preliminary biological evaluation of amino acid derivatives as new zinc binding groups (ZBGs). The incorporation of selected metal-binding functions in more complex biphenyl sulfonamide moieties allowed the identification of one compound able to interact selectively with different MMP enzymatic isoforms.
Collapse
|
50
|
Schmitt C, Voegelin M, Marin A, Schmitt M, Schegg F, Hénon P, Guenot D, Tarnus C. Selective aminopeptidase-N (CD13) inhibitors with relevance to cancer chemotherapy. Bioorg Med Chem 2013; 21:2135-44. [PMID: 23428964 DOI: 10.1016/j.bmc.2012.12.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 12/15/2012] [Accepted: 12/21/2012] [Indexed: 11/29/2022]
Abstract
Aminopeptidase-N (APN/CD13) is highly expressed on the surface of numerous types of cancer cells and particularly on the endothelial cells of neoangiogenic vessels during tumourigenesis. This metallo-aminopeptidase has been identified as a potential target for cancer chemotherapy. In this work, we evaluated the efficacy of a novel series of benzosuberone analogues, which were previously reported to be highly potent, selective APN inhibitors with Ki values in the micromolar to sub-nanomolar range. Endothelial cell morphogenesis as well as cell motility were inhibited in vitro in a dose-dependent manner at concentrations that correlated with the potency of the compounds, thus confirming the key role of APN in these established models of angiogenesis. We report toxicity studies in mice showing that these compounds are well tolerated. We report the effects of the compounds, used alone or in combination with rapamycin, on the growth of a select panel of tumours that were subcutaneously xenografted onto Swiss nude mice. Our data indicate that the in vivo efficacy of these new APN inhibitors during the initial phase of tumour growth can be ascribed to their anti-angiogenic activities. However, we also provide evidence that these compounds are effective against established solid tumours. For colonic tumours, the anti-tumour effect depends on the level of APN expression in epithelial cells, and APN expression is associated with down-regulation of the transcription factor HIF-1α. These effects seem to be distinct from those of rapamycin. Our finding that the anti-tumour effect of the inhibitors in the colon requires APN expression strongly suggests that APN plays a crucial function in tumour cells that is distinct from its known role in neovascularisation.
Collapse
Affiliation(s)
- Céline Schmitt
- Université de Haute-Alsace, Ecole Nationale Supérieure de Chimie de Mulhouse, Laboratoire de Chimie Organique et Bioorganique EA4566, 3 rue Alfred Werner, 68093 Mulhouse Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|