1
|
Merdzo I, Travagin F, Boccalon M, Alessio E, Lattuada L, Baranyai Z, Giovenzana GB. TRASUTA: The Effect of the Structural Rigidity of a Mesocyclic AAZTA-like Chelating Agent on the Thermodynamic, Kinetic, and Structural Properties of Some Divalent Metal and Ga 3+ Complexes. Inorg Chem 2024; 63:12525-12537. [PMID: 38905138 DOI: 10.1021/acs.inorgchem.4c01413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Mesocyclic chelating agents such as AAZTA and its derivatives have been recently reported to overcome the relatively low thermodynamic stability of metal complexes of acyclic chelating agents and the slow complexation kinetics of macrocyclic chelating agents. This work reports the preparation of a spirobicyclic hexadentate AAZTA-like chelating agent (TRASUTA) and the investigation of the thermodynamic, kinetic, and structural properties of the corresponding chelates with the PET-relevant Ga3+ and selected metal ions. A combination of analytical techniques allowed identification of a coordination isomerization process, involving the coordinating side arms and the inversion of a nitrogen atom and leading to lower thermodynamic and kinetic inertness with respect to mononuclear mesocyclic analogues. The bicyclic system of TRASUTA retains significant dynamics despite the conformational constraint imposed by the spiro-fusion, resulting in a lower stability of the corresponding metal chelates.
Collapse
Affiliation(s)
- Ileana Merdzo
- Bracco Imaging Spa, AREA Science Park, ed. Q─S.S. 14 Km 163,5, Basovizza 34149, (TS), Italy
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, Trieste 34127, (TS), Italy
| | - Fabio Travagin
- Dipartimento di Scienze del Farmaco, Università Degli Studi Del Piemonte Orientale, Largo Donegani 2/3, Novara 28100, (NO), Italy
| | - Mariangela Boccalon
- Bracco Imaging Spa, AREA Science Park, ed. Q─S.S. 14 Km 163,5, Basovizza 34149, (TS), Italy
| | - Enzo Alessio
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, Trieste 34127, (TS), Italy
| | - Luciano Lattuada
- Bracco Imaging Spa, Bracco Research Centre, Via Ribes 5, Colleretto Giacosa 10010, (TO), Italy
| | - Zsolt Baranyai
- Bracco Imaging Spa, AREA Science Park, ed. Q─S.S. 14 Km 163,5, Basovizza 34149, (TS), Italy
| | - Giovanni B Giovenzana
- Dipartimento di Scienze del Farmaco, Università Degli Studi Del Piemonte Orientale, Largo Donegani 2/3, Novara 28100, (NO), Italy
| |
Collapse
|
2
|
Wang R, Jin W, Luo Y, Hong H, Zhao R, Li L, Yan L, Qiao J, Ploessl K, Zhu L, Kung HF. Novel [ 68Ga/ 177Lu]Ga/Lu-AZ-093 as PSMA-Targeting Agent for Diagnosis and Radiotherapy. Mol Pharm 2024; 21:3256-3267. [PMID: 38856975 DOI: 10.1021/acs.molpharmaceut.4c00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Prostate-specific membrane antigen (PSMA) overexpressed in prostate cancer cells can serve as a target for imaging and radioligand therapy (RLT). Previously, [68Ga]Ga-P16-093, containing a Ga(III) chelator, N,N'-bis[2-hydroxy-5-(carboxyethyl)benzyl]ethylenediamine-N,N'-diacetic acid (HBED-CC), displayed excellent PSMA-targeting properties and showed a high tumor uptake and retention useful for diagnosis in prostate cancer patients. Recently, [177Lu]Lu-PSMA-617 has been approved by the U.S. food and drug administration (FDA) for the treatment of prostate cancer patients. Derivatives of PSMA-093 using AAZTA (6-amino-6-methylperhydro-1,4-diazepinetetraacetic acid), as the chelator, were designed as alternative agents forming complexes with both diagnostic and therapeutic radiometals, such as gallium-68 (log K = 22.18) or lutetium-177 (log K = 21.85). The aim of this study is to evaluate AAZTA-Gly-O-(methylcarboxy)-Tyr-Phe-Lys-NH-CO-NH-Glu (designated as AZ-093, 1) leading to a gallium-68/lutetium-177 theranostic pair as potential PSMA targeting agents. Synthesis of the desired precursor, AZ-093, 1, was effectively accomplished. Labeling with either [68Ga]GaCl3 or [177Lu]LuCl3 in a sodium acetate buffer solution (pH 4-5) at 50 °C in 5 to 15 min produced either [68Ga]Ga-1 or [177Lu]Lu-1 with high yields and excellent radiochemical purities. Results of in vitro binding studies, cell uptake, and retention (using PSMA-positive prostate carcinoma cells line, 22Rv1-FOLH1-oe) were comparable to that of [68Ga]Ga-P16-093 and [177Lu]Lu-PSMA-617, respectively. Specific cellular uptake was determined with or without the competitive blocking agent (2 μM of "cold" PSMA-11). Cellular binding and internalization showed a time-dependent increase over 2 h at 37 °C in the PSMA-positive cells. The cell uptakes were completely blocked by the "cold" PSMA-11 suggesting that they are competing for the same PSMA binding sites. In the mouse model with implanted PSMA-positive tumor cells, both [68Ga]Ga-1 and [177Lu]Lu-1 displayed excellent uptake and retention in the tumor. Results indicate that [68Ga]Ga/[177Lu]Lu-1 (68Ga]Ga/[177Lu]Lu-AZ-093) is potentially useful as PSMA-targeting agent for both diagnosis and radiotherapy of prostate cancer.
Collapse
Affiliation(s)
- Ran Wang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Department of Nuclear Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Wenbin Jin
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518000, China
| | - Yang Luo
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Haiyan Hong
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Ruiyue Zhao
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Linlin Li
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Li Yan
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Jinping Qiao
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Karl Ploessl
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Five Eleven Pharma Inc., Philadelphia, Pennsylvania 19104, United States
| | - Lin Zhu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Hank F Kung
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Five Eleven Pharma Inc., Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
3
|
Pierri G, Schettini R. Advances in MRI: Peptide and peptidomimetic-based contrast agents. J Pept Sci 2024; 30:e3544. [PMID: 37726947 DOI: 10.1002/psc.3544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/21/2023]
Abstract
Magnetic resonance imaging (MRI) is a common medical imaging technique that provides three-dimensional body images. MRI contrast agents improve image contrast by raising the rate of water proton relaxation in specific tissues. Peptides and peptidomimetics act as scaffolds for MRI imaging agents because of their increased size and offer the possibility to engine a higher hydration value within the design. The design of a new Gd-based contrast agent must take into account high stability constants to avoid free Gd(III), with the subsequent nephrotoxicity, and high relaxivity values. This review analyzes various synthetic approaches, reports studies of relaxometric parameters, and focuses on the description and application of Gd(III)-chelates based on peptide and peptidomimetic scaffolds. In addition, the X-ray molecular structures of three DOTA complexes will be reported to emphasize the necessity of using the X-ray diffraction analysis to identify the coordination sphere of the metals and the mechanism of action of the compounds.
Collapse
Affiliation(s)
- Giovanni Pierri
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Salerno, Italy
| | - Rosaria Schettini
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Salerno, Italy
| |
Collapse
|
4
|
Maschio R, Buonsanti F, Crivellin F, Ferretti F, Lattuada L, Maisano F, Orio L, Pizzuto L, Campanella R, Clouet A, Cavallotti C, Giovenzana GB. Improved synthesis of DA364, an NIR fluorescence RGD probe targeting α vβ 3 integrin. Org Biomol Chem 2023; 21:8584-8592. [PMID: 37855098 DOI: 10.1039/d3ob01206a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Optical imaging (OI) is gaining increasing attention in medicine as a non-invasive diagnostic imaging technology and as a useful tool for image-guided surgery. OI exploits the light emitted in the near-infrared region by fluorescent molecules able to penetrate living tissues. Cyanines are an important class of fluorescent molecules and by their conjugation to peptides it is possible to achieve optical imaging of tumours by selective targeting. We report here the improvements obtained in the synthesis of DA364, a small fluorescent probe (1.5 kDa) prepared by conjugation of pentamethine cyanine Cy5.5 to an RGD peptidomimetic, which can target tumour cells overexpressing integrin αvβ3 receptors.
Collapse
Affiliation(s)
- Rachele Maschio
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2/3, 28100 Novara, Italy.
| | - Federica Buonsanti
- Bracco Imaging Spa, Bracco Research Centre, Via Ribes 5, 10010 Colleretto Giacosa, TO, Italy.
| | - Federico Crivellin
- Bracco Imaging Spa, Bracco Research Centre, Via Ribes 5, 10010 Colleretto Giacosa, TO, Italy.
| | - Fulvio Ferretti
- Bracco Imaging Spa, Bracco Research Centre, Via Ribes 5, 10010 Colleretto Giacosa, TO, Italy.
| | - Luciano Lattuada
- Bracco Imaging Spa, Bracco Research Centre, Via Ribes 5, 10010 Colleretto Giacosa, TO, Italy.
| | - Federico Maisano
- Bracco Imaging Spa, Bracco Research Centre, Via Ribes 5, 10010 Colleretto Giacosa, TO, Italy.
| | - Laura Orio
- Bracco Imaging Spa, Bracco Research Centre, Via Ribes 5, 10010 Colleretto Giacosa, TO, Italy.
| | - Lorena Pizzuto
- Bracco Imaging Spa, Bracco Research Centre, Via Ribes 5, 10010 Colleretto Giacosa, TO, Italy.
| | - Raphael Campanella
- Bracco Suisse SA, Route de la Galaise 31, 1228 Plan le Ouates, Switzerland
| | - Anthony Clouet
- Bracco Suisse SA, Route de la Galaise 31, 1228 Plan le Ouates, Switzerland
| | | | - Giovanni B Giovenzana
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2/3, 28100 Novara, Italy.
- CAGE Chemicals Srl, Via Bovio 6, 28100 Novara, Italy
| |
Collapse
|
5
|
Rossino G, Marchese E, Galli G, Verde F, Finizio M, Serra M, Linciano P, Collina S. Peptides as Therapeutic Agents: Challenges and Opportunities in the Green Transition Era. Molecules 2023; 28:7165. [PMID: 37894644 PMCID: PMC10609221 DOI: 10.3390/molecules28207165] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/05/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Peptides are at the cutting edge of contemporary research for new potent, selective, and safe therapeutical agents. Their rise has reshaped the pharmaceutical landscape, providing solutions to challenges that traditional small molecules often cannot address. A wide variety of natural and modified peptides have been obtained and studied, and many others are advancing in clinical trials, covering multiple therapeutic areas. As the demand for peptide-based therapies grows, so does the need for sustainable and environmentally friendly synthesis methods. Traditional peptide synthesis, while effective, often involves environmentally draining processes, generating significant waste and consuming vast resources. The integration of green chemistry offers sustainable alternatives, prioritizing eco-friendly processes, waste reduction, and energy conservation. This review delves into the transformative potential of applying green chemistry principles to peptide synthesis by discussing relevant examples of the application of such approaches to the production of active pharmaceutical ingredients (APIs) with a peptide structure and how these efforts are critical for an effective green transition era in the pharmaceutical field.
Collapse
Affiliation(s)
- Giacomo Rossino
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (G.R.); (E.M.); (M.S.); (P.L.)
| | - Emanuela Marchese
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (G.R.); (E.M.); (M.S.); (P.L.)
- Department of Health Sciences, University “Magna Graecia”, Viale Europa, 88100 Catanzaro, Italy
| | - Giovanni Galli
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (G.R.); (E.M.); (M.S.); (P.L.)
| | - Francesca Verde
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (G.R.); (E.M.); (M.S.); (P.L.)
| | - Matteo Finizio
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (G.R.); (E.M.); (M.S.); (P.L.)
| | - Massimo Serra
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (G.R.); (E.M.); (M.S.); (P.L.)
| | - Pasquale Linciano
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (G.R.); (E.M.); (M.S.); (P.L.)
| | - Simona Collina
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (G.R.); (E.M.); (M.S.); (P.L.)
| |
Collapse
|
6
|
Serra M, Rubes D, Schinelli S, Paolillo M. Small Molecules against Metastatic Tumors: Concrete Perspectives and Shattered Dreams. Cancers (Basel) 2023; 15:4173. [PMID: 37627201 PMCID: PMC10453213 DOI: 10.3390/cancers15164173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/29/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Metastasis is the main cause of anti-cancer therapy failure, leading to unfavorable prognosis for patients. The true challenge to increase cancer patient life expectancy by making cancer a chronic disease with periodic but manageable relapses relies on the development of efficient therapeutic strategies specifically directed against key targets in the metastatic process. Traditional chemotherapy with classical alkylating agents, microtubule inhibitors, and antimetabolites has demonstrated its limited efficacy against metastatic cells due to their capacity to select chemo-resistant cell populations that undergo epithelial-to-mesenchymal transition (EMT), thus promoting the colonization of distant sites that, in turn, sustain the initial metastatic process. This scenario has prompted efforts aimed at discovering a wide variety of small molecules and biologics as potential anti-metastatic drugs directed against more specific targets known to be involved in the various stages of metastasis. In this short review, we give an overview of the most recent advances related to important families of antimetastatic small molecules: intracellular tyrosine kinase inhibitors, cyclin-dependent kinase inhibitors, KRAS inhibitors, and integrin antagonists. Although the majority of these small molecules are not yet approved and not available in the drug market, any information related to their stage of development could represent a precious and valuable tool to identify new targets in the endless fight against metastasis.
Collapse
Affiliation(s)
- Massimo Serra
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (D.R.); (S.S.); (M.P.)
| | | | | | | |
Collapse
|
7
|
Failla M, Floresta G, Abbate V. Peptide-based positron emission tomography probes: current strategies for synthesis and radiolabelling. RSC Med Chem 2023; 14:592-623. [PMID: 37122545 PMCID: PMC10131587 DOI: 10.1039/d2md00397j] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
In medical imaging, techniques such as magnetic resonance imaging, contrast-enhanced computerized tomography, and positron emission tomography (PET) are extensively available and routinely used for disease diagnosis and treatment. Peptide-based targeting PET probes are usually small peptides with high affinity and specificity to specific cellular and tissue targets opportunely engineered for acting as PET probes. For instance, either the radioisotope (e.g., 18F, 11C) can be covalently linked to the peptide-probe or another ligand that strongly complexes the radioisotope (e.g., 64Cu, 68Ga) through multiple coordinative bonds can be chemically conjugated to the peptide delivery moiety. The main advantages of these probes are that they are cheaper than classical antibody-based PET tracers and can be efficiently chemically modified to be radiolabelled with virtually any radionuclide making them very attractive for clinical use. The goal of this review is to report and summarize recent technologies in peptide PET-based molecular probes synthesis and radiolabelling with the most used radioisotopes in 2022.
Collapse
Affiliation(s)
- Mariacristina Failla
- Department of Drug Science and Technology, University of Turin Via P. Giuria 9 10125 Turin Italy
| | - Giuseppe Floresta
- King's College London, Institute of Pharmaceutical Science Franklin Wilkins Building London SE1 9NH UK
- Department of Drug and Health Sciences, University of Catania Catania Italy
| | - Vincenzo Abbate
- King's College London, Institute of Pharmaceutical Science Franklin Wilkins Building London SE1 9NH UK
| |
Collapse
|
8
|
De Rosa L, Hawala I, Di Stasi R, Stefania R, Capozza M, Nava D, D’Andrea LD. A Chemical Strategy for the Preparation of Multimodified Peptide Imaging Probes. J Org Chem 2023; 88:4546-4553. [PMID: 36988421 PMCID: PMC10088022 DOI: 10.1021/acs.joc.3c00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Indexed: 03/30/2023]
Abstract
Multimodality probes appear of great interest for innovative imaging applications in disease diagnosis. Herein, we present a chemical strategy enabling site-specific double-modification and cyclization of a peptide probe exploiting native chemical ligation (NCL) and thiol-maleimide addition. The synthetic strategy is straightforward and of general applicability for the development of double-labeled peptide multimodality probes.
Collapse
Affiliation(s)
- Lucia De Rosa
- Istituto
di Biostrutture e Bioimmagini, Consiglio
Nazionale Delle Ricerche, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Ivan Hawala
- Centro
di Imaging Molecolare, Dipartimento di Biotecnologie Molecolari e
Scienze per La Salute, Università
di Torino, via Nizza
52, 10126 Torino, Italy
| | - Rossella Di Stasi
- Istituto
di Biostrutture e Bioimmagini, Consiglio
Nazionale Delle Ricerche, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Rachele Stefania
- Centro
di Imaging Molecolare, Dipartimento di Biotecnologie Molecolari e
Scienze per La Salute, Università
di Torino, via Nizza
52, 10126 Torino, Italy
| | - Martina Capozza
- Centro
di Imaging Molecolare, Dipartimento di Biotecnologie Molecolari e
Scienze per La Salute, Università
di Torino, via Nizza
52, 10126 Torino, Italy
| | - Donatella Nava
- Dipartimento
di Scienze Farmaceutiche, Università
di Milano, Via Venezian
21, 20133 Milano, Italy
| | - Luca Domenico D’Andrea
- Istituto
di Scienze e Tecnologie Chimiche “G. Natta”, Consiglio Nazionale Delle Ricerche, Via M. Bianco 9, 20131 Milano, Italy
| |
Collapse
|
9
|
[111In]In/[177Lu]Lu-AAZTA5-LM4 SST2R-Antagonists in Cancer Theranostics: From Preclinical Testing to First Patient Results. Pharmaceutics 2023; 15:pharmaceutics15030776. [PMID: 36986637 PMCID: PMC10053881 DOI: 10.3390/pharmaceutics15030776] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Aiming to expand the application of the SST2R-antagonist LM4 (DPhe-c[DCys-4Pal-DAph(Cbm)-Lys-Thr-Cys]-DTyr-NH2) beyond [68Ga]Ga-DATA5m-LM4 PET/CT (DATA5m, (6-pentanoic acid)-6-(amino)methy-1,4-diazepinetriacetate), we now introduce AAZTA5-LM4 (AAZTA5, 1,4-bis(carboxymethyl)-6-[bis(carboxymethyl)]amino-6-[pentanoic-acid]perhydro-1,4-diazepine), allowing for the convenient coordination of trivalent radiometals of clinical interest, such as In-111 (for SPECT/CT) or Lu-177 (for radionuclide therapy). After labeling, the preclinical profiles of [111In]In-AAZTA5-LM4 and [177Lu]Lu-AAZTA5-LM4 were compared in HEK293-SST2R cells and double HEK293-SST2R/wtHEK293 tumor-bearing mice using [111In]In-DOTA-LM3 and [177Lu]Lu-DOTA-LM3 as references. The biodistribution of [177Lu]Lu-AAZTA5-LM4 was additionally studied for the first time in a NET patient. Both [111In]In-AAZTA5-LM4 and [177Lu]Lu-AAZTA5-LM4 displayed high and selective targeting of the HEK293-SST2R tumors in mice and fast background clearance via the kidneys and the urinary system. This pattern was reproduced for [177Lu]Lu-AAZTA5-LM4 in the patient according to SPECT/CT results in a monitoring time span of 4–72 h pi. In view of the above, we may conclude that [177Lu]Lu-AAZTA5-LM4 shows promise as a therapeutic radiopharmaceutical candidate for SST2R-expressing human NETs, based on previous [68Ga]Ga-DATA5m-LM4 PET/CT, but further studies are needed to fully assess its clinical value. Furthermore, [111In]In-AAZTA5-LM4 SPECT/CT may represent a legitimate alternative diagnostic option in cases where PET/CT is not available.
Collapse
|
10
|
Horváth D, Vágner A, Szikra D, Trencsényi G, Demitri N, Guidolin N, Maiocchi A, Ghiani S, Travagin F, Giovenzana GB, Baranyai Z. Boosting Bismuth(III) Complexation for Targeted α-Therapy (TAT) Applications with the Mesocyclic Chelating Agent AAZTA. Angew Chem Int Ed Engl 2022; 61:e202207120. [PMID: 36073561 PMCID: PMC9828418 DOI: 10.1002/anie.202207120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Indexed: 01/12/2023]
Abstract
Targeted α therapy (TAT) is a promising tool in the therapy of cancer. The radionuclide 213 BiIII shows favourable physical properties for this application, but the fast and stable chelation of this metal ion remains challenging. Herein, we demonstrate that the mesocyclic chelator AAZTA quickly coordinates BiIII at room temperature, leading to a robust complex. A comprehensive study of the structural, thermodynamic and kinetic properties of [Bi(AAZTA)]- is reported, along with bifunctional [Bi(AAZTA-C4-COO- )]2- and the targeted agent [Bi(AAZTA-C4-TATE)]- , which incorporates the SSR agonist Tyr3 -octreotate. An unexpected increase in the stability and kinetic inertness of the metal chelate was observed for the bifunctional derivative and was maintained for the peptide conjugate. A cyclotron-produced 205/206 Bi mixture was used as a model of 213 Bi in labelling, stability, and biodistribution experiments, allowing the efficiency of [213 Bi(AAZTA-C4-TATE)]- to be estimated. High accumulation in AR42J tumours and reduced kidney uptake were observed with respect to the macrocyclic chelate [213 Bi(DOTA-TATE)]- .
Collapse
Affiliation(s)
- Dávid Horváth
- Department of Physical ChemistryUniversity of DebrecenEgyetem tér 14010DebrecenHungary
| | | | - Dezsö Szikra
- Scanomed Ltd.Nagyerdei Krt. 984032DebrecenHungary,Medical Imaging ClinicUniversity of DebrecenNagyerdei krt. 984032DebrecenHungary
| | - György Trencsényi
- Scanomed Ltd.Nagyerdei Krt. 984032DebrecenHungary,Medical Imaging ClinicUniversity of DebrecenNagyerdei krt. 984032DebrecenHungary
| | - Nicola Demitri
- Elettra-Sincrotrone TriesteS.S. 14 Km 163.5 in Area Science Park34149Basovizza (TS)Italy
| | - Nicol Guidolin
- Bracco Imaging SpaBracco Research CentreVia Ribes 510010Colleretto Giacosa (TO)Italy
| | - Alessandro Maiocchi
- Bracco Imaging SpaBracco Research CentreVia Ribes 510010Colleretto Giacosa (TO)Italy
| | - Simona Ghiani
- Bracco Imaging SpaBracco Research CentreVia Ribes 510010Colleretto Giacosa (TO)Italy
| | - Fabio Travagin
- Dipartimento di Scienze del FarmacoUniversità del Piemonte OrientaleLargo Donegani 2/328100NovaraItaly
| | - Giovanni B. Giovenzana
- Dipartimento di Scienze del FarmacoUniversità del Piemonte OrientaleLargo Donegani 2/328100NovaraItaly
| | - Zsolt Baranyai
- Bracco Imaging SpaBracco Research CentreVia Ribes 510010Colleretto Giacosa (TO)Italy
| |
Collapse
|
11
|
Horváth D, Vágner A, Szikra D, Trencsényi G, Demitri N, Guidolin N, Maiocchi A, Ghiani S, Travagin F, Giovenzana GB, Baranyai Z. Boosting Bismuth(III) Complexation for Targeted α‐Therapy (TAT) Applications with the Mesocyclic Chelating Agent AAZTA. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Dávid Horváth
- University of Debrecen Department of Physical Chemistry HUNGARY
| | | | | | | | - Nicola Demitri
- Elettra Sincrotrone Trieste SCpA Elettra Sincrotrone Trieste SCpA ITALY
| | | | | | | | - Fabio Travagin
- Universita degli Studi del Piemonte Orientale Amedeo Avogadro Dipartimento di Scienze del Farmaco ITALY
| | - Giovanni Battista Giovenzana
- Università degli Studi del Piemonte Orientale Amedeo Avogadro Facoltà di Farmacia: Universita degli Studi del Piemonte Orientale Amedeo Avogadro Dipartimento di Scienze del Farmaco Dipartimento di Scienze del Farmaco Largo Donegani 2/3Via Bovio 6 28100 Novara ITALY
| | | |
Collapse
|
12
|
Lalli D, Hawala I, Ricci M, Carniato F, D'Andrea LD, Tei L, Botta M. Derivatives of GdAAZTA Conjugated to Amino Acids: A Multinuclear and Multifrequency NMR Study. Inorg Chem 2022; 61:13199-13209. [PMID: 35944034 PMCID: PMC9400103 DOI: 10.1021/acs.inorgchem.2c02110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The GdAAZTA (AAZTA = 6-amino-6-methylperhydro-1,4-diazepinetetraacetic
acid) complex represents a platform of great interest for the design
of innovative MRI probes due to its remarkable magnetic properties,
thermodynamic stability, kinetic inertness, and high chemical versatility.
Here, we detail the synthesis and characterization of new derivatives
functionalized with four amino acids with different molecular weights
and charges: l-serine, l-cysteine, l-lysine,
and l-glutamic acid. The main reason for conjugating these
moieties to the ligand AAZTA is the in-depth study of the chemical
properties in aqueous solution of model compounds that mimic complex
structures based on polypeptide fragments used in molecular imaging
applications. The analysis of the 1H NMR spectra of the
corresponding Eu(III)-complexes indicates the presence of a single
isomeric species in solution, and measurements of the luminescence
lifetimes show that functionalization with amino acid residues maintains
the hydration state of the parent complex unaltered (q = 2). The relaxometric properties of the Gd(III) chelates were analyzed
by multinuclear and multifrequency NMR techniques to evaluate the
molecular parameters that determine their performance as MRI probes.
The relaxivity values of all of the novel chelates are higher than
that of GdAAZTA over the entire range of applied magnetic fields because
of the slower rotational dynamics. Data obtained in reconstituted
human serum indicate the occurrence of weak interactions with the
proteins, which result in larger relaxivity values at the typical
imaging fields. Finally, all of the new complexes are characterized
by excellent chemical stability in biological matrices over time,
by the absence of transmetallation processes, or the formation of
ternary complexes with oxyanions of biological relevance. In particular,
the kinetic stability of the new complexes, measured by monitoring
the release of Gd3+ in the presence of a large excess of
Zn2+, is ca. two orders of magnitude higher than that of
the clinical MRI contrast agent GdDTPA. Novel
GdAAZTA derivatives conjugated to four amino acids
were synthesized and characterized through a multi-technique approach.
The complexes maintained the favorable thermodynamic and kinetic properties
of the parent compound and showed higher relaxivity values in clinical
fields. Therefore, they represent a useful model of more complex bio-conjugated
structures used in molecular imaging applications.
Collapse
Affiliation(s)
- Daniela Lalli
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, Italy.,Magnetic Resonance Platform (PRISMA-UPO), Università del Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, Italy
| | - Ivan Hawala
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, Fourth Floor Lambeth Wing, St Thomas' Hospital London, SE1 7EH, UK
| | - Marco Ricci
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, Italy
| | - Fabio Carniato
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, Italy.,Magnetic Resonance Platform (PRISMA-UPO), Università del Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, Italy
| | - Luca D D'Andrea
- Istituto di Scienze e Tecnologie Chimiche "G. Natta", Consiglio Nazionale delle Ricerche, Via M. Bianco 9, 20131 Milano, Italy
| | - Lorenzo Tei
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, Italy
| | - Mauro Botta
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, Italy.,Magnetic Resonance Platform (PRISMA-UPO), Università del Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, Italy
| |
Collapse
|
13
|
Fersing C, Masurier N, Rubira L, Deshayes E, Lisowski V. AAZTA-Derived Chelators for the Design of Innovative Radiopharmaceuticals with Theranostic Applications. Pharmaceuticals (Basel) 2022; 15:234. [PMID: 35215346 PMCID: PMC8879111 DOI: 10.3390/ph15020234] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023] Open
Abstract
With the development of 68Ga and 177Lu radiochemistry, theranostic approaches in modern nuclear medicine enabling patient-centered personalized medicine applications have been growing in the last decade. In conjunction with the search for new relevant molecular targets, the design of innovative chelating agents to easily form stable complexes with various radiometals for theranostic applications has gained evident momentum. Initially conceived for magnetic resonance imaging applications, the chelating agent AAZTA features a mesocyclic seven-membered diazepane ring, conferring some of the properties of both acyclic and macrocyclic chelating agents. Described in the early 2000s, AAZTA and its derivatives exhibited interesting properties once complexed with metals and radiometals, combining a fast kinetic of formation with a slow kinetic of dissociation. Importantly, the extremely short coordination reaction times allowed by AAZTA derivatives were particularly suitable for short half-life radioelements (i.e., 68Ga). In view of these particular characteristics, the scope of this review is to provide a survey on the design, synthesis, and applications in the nuclear medicine/radiopharmacy field of AAZTA-derived chelators.
Collapse
Affiliation(s)
- Cyril Fersing
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34298 Montpellier, France; (L.R.); (E.D.)
- IBMM, University Montpellier, CNRS, ENSCM, 34293 Montpellier, France; (N.M.); (V.L.)
| | - Nicolas Masurier
- IBMM, University Montpellier, CNRS, ENSCM, 34293 Montpellier, France; (N.M.); (V.L.)
| | - Léa Rubira
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34298 Montpellier, France; (L.R.); (E.D.)
| | - Emmanuel Deshayes
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34298 Montpellier, France; (L.R.); (E.D.)
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Institut Régional du Cancer de Montpellier (ICM), University of Montpellier, 34298 Montpellier, France
| | - Vincent Lisowski
- IBMM, University Montpellier, CNRS, ENSCM, 34293 Montpellier, France; (N.M.); (V.L.)
- Department of Pharmacy, Lapeyronie Hospital, CHU Montpellier, 191 Av. du Doyen Gaston Giraud, 34295 Montpellier, France
| |
Collapse
|
14
|
A Semi Rigid Novel Hydroxamate AMPED-Based Ligand for 89Zr PET Imaging. Molecules 2021; 26:molecules26195819. [PMID: 34641362 PMCID: PMC8512011 DOI: 10.3390/molecules26195819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 11/23/2022] Open
Abstract
In this work, we designed, developed, characterized, and investigated a new chelator and its bifunctional derivative for 89Zr labeling and PET-imaging. In a preliminary study, we synthesized two hexadentate chelators named AAZTHAS and AAZTHAG, based on the seven-membered heterocycle AMPED (6-amino-6-methylperhydro-1,4-diazepine) with the aim to increase the rigidity of the 89Zr complex by using N-methyl-N-(hydroxy)succinamide or N-methyl-N-(hydroxy)glutaramide pendant arms attached to the cyclic structure. N-methylhydroxamate groups are the donor groups chosen to efficiently coordinate 89Zr. After in vitro stability tests, we selected the chelator with longer arms, AAZTHAG, as the best complexing agent for 89Zr presenting a stability of 86.4 ± 5.5% in human serum (HS) for at least 72 h. Small animal PET/CT static scans acquired at different time points (up to 24 h) and ex vivo organ distribution studies were then carried out in healthy nude mice (n = 3) to investigate the stability and biodistribution in vivo of this new 89Zr-based complex. High stability in vivo, with low accumulation of free 89Zr in bones and kidneys, was measured. Furthermore, an activated ester functionalized version of AAZTHAG was synthesized to allow the conjugation with biomolecules such as antibodies. The bifunctional chelator was then conjugated to the human anti-HER2 monoclonal antibody Trastuzumab (Tz) as a proof of principle test of conjugation to biologically active molecules. The final 89Zr labeled compound was characterized via radio-HPLC and SDS-PAGE followed by autoradiography, and its stability in different solutions was assessed for at least 4 days.
Collapse
|
15
|
Travagin F, Lattuada L, Giovenzana GB. AAZTA: The rise of mesocyclic chelating agents for metal coordination in medicine. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
16
|
Klasen B, Moon ES, Rösch F. AAZTA 5-squaramide ester competing with DOTA-, DTPA- and CHX-A″-DTPA-analogues: Promising tool for 177Lu-labeling of monoclonal antibodies under mild conditions. Nucl Med Biol 2021; 96-97:80-93. [PMID: 33839678 DOI: 10.1016/j.nucmedbio.2021.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/12/2021] [Accepted: 03/20/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Combining the advantages of both cyclic and acyclic chelator systems, AAZTA (1,4-bis(carboxymethyl)-6-[bis(carboxymethyl)]amino-6-methylperhydro-1,4-diazepine) is well suited for complexation of various diagnostic and therapeutic radiometals such as gallium-68, scandium-44 and lutetium-177 under mild conditions. Due to its specificity for primary amines and pH dependent binding properties, squaric acid (SA) represents an excellent tool for selective coupling of the appropriate chelator to different target vectors. Therefore, the aim of this study was to evaluate radiolabeling properties of the novel bifunctional AAZTA5-SA being coupled to a model antibody (bevacizumab) in comparison to DOTA-SA, DTPA-p-Bn-SA and CHX-A″-DTPA-p-Bn-SA using the therapeutic nuclide lutetium-177. METHODS AND RESULTS As proof-of-concept, bevacizumab was first functionalized with AAZTA5-SA, DOTA-SA, DTPA-p-Bn-SA or CHX-A″-DTPA-p-Bn-SA. After purification via fractionated size exclusion chromatography (SEC), the corresponding immunoconjugates were subsequently radiolabeled with lutetium-177 at pH 7 and room temperature (RT) as well as 37 °C. After 90 min, labeling of AAZTA5-SA-mAb resulted in almost quantitative radiochemical yields (RCY) of >98% and >99%, respectively. Formation of [177Lu]Lu-DTPA-p-Bn-SA-mAb indicated rapid labeling kinetics reaching similar yields at RT already after 30 min. Fast but incomplete radiolabeling of the CHX-A″-analogue could be observed with a yield of 74% after 10 min and no further significant increase. In contrast, 177Lu-labeling of DOTA-SA-mAb showed negligible radiochemical yields of <2% both at room temperature and 37 °C. In vitro complex stability measurements of [177Lu]Lu-AAZTA5-SA-mAb at 37 °C indicated >94% protein bound activity in human serum and >92% in phosphate buffered saline (PBS), respectively within 15 days. [177Lu]Lu-DTPA-p-Bn-SA-mAb and [177Lu]Lu-CHX-A″-DTPA-p-Bn-SA-mAb revealed similar to even slightly higher in vitro stability in both media. CONCLUSION Coupling of AAZTA5-SA to the monoclonal antibody bevacizumab allowed for 177Lu-labeling with almost quantitative radiochemical yields both at room temperature and 37 °C. Within 15 days, the resulting radioconjugate indicated very high in vitro complex stability both in human serum and PBS. Therefore, AAZTA5-SA is a promising tool for 177Lu-labeling of sensitive biomolecules such as antibodies for theranostic applications.
Collapse
Affiliation(s)
- Benedikt Klasen
- Department of Chemistry - TRIGA site, Johannes Gutenberg University, Mainz, Germany.
| | - Euy Sung Moon
- Department of Chemistry - TRIGA site, Johannes Gutenberg University, Mainz, Germany.
| | - Frank Rösch
- Department of Chemistry - TRIGA site, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
17
|
Ghiani S, Hawala I, Szikra D, Trencsényi G, Baranyai Z, Nagy G, Vágner A, Stefania R, Pandey S, Maiocchi A. Synthesis, radiolabeling, and pre-clinical evaluation of [ 44Sc]Sc-AAZTA conjugate PSMA inhibitor, a new tracer for high-efficiency imaging of prostate cancer. Eur J Nucl Med Mol Imaging 2021; 48:2351-2362. [PMID: 33420915 DOI: 10.1007/s00259-020-05130-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/18/2020] [Indexed: 01/04/2023]
Abstract
PURPOSE The aim of this work was to demonstrate the suitability of AAZTA conjugated to PSMA inhibitor (B28110) labeled with scandium-44 as a new PET tracer for diagnostic imaging of prostate cancer. BACKGROUND Nowadays, scandium-44 has received significant attention as a potential radionuclide with favorable characteristics for PET applications. A polyaminopolycarboxylate heptadentate ligand based on a 1,4-diazepine scaffold (AAZTA) has been thoroughly studied as chelator for Gd3+ ions for MRI applications. The excellent results of the equilibrium, kinetic, and labeling studies led to a preliminary assessment of the in vitro and in vivo behavior of [44Sc][Sc-(AAZTA)]- and two derivatives, i.e., [44Sc][Sc (CNAAZTA-BSA)] and [44Sc][Sc (CNAAZTA-cRGDfK)]. RESULTS B28110 was synthesized by hybrid approach, combining solid-phase peptide synthesis (SPPS) and solution chemistry to obtain high purity (97%) product with an overall yield of 9%. Subsequently, the radioactive labeling was performed with scandium-44 produced from natural calcium target in cyclotron, in good radiochemical yields (RCY) under mild condition (pH 4, 298 K). Stability study in human plasma showed good RCP% of [44Sc]Sc-B28110 up to 24 h (94.32%). In vivo PET/MRI imaging on LNCaP tumor-bearing mice showed high tracer accumulation in the tumor regions as early as 20 min post-injection. Ex vivo biodistribution studies confirmed that the accumulation of 44Sc-PSMA-617 was two-fold lower than that of the radiolabeled B28110 probes. CONCLUSIONS This work demonstrated the suitability of B28110 for the complexation with scandium-44 at room temperature and the high performance of the resulting new tracer based on AAZTA chelator for the diagnosis of prostate cancer using PET.
Collapse
Affiliation(s)
- S Ghiani
- Bracco Research Centre, Bracco Imaging SpA, Via Ribes 5, 10010, Colleretto Giacosa (TO), Italy.
| | - I Hawala
- Dipartimento di Biotecnologie Molecolari e Scienze per la salute, Centro di Imaging Molecolare, Università degli Studi di Torino, Via Nizza 52, 10126, Torino, Italy
| | - D Szikra
- Scanomed Ltd., Nagyerdei krt. 98, Debrecen, 4032, Hungary
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - G Trencsényi
- Scanomed Ltd., Nagyerdei krt. 98, Debrecen, 4032, Hungary
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - Z Baranyai
- Bracco Research Centre, Bracco Imaging SpA, Via Ribes 5, 10010, Colleretto Giacosa (TO), Italy
| | - G Nagy
- Scanomed Ltd., Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - A Vágner
- Scanomed Ltd., Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - R Stefania
- Dipartimento di Biotecnologie Molecolari e Scienze per la salute, Centro di Imaging Molecolare, Università degli Studi di Torino, Via Nizza 52, 10126, Torino, Italy
| | - S Pandey
- Bracco Research USA Inc., 259 Prospect Plains Rd., Bldg. H, Monroe Township, NJ, 08831, USA
| | - A Maiocchi
- Bracco SpA, Via Caduti di Marcinelle, 13, 20134, Milan, Italy
| |
Collapse
|
18
|
Kock FVC, Forgács A, Guidolin N, Stefania R, Vágner A, Gianolio E, Aime S, Baranyai Z. [Gd(AAZTA)] - Derivatives with n-Alkyl Acid Side Chains Show Improved Properties for Their Application as MRI Contrast Agents*. Chemistry 2020; 27:1849-1859. [PMID: 33184913 DOI: 10.1002/chem.202004479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/03/2020] [Indexed: 12/25/2022]
Abstract
Herein, the synthesis and an extensive characterization of two novel Gd(AAZTA) (AAZTA=6-amino-6-methylperhydro-1,4-diazepine tetra acetic acid) derivatives functionalized with short (C2 and C4 ) n-alkyl acid functions are reported. The carboxylate functionality is the site for further conjugations for the design of more specific contrast agents (CAs). Interestingly, it has been found that the synthesized complexes display enhanced properties for use as MRI contrast agents on their own. The stability constants determined by using potentiometric titration and UV/Vis spectrophotometry were slightly higher than the one reported for the parent Gd(AAZTA) complex. This observation might be accounted for by the larger sigma-electron donation of the acyl substituents with respect to the one provided by the methyl group in the parent complex. As far as concerns the kinetic stability, transmetallation experiments with endogenous ions (e.g. Cu2+ ) implied that the Gd3+ ions present in these Gd(AAZTA) derivatives show somewhat smaller susceptibility to chemical exchange towards these ions at 25 °C, close to the physiological condition. The 1 H NMR spectra of the complexes with EuIII and YbIII displayed a set of signals consistent with half the number of methylene protons present on each ligand. The number of resonances was invariant over a large range of temperatures, suggesting the occurrence of a fast interconversion between structural isomers. The relaxivity values (298 K, 20 MHz) were consistent with q=2 being equal to 8.8 mm-1 s-1 for the C2 derivative and 9.4 mm-1 s-1 for the C4 one, that is, sensibly larger than the one reported for Gd(AAZTA) (7.1 mm-1 s-1 ). Variable-temperature (VT)-T2 17 O NMR measurements showed, for both complexes, the presence of two populations of coordinated water molecules, one in fast and one in slow exchange with the bulk water. As the high-resolution 1 H NMR spectra of the analogs with EuIII and YbIII did not show the occurrence of distinct isomers (as frequently observed in other macrocyclic lanthanide(III)-containing complexes), we surmised the presence of two fast-interconverting isomers in solution. The analysis of the 17 O NMR VT-T2 profiles versus temperature allowed their relative molar fraction to be established as 35 % for the isomer with the fast exchanging water and 65 % for the isomer with the water molecules in slower exchange. Finally, 1 H NMRD profiles over an extended range of applied magnetic field strengths have been satisfactory fitted on the basis of the occurrence of the two interconverting species.
Collapse
Affiliation(s)
- Flávio Vinicius Crizóstomo Kock
- São Carlos Institute of Chemistry, University of São Paulo, Avenida Trabalhador São Carlense 400, 13566-590, São Paulo, Brazil.,Department of Molecular Biotechnologies and Health Science, University of Turin, Via Nizza 52, 10125, Turin, Italy
| | - Attila Forgács
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, 4010, Debrecen, Hungary.,MTA-DE Redox and Homogeneous Catalytic Reaction Mechanisms, Research Group, Egyetem tér 1, Debrecen, 4032, Hungary
| | - Nicol Guidolin
- Bracco Imaging SpA, Bracco Research Center, Via Ribes 5, 10010, Colleretto Giacosa (TO), Italy
| | - Rachele Stefania
- Department of Molecular Biotechnologies and Health Science, University of Turin, Via Nizza 52, 10125, Turin, Italy
| | - Adrienn Vágner
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, 4010, Debrecen, Hungary
| | - Eliana Gianolio
- Department of Molecular Biotechnologies and Health Science, University of Turin, Via Nizza 52, 10125, Turin, Italy
| | - Silvio Aime
- Department of Molecular Biotechnologies and Health Science, University of Turin, Via Nizza 52, 10125, Turin, Italy
| | - Zsolt Baranyai
- Bracco Imaging SpA, Bracco Research Center, Via Ribes 5, 10010, Colleretto Giacosa (TO), Italy
| |
Collapse
|
19
|
Doot RK, Young AJ, Daube-Witherspoon ME, Alexoff D, Labban KJ, Lee H, Wu Z, Zha Z, Choi SR, Ploessl KH, Schubert EK, Lee H, Zhu L, Reddin JS, Karp JS, Kung H, Pryma DA. Biodistribution, dosimetry, and temporal signal-to-noise ratio analyses of normal and cancer uptake of [ 68Ga]Ga-P15-041, a gallium-68 labeled bisphosphonate, from first-in-human studies. Nucl Med Biol 2020; 86-87:1-8. [PMID: 32361089 DOI: 10.1016/j.nucmedbio.2020.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/29/2020] [Accepted: 04/07/2020] [Indexed: 12/21/2022]
Abstract
INTRODUCTION [68Ga]Ga-P15-041 ([68Ga]Ga-HBED-CC-BP) is a novel bone-seeking PET radiotracer that can be generator-produced. We undertook a Phase 0/I clinical trial to assess its potential for imaging bone metastases in prostate cancer including assessment of radiotracer biodistribution and dosimetry. METHODS Subjects with prostate cancer and known or suspected osseous metastatic disease were enrolled into one of two arms: dosimetry or dynamic. Dosimetry was performed with 6 whole body PET acquisitions and urine collection spanning 3 h; normal organ dosimetry was calculated using OLINDA/EXM. Dynamic imaging included a 60 min acquisition over a site of known or suspected disease followed by two whole body scans. Bootstrapping and subsampling of the acquired list-mode data were conducted to recommend image acquisition parameters for future clinical trials. RESULTS Up to 233 MBq (6.3 mCi) of [68Ga]Ga-P15-041 was injected into 12 enrolled volunteers, 8 in dosimetry and 4 in dynamic cohorts. Radiotracer accumulated in known bone lesions and cleared rapidly from blood and soft tissue. The highest individual organ dose was 0.135 mSv/MBq in the urinary bladder wall. The average effective dose was 0.0173 ± 0.0036 mSv/MBq. An average injected activity of 166.5 MBq (4.5 mCi) resulted in absorbed dose estimates of 22.5 mSv to the urinary bladder wall, 8.2 mSv to the kidneys, and an effective dose of 2.9 mSv. Lesion signal to noise ratios on images generated from subsampled data were significantly higher for injected activities above 74 MBq (2 mCi) and were also significantly higher for imaging at 90 min than at 180 min post-injection. CONCLUSIONS Dosimetry estimates are acceptable and [68Ga]Ga-P15-041 uptake characteristics in patients with confirmed bone metastases support its continued development. ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE Use of [68Ga]Ga-P15-041 would not require cyclotron infrastructure for manufacturing and distribution, allowing for improved patient access to a promising PET bone imaging agent.
Collapse
Affiliation(s)
- Robert K Doot
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, United States of America.
| | - Anthony J Young
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | | | - David Alexoff
- Five Eleven Pharma Inc., Philadelphia, PA 19104, United States of America
| | - Kyle J Labban
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Hwan Lee
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Zehui Wu
- Five Eleven Pharma Inc., Philadelphia, PA 19104, United States of America
| | - Zhihao Zha
- Five Eleven Pharma Inc., Philadelphia, PA 19104, United States of America
| | - Seok R Choi
- Five Eleven Pharma Inc., Philadelphia, PA 19104, United States of America
| | - Karl H Ploessl
- Five Eleven Pharma Inc., Philadelphia, PA 19104, United States of America
| | - Erin K Schubert
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Hsiaoju Lee
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Lin Zhu
- Five Eleven Pharma Inc., Philadelphia, PA 19104, United States of America
| | - Janet S Reddin
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Joel S Karp
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Hank Kung
- Five Eleven Pharma Inc., Philadelphia, PA 19104, United States of America
| | - Daniel A Pryma
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| |
Collapse
|
20
|
Hawala I, De Rosa L, Aime S, D'Andrea LD. An innovative approach for the synthesis of dual modality peptide imaging probes based on the native chemical ligation approach. Chem Commun (Camb) 2020; 56:3500-3503. [PMID: 32101189 DOI: 10.1039/c9cc09980h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Peptide-targeting probes tagged with optical imaging and PET reporters may find applications in innovative diagnostic procedures and image-guided surgeries. The reported synthesis procedure is of general applicability to obtain dual imaging probes using fully unprotected moieties with a selective and rapid chemistry based on native chemical ligation.
Collapse
Affiliation(s)
- Ivan Hawala
- Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Centro di Imaging Molecolare, Università degli Studi di Torino, Via Nizza 52, 10126, Torino (TO), Italy
| | - Lucia De Rosa
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli (NA), Italy
| | - Silvio Aime
- Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Centro di Imaging Molecolare, Università degli Studi di Torino, Via Nizza 52, 10126, Torino (TO), Italy
| | | |
Collapse
|
21
|
Orteca G, Sinnes JP, Rubagotti S, Iori M, Capponi PC, Piel M, Rösch F, Ferrari E, Asti M. Gallium-68 and scandium-44 labelled radiotracers based on curcumin structure linked to bifunctional chelators: Synthesis and characterization of potential PET radiotracers. J Inorg Biochem 2019; 204:110954. [PMID: 31838188 DOI: 10.1016/j.jinorgbio.2019.110954] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/28/2019] [Accepted: 11/30/2019] [Indexed: 01/08/2023]
Abstract
Curcumin metal complexes showed widespread applications in medicine and can be exploited as a lead structure for developing new tracers for nuclear medicine application. Herein, the synthesis, chemical characterization and radiolabelling with gallium-68 and scandium-44 of two new targeting vectors based on curcumin scaffolds and linked to the chelators 1,4,7-triazacyclononane,1-glutaric acid-4,7-acetic acid (NODAGA) and 1,4-bis(carboxymethyl)-6-[bis(carboxymethyl)]amino-6-methylperhydro-1,4-diazepine (AAZTA) are reported. Synthesis of the precursors could be achieved with a 13% and 11% yield and radiolabelling generally afforded rapid incorporation under mild conditions (>95%). Stability in physiological media (~75% after 2 h in human blood for [68Ga]Ga-/[44Sc]Sc-AAZTA-PC21 and ~60% for [68Ga]Ga-NODAGA-C21, respectively) are generally enhanced if compared to the previously radiolabelled analogues. MSn fragmentation experiments showed high stability of the AAZTA-PC21 structure mainly due to the pyrazole derivatization of the curcumin keto-enol moiety and a more feasible radiolabelling was noticed both with gallium-68 and scandium-44 mainly due to the AAZTA-chelator properties. [68Ga]Ga-NODAGA-C21 showed the most favorable lipophilicity value (logD = 1.3). Due to these findings, both compounds appear to be promising candidates for the imaging of colorectal cancer, but further studies such as in vitro uptake and in vivo biodistribution experiments are needed.
Collapse
Affiliation(s)
- Giulia Orteca
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, via G. Campi 103, 41125 Modena, Italy
| | - Jean-Philippe Sinnes
- Institute of Nuclear Chemistry, Johannes Gutenberg-University of Mainz, D-55126 Mainz, Germany
| | - Sara Rubagotti
- Radiopharmaceutical Chemistry Section, Nuclear Medicine Unit, Azienda USL-IRCCS Reggio Emilia, via Amendola 2, 42122 Reggio Emilia, Italy
| | - Michele Iori
- Radiopharmaceutical Chemistry Section, Nuclear Medicine Unit, Azienda USL-IRCCS Reggio Emilia, via Amendola 2, 42122 Reggio Emilia, Italy
| | - Pier Cesare Capponi
- Radiopharmaceutical Chemistry Section, Nuclear Medicine Unit, Azienda USL-IRCCS Reggio Emilia, via Amendola 2, 42122 Reggio Emilia, Italy
| | - Markus Piel
- Institute of Nuclear Chemistry, Johannes Gutenberg-University of Mainz, D-55126 Mainz, Germany
| | - Frank Rösch
- Institute of Nuclear Chemistry, Johannes Gutenberg-University of Mainz, D-55126 Mainz, Germany
| | - Erika Ferrari
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, via G. Campi 103, 41125 Modena, Italy.
| | - Mattia Asti
- Radiopharmaceutical Chemistry Section, Nuclear Medicine Unit, Azienda USL-IRCCS Reggio Emilia, via Amendola 2, 42122 Reggio Emilia, Italy
| |
Collapse
|
22
|
Baranyai Z, Tircsó G, Rösch F. The Use of the Macrocyclic Chelator DOTA in Radiochemical Separations. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900706] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zsolt Baranyai
- Bracco Research Centre Bracco Imaging spa Via Ribes 5 10010 Colleretto Giacosa (TO) Italy
| | - Gyula Tircsó
- Department of Physical Chemistry Faculty of Science and Technology University of Debrecen Egyetem tér 1 Debrecen 4032 Hungary
| | - Frank Rösch
- Institute of Nuclear Chemistry Johannes Gutenberg‐University of Mainz Fritz‐Strassmann‐Weg 2 55128 Mainz Germany
| |
Collapse
|
23
|
Farkas E, Vágner A, Negri R, Lattuada L, Tóth I, Colombo V, Esteban-Gómez D, Platas-Iglesias C, Notni J, Baranyai Z, Giovenzana GB. PIDAZTA: Structurally Constrained Chelators for the Efficient Formation of Stable Gallium-68 Complexes at Physiological pH. Chemistry 2019; 25:10698-10709. [PMID: 31149749 DOI: 10.1002/chem.201901512] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/28/2019] [Indexed: 12/11/2022]
Abstract
Two structurally constrained chelators based on a fused bicyclic scaffold, 4-amino-4-methylperhydro-pyrido[1,2-a][1,4]diazepin-N,N',N'-triacetic acids [(4R*,10aS*)-PIDAZTA (L1) and (4R*,10aR*)-PIDAZTA (L2)], were designed for the preparation of GaIII -based radiopharmaceuticals. The stereochemistry of the ligand scaffold has a deep impact on the properties of the complexes, with unexpected [Ga(L2)OH] species being superior in terms of both thermodynamic stability and inertness. This peculiar behavior was rationalized on the basis of molecular modeling and appears to be related to a better fit in size of GaIII into the cavity of L2. Fast and efficient formation of the GaIII chelates at room temperature was observed at pH values between 7 and 8, which enables 68 Ga radiolabeling under truly physiological conditions (pH 7.4).
Collapse
Affiliation(s)
- Edit Farkas
- Dept. of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, H-4010, Debrecen, Hungary
| | - Adrienn Vágner
- Dept. of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, H-4010, Debrecen, Hungary
| | - Roberto Negri
- Dip. di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2/3, 28100, Novara, Italy
| | - Luciano Lattuada
- Bracco Imaging spa, Bracco Research Centre, Via Ribes 5, 10010, Colleretto Giacosa (TO), Italy
| | - Imre Tóth
- Dept. of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, H-4010, Debrecen, Hungary.,Dept. of Physical Chemistry, University of Debrecen, Egyetem tér 1, H-4010, Debrecen, Hungary
| | - Valentina Colombo
- Dip. di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133, Milano, Italy
| | - David Esteban-Gómez
- Centro de Investigacións Científicas Avanzadas (CICA) and Dep. de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Galicia, Spain
| | - Carlos Platas-Iglesias
- Centro de Investigacións Científicas Avanzadas (CICA) and Dep. de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Galicia, Spain
| | - Johannes Notni
- Institute of Pathology, Technische Universität München, Trogerstrasse 18, 81675, Munich, Germany
| | - Zsolt Baranyai
- Dept. of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, H-4010, Debrecen, Hungary.,Bracco Imaging spa, Bracco Research Centre, Via Ribes 5, 10010, Colleretto Giacosa (TO), Italy
| | - Giovanni B Giovenzana
- Dip. di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2/3, 28100, Novara, Italy
| |
Collapse
|
24
|
Sinnes JP, Nagel J, Rösch F. AAZTA 5/AAZTA 5-TOC: synthesis and radiochemical evaluation with 68Ga, 44Sc and 177Lu. EJNMMI Radiopharm Chem 2019; 4:18. [PMID: 31659525 PMCID: PMC6675801 DOI: 10.1186/s41181-019-0068-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 07/16/2019] [Indexed: 11/10/2022] Open
Abstract
PURPOSE AAZTA (1,4-bis (carboxymethyl)-6-[bis (carboxymethyl)]amino-6-methylperhydro-1,4-diazepine) based chelators were initially developed in the context of magnetic resonance imaging. First radiochemical studies showed the capability of AAZTA to form stable complexes with radiolanthanides and moderately stable complexes with 68Ga. For a systematic comparison of the labelling capabilities with current diagnostic and therapeutic trivalent radiometals, AAZTA5 (1,4-bis (carboxymethyl)-6-[bis (carboxymethyl)]amino-6-[pentanoic-acid]perhydro-1,4-diazepine) was synthesized representing a bifunctional version with a pentanoic acid at the carbon-6 atom. To evaluate the effect of adding a targeting vector (TV) to the bifunctional chelator on the complex formation, AAZTA5-TOC was synthesized, radiolabeled and tested in comparison to the uncoupled AAZTA5. METHODS AAZTA5 was synthesized in a 5-step synthesis. It was coupled to the cyclic peptide TOC (Phe1-Tyr3 octreotide) via amide bound formation. AAZTA and AAZTA5-TOC complex formations with 68Ga, 44Sc and 177Lu were investigated at different pH, temperature and precursor amounts. Stability studies against human serum, PBS buffer, EDTA and DTPA were performed. RESULTS AAZTA5 and AAZTA5-TOC achieved quantitative labelling (> 95%) at room temperature in less than 5 min with all three nuclides at pH ranges from 4 to 5.5 with low precursor amounts of 1 to 10 nmol. [44Sc]Sc-AAZTA5 complexes as well as [44Sc]Sc-AAZTA5-TOC were completely stable. The 177Lu complexes of AAZTA5 and AAZTA5-TOC showed high stability comparable to the 44Sc complexes. In contrast, the [68Ga]Ga-AAZTA5 complex stability was rather low, but interestingly, [68Ga]Ga-AAZTA5-TOC was completely stable. CONCLUSION AAZTA5 appears to be a promising bifunctional chelator for 68Ga, 44Sc and 177Lu with outstanding labelling capabilities at room temperature. Complex stabilities are high in the case of 44Sc and 177Lu. While [68Ga]Ga-AAZTA complexes alone lacking stability, [68Ga]Ga-AAZTA5-TOC demonstrated high stability. The latter indicates an interesting feature of [68Ga]Ga-AAZTA5-labelled radiopharmaceuticals.
Collapse
Affiliation(s)
- Jean-Philippe Sinnes
- Johannes Gutenberg-University Mainz, Institute of Nuclear Chemistry, Fritz-Strassmann-Weg 2, 55128, Mainz, Germany
| | - Johannes Nagel
- Johannes Gutenberg-University Mainz, Institute of Nuclear Chemistry, Fritz-Strassmann-Weg 2, 55128, Mainz, Germany
| | - Frank Rösch
- Johannes Gutenberg-University Mainz, Institute of Nuclear Chemistry, Fritz-Strassmann-Weg 2, 55128, Mainz, Germany.
| |
Collapse
|
25
|
Tripepi M, Capuana F, Gianolio E, Kock FVC, Pagoto A, Stefania R, Digilio G, Aime S. Synthesis of High Relaxivity Gadolinium AAZTA Tetramers as Building Blocks for Bioconjugation. Bioconjug Chem 2018; 29:1428-1437. [PMID: 29470084 DOI: 10.1021/acs.bioconjchem.8b00120] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Molecular imaging requires the specific accumulation of contrast agents at the target. To exploit the superb resolution of MRI for applications in molecular imaging, gadolinium chelates, as the MRI contrast agents (CA), have to be conjugated to a specific vector able to recognize the epitope of interest. Several Gd(III)-chelates can be chemically linked to the same binding vector in order to deliver multiple copies of the CA (multimers) in a single targeting event thus increasing the sensitivity of the molecular probe. Herein three novel bifunctional agents, carrying one functional group for the bioconjugation to targeting vectors and four Gd(III)-AAZTA chelate functions for MRI contrast enhancement (AAZTA = 6-amino-6-methylperhydro-1,4-diazepinetetraacetic acid), are reported. The relaxivity in the tetrameric derivatives is 16.4 ± 0.2 mMGd-1 s-1 at 21.5 MHz and 25 °C, being 2.4-fold higher than that of parent, monomeric Gd(III)-AAZTA. These compounds can be used as versatile building blocks to insert preformed, high relaxivity, and high density Gd-centers to biological targeting vectors. As an example, we describe the use of these bifunctional Gd(III)-chelates to label a fibrin-targeting peptide.
Collapse
Affiliation(s)
- Martina Tripepi
- Department of Molecular Biotechnology and Health Sciences , University of Torino , Via Nizza 52 , 10126 - Torino , Italy
| | - Federico Capuana
- Department of Molecular Biotechnology and Health Sciences , University of Torino , Via Nizza 52 , 10126 - Torino , Italy
| | - Eliana Gianolio
- Department of Molecular Biotechnology and Health Sciences , University of Torino , Via Nizza 52 , 10126 - Torino , Italy
| | - Flávio Vinicius Crizóstomo Kock
- São Carlos Institute of Chemistry , São Paulo University , Av. Trabalhador São Carlense, 400 , 13566-590 , São Carlos , São Paulo , Brazil
| | - Amerigo Pagoto
- Department of Molecular Biotechnology and Health Sciences , University of Torino , Via Nizza 52 , 10126 - Torino , Italy
| | - Rachele Stefania
- Department of Molecular Biotechnology and Health Sciences , University of Torino , Via Nizza 52 , 10126 - Torino , Italy
| | - Giuseppe Digilio
- Department of Science and Technological Innovation , Università del Piemonte Orientale "A. Avogadro" , Viale T. Michel 11 , 15121 Alessandria , Italy
| | - Silvio Aime
- Department of Molecular Biotechnology and Health Sciences , University of Torino , Via Nizza 52 , 10126 - Torino , Italy
| |
Collapse
|
26
|
Moreno S, Sepúlveda-Crespo D, de la Mata FJ, Gómez R, Muñoz-Fernández MÁ. New anionic carbosilane dendrons functionalized with a DO3A ligand at the focal point for the prevention of HIV-1 infection. Antiviral Res 2017; 146:54-64. [PMID: 28827122 DOI: 10.1016/j.antiviral.2017.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 08/07/2017] [Accepted: 08/15/2017] [Indexed: 01/11/2023]
Abstract
Novel third-generation polyanionic carbosilane dendrons with sulfonate or carboxylate end-groups and functionalized with a DO3A ligand at the focal point, and their corresponding copper complexes, have been prepared as antiviral compounds to prevent HIV-1 infection. The topology enables the compound to have an excellent chelating agent, DO3A, while keeping anionic peripheral groups for a therapeutic action. In this study, the cytotoxicity and anti-HIV-1 abilities of carboxylate- (5) or sulfonate-terminated (6) dendrons containing DO3A and their copper complexes (7 or 8) were evaluated. All compounds showed low cytotoxicity and demonstrated potent and broad-spectrum anti-HIV-1 activity in vitro. We also assessed the mode of antiviral action on the inhibition of HIV-1 through a panel of different in vitro antiviral assays. Our results show that copper-free dendron 6 protects the epithelial monolayer from short-term cell disruption. Copper-free dendrons 5 and 6 exert anti-HIV-1 activity at an early stage of the HIV-1 lifecycle by binding to the envelope glycoproteins of HIV-1 and by interacting with the CD4 cell receptor and blocking the binding of gp120 to CD4, and consequently HIV-1 entry. These findings show that copper-free dendrons 5 and 6 have a high potency against HIV-1 infection, confirming their non-specific ability and suggesting that these compounds deserve further study as potential candidate microbicides to prevent HIV-1 transmission.
Collapse
Affiliation(s)
- Silvia Moreno
- Departamento de Química Inorgánica, Universidad de Alcalá, Campus Universitario, Alcalá de Henares, Madrid, Spain; CIBER-BBN, Madrid, Spain
| | - Daniel Sepúlveda-Crespo
- CIBER-BBN, Madrid, Spain; Sección Inmunología, Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Spanish HIV HGM Biobank, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - F Javier de la Mata
- Departamento de Química Inorgánica, Universidad de Alcalá, Campus Universitario, Alcalá de Henares, Madrid, Spain; CIBER-BBN, Madrid, Spain
| | - Rafael Gómez
- Departamento de Química Inorgánica, Universidad de Alcalá, Campus Universitario, Alcalá de Henares, Madrid, Spain; CIBER-BBN, Madrid, Spain.
| | - Ma Ángeles Muñoz-Fernández
- CIBER-BBN, Madrid, Spain; Sección Inmunología, Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Spanish HIV HGM Biobank, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain.
| |
Collapse
|
27
|
Farkas E, Nagel J, Waldron BP, Parker D, Tóth I, Brücher E, Rösch F, Baranyai Z. Equilibrium, Kinetic and Structural Properties of Gallium(III) and Some Divalent Metal Complexes Formed with the New DATA m and DATA 5m Ligands. Chemistry 2017; 23:10358-10371. [PMID: 28504822 DOI: 10.1002/chem.201701508] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Indexed: 11/08/2022]
Abstract
The development of 68 Ge/68 Ga generators has made the positron-emitting 68 Ga isotope widely accessible and raised interest in new chelate complexes of Ga3+ . The hexadentate 1,4-di(acetate)-6-methyl[amino(methyl)acetate]perhydro-1,4-diazepane (DATAm ) ligand and its bifunctional analogue, 1,4-di(acetate)-6-pentanoic acid[amino(methyl)acetate]perhydro-1,4-diazepane (DATA5m ), rapidly form complexes with 68 Ga in high radiochemical yield. The stability constants of DATAm and DATA5m complexes formed with Ga3+ , Zn2+ , Cu2+ , Mn2+ and Ca2+ have been determined by using pH potentiometry, spectrophotometry (Cu2+ ) and 1 H and 71 Ga NMR spectroscopy (Ga3+ ). The stability constants of Ga(DATAm ) and Ga(DATA5m ) complexes are slightly higher than those of Ga(AAZTA). The species distribution calculations indicated the predominance of Ga(L)OH mixed-hydroxo complexes at physiological pH. The 1 H and 71 Ga NMR spectroscopy studies provided information about the coordinated functional groups of ligands and on the kinetics of exchange between the Ga(L) and Ga(L)OH complexes. The transmetalation reactions between the Ga(L) complexes and Cu2+ citrate (6<pH<8.5) occur through both spontaneous and OH- -assisted dissociation of the Ga(L)OH species. At pH 7.4 and 25 °C, the half-lives of the dissociation of Ga(DATAm ), Ga(DATA5m ) and Ga(AAZTA) were 11, 44 and 24 h, respectively. Similar half-lives have been obtained for the ligand-exchange reactions between the Ga(L)OH complexes and transferrin. The equilibrium and kinetic data indicate that the Ga(DATA5m ) complex is a good 68 Ga-based radiodiagnostic candidate.
Collapse
Affiliation(s)
- Edit Farkas
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary
| | - Johannes Nagel
- Institute of Nuclear Chemistry, University of Mainz, Fritz-Strassmann-Weg 2, 55128, Mainz, Germany
| | - Bradley P Waldron
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK
| | - David Parker
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK
| | - Imre Tóth
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary
| | - Ernő Brücher
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary
| | - Frank Rösch
- Institute of Nuclear Chemistry, University of Mainz, Fritz-Strassmann-Weg 2, 55128, Mainz, Germany
| | - Zsolt Baranyai
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary.,Present address: Bracco Imaging-CRB/Trieste, Area Science Park. Ed. Q, SS 14, km 163.5, 34149, Basovizza Trieste, Italy
| |
Collapse
|
28
|
Giovenzana GB, Lattuada L, Negri R. Recent Advances in Bifunctional Paramagnetic Chelates for MRI. Isr J Chem 2017. [DOI: 10.1002/ijch.201700028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Giovanni B. Giovenzana
- Dipartimento di Scienze del Farmaco; Università del Piemonte Orientale “A. Avogadro”; L.go Donegani 2/3 I-28100 Novara Italy
| | - Luciano Lattuada
- Bracco Imaging SpA, Bracco Research Centre; Via Ribes 5 I-10010 Colleretto Giacosa TO, Italy
| | - Roberto Negri
- Dipartimento di Scienze del Farmaco; Università del Piemonte Orientale “A. Avogadro”; L.go Donegani 2/3 I-28100 Novara Italy
| |
Collapse
|
29
|
Nagy G, Szikra D, Trencsényi G, Fekete A, Garai I, Giani AM, Negri R, Masciocchi N, Maiocchi A, Uggeri F, Tóth I, Aime S, Giovenzana GB, Baranyai Z. AAZTA: An Ideal Chelating Agent for the Development of 44
Sc PET Imaging Agents. Angew Chem Int Ed Engl 2017; 56:2118-2122. [DOI: 10.1002/anie.201611207] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Indexed: 01/17/2023]
Affiliation(s)
- Gábor Nagy
- Scanomed Ltd.; Nagyerdei Krt. 98 4032 Debrecen Hungary
- University of Debrecen; Medical Imaging Clinic; Nagyerdei krt. 98 4032 Debrecen Hungary
| | - Dezső Szikra
- Scanomed Ltd.; Nagyerdei Krt. 98 4032 Debrecen Hungary
- University of Debrecen; Medical Imaging Clinic; Nagyerdei krt. 98 4032 Debrecen Hungary
| | - György Trencsényi
- Scanomed Ltd.; Nagyerdei Krt. 98 4032 Debrecen Hungary
- University of Debrecen; Medical Imaging Clinic; Nagyerdei krt. 98 4032 Debrecen Hungary
| | - Anikó Fekete
- University of Debrecen; Medical Imaging Clinic; Nagyerdei krt. 98 4032 Debrecen Hungary
| | - Ildikó Garai
- Scanomed Ltd.; Nagyerdei Krt. 98 4032 Debrecen Hungary
| | - Arianna M. Giani
- Dipartimento di Scienze del Farmaco; Università del Piemonte Orientale; Largo Donegani 2/3 28100 Novara Italy
| | - Roberto Negri
- Dipartimento di Scienze del Farmaco; Università del Piemonte Orientale; Largo Donegani 2/3 28100 Novara Italy
| | - Norberto Masciocchi
- Dipartimento di Scienza e Alta Tecnologia and To.Sca.Lab; Università degli Studi dell'Insubria; via Valleggio 11 22100 Como Italy
| | - Alessandro Maiocchi
- Bracco Imaging spa; Bracco Research Centre; Via Ribes 5 10010 Colleretto Giacosa (TO) Italy
| | - Fulvio Uggeri
- Bracco Imaging spa; Bracco Research Centre; Via Ribes 5 10010 Colleretto Giacosa (TO) Italy
| | - Imre Tóth
- Department of Inorganic and Analytical Chemistry; University of Debrecen; 4032 Debrecen Egyetem tér 1 Hungary
| | - Silvio Aime
- Dipartimento di Biotecnologie Molecolari e Scienze della Salute; Centro di Imaging Molecolare e Preclinico; Università degli Studi di Torino; Via Nizza 52 10126 Torino Italy
| | - Giovanni B. Giovenzana
- Dipartimento di Scienze del Farmaco; Università del Piemonte Orientale; Largo Donegani 2/3 28100 Novara Italy
- CAGE Chemicals srl; Via Bovio 6 28100 Novara Italy
| | - Zsolt Baranyai
- Bracco Imaging spa; Bracco Research Centre; Via Ribes 5 10010 Colleretto Giacosa (TO) Italy
- Department of Inorganic and Analytical Chemistry; University of Debrecen; 4032 Debrecen Egyetem tér 1 Hungary
| |
Collapse
|
30
|
Nagy G, Szikra D, Trencsényi G, Fekete A, Garai I, Giani AM, Negri R, Masciocchi N, Maiocchi A, Uggeri F, Tóth I, Aime S, Giovenzana GB, Baranyai Z. AAZTA: An Ideal Chelating Agent for the Development of 44
Sc PET Imaging Agents. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611207] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Gábor Nagy
- Scanomed Ltd.; Nagyerdei Krt. 98 4032 Debrecen Hungary
- University of Debrecen; Medical Imaging Clinic; Nagyerdei krt. 98 4032 Debrecen Hungary
| | - Dezső Szikra
- Scanomed Ltd.; Nagyerdei Krt. 98 4032 Debrecen Hungary
- University of Debrecen; Medical Imaging Clinic; Nagyerdei krt. 98 4032 Debrecen Hungary
| | - György Trencsényi
- Scanomed Ltd.; Nagyerdei Krt. 98 4032 Debrecen Hungary
- University of Debrecen; Medical Imaging Clinic; Nagyerdei krt. 98 4032 Debrecen Hungary
| | - Anikó Fekete
- University of Debrecen; Medical Imaging Clinic; Nagyerdei krt. 98 4032 Debrecen Hungary
| | - Ildikó Garai
- Scanomed Ltd.; Nagyerdei Krt. 98 4032 Debrecen Hungary
| | - Arianna M. Giani
- Dipartimento di Scienze del Farmaco; Università del Piemonte Orientale; Largo Donegani 2/3 28100 Novara Italy
| | - Roberto Negri
- Dipartimento di Scienze del Farmaco; Università del Piemonte Orientale; Largo Donegani 2/3 28100 Novara Italy
| | - Norberto Masciocchi
- Dipartimento di Scienza e Alta Tecnologia and To.Sca.Lab; Università degli Studi dell'Insubria; via Valleggio 11 22100 Como Italy
| | - Alessandro Maiocchi
- Bracco Imaging spa; Bracco Research Centre; Via Ribes 5 10010 Colleretto Giacosa (TO) Italy
| | - Fulvio Uggeri
- Bracco Imaging spa; Bracco Research Centre; Via Ribes 5 10010 Colleretto Giacosa (TO) Italy
| | - Imre Tóth
- Department of Inorganic and Analytical Chemistry; University of Debrecen; 4032 Debrecen Egyetem tér 1 Hungary
| | - Silvio Aime
- Dipartimento di Biotecnologie Molecolari e Scienze della Salute; Centro di Imaging Molecolare e Preclinico; Università degli Studi di Torino; Via Nizza 52 10126 Torino Italy
| | - Giovanni B. Giovenzana
- Dipartimento di Scienze del Farmaco; Università del Piemonte Orientale; Largo Donegani 2/3 28100 Novara Italy
- CAGE Chemicals srl; Via Bovio 6 28100 Novara Italy
| | - Zsolt Baranyai
- Bracco Imaging spa; Bracco Research Centre; Via Ribes 5 10010 Colleretto Giacosa (TO) Italy
- Department of Inorganic and Analytical Chemistry; University of Debrecen; 4032 Debrecen Egyetem tér 1 Hungary
| |
Collapse
|
31
|
Pilkington-Miksa M, Araldi EMV, Arosio D, Belvisi L, Civera M, Manzoni L. New potent αvβ3 integrin ligands based on azabicycloalkane (γ,α)-dipeptide mimics. Org Biomol Chem 2016; 14:3221-33. [PMID: 26917057 DOI: 10.1039/c6ob00287k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We have designed a new synthetic strategy for the preparation of a new class of cyclic RGD integrin ligands in which the azabicycloalkane scaffold can be envisaged as a (γ,α) dipeptide mimic. The synthesis and in vitro biological evaluation of these RGD derivatives, as well as the computational study of their conformational properties and binding modes to αVβ3 integrin are described. Compound has shown to be a promising candidate as αVβ3 integrin antagonist able to interfere with both cell adhesion and movement on vitronectin with no evidence of cytotoxic effects.
Collapse
Affiliation(s)
- M Pilkington-Miksa
- Centro Interdisciplinare Studi Biomolecolari e Applicazioni Industriali, Università degli Studi di Milano, Via Fantoli 16/15, I-20138, Milano
| | - E M V Araldi
- Centro Interdisciplinare Studi Biomolecolari e Applicazioni Industriali, Università degli Studi di Milano, Via Fantoli 16/15, I-20138, Milano
| | - D Arosio
- Istituto di Scienze e Tecnologie Molecolari, Consiglio Nazionale delle Ricerche, Via C. Golgi 19, I-20133, Milano.
| | - L Belvisi
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, I-20133, Milano
| | - M Civera
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, I-20133, Milano
| | - L Manzoni
- Istituto di Scienze e Tecnologie Molecolari, Consiglio Nazionale delle Ricerche, Via C. Golgi 19, I-20133, Milano.
| |
Collapse
|
32
|
Spang P, Herrmann C, Roesch F. Bifunctional Gallium-68 Chelators: Past, Present, and Future. Semin Nucl Med 2016; 46:373-94. [DOI: 10.1053/j.semnuclmed.2016.04.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
33
|
Roggiani F, Mezzanzanica D, Rea K, Tomassetti A. Guidance of Signaling Activations by Cadherins and Integrins in Epithelial Ovarian Cancer Cells. Int J Mol Sci 2016; 17:ijms17091387. [PMID: 27563880 PMCID: PMC5037667 DOI: 10.3390/ijms17091387] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/11/2016] [Accepted: 08/13/2016] [Indexed: 12/12/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the deadliest tumor among gynecological cancer in the industrialized countries. The EOC incidence and mortality have remained unchanged over the last 30 years, despite the progress in diagnosis and treatment. In order to develop novel and more effective therapeutic approaches, the molecular mechanisms involved in EOC progression have been thoroughly investigated in the last few decades. At the late stage, peritoneal metastases originate from the attachment of small clusters of cancer cells that shed from the primary site and carried by the ascites adhere to the abdominal peritoneum or omentum. This behavior suggests that cell–cell or cell–matrix adhesion mechanisms regulate EOC growth and dissemination. Complex downstream signalings, which might be influenced by functional cross-talk between adhesion molecules and co-expressed and activated signaling proteins, can affect the proliferation/survival and the migration/invasion of EOC cells. This review aimed to define the impact of the mechanisms of cell–cell, through cadherins, and cell–extracellular matrix adhesion, through integrins, on the signaling cascades induced by membrane receptors and cytoplasmic proteins known to have a role in the proliferation, migration and invasion of EOC cells. Finally, some novel approaches using peptidomimetic ligands to cadherin and integrins are summarized.
Collapse
Affiliation(s)
- Francesca Roggiani
- Unit of Molecular Therapies, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, Milan 20133, Italy.
| | - Delia Mezzanzanica
- Unit of Molecular Therapies, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, Milan 20133, Italy.
| | - Katia Rea
- Unit of Molecular Therapies, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, Milan 20133, Italy.
| | - Antonella Tomassetti
- Unit of Molecular Therapies, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, Milan 20133, Italy.
| |
Collapse
|
34
|
Bianchi A, Arosio D, Perego P, De Cesare M, Carenini N, Zaffaroni N, De Matteo M, Manzoni L. Design, synthesis and biological evaluation of novel dimeric and tetrameric cRGD-paclitaxel conjugates for integrin-assisted drug delivery. Org Biomol Chem 2016; 13:7530-41. [PMID: 26074454 DOI: 10.1039/c5ob00497g] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Integrins are associated with tumour cell survival and progression, and their expression has been shown to be increased in tumours. Thus, four novel conjugates of the tripeptide integrin ligand Arg-Gly-Asp (RGD) and the cytotoxic agent paclitaxel (cRGD-PTX) were prepared to investigate the potential of the multivalent presentation of the RGD moiety in improving the antitumor efficacy of PTX by tumour targeting. PTX was conjugated to two or four integrin recognizing ligands. The influence of multivalent presentation on in vitro αvβ3-receptor affinity was confirmed. For all the conjugates compared to the previously synthesized monovalent counterparts, an enhancement of the binding strength was observed; this behaviour was more pronounced when considering the tetravalent presented RGD-conjugate. Cell growth inhibition assays on a panel of human tumour cell lines showed remarkable cytotoxic activity for all conjugates with IC50 values in a nanomolar range. Among the four conjugates, the bivalent derivative 3b was selected for in vivo studies in an ovarian carcinoma cell model xenografted in immunodeficient mice. A marked antitumor activity was observed, similar to that of PTX, but with a much more favourable toxicity profile. Overall, the novel cRGD-PTX conjugates disclosed here represent promising candidates for further advancement in the domain of targeted anti-tumour therapy.
Collapse
Affiliation(s)
- A Bianchi
- Centro Interdipartimentale Studi Biomolecolari e Applicazioni Industriali, Università degli Studi di Milano, Via Fantoli 16/15, I-20138 Milano, Italy
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Seemann J, Waldron B, Parker D, Roesch F. DATATOC: a novel conjugate for kit-type 68Ga labelling of TOC at ambient temperature. EJNMMI Radiopharm Chem 2016; 1:4. [PMID: 29564381 PMCID: PMC5843802 DOI: 10.1186/s41181-016-0007-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/12/2016] [Indexed: 11/10/2022] Open
Abstract
Background The widespread acceptance and application of 68Ga-PET depends on our ability to develop radiopharmaceuticals that can be prepared in a convenient and suitable manner. A kit-type labelling protocol provides such characteristics and requires chelators that can be radiolabelled under exceptionally mild conditions. Recently the DATA chelators have been introduced that fulfil these requirements. In continuing their development, the synthesis and radiolabelling of the first DATA bifunctional chelator (BFC) and peptide conjugate are described. Results A BFC derived from the DATA ligand (2,2'-(6-((carboxymethyl)amino)-1,4-diazepane-1,4-diyl)diacetic acid) has been synthesised in five steps from simple building blocks, with an overall yield of 8 %. DATAM5-3tBu (5-[1,4-Bis-tert-butoxycarbonylmethyl-6-(tert-butoxycarbonylmethyl-methyl-amino)-[1, 4]diazepan-6-yl]-pentanoic acid) has been coupled to [DPhe1][Tyr3]-octreotide (TOC) and the resulting peptide conjugate (DATATOC) radiolabelled with purified 68Ga derived via four different 68Ge/68Ga generator post-processing (PP) methods. The stability and lipophilicity of the radiotracer have been assessed and a kit-type formulation for radiolabelling evaluated. 68Ga-DATATOC has been prepared with a > 95 % radiochemical yield (RCY) within 1 (fractionated and acetone-PP) and 10 min (ethanol- and NaCl-PP) at 23 °C (pH 4.2-4.9, 13 nmol). The radiolabelled peptide is stable in the presence of human serum. Lipophilicity of 68Ga-DATATOC was calculated as logP = -3.2 ± 0.3, with a HPLC retention time (tR = 10.4 min) similar to 68Ga-DOTATOC (logP = -2.9 ± 0.4, tR = 10.3 min). Kit-type labelling from a lyophilised solid using acetone-PP based labelling achieves > 95 % RCY in 10 min at 23 °C. Conclusions The favourable labelling properties of the DATA chelators have been retained for DATATOC. High radiochemical purity can be achieved at 23 °C in less than 1 min and from a kit formulation. The speed, reliability, ease, flexibility and simplicity with which 68Ga-DATATOC can be prepared makes it a very attractive alternative to current standards.
Collapse
Affiliation(s)
- Johanna Seemann
- Institute of Nuclear Chemistry, Johannes Gutenberg University, Fritz-Strassmann-Weg 2, 55128 Mainz, Germany
| | - Bradley Waldron
- Institute of Nuclear Chemistry, Johannes Gutenberg University, Fritz-Strassmann-Weg 2, 55128 Mainz, Germany
| | - David Parker
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE UK
| | - Frank Roesch
- Institute of Nuclear Chemistry, Johannes Gutenberg University, Fritz-Strassmann-Weg 2, 55128 Mainz, Germany
| |
Collapse
|
36
|
Wu Z, Zha Z, Choi SR, Plössl K, Zhu L, Kung HF. New (68)Ga-PhenA bisphosphonates as potential bone imaging agents. Nucl Med Biol 2016; 43:360-71. [PMID: 27260777 DOI: 10.1016/j.nucmedbio.2016.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 02/19/2016] [Accepted: 03/07/2016] [Indexed: 12/11/2022]
Abstract
INTRODUCTION In vivo positron emission tomography (PET) imaging of the bone using [(68)Ga]bisphosphonates may be a valuable tool for cancer diagnosis and monitoring therapeutic treatment. We have developed new [(68)Ga]bisphosphonates based on the chelating group, AAZTA (6-[bis(hydroxycarbonyl-methyl)amino]-1,4-bis(hydroxycarbonyl methyl)-6-methylperhydro-1,4-diazepine). METHOD Phenoxy derivative of AAZTA (2,2'-(6-(bis(carboxymethyl)amino)-6-((4-(2-carboxyethyl)phenoxy)methyl)-1,4-diazepane-1,4-diyl)diacetic acid), PhenA, 2, containing a bisphosphonate group (PhenA-BPAMD, 3, and PhenA-HBP, 4) was prepared. Labeling of these chelating agents with (68)Ga was evaluated. RESULTS The ligands reacted rapidly in a sodium acetate buffer with [(68)Ga]GaCl3 eluted from a commercially available (68)Ge/(68)Ga generator (pH4, >95% labeling at room temperature in 5min) to form [(68)Ga]PhenA-BPAMD, 3, and [(68)Ga]PhenA-HBP, 4. The improved labeling condition negates the need for further purification. The (68)Ga bisphosphonate biodistribution and autoradiography of bone sections in normal mice after an iv injection showed excellent bone uptake. CONCLUSION New (68)Ga labeled bisphosphonates may be useful as in vivo bone imaging agents in conjunction with positron emission tomography (PET).
Collapse
Affiliation(s)
- Zehui Wu
- Five Eleven Pharma Inc., Philadelphia, PA 19104, USA
| | - Zhihao Zha
- Five Eleven Pharma Inc., Philadelphia, PA 19104, USA
| | - Seok Rye Choi
- Five Eleven Pharma Inc., Philadelphia, PA 19104, USA
| | - Karl Plössl
- Five Eleven Pharma Inc., Philadelphia, PA 19104, USA
| | - Lin Zhu
- Five Eleven Pharma Inc., Philadelphia, PA 19104, USA
| | - Hank F Kung
- Five Eleven Pharma Inc., Philadelphia, PA 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
37
|
Kiani A, Esquevin A, Lepareur N, Bourguet P, Le Jeune F, Gauvrit J. Main applications of hybrid PET-MRI contrast agents: a review. CONTRAST MEDIA & MOLECULAR IMAGING 2016; 11:92-98. [PMID: 26632007 DOI: 10.1002/cmmi.1674] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 09/17/2015] [Accepted: 10/19/2015] [Indexed: 12/29/2022]
Abstract
In medical imaging, the continuous quest to improve diagnostic performance and optimize treatment strategies has led to the use of combined imaging modalities. Positron emission tomography (PET) and computed tomography (CT) is a hybrid imaging existing already for many years. The high spatial and contrast resolution of magnetic resonance imaging (MRI) and the high sensitivity and molecular information from PET imaging are leading to the development of this new hybrid imaging along with hybrid contrast agents. To create a hybrid contrast agent for PET-MRI device, a PET radiotracer needs to be combined with an MRI contrast agent. The most common approach is to add a radioactive isotope to the surface of a small superparamagnetic iron oxide (SPIO) particle. The resulting agents offer a wide range of applications, such as pH variation monitoring, non-invasive angiography and early imaging diagnosis of atherosclerosis. Oncology is the most promising field with the detection of sentinel lymph nodes and the targeting of tumor neoangiogenesis. Oncology and cardiovascular imaging are thus major areas of development for hybrid PET-MRI imaging systems and hybrid contrast agents. The aim is to combine high spatial resolution, high sensitivity, morphological and functional information. Future prospects include the use of specific antibodies and hybrid multimodal PET-MRI-ultrasound-fluorescence imaging with the potential to provide overall pre-, intra- and postoperative patient care.
Collapse
Affiliation(s)
- A Kiani
- Neurofacial Imaging Unit, Department of Radiology, Rennes University Hospital, 2 rue H. Le Guilloux, 35033, Rennes, France
| | - A Esquevin
- Neurofacial Imaging Unit, Department of Radiology, Rennes University Hospital, 2 rue H. Le Guilloux, 35033, Rennes, France
- VisAGeS U746 Unit/Project, INSERM/INRIA, IRISA, UMR CNRS 6074, University of Rennes 1, Beaulieu Campus, 35042, Rennes, France
| | - N Lepareur
- Department of Nuclear Medicine, Eugène Marquis Center, avenue Bataille Flandres Dunkerque, 35042, Rennes, France
- INSERM UMR-S 991 Unit "Liver, Metabolisms and Cancer", University of Rennes 1, 2 rue H. Le Guilloux, 35033, Rennes, France
| | - P Bourguet
- Department of Nuclear Medicine, Eugène Marquis Center, avenue Bataille Flandres Dunkerque, 35042, Rennes, France
| | - F Le Jeune
- Department of Nuclear Medicine, Eugène Marquis Center, avenue Bataille Flandres Dunkerque, 35042, Rennes, France
- EA 4712, "Behavior and Basal Ganglia", University of Rennes 1, 2 rue H. Le Guilloux, 35033, Rennes, France
| | - Jy Gauvrit
- Neurofacial Imaging Unit, Department of Radiology, Rennes University Hospital, 2 rue H. Le Guilloux, 35033, Rennes, France
- VisAGeS U746 Unit/Project, INSERM/INRIA, IRISA, UMR CNRS 6074, University of Rennes 1, Beaulieu Campus, 35042, Rennes, France
| |
Collapse
|
38
|
Vágner A, D'Alessandria C, Gambino G, Schwaiger M, Aime S, Maiocchi A, Tóth I, Baranyai Z, Tei L. A rigidified AAZTA-like ligand as efficient chelator for68Ga radiopharmaceuticals. ChemistrySelect 2016. [DOI: 10.1002/slct.201500051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Adrienn Vágner
- Department of Inorganic and Analytical Chemistry; University of Debrecen; H-4032 Debrecen Egyetem tér 1. Hungary
| | - Calogero D'Alessandria
- Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar; Technische Universität München; Ismaningerstr. 22 81675 Munich Germany
| | - Giuseppe Gambino
- Dipartimento di Scienze e Innovazione Tecnologica (DiSIT); Università degli Studi del Piemonte Orientale “A. Avogadro”; Viale T. Michel 11 I-15121 Alessandria Italy
| | - Markus Schwaiger
- Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar; Technische Universität München; Ismaningerstr. 22 81675 Munich Germany
| | - Silvio Aime
- Department of Molecular Biotechnology and Health Sciences; Molecular Imaging Center, University of Torino; Via Nizza 52 I-10126 Torino Italy
| | - Alessandro Maiocchi
- Centro Ricerche Bracco, Bracco Imaging Spa; Via Ribes 5 I-10010 Colleretto Giacosa Italy
| | - Imre Tóth
- Department of Inorganic and Analytical Chemistry; University of Debrecen; H-4032 Debrecen Egyetem tér 1. Hungary
| | - Zsolt Baranyai
- Department of Inorganic and Analytical Chemistry; University of Debrecen; H-4032 Debrecen Egyetem tér 1. Hungary
| | - Lorenzo Tei
- Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar; Technische Universität München; Ismaningerstr. 22 81675 Munich Germany
- Dipartimento di Scienze e Innovazione Tecnologica (DiSIT); Università degli Studi del Piemonte Orientale “A. Avogadro”; Viale T. Michel 11 I-15121 Alessandria Italy
| |
Collapse
|
39
|
Arosio D, Casagrande C. Advancement in integrin facilitated drug delivery. Adv Drug Deliv Rev 2016; 97:111-43. [PMID: 26686830 DOI: 10.1016/j.addr.2015.12.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/27/2015] [Accepted: 12/03/2015] [Indexed: 02/06/2023]
Abstract
The research of integrin-targeted anticancer agents has recorded important advancements in ingenious design of delivery systems, based either on the prodrug approach, or on nanoparticle carriers, but for now, none of these has reached a clinical stage of development. Past work in this area has been extensively reviewed by us and others. Thus, the purpose and scope of the present review is to survey the advancement reported in the last 3years, with focus on innovative delivery systems that appear to afford openings for future developments. These systems exploit the labelling with conventional and novel integrin ligands for targeting the interface of cancer cells and of endothelial cells involved in cancer angiogenesis, with the proteins of the extracellular matrix, in the circulation, in tissues, and in tumour stroma, as the site of progression and metastatic evolution of the disease. Furthermore, these systems implement the expertise in the development of nanomedicines to the purpose of achieving preferential biodistribution and uptake in cancer tissues, internalisation in cancer cells, and release of the transported drugs at intracellular sites. The assessment of the value of controlling these factors, and their combination, for future developments requires support of biological testing in appropriate mechanistic models, but also imperatively demand confirmation in therapeutically relevant in vivo models for biodistribution, efficacy, and lack of off-target effects. Thus, among many studies, we have tried to point out the results supported by relevant in vivo studies, and we have emphasised in specific sections those addressing the medical needs of drug delivery to brain tumours, as well as the delivery of oligonucleotides modulating gene-dependent pathological mechanism. The latter could constitute the basis of a promising third branch in the therapeutic armamentarium against cancer, in addition to antibody-based agents and to cytotoxic agents.
Collapse
Affiliation(s)
- Daniela Arosio
- Istituto di Scienze e Tecnologie Molecolari (ISTM), CNR, Via C. Golgi 19, I-20133 Milan, Italy.
| | - Cesare Casagrande
- Università degli Studi di Milano, Dipartimento di Chimica, Via C. Golgi 19, I-20133 Milan, Italy.
| |
Collapse
|
40
|
Pfister J, Summer D, Rangger C, Petrik M, von Guggenberg E, Minazzi P, Giovenzana GB, Aloj L, Decristoforo C. Influence of a novel, versatile bifunctional chelator on theranostic properties of a minigastrin analogue. EJNMMI Res 2015; 5:74. [PMID: 26669693 PMCID: PMC4679714 DOI: 10.1186/s13550-015-0154-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 12/10/2015] [Indexed: 01/21/2023] Open
Abstract
Background 6-[Bis(carboxymethyl)amino]-1,4-bis(carboxymethyl)-6-methyl-1,4-diazepane (AAZTA ) is a promising chelator with potential advantages over 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) for radiopharmaceutical applications. Its mesocyclic structure enables fast radiolabelling under mild conditions with trivalent metals including not only 68Ga for positron emission tomography (PET) but also 177Lu and 111In for single-photon emission computed tomography (SPECT) and radionuclide therapy. Here, we describe the evaluation of a bifunctional AAZTA derivative conjugated to a model minigastrin derivative as a potential theranostic agent. Methods An AAZTA derivative with an aliphatic C9 chain as linker was coupled to a minigastrin, namely [AAZTA0, D-Glu1, desGlu2–6]-minigastrin (AAZTA-MG), and labelled with 68Ga, 177Lu and 111In. The characterisation in vitro included stability studies in different media and determination of logD (octanol/PBS). Affinity determination (IC50) and cell uptake studies were performed in A431-CCK2R cells expressing the human CCK2 receptor. μPET/CT and ex vivo biodistribution studies were performed in CCK2 tumour xenograft-bearing nude mice and normal mice. Results AAZTA-MG showed high radiochemical yields for 68Ga (>95 %), 177Lu (>98 %) and 111In (>98 %). The logD value of −3.7 for both [68Ga]- and [177Lu]-AAZTA-MG indicates a highly hydrophilic character. Stability tests showed overall high stability in solution with some degradation in human plasma for [68Ga]- and transchelation towards DTPA for and [177Lu]-AAZTA-MG. An IC50 value of 10.0 nM was determined, which indicates a high affinity for the CCK2 receptor. Specific cell uptake after 60 min was >7.5 % for [68Ga]-AAZTA-MG and >9.5 % for [177Lu]-AAZTA-MG, comparable to other DOTA-MG-analogues. μPET/CT studies in CCK2 receptor tumour xenografted mice not only revealed high selective accumulation in A431-CCK2R positive tumours of 68Ga-labelled AAZTA-MG (1.5 % ID/g in 1 h post injection) but also higher blood levels as corresponding DOTA-analogues. The 111In-labelled peptide had a tumour uptake of 1.7 % ID/g. Biodistribution in normal mice with the [177Lu]-AAZTA-MG showed a considerable uptake in intestine (7.3 % ID/g) and liver (1.5 % ID/g). Conclusion Overall, AAZTA showed interesting properties as bifunctional chelator for peptides providing mild radiolabelling conditions for both 68Ga and trivalent metals having advantages over the currently used chelator DOTA. Studies are ongoing to further investigate in vivo targeting properties and stability issues and the influence of spacer length on biodistribution of AAZTA. Electronic supplementary material The online version of this article (doi:10.1186/s13550-015-0154-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joachim Pfister
- Department of Nuclear Medicine, Innsbruck Medical University, Anichstrasse 35, A-6020, Innsbruck, Austria
| | - Dominik Summer
- Department of Nuclear Medicine, Innsbruck Medical University, Anichstrasse 35, A-6020, Innsbruck, Austria
| | - Christine Rangger
- Department of Nuclear Medicine, Innsbruck Medical University, Anichstrasse 35, A-6020, Innsbruck, Austria
| | - Milos Petrik
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Elisabeth von Guggenberg
- Department of Nuclear Medicine, Innsbruck Medical University, Anichstrasse 35, A-6020, Innsbruck, Austria
| | | | - Giovanni B Giovenzana
- CAGE Chemicals srl, Novara, Italy.,DSF, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Luigi Aloj
- Division of Nuclear Medicine, Istituto Nazionale Tumori, "Fondazione G. Pascale"-IRCCS, Napoli, Italy
| | - Clemens Decristoforo
- Department of Nuclear Medicine, Innsbruck Medical University, Anichstrasse 35, A-6020, Innsbruck, Austria.
| |
Collapse
|
41
|
Khashper A, Lubell WD. Design, synthesis, conformational analysis and application of indolizidin-2-one dipeptide mimics. Org Biomol Chem 2015; 12:5052-70. [PMID: 24899358 DOI: 10.1039/c4ob00777h] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Growth in the field of peptide mimicry over the past few decades has resulted in the synthesis of many new compounds and the investigation of novel pharmacological agents. Azabicyclo[X.Y.0]alkanone amino acids are among the attractive classes of constrained mimics, because they can create rigid peptide structures for probing the conformation and roles of natural motifs in recognition events important for biological activity. Herein, we review the last ten years of the synthesis, conformational analysis and activity of analogs of the azabicyclo[4.3.0]alkan-2-one amino acid subclass, so-called indolizidin-2-one amino acids, with particular attention on their employment as inputs for biological applications.
Collapse
Affiliation(s)
- Arkady Khashper
- Département de Chimie, Université de Montréal, Montréal H3C 3J7, Canada.
| | | |
Collapse
|
42
|
Sartori A, Bianchini F, Migliari S, Burreddu P, Curti C, Vacondio F, Arosio D, Ruffini L, Rassu G, Calorini L, Pupi A, Zanardi F, Battistini L. Synthesis and preclinical evaluation of a novel, selective 111In-labelled aminoproline-RGD-peptide for non-invasive melanoma tumor imaging. MEDCHEMCOMM 2015. [DOI: 10.1039/c5md00301f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
An 111In-labelled Amp-based RGD-DOTA conjugate was synthesized and evaluated in preclinical models of human melanoma as a novel integrin-targeted SPECT imaging tracer.
Collapse
|
43
|
Park JA, Lee YJ, Lee JW, Lee KC, An GI, Kim KM, Kim BI, Kim TJ, Kim JY. Cyclic RGD Peptides Incorporating Cycloalkanes: Synthesis and Evaluation as PET Radiotracers for Tumor Imaging. ACS Med Chem Lett 2014; 5:979-82. [PMID: 25221652 DOI: 10.1021/ml500135t] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 07/10/2014] [Indexed: 12/11/2022] Open
Abstract
Two new bicyclic arginine-glycine-aspartic acid (RGD) peptides, c(RGD-ACP-K) (1a) and c(RGD-ACH-K) (1b), incorporating the aminocyclopentane (ACP) and aminocyclohexane (ACH) carboxylic acids, respectively, were synthesized by grafting the aminocycloalkane carboxylic acids onto the tetra-peptide RGDK sequence. These peptides and their conjugates with DO3A (1,4,7,10-tetraazacyclododecane-1,4,7-trisacetic acid) (2a-b) exhibit high affinity toward U87MG glioblastoma cells. Their affinity is greater than that exhibited by c(RGDyK). Labeling these conjugates with radiometal (64)Cu resulted in high radiochemical yields (>97%) of the corresponding complexes, abbreviated as c(RGD-ACP-K)-DOTA-(64)Cu (3a) and c(RGD-ACH-K)-DOTA-(64)Cu (3b). Both 3a and 3b are stable for 24 h in human and mouse serums and show high tumor uptake, as observed by positron emission tomography (PET). Blocking experiments with 3a and 3b by preinjection of c(RGDyK) confirmed their target specificity and demonstrated their promise as PET radiotracers for imaging ανβ3-positive tumors.
Collapse
Affiliation(s)
- Ji-Ae Park
- Molecular Imaging
Research Center, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Republic of Korea
| | - Yong Jin Lee
- Molecular Imaging
Research Center, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Republic of Korea
| | - Ji Woong Lee
- Molecular Imaging
Research Center, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Republic of Korea
| | - Kyo Chul Lee
- Molecular Imaging
Research Center, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Republic of Korea
| | - Gwang il An
- Molecular Imaging
Research Center, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Republic of Korea
| | - Kyeong Min Kim
- Molecular Imaging
Research Center, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Republic of Korea
| | - Byung il Kim
- Department of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Republic of Korea
| | - Tae-Jeong Kim
- Institute of Biomedical Engineering Research, Medical
School, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Jung Young Kim
- Molecular Imaging
Research Center, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Republic of Korea
| |
Collapse
|
44
|
Synthesis of bifunctional chelating agents based on mono and diphosphonic derivatives of diethylenetriaminepentaacetic acid. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.05.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
45
|
Battistini L, Burreddu P, Sartori A, Arosio D, Manzoni L, Paduano L, D’Errico G, Sala R, Reia L, Bonomini S, Rassu G, Zanardi F. Enhancement of the Uptake and Cytotoxic Activity of Doxorubicin in Cancer Cells by Novel cRGD-Semipeptide-Anchoring Liposomes. Mol Pharm 2014; 11:2280-93. [DOI: 10.1021/mp400718j] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Lucia Battistini
- Dipartimento
di Farmacia, Università degli Studi di Parma, Parma 43124, Italy
| | - Paola Burreddu
- Istituto
di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Li Punti Sassari 07100, Italy
| | - Andrea Sartori
- Dipartimento
di Farmacia, Università degli Studi di Parma, Parma 43124, Italy
| | - Daniela Arosio
- Istituto
di Scienze e Tecnologie Molecolari, Consiglio Nazionale delle Ricerche, Milano 20133, Italy
| | - Leonardo Manzoni
- Istituto
di Scienze e Tecnologie Molecolari, Consiglio Nazionale delle Ricerche, Milano 20133, Italy
| | - Luigi Paduano
- Dipartimento
di Scienze Chimiche, Università degli Studi di Napoli “Federico II”, Napoli 80126, Italy
- CSGI−Consorzio interuniversitario per lo sviluppo dei Sistemi a Grande Interfase, Sesto Fiorentino 50019, Italy
| | - Gerardino D’Errico
- Dipartimento
di Scienze Chimiche, Università degli Studi di Napoli “Federico II”, Napoli 80126, Italy
- CSGI−Consorzio interuniversitario per lo sviluppo dei Sistemi a Grande Interfase, Sesto Fiorentino 50019, Italy
| | - Roberto Sala
- Dipartimento
di Scienze Biomediche, Biotecnologiche e Traslazionali, Università degli Studi di Parma, Parma 43126, Italy
| | - Laura Reia
- Dipartimento
di Scienze Biomediche, Biotecnologiche e Traslazionali, Università degli Studi di Parma, Parma 43126, Italy
| | - Sabrina Bonomini
- Dipartimento
di Medicina Clinica e Sperimentale, Università degli Studi di Parma, Parma 43126, Italy
| | - Gloria Rassu
- Istituto
di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Li Punti Sassari 07100, Italy
| | - Franca Zanardi
- Dipartimento
di Farmacia, Università degli Studi di Parma, Parma 43124, Italy
| |
Collapse
|
46
|
Rechenmacher F, Steigerwald K, Laufer B, Neubauer S, Kapp TG, Li L, Mas-Moruno C, Joner M, Kessler H. The Integrin Ligandc(RGDf(NMe)Nal) Reduces Neointimal Hyperplasia in a Polymer-Free Drug-Eluting Stent System. ChemMedChem 2014; 9:1413-8. [DOI: 10.1002/cmdc.201400078] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Indexed: 01/28/2023]
|
47
|
Minazzi P, Lattuada L, Menegotto IG, Giovenzana GB. An enzymatic approach to bifunctional chelating agents. Org Biomol Chem 2014; 12:6915-21. [DOI: 10.1039/c4ob00810c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Three novel BFCAs are obtained through an original protocol involving an enzymatic hydrolysis as the key step.
Collapse
Affiliation(s)
- Paolo Minazzi
- Dipartimento di Scienze del Farmaco
- Università degli Studi del Piemonte Orientale “A. Avogadro”
- 28100 Novara, Italy
- CAGE Chemicals srl
- 28100 Novara, Italy
| | - Luciano Lattuada
- Bracco Imaging SpA
- Bracco Research Centre
- 10010 Colleretto Giacosa (TO), Italy
| | - Ivan G. Menegotto
- Dipartimento di Scienze del Farmaco
- Università degli Studi del Piemonte Orientale “A. Avogadro”
- 28100 Novara, Italy
| | - Giovanni B. Giovenzana
- Dipartimento di Scienze del Farmaco
- Università degli Studi del Piemonte Orientale “A. Avogadro”
- 28100 Novara, Italy
- CAGE Chemicals srl
- 28100 Novara, Italy
| |
Collapse
|
48
|
Menichetti L, Kusmic C, Panetta D, Arosio D, Petroni D, Matteucci M, Salvadori PA, Casagrande C, L’Abbate A, Manzoni L. MicroPET/CT imaging of αvβ3 integrin via a novel 68Ga-NOTA-RGD peptidomimetic conjugate in rat myocardial infarction. Eur J Nucl Med Mol Imaging 2013; 40:1265-74. [DOI: 10.1007/s00259-013-2432-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 04/15/2013] [Indexed: 01/29/2023]
|
49
|
Goraczniak R, Wall BA, Behlke MA, Lennox KA, Ho ES, Zaphiros NH, Jakubowski C, Patel NR, Zhao S, Magaway C, Subbie SA, Jenny Yu L, LaCava S, Reuhl KR, Chen S, Gunderson SI. U1 Adaptor Oligonucleotides Targeting BCL2 and GRM1 Suppress Growth of Human Melanoma Xenografts In Vivo. MOLECULAR THERAPY. NUCLEIC ACIDS 2013; 2:e92. [PMID: 23673539 PMCID: PMC4817935 DOI: 10.1038/mtna.2013.24] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 04/03/2013] [Indexed: 12/23/2022]
Abstract
U1 Adaptor is a recently discovered oligonucleotide-based gene-silencing technology with a unique mechanism of action that targets nuclear pre-mRNA processing. U1 Adaptors have two distinct functional domains, both of which must be present on the same oligonucleotide to exert their gene-silencing function. Here, we present the first in vivo use of U1 Adaptors by targeting two different human genes implicated in melanomagenesis, B-cell lymphoma 2 (BCL2) and metabotropic glutamate receptor 1 (GRM1), in a human melanoma cell xenograft mouse model system. Using a newly developed dendrimer delivery system, anti-BCL2 U1 Adaptors were very potent and suppressed tumor growth at doses as low as 34 µg/kg with twice weekly intravenous (iv) administration. Anti-GRM1 U1 Adaptors suppressed tumor xenograft growth with similar potency. Mechanism of action was demonstrated by showing target gene suppression in tumors and by observing that negative control U1 Adaptors with just one functional domain show no tumor suppression activity. The anti-BCL2 and anti-GRM1 treatments were equally effective against cell lines harboring either wild-type or a mutant V600E B-RAF allele, the most common mutation in melanoma. Treatment of normal immune-competent mice (C57BL6) indicated no organ toxicity or immune stimulation. These proof-of-concept studies represent an in-depth (over 800 mice in ~108 treatment groups) validation that U1 Adaptors are a highly potent gene-silencing therapeutic and open the way for their further development to treat other human diseases.Molecular Therapy - Nucleic Acids (2013) 2, e92; doi:10.1038/mtna.2013.24; published online 14 May 2013.
Collapse
Affiliation(s)
| | - Brian A Wall
- Department of Chemical Biology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, New Jersey, USA
| | - Mark A Behlke
- Integrated DNA Technologies Inc., Coralville, Iowa, USA
| | - Kim A Lennox
- Integrated DNA Technologies Inc., Coralville, Iowa, USA
| | - Eric S Ho
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, USA
| | - Nikolas H Zaphiros
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, USA
| | - Christopher Jakubowski
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, USA
| | - Neil R Patel
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, USA
| | - Steven Zhao
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, USA
| | - Carlo Magaway
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, USA
| | - Stacey A Subbie
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, USA
| | - Lumeng Jenny Yu
- Department of Chemical Biology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, New Jersey, USA
| | - Stephanie LaCava
- Department of Chemical Biology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, New Jersey, USA
| | - Kenneth R Reuhl
- Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, New Jersey, USA
| | - Suzie Chen
- Department of Chemical Biology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, New Jersey, USA
| | - Samuel I Gunderson
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
50
|
Cai H, Conti PS. RGD-based PET tracers for imaging receptor integrin αv β3 expression. J Labelled Comp Radiopharm 2013; 56:264-79. [PMID: 24285371 DOI: 10.1002/jlcr.2999] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 11/02/2012] [Accepted: 11/06/2012] [Indexed: 12/20/2022]
Abstract
Positron emission tomography (PET) imaging of receptor integrin αv β3 expression may play a key role in the early detection of cancer and cardiovascular diseases, monitoring disease progression, evaluating therapeutic response, and aiding anti-angiogenic drugs discovery and development. The last decade has seen the development of new PET tracers for in vivo imaging of integrin αv β3 expression along with advances in PET chemistry. In this review, we will focus on the radiochemistry development of PET tracers based on arginine-glycine-aspartic acid (RGD) peptide, present an overview of general strategies for preparing RGD-based PET tracers, and review the recent advances in preparations of (18) F-labeled, (64) Cu-labeled, and (68) Ga-labeled RGD tracers, RGD-based PET multivalent probes, and RGD-based PET multimodality probes for imaging receptor integrin αv β3 expression.
Collapse
Affiliation(s)
- Hancheng Cai
- PET Center, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI, 48201, USA; Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | | |
Collapse
|