1
|
Bharathidasan D, Maity C. Organelle-Specific Smart Supramolecular Materials for Bioimaging and Theranostics Application. Top Curr Chem (Cham) 2024; 383:1. [PMID: 39607460 DOI: 10.1007/s41061-024-00483-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
In cellular environments, certain synthetic molecules can form nanostructures via self-assembly, impacting molecular imaging, and biomedical applications. Control over the formation of these self-assembled nanostructures in subcellular organelle is challenging. By the action of stimuli, either present in the cellular environment or applied externally, in situ generation of molecular precursors can lead to accumulation and supramolecular nanostructure formation, resulting in efficient bioimaging. Here, we summarize smart fluorophore-based ordered nanostructure preparation at specific organelles for efficient bioimaging and therapeutic application towards cancer theranostics. We also present challenges and an outlook regarding intercellular self-assembly for theranostics application. Altogether, smart nanostructured materials with fluorescence read-outs at specific subcellular compartments would be beneficial in synthetic biology and precision therapeutics.
Collapse
Affiliation(s)
- Dineshkumar Bharathidasan
- (Organic)Material Science and Engineering Laboratory, Centre for Nanobiotechnology (CNBT), Vellore Institute of Technology (VIT), Vellore Campus, Vellore, Tamilnadu, 632014, India
| | - Chandan Maity
- (Organic)Material Science and Engineering Laboratory, Centre for Nanobiotechnology (CNBT), Vellore Institute of Technology (VIT), Vellore Campus, Vellore, Tamilnadu, 632014, India.
| |
Collapse
|
2
|
Sharma A, Chhipa AS, Verma S, Parikh P, Patel S. Olsalazine pretreatment augments chemosensitivity of gemcitabine in hepatocellular carcinoma. J Biochem Mol Toxicol 2024; 38:e23737. [PMID: 38798245 DOI: 10.1002/jbt.23737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/20/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024]
Abstract
Recently, olsalazine a DNA hypomethylating agent was found to inhibit the growth of breast cancer cells. The present study was carried out to evaluate the effects of olsalazine pretreatment in the potentiation of chemosensitivity of gemcitabine for the treatment of hepatocellular carcinoma (HCC). In silico molecular docking was performed to analyze the interaction of olsalazine and gemcitabine with DNMT1 and DNA, respectively, using the AutoDock tools 1.5.6. Cytotoxicity of olsalazine, gemcitabine, and combination were measured on human HePG2 cells using MTT assay. Antiproliferative effects were assessed using animal model of N-nitrosodiethylamine and carbon tetrachloride-induced HCC. Treatment was initiated from 8th week of induction to 11th week and change in body weight, liver weight, and survival rate were measured. Following treatment, blood samples were collected for estimation serum biochemistry. Blood serum was used for the estimation of inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), C-reactive protein [CRP], lactate dehydrogenase (LDH), and P53 levels. Oxidative stress markers were measured in liver tissue homogenates. Histopathology and immunohistochemistry (IHC) were performed on liver sections to detect the morphological changes and P53 expression. Docking analysis revealed the interactions between olsalazine and DNMT1 with a binding energy score of -5.34 and gemcitabine and DNA with a binding energy score of -5.93. Olsalazine pretreatment potentiated the antiproliferative effect of gemcitabine in cell line study. In the group receiving olsalazine pretreatment showed significant reductions in relative liver weight and improved survival rate of gemcitabine treatment group. Serum biochemical markers: serum glutamate pyruvate transaminase, serum glutamic oxaloacetic transaminase, alkaline phosphatase, and bilirubin revealed improved liver functions. Olsalazine pretreatment also reduced the levels of inflammatory markers like CRP, LDH, TNF-α, and IL-6 and oxidative stress markers dose dependently. Histopathology and IHC showed improved liver morphology with potentiated the induction of P53 upon olsalazine pretreatment in combination with gemcitabine. In conclusion, sequential combination of olsalazine and gemcitabine improved the treatment outcomes during the progression of HCC.
Collapse
Affiliation(s)
- Ayush Sharma
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Abu Sufiyan Chhipa
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Srashti Verma
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Palak Parikh
- Department of Pharmaceutical Chemistry and Quality Assurance, L. M. College of Pharmacy, Ahmedabad, Gujarat, India
| | - Snehal Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| |
Collapse
|
3
|
Li J, Zhao Q, Zhang N, Wu L, Wang Q, Li J, Pan Q, Pu Y, Luo K, Gu Z, He B. Triune Nanomodulator Enables Exhausted Cytotoxic T Lymphocyte Rejuvenation for Cancer Epigenetic Immunotherapy. ACS NANO 2024; 18:13226-13240. [PMID: 38712706 DOI: 10.1021/acsnano.4c02337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Oncogene activation and epigenome dysregulation drive tumor initiation and progression, contributing to tumor immune evasion and compromising the clinical response to immunotherapy. Epigenetic immunotherapy represents a promising paradigm in conquering cancer immunosuppression, whereas few relevant drug combination and delivery strategies emerge in the clinic. This study presents a well-designed triune nanomodulator, termed ROCA, which demonstrates robust capabilities in tumor epigenetic modulation and immune microenvironment reprogramming for cancer epigenetic immunotherapy. The nanomodulator is engineered from a nanoscale framework with epigenetic modulation and cascaded catalytic activity, which self-assembles into a nanoaggregate with tumor targeting polypeptide decoration that enables loading of the immunogenic cell death (ICD)-inducing agent. The nanomodulator releases active factors specifically triggered in the tumor microenvironment, represses oncogene expression, and initiates the type 1 T helper (TH1) cell chemokine axis by reversing DNA hypermethylation. This process, together with ICD induction, fundamentally reprograms the tumor microenvironment and significantly enhances the rejuvenation of exhausted cytotoxic T lymphocytes (CTLs, CD8+ T cells), which synergizes with the anti-PD-L1 immune checkpoint blockade and results in a boosted antitumor immune response. Furthermore, this strategy establishes long-term immune memory and effectively prevents orthotopic colon cancer relapse. Therefore, the nanomodulator holds promise as a standalone epigenetic immunotherapy agent or as part of a combination therapy with immune checkpoint inhibitors in preclinical cancer models, broadening the array of combinatorial strategies in cancer immunotherapy.
Collapse
Affiliation(s)
- Junhua Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610064, China
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211816, China
| | - Quan Zhao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610064, China
| | - Nan Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610064, China
| | - Lihuang Wu
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211816, China
| | - Qiusheng Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610064, China
| | - Jing Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610064, China
| | - Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610064, China
| | - Kui Luo
- Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhongwei Gu
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211816, China
- Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610064, China
| |
Collapse
|
4
|
Novel epigenetic therapeutic strategies and targets in cancer. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166552. [PMID: 36126898 DOI: 10.1016/j.bbadis.2022.166552] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/08/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022]
Abstract
The critical role of dysregulated epigenetic pathways in cancer genesis, development, and therapy has typically been established as a result of scientific and technical innovations in next generation sequencing. RNA interference, histone modification, DNA methylation and chromatin remodelling are epigenetic processes that control gene expression without causing mutations in the DNA. Although epigenetic abnormalities are thought to be a symptom of cell tumorigenesis and malignant events that impact tumor growth and drug resistance, physicians believe that related processes might be a key therapeutic target for cancer treatment and prevention due to the reversible nature of these processes. A plethora of novel strategies for addressing epigenetics in cancer therapy for immuno-oncological complications are currently available - ranging from basic treatment to epigenetic editing. - and they will be the subject of this comprehensive review. In this review, we cover most of the advancements made in the field of targeting epigenetics with special emphasis on microbiology, plasma science, biophysics, pharmacology, molecular biology, phytochemistry, and nanoscience.
Collapse
|
5
|
Copper-olsalazine metal-organic frameworks as a nanocatalyst and epigenetic modulator for efficient inhibition of colorectal cancer growth and metastasis. Acta Biomater 2022; 152:495-506. [PMID: 36087871 DOI: 10.1016/j.actbio.2022.08.076] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/16/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022]
Abstract
Despite the extensive explorations of nanoscale metal-organic frameworks (nanoMOFs) in drug delivery, the intrinsic bioactivity of nanoMOFs, such as anticancer activity, is severely underestimated owing to the overlooked integration of the hierarchical components including nanosized MOFs and molecular-level organic ligands and metal-organic complexes. Herein, we propose a de novo design of multifunctional bioactive nanoMOFs ranging from molecular to nanoscale level, and demonstrate this proof-of-concept by a copper-olsalazine (Olsa, a clinically approved drug for inflammatory bowel disease, here as a bioactive linker and DNA hypomethylating agent) nanoMOF displaying a multifaceted anticancer mechanism: (1) Cu-Olsa nanoMOF-mediated redox dyshomeostasis for enhanced catalytic tumor therapy, (2) targeting downregulation of cyclooxygenase-2 by the organic complex of Cu2+ and Olsa, and (3) Olsa-mediated epigenetic regulation. Cu-Olsa nanoMOF displayed an enzyme-like catalytic activity to generate cancericidal species ·OH and 1O2 from rich H2O2 in tumors, improved the expression of tumor suppressors TIMP3 and AXIN2 by epigenetic modulation, and fulfilled selective inhibition of colorectal cancer cells over normal cells. The hyaluronic acid-modified nanoMOF further verified the efficient suppression of CT26 colorectal tumor growth and metastasis in murine models. Overall, these results suggest that Olsa-based MOF presents a platform of epigenetic therapy-synergized nanomedicine for efficient cancer treatment and provides a powerful strategy for the design of intrinsically bioactive nanoMOFs. STATEMENT OF SIGNIFICANCE: Metal-organic frameworks (MOFs) with intrinsic bioactivities such as anticancer and antibacterial activity are of great interest. Herein, we reported a bioactive copper-olsalazine (Cu-Olsa) nanoMOF as a nanodrug for colorectal cancer treatment. This nanoMOF per se displayed enzyme-like catalytic activity to generate cancericidal species ·OH and 1O2 from rich H2O2 in tumors for nanocatalytic tumor therapy. Upon dissociation into small molecular copper-organic complex and olsalazine in cancer cells, COX-2 inhibition and epigenetic modulation were fulfilled for selective inhibition of colorectal cancer growth and metastasis.
Collapse
|
6
|
Sherin DR, Manojkumar TK. Exploring the selectivity of guanine scaffold in anticancer drug development by computational repurposing approach. Sci Rep 2021; 11:16251. [PMID: 34376738 PMCID: PMC8355261 DOI: 10.1038/s41598-021-95507-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/27/2021] [Indexed: 11/09/2022] Open
Abstract
Drug repurposing is one of the modern techniques used in the drug discovery to find out the new targets for existing drugs. Insilico methods have a major role in this approach. We used 60 FDA approved antiviral drugs reported in the last 50 years to screen against different cancer cell receptors. The thirteen compounds selected after virtual screening are analyzed for their druggability based on ADMET parameters and found the selectivity of guanine derivatives-didanosine, entecavir, acyclovir, valganciclovir, penciclovir, ganciclovir and valacyclovir as suitable candidates. The pharmacophore model, AARR, suggested based on the common feature alignment, shows that the two fused rings as in guanine and two acceptors-one from keto-oxygen (A5) and other from the substituent attached to nitrogen of imidazole ring (A4) give the druggability to the guanine derivatives. The NBO analysis on N9 is indicative of charge distribution from the ring to substituents, which results in delocalization of negative character in most of the ligands. The molecular dynamics simulations also pointed out the importance of guanine scaffold, which stabilizes the ligands inside the binding pocket of the receptor. All these results are indicative of the selectivity of guanine scaffold in anticancer drug development, especially as PARP1 inhibitors in breast, ovarian and prostate cancer. As these seven molecules are already approved by FDA, we can safely go for further preclinical trials.
Collapse
Affiliation(s)
- D R Sherin
- School of Digital Sciences, Kerala University of Digital Sciences, Innovation and Technology, Trivandrum, Kerala, India.
| | - T K Manojkumar
- School of Digital Sciences, Kerala University of Digital Sciences, Innovation and Technology, Trivandrum, Kerala, India.
| |
Collapse
|
7
|
Hassanzadeh P. The significance of bioengineered nanoplatforms against SARS-CoV-2: From detection to genome editing. Life Sci 2021; 274:119289. [PMID: 33676931 PMCID: PMC7930743 DOI: 10.1016/j.lfs.2021.119289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/12/2021] [Accepted: 02/20/2021] [Indexed: 12/19/2022]
Abstract
COVID-19 outbreak can impose serious negative impacts on the infrastructures of societies including the healthcare systems. Despite the increasing research efforts, false positive or negative results that may be associated with serologic or even RT-PCR tests, inappropriate or variable immune response, and high rates of mutations in coronavirus may negatively affect virus detection process and effectiveness of the vaccines or drugs in development. Nanotechnology-based research attempts via developing state-of-the-art techniques such as nanomechatronics ones and advanced materials including the sensors for detecting the pathogen loads at very low concentrations or site-specific delivery of therapeutics, and real-time protections against the pandemic outbreaks by nanorobots can provide outstanding biomedical breakthroughs. Considering the unique characteristics of pathogens particularly the newly-emerged ones and avoiding the exaggerated optimism or simplistic views on the prophylactic and therapeutic approaches including the one-size-fits-all ones or presenting multiple medications that may be associated with synergistic toxicities rather than enhanced efficiencies might pave the way towards the development of more appropriate treatment strategies with reduced safety concerns. This paper highlights the significance of nanoplatforms against the viral disorders and their capabilities of genome editing that may facilitate taking more appropriate measures against SARS-CoV-2.
Collapse
Affiliation(s)
- Parichehr Hassanzadeh
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran.
| |
Collapse
|
8
|
Asl MM, Asl JM, Naghitorabi M. Comparison of the effects of olsalazine and decitabine on the expression of CDH1 and uPA genes and cytotoxicity in MDA-MB-231 breast cancer cells. Res Pharm Sci 2021; 16:278-285. [PMID: 34221061 PMCID: PMC8216162 DOI: 10.4103/1735-5362.314826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/28/2020] [Accepted: 04/19/2021] [Indexed: 11/29/2022] Open
Abstract
Background and purpose: Since DNA methyltransferase enzymes play a key role in DNA methylation, they can be used as a target to alter epigenetic changes and treat cancer. Recent studies have shown that olsalazine, through its potent inhibitory effect on the DNA methyltransferase enzyme, can be a good option. The aim of this study was to investigate the effects of olsalazine on cell viability and expression of CDH1 and uPA genes in MDA-MB-231 cells compared with decitabine. Experimental approach: The cytotoxicity of the drugs was determined using a standard MTT assay. MDA-MB-231 cells were treated with olsalazine and decitabine with concentrations less than IC50 to evaluate the effect of drugs on the expression of genes. RNA was extracted from the cells after 24 and 48 h and CDH1and uPA gene expression were evaluated by quantitative real-time polymerase chain reaction method. Findings/Results: The cytotoxicity of the two drugs was comparable. The IC50 values at 24 h were 4000 and 4500 μM for olsalazine and decitabine, respectively. The IC50 values of both drugs were about 300 μM at 48 h. Statistical analyzes showed a significant increase in CDH1 expression after 24-48 h treatment with olsalazine, and 48 h treatment with decitabine, without any significant increase in uPA expression. Conclusion and implications: Our results showed that olsalazine has cellular toxicity comparable to decitabine in MDA-MB-231 cells. Also compared to decitabine, olsalazine causes a greater increase in expression of CDH1 without any significant increase in uPA expression. Therefore, it appears to be a good candidate for cancer treatment.
Collapse
Affiliation(s)
- Misagh Mohammadi Asl
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, I.R. Iran
| | - Javad Mohammadi Asl
- Cancer, Petroleum and Environmental Pollutants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, I.R. Iran
| | - Mojgan Naghitorabi
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, I.R. Iran.,Department of Pharmacognosy, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, I.R. Iran
| |
Collapse
|
9
|
Yuan Y, Raj P, Zhang J, Siddhanta S, Barman I, Bulte JWM. Furin‐Mediated Self‐Assembly of Olsalazine Nanoparticles for Targeted Raman Imaging of Tumors. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yue Yuan
- The Russell H. Morgan Department of Radiology and Radiological Science Division of MR Research The Johns Hopkins University School of Medicine Baltimore MD USA
- Cellular Imaging Section and Vascular Biology Program Institute for Cell Engineering The Johns Hopkins University School of Medicine Baltimore MD USA
- Department of Chemistry University of Science and Technology of China Hefei Anhui China
| | - Piyush Raj
- Department of Mechanical Engineering The Johns Hopkins University Baltimore MD USA
| | - Jia Zhang
- The Russell H. Morgan Department of Radiology and Radiological Science Division of MR Research The Johns Hopkins University School of Medicine Baltimore MD USA
| | - Soumik Siddhanta
- Department of Mechanical Engineering The Johns Hopkins University Baltimore MD USA
- Department of Chemistry Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| | - Ishan Barman
- The Russell H. Morgan Department of Radiology and Radiological Science Division of MR Research The Johns Hopkins University School of Medicine Baltimore MD USA
- Department of Mechanical Engineering The Johns Hopkins University Baltimore MD USA
- Department of Oncology The Johns Hopkins University School of Medicine Baltimore MD USA
| | - Jeff W. M. Bulte
- The Russell H. Morgan Department of Radiology and Radiological Science Division of MR Research The Johns Hopkins University School of Medicine Baltimore MD USA
- Cellular Imaging Section and Vascular Biology Program Institute for Cell Engineering The Johns Hopkins University School of Medicine Baltimore MD USA
| |
Collapse
|
10
|
Roy S, Dhaneshwar S, Bhasin B. Drug Repurposing: An Emerging Tool for Drug Reuse, Recycling and Discovery. Curr Drug Res Rev 2021; 13:101-119. [PMID: 33573567 DOI: 10.2174/2589977513666210211163711] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 09/07/2020] [Accepted: 10/26/2020] [Indexed: 11/22/2022]
Abstract
Drug repositioning or repurposing is a revolutionary breakthrough in drug development that focuses on rediscovering new uses for old therapeutic agents. Drug repositioning can be defined more precisely as the process of exploring new indications for an already approved drug while drug repurposing includes overall re-development approaches grounded in the identical chemical structure of the active drug moiety as in the original product. The repositioning approach accelerates the drug development process, curtails the cost and risk inherent to drug development. The strategy focuses on the polypharmacology of drugs to unlocks novel opportunities for logically designing more efficient therapeutic agents for unmet medical disorders. Drug repositioning also expresses certain regulatory challenges that hamper its further utilization. The review outlines the eminent role of drug repositioning in new drug discovery, methods to predict the molecular targets of a drug molecule, advantages that the strategy offers to the pharmaceutical industries, explaining how the industrial collaborations with academics can assist in the discovering more repositioning opportunities. The focus of the review is to highlight the latest applications of drug repositioning in various disorders. The review also includes a comparison of old and new therapeutic uses of repurposed drugs, assessing their novel mechanisms of action and pharmacological effects in the management of various disorders. Various restrictions and challenges that repurposed drugs come across during their development and regulatory phases are also highlighted.
Collapse
Affiliation(s)
- Supriya Roy
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Lucknow Campus, India
| | - Suneela Dhaneshwar
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Lucknow Campus, India
| | - Bhavya Bhasin
- Poona College of Pharmacy, Bharati Vidyapeeth University, Pune, India
| |
Collapse
|
11
|
Yuan Y, Raj P, Zhang J, Siddhanta S, Barman I, Bulte JWM. Furin-Mediated Self-Assembly of Olsalazine Nanoparticles for Targeted Raman Imaging of Tumors. Angew Chem Int Ed Engl 2021; 60:3923-3927. [PMID: 33325142 DOI: 10.1002/anie.202014839] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Indexed: 01/08/2023]
Abstract
Olsalazine (Olsa) is a broad-spectrum anti-cancer agent acting as a DNA-methylation inhibitor. When conjugated to 2-cyano-6-aminobenzothiazole and a peptide substrate specific for the tumor-overexpressed enzyme furin, it can self-assemble into nanoparticles that can be detected by chemical-exchange saturation-transfer magnetic-resonance imaging (CEST MRI). We report here that these nano-assemblies can also be detected with high specificity in furin-overexpressing tumor cells by Raman spectroscopy with a distinct scattering signature and demonstrate the utility of this sensing mechanism in vitro and in vivo. Our findings suggest that Raman spectroscopy could be used for high-resolution image-guided surgery to precisely delineate tumor margins during and after resection in real-time as well as to determine microscopic tumor invasion and multifocal locoregional tumor spread, which are currently impossible to visualize with available imaging technologies, including CEST MRI.
Collapse
Affiliation(s)
- Yue Yuan
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, China
| | - Piyush Raj
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - Jia Zhang
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Soumik Siddhanta
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD, USA.,Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Ishan Barman
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD, USA.,Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jeff W M Bulte
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
12
|
Juárez-Mercado KE, Prieto-Martínez FD, Sánchez-Cruz N, Peña-Castillo A, Prada-Gracia D, Medina-Franco JL. Expanding the Structural Diversity of DNA Methyltransferase Inhibitors. Pharmaceuticals (Basel) 2020; 14:ph14010017. [PMID: 33375520 PMCID: PMC7824300 DOI: 10.3390/ph14010017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023] Open
Abstract
Inhibitors of DNA methyltransferases (DNMTs) are attractive compounds for epigenetic drug discovery. They are also chemical tools to understand the biochemistry of epigenetic processes. Herein, we report five distinct inhibitors of DNMT1 characterized in enzymatic inhibition assays that did not show activity with DNMT3B. It was concluded that the dietary component theaflavin is an inhibitor of DNMT1. Two additional novel inhibitors of DNMT1 are the approved drugs glyburide and panobinostat. The DNMT1 enzymatic inhibitory activity of panobinostat, a known pan inhibitor of histone deacetylases, agrees with experimental reports of its ability to reduce DNMT1 activity in liver cancer cell lines. Molecular docking of the active compounds with DNMT1, and re-scoring with the recently developed extended connectivity interaction features approach, led to an excellent agreement between the experimental IC50 values and docking scores.
Collapse
Affiliation(s)
- K. Eurídice Juárez-Mercado
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, National Autonomous University of Mexico, Avenida Universidad 3000, Mexico City 04510, Mexico; (K.E.J.-M.); (F.D.P.-M.); (N.S.-C.); (A.P.-C.)
| | - Fernando D. Prieto-Martínez
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, National Autonomous University of Mexico, Avenida Universidad 3000, Mexico City 04510, Mexico; (K.E.J.-M.); (F.D.P.-M.); (N.S.-C.); (A.P.-C.)
| | - Norberto Sánchez-Cruz
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, National Autonomous University of Mexico, Avenida Universidad 3000, Mexico City 04510, Mexico; (K.E.J.-M.); (F.D.P.-M.); (N.S.-C.); (A.P.-C.)
| | - Andrea Peña-Castillo
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, National Autonomous University of Mexico, Avenida Universidad 3000, Mexico City 04510, Mexico; (K.E.J.-M.); (F.D.P.-M.); (N.S.-C.); (A.P.-C.)
| | - Diego Prada-Gracia
- Research Unit on Computational Biology and Drug Design, Children’s Hospital of Mexico Federico Gomez, Mexico City 06720, Mexico;
| | - José L. Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, National Autonomous University of Mexico, Avenida Universidad 3000, Mexico City 04510, Mexico; (K.E.J.-M.); (F.D.P.-M.); (N.S.-C.); (A.P.-C.)
- Correspondence:
| |
Collapse
|
13
|
Hassanzadeh P. Nanotheranostics against COVID-19: From multivalent to immune-targeted materials. J Control Release 2020; 328:112-126. [PMID: 32882269 PMCID: PMC7457914 DOI: 10.1016/j.jconrel.2020.08.060] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/16/2022]
Abstract
Destructive impacts of COVID-19 pandemic worldwide necessitates taking more appropriate measures for mitigating virus spread and development of the effective theranostic agents. In general, high heterogeneity of viruses is a major challenging issue towards the development of effective antiviral agents. Regarding the coronavirus, its high mutation rates can negatively affect virus detection process or the efficiency of drugs and vaccines in development or induce drug resistance. Bioengineered nanomaterials with suitable physicochemical characteristics for site-specific therapeutic delivery, highly-sensitive nanobiosensors for detection of very low virus concentration, and real-time protections using the nanorobots can provide roadmaps towards the imminent breakthroughs in theranostics of a variety of diseases including the COVID-19. Besides revolutionizing the classical disinfection procedures, state-of-the-art nanotechnology-based approaches enable providing the analytical tools for accelerated monitoring of coronavirus and associated biomarkers or drug delivery towards the pulmonary system or other affected organs. Multivalent nanomaterials capable of interaction with multivalent pathogens including the viruses could be suitable candidates for viral detection and prevention of further infections. Besides the inactivation or destruction of the virus, functionalized nanoparticles capable of modulating patient's immune response might be of great significance for attenuating the exaggerated inflammatory reactions or development of the effective nanovaccines and medications against the virus pandemics including the COVID-19.
Collapse
Affiliation(s)
- Parichehr Hassanzadeh
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran.
| |
Collapse
|
14
|
Effect of Epigenetic Drug Candidate Olsalazine on the Expression of CDH1 and uPA Genes in MCF-7 Breast Cancer Cell Line. Jundishapur J Nat Pharm Prod 2020. [DOI: 10.5812/jjnpp.69428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: A main epigenetic change in cancer is DNA methylation, which leads to the inactivation of tumor suppressor genes. Due to its reversible nature, many studies have focused on how to correct epigenetic imbalances via inhibiting DNA methyltransferases (DNMTs). Recent studies have shown that olsalazine can be a potent candidate for DNMT inhibition. Objectives: The current study aimed to assess the cytotoxic effect of olsalazine on MCF-7 cells and the expression of CDH1 and uPA, as cancer-related genes, compared to decitabine. Methods: The cytotoxicity of olsalazine and decitabine on MCF-7 cells was assessed by MTT assay. To evaluate the effect of drugs on the expression of CDH1 and uPA genes, MCF-7 cells were treated with olsalazine and decitabine in concentrations below their IC50 values. After 24 h, RNA of treated cells was extracted and then subjected to a quantitative reverse transcription-polymerase chain reaction (Q-RT-PCR). Results: The MTT assay showed that olsalazine was more toxic (IC50 = 1.75 mM) in MCF-7 cells than decitabine (IC50 = 3mM). Q-RT-PCR analysis showed that olsalazine can significantly increase uPA expression along with a non-significant increase in CDH1 expression. Meanwhile, no significant change was found in gene expression after treatment with decitabine. Conclusions: This study demonstrated that olsalazine was more cytotoxic than decitabine on MCF-7 cells. Also, compared to decitabine, olsalazine could increase the expression of CDH1 and uPA genes. It suggests that olsalazine might be more potent than decitabine in inhibiting DNMTs, although further studies are needed.
Collapse
|
15
|
Montalvo-Casimiro M, González-Barrios R, Meraz-Rodriguez MA, Juárez-González VT, Arriaga-Canon C, Herrera LA. Epidrug Repurposing: Discovering New Faces of Old Acquaintances in Cancer Therapy. Front Oncol 2020; 10:605386. [PMID: 33312959 PMCID: PMC7708379 DOI: 10.3389/fonc.2020.605386] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022] Open
Abstract
Gene mutations are strongly associated with tumor progression and are well known in cancer development. However, recently discovered epigenetic alterations have shown the potential to greatly influence tumoral response to therapy regimens. Such epigenetic alterations have proven to be dynamic, and thus could be restored. Due to their reversible nature, the promising opportunity to improve chemotherapy response using epigenetic therapy has arisen. Beyond helping to understand the biology of the disease, the use of modern clinical epigenetics is being incorporated into the management of the cancer patient. Potential epidrug candidates can be found through a process known as drug repositioning or repurposing, a promising strategy for the discovery of novel potential targets in already approved drugs. At present, novel epidrug candidates have been identified in preclinical studies and some others are currently being tested in clinical trials, ready to be repositioned. This epidrug repurposing could circumvent the classic paradigm where the main focus is the development of agents with one indication only, while giving patients lower cost therapies and a novel precision medical approach to optimize treatment efficacy and reduce toxicity. This review focuses on the main approved epidrugs, and their druggable targets, that are currently being used in cancer therapy. Also, we highlight the importance of epidrug repurposing by the rediscovery of known chemical entities that may enhance epigenetic therapy in cancer, contributing to the development of precision medicine in oncology.
Collapse
Affiliation(s)
- Michel Montalvo-Casimiro
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
| | - Rodrigo González-Barrios
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
| | - Marco Antonio Meraz-Rodriguez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
| | | | - Cristian Arriaga-Canon
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
| | - Luis A. Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
- Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| |
Collapse
|
16
|
Kumar N, Gahlawat A, Kumar RN, Singh YP, Modi G, Garg P. Drug repurposing for Alzheimer’s disease: in silico and in vitro investigation of FDA-approved drugs as acetylcholinesterase inhibitors. J Biomol Struct Dyn 2020; 40:2878-2892. [DOI: 10.1080/07391102.2020.1844054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Navneet Kumar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Mohali, Punjab, India
| | - Anuj Gahlawat
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Mohali, Punjab, India
| | - Rajaram Naresh Kumar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Mohali, Punjab, India
| | - Yash Pal Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Gyan Modi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Prabha Garg
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Mohali, Punjab, India
| |
Collapse
|
17
|
Prieto-Martínez FD, Medina-Franco JL. Current advances on the development of BET inhibitors: insights from computational methods. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 122:127-180. [PMID: 32951810 DOI: 10.1016/bs.apcsb.2020.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Epigenetics was coined almost 70 years ago for the description of heritable phenotype without altering DNA sequences. Research on the field has uncovered significant roles of such mechanisms, that account for the biogenesis of several diseases. Further studies have led the way for drug development which targets epi-enzymes, mainly for cancer treatment. Of the numerous epi-targets involved with histone acetylation, bromodomains have captured the spotlight of drug discovery focused on novel therapies. However, due to high sequence identity, the development of potent and selective inhibitors poses a significant challenge. Herein, we discuss recent computational developments on BET inhibitors and other methods that may be applied for drug discovery in general. As a proof-of-concept, we discuss a virtual screening to identify novel BET inhibitors based on coumarin derivatives. From public data, we identified putative structure-activity relationships of coumarin scaffold and propose R-group modifications for BET selectivity. Results showed that the optimization and design of novel coumarins could be further explored.
Collapse
Affiliation(s)
- Fernando D Prieto-Martínez
- Department of Pharmacy, School of Chemistry, National Autonomous University of Mexico, Mexico City, Mexico
| | - José L Medina-Franco
- Department of Pharmacy, School of Chemistry, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
18
|
Moreira-Silva F, Camilo V, Gaspar V, Mano JF, Henrique R, Jerónimo C. Repurposing Old Drugs into New Epigenetic Inhibitors: Promising Candidates for Cancer Treatment? Pharmaceutics 2020; 12:E410. [PMID: 32365701 PMCID: PMC7284583 DOI: 10.3390/pharmaceutics12050410] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 12/24/2022] Open
Abstract
Epigenetic alterations, as a cancer hallmark, are associated with cancer initiation, progression and aggressiveness. Considering, however, that these alterations are reversible, drugs that target epigenetic machinery may have an inhibitory effect upon cancer treatment. The traditional drug discovery pathway is time-consuming and expensive, and thus, new and more effective strategies are required. Drug Repurposing (DR) comprises the discovery of a new medical indication for a drug that is approved for another indication, which has been recalled, that was not accepted or failed to prove efficacy. DR presents several advantages, mainly reduced resources, absence of the initial target discovery process and the reduced time necessary for the drug to be commercially available. There are numerous old drugs that are under study as repurposed epigenetic inhibitors which have demonstrated promising results in in vitro tumor models. Herein, we summarize the DR process and explore several repurposed drugs with different epigenetic targets that constitute promising candidates for cancer treatment, highlighting their mechanisms of action.
Collapse
Affiliation(s)
- Filipa Moreira-Silva
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (F.M.-S.); (V.C.)
| | - Vânia Camilo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (F.M.-S.); (V.C.)
| | - Vítor Gaspar
- Department of Chemistry, CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (V.G.); (J.F.M.)
| | - João F. Mano
- Department of Chemistry, CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (V.G.); (J.F.M.)
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP) and Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal;
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (F.M.-S.); (V.C.)
| |
Collapse
|
19
|
Yuan Y, Zhang J, Qi X, Li S, Liu G, Siddhanta S, Barman I, Song X, McMahon MT, Bulte JWM. Furin-mediated intracellular self-assembly of olsalazine nanoparticles for enhanced magnetic resonance imaging and tumour therapy. NATURE MATERIALS 2019; 18:1376-1383. [PMID: 31636420 PMCID: PMC6872935 DOI: 10.1038/s41563-019-0503-4] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 09/10/2019] [Indexed: 05/15/2023]
Abstract
Among the strategies used for enhancement of tumour retention of imaging agents or anticancer drugs is the rational design of probes that undergo a tumour-specific enzymatic reaction preventing them from being pumped out of the cell. Here, the anticancer agent olsalazine (Olsa) was conjugated to the cell-penetrating peptide RVRR. Taking advantage of a biologically compatible condensation reaction, single Olsa-RVRR molecules were self-assembled into large intracellular nanoparticles by the tumour-associated enzyme furin. Both Olsa-RVRR and Olsa nanoparticles were readily detected with chemical exchange saturation transfer magnetic resonance imaging by virtue of exchangeable Olsa hydroxyl protons. In vivo studies using HCT116 and LoVo murine xenografts showed that the OlsaCEST signal and anti-tumour therapeutic effect were 6.5- and 5.2-fold increased, respectively, compared to Olsa without RVRR, with an excellent 'theranostic correlation' (R2 = 0.97) between the imaging signal and therapeutic response (normalized tumour size). This furin-targeted, magnetic resonance imaging-detectable platform has potential for imaging tumour aggressiveness, drug accumulation and therapeutic response.
Collapse
Affiliation(s)
- Yue Yuan
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jia Zhang
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xiaoliang Qi
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shuoguo Li
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Guanshu Liu
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Soumik Siddhanta
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - Ishan Barman
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xiaolei Song
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael T McMahon
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Jeff W M Bulte
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA.
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Chemical & Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
20
|
Hassanzadeh P, Atyabi F, Dinarvand R. The significance of artificial intelligence in drug delivery system design. Adv Drug Deliv Rev 2019; 151-152:169-190. [PMID: 31071378 DOI: 10.1016/j.addr.2019.05.001] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/14/2019] [Accepted: 05/02/2019] [Indexed: 02/07/2023]
Abstract
Over the last decade, increasing interest has been attracted towards the application of artificial intelligence (AI) technology for analyzing and interpreting the biological or genetic information, accelerated drug discovery, and identification of the selective small-molecule modulators or rare molecules and prediction of their behavior. Application of the automated workflows and databases for rapid analysis of the huge amounts of data and artificial neural networks (ANNs) for development of the novel hypotheses and treatment strategies, prediction of disease progression, and evaluation of the pharmacological profiles of drug candidates may significantly improve treatment outcomes. Target fishing (TF) by rapid prediction or identification of the biological targets might be of great help for linking targets to the novel compounds. AI and TF methods in association with human expertise may indeed revolutionize the current theranostic strategies, meanwhile, validation approaches are necessary to overcome the potential challenges and ensure higher accuracy. In this review, the significance of AI and TF in the development of drugs and delivery systems and the potential challenging issues have been highlighted.
Collapse
Affiliation(s)
- Parichehr Hassanzadeh
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran.
| | - Fatemeh Atyabi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran.
| | - Rassoul Dinarvand
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran.
| |
Collapse
|
21
|
Cortez-Maya S, Pedro-Hernández LD, Martínez-Klimova E, Ramírez-Ápan T, Martínez-García M. Anticancer Activity of Water-Soluble Olsalazine-PAMAM-Dendrimer-Salicylic Acid-Conjugates. Biomolecules 2019; 9:biom9080360. [PMID: 31412571 PMCID: PMC6723055 DOI: 10.3390/biom9080360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/30/2019] [Accepted: 08/05/2019] [Indexed: 12/19/2022] Open
Abstract
Improving the activity and selectivity profile of anticancer agents will require designing drug carrier systems that employ soluble macromolecules. Olsalazine-PAMAM-dendrimer-salicylic acid-conjugates with dendritic arms of different lengths have shown good stability regarding the chemical link between drug and spacer. In this study, the drug release was followed in vitro by ultraviolet (UV) studies. Evaluation of the cytotoxicity of the olsalazine-PAMAM-dendrimer-salicylic acid-conjugates employing a sulforhodamine B (SRB) assay in PC-3 (human prostatic adenocarcinoma) and MCF-7 (human mammary adenocarcinoma) cell lines demonstrated that conjugate 9 was more active as an antiproliferative agent than cisplatin, and no cytotoxicity towards the African green monkey kidney fibroblast (COS-7) cell line was observed in any of the conjugates synthesized in the present work.
Collapse
Affiliation(s)
- Sandra Cortez-Maya
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior, Coyoacán, C.P. 04510, México D.F., México
| | - Luis Daniel Pedro-Hernández
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior, Coyoacán, C.P. 04510, México D.F., México
| | - Elena Martínez-Klimova
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Interior, Coyoacán, C.P. 04510, México D.F., México
| | - Teresa Ramírez-Ápan
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior, Coyoacán, C.P. 04510, México D.F., México
| | - Marcos Martínez-García
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior, Coyoacán, C.P. 04510, México D.F., México.
| |
Collapse
|
22
|
Pulley JM, Rhoads JP, Jerome RN, Challa AP, Erreger KB, Joly MM, Lavieri RR, Perry KE, Zaleski NM, Shirey-Rice JK, Aronoff DM. Using What We Already Have: Uncovering New Drug Repurposing Strategies in Existing Omics Data. Annu Rev Pharmacol Toxicol 2019; 60:333-352. [PMID: 31337270 DOI: 10.1146/annurev-pharmtox-010919-023537] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The promise of drug repurposing is to accelerate the translation of knowledge to treatment of human disease, bypassing common challenges associated with drug development to be more time- and cost-efficient. Repurposing has an increased chance of success due to the previous validation of drug safety and allows for the incorporation of omics. Hypothesis-generating omics processes inform drug repurposing decision-making methods on drug efficacy and toxicity. This review summarizes drug repurposing strategies and methodologies in the context of the following omics fields: genomics, epigenomics, transcriptomics, proteomics, metabolomics, microbiomics, phenomics, pregomics, and personomics. While each omics field has specific strengths and limitations, incorporating omics into the drug repurposing landscape is integral to its success.
Collapse
Affiliation(s)
- Jill M Pulley
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, Tennessee 37203, USA
| | - Jillian P Rhoads
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, Tennessee 37203, USA
| | - Rebecca N Jerome
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, Tennessee 37203, USA
| | - Anup P Challa
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, Tennessee 37203, USA
| | - Kevin B Erreger
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, Tennessee 37203, USA
| | - Meghan M Joly
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, Tennessee 37203, USA
| | - Robert R Lavieri
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, Tennessee 37203, USA
| | - Kelly E Perry
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, Tennessee 37203, USA
| | - Nicole M Zaleski
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, Tennessee 37203, USA
| | - Jana K Shirey-Rice
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, Tennessee 37203, USA
| | - David M Aronoff
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA.,Departments of Obstetrics and Gynecology, and Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA;
| |
Collapse
|
23
|
Al-Jaber AS, Bani-Yaseen AD. On the encapsulation of Olsalazine by β-cyclodextrin: A DFT-based computational and spectroscopic investigations. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 214:531-536. [PMID: 30818152 DOI: 10.1016/j.saa.2019.02.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 02/06/2019] [Accepted: 02/11/2019] [Indexed: 06/09/2023]
Abstract
In this work, the supramolecular host-guest interaction of the prodrug Olsalazine (OLZ) and β-Cyclodextrin (β-CD) was examined experimentally and computationally. Experimentally, employing the UV-Vis spectroscopic method in aqueous media at various pH's, results obtained using the Benesi-Hilderbrand approach demonstrated that OLZ can form supramolecular inclusion complex with β-CD with stoichiometric ratio of 1:1. Furthermore, these results revealed that the formation of OLZ: β-CD complexes exhibited insignificant pH dependency in the range 5-8 with an average binding constant (Kb) of approximately 1×103M-1. Computationally, geometry optimization of 1:1 OLZ: β-CD complexes was performed employing the ONIOM (DFT((ωB97XB)/6-31+G(d)),SQM(PM3)) approach. Obtained results demonstrated that OLZ: β-CD complex is stabilized by the formation of intermolecular hydrogen bonds with an average length of approximately 1.8Å. Additionally, the stability of OLZ: β-CD complex was demonstrated employing ADMP molecular dynamic simulations over a timeframe of 500fs. The molecularity of the supramolecular host-guest interaction between OLZ and β-CD is presented and interpreted in the essence of TD-DFT and molecular orbitals analyses.
Collapse
Affiliation(s)
- Amina S Al-Jaber
- Department of Chemistry & Earth Sciences, College of Arts & Science, Qatar University, Doha, P.O. Box 2713, State of Qatar
| | - Abdulilah Dawoud Bani-Yaseen
- Department of Chemistry & Earth Sciences, College of Arts & Science, Qatar University, Doha, P.O. Box 2713, State of Qatar.
| |
Collapse
|
24
|
Integrated Chemoinformatics Approaches Toward Epigenetic Drug Discovery. CHALLENGES AND ADVANCES IN COMPUTATIONAL CHEMISTRY AND PHYSICS 2019. [DOI: 10.1007/978-3-030-05282-9_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
25
|
Huang D, Cui L, Ahmed S, Zainab F, Wu Q, Wang X, Yuan Z. An overview of epigenetic agents and natural nutrition products targeting DNA methyltransferase, histone deacetylases and microRNAs. Food Chem Toxicol 2019; 123:574-594. [DOI: 10.1016/j.fct.2018.10.052] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/25/2018] [Accepted: 10/22/2018] [Indexed: 02/07/2023]
|
26
|
Shameer K, Glicksberg BS, Hodos R, Johnson KW, Badgeley MA, Readhead B, Tomlinson MS, O’Connor T, Miotto R, Kidd BA, Chen R, Ma’ayan A, Dudley JT. Systematic analyses of drugs and disease indications in RepurposeDB reveal pharmacological, biological and epidemiological factors influencing drug repositioning. Brief Bioinform 2018; 19:656-678. [PMID: 28200013 PMCID: PMC6192146 DOI: 10.1093/bib/bbw136] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/29/2016] [Indexed: 12/22/2022] Open
Abstract
Increase in global population and growing disease burden due to the emergence of infectious diseases (Zika virus), multidrug-resistant pathogens, drug-resistant cancers (cisplatin-resistant ovarian cancer) and chronic diseases (arterial hypertension) necessitate effective therapies to improve health outcomes. However, the rapid increase in drug development cost demands innovative and sustainable drug discovery approaches. Drug repositioning, the discovery of new or improved therapies by reevaluation of approved or investigational compounds, solves a significant gap in the public health setting and improves the productivity of drug development. As the number of drug repurposing investigations increases, a new opportunity has emerged to understand factors driving drug repositioning through systematic analyses of drugs, drug targets and associated disease indications. However, such analyses have so far been hampered by the lack of a centralized knowledgebase, benchmarking data sets and reporting standards. To address these knowledge and clinical needs, here, we present RepurposeDB, a collection of repurposed drugs, drug targets and diseases, which was assembled, indexed and annotated from public data. RepurposeDB combines information on 253 drugs [small molecules (74.30%) and protein drugs (25.29%)] and 1125 diseases. Using RepurposeDB data, we identified pharmacological (chemical descriptors, physicochemical features and absorption, distribution, metabolism, excretion and toxicity properties), biological (protein domains, functional process, molecular mechanisms and pathway cross talks) and epidemiological (shared genetic architectures, disease comorbidities and clinical phenotype similarities) factors mediating drug repositioning. Collectively, RepurposeDB is developed as the reference database for drug repositioning investigations. The pharmacological, biological and epidemiological principles of drug repositioning identified from the meta-analyses could augment therapeutic development.
Collapse
Affiliation(s)
- Khader Shameer
- Institute of Next Generation Healthcare, Mount Sinai Health System, New York,
NY, USA
| | - Benjamin S Glicksberg
- Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York,
NY, USA
| | - Rachel Hodos
- Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York,
NY, USA
- New York University, New York, NY, USA
| | - Kipp W Johnson
- Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York,
NY, USA
| | - Marcus A Badgeley
- Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York,
NY, USA
| | - Ben Readhead
- Institute of Next Generation Healthcare, Mount Sinai Health System, New York,
NY, USA
| | - Max S Tomlinson
- Institute of Next Generation Healthcare, Mount Sinai Health System, New York,
NY, USA
| | | | - Riccardo Miotto
- Institute of Next Generation Healthcare, Mount Sinai Health System, New York,
NY, USA
| | - Brian A Kidd
- Institute of Next Generation Healthcare, Mount Sinai Health System, New York,
NY, USA
| | - Rong Chen
- Clinical Genome Informatics, Icahn Institute of Genetics and Multiscale
Biology, Mount Sinai Health System, New York, NY
| | - Avi Ma’ayan
- Mount Sinai Center for Bioinformatics, Mount Sinai Health System, New York,
NY
| | - Joel T Dudley
- Institute of Next Generation Healthcare, Mount Sinai Health System, New York,
NY, USA
- Department of Genetics and Genomic Sciences, Mount Sinai Health System, New
York, NY, USA
- Department of Population Health Science and Policy, Mount Sinai Health System,
New York, NY, USA
- Director of Biomedical Informatics, Icahn School of Medicine at Mount Sinai,
Mount Sinai Health System, New York, NY
| |
Collapse
|
27
|
Giordano A, Forte G, Massimo L, Riccio R, Bifulco G, Di Micco S. Discovery of new erbB4 inhibitors: Repositioning an orphan chemical library by inverse virtual screening. Eur J Med Chem 2018; 152:253-263. [PMID: 29730188 DOI: 10.1016/j.ejmech.2018.04.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/05/2018] [Accepted: 04/09/2018] [Indexed: 01/20/2023]
Abstract
Inverse Virtual Screening (IVS) is a docking based approach aimed to the evaluation of the virtual ability of a single compound to interact with a library of proteins. For the first time, we applied this methodology to a library of synthetic compounds, which proved to be inactive towards the target they were initially designed for. Trifluoromethyl-benzenesulfonamides 3-21 were repositioned by means of IVS identifying new lead compounds (14-16, 19 and 20) for the inhibition of erbB4 in the low micromolar range. Among these, compound 20 exhibited an interesting value of IC50 on MCF7 cell lines, thus validating IVS in lead repurposing.
Collapse
Affiliation(s)
- Assunta Giordano
- Institute of Biomolecular Chemistry (ICB), Consiglio Nazionale delle Ricerche (CNR), Via Campi Flegrei 34, I-80078, Pozzuoli, Napoli, Italy; Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy
| | - Giovanni Forte
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy
| | - Luigia Massimo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy; PhD Program in Drug Discovery and Development, University of Salerno, Via Giovanni Paolo II 132, I-84084, Fisciano, SA, Italy
| | - Raffaele Riccio
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy.
| | - Simone Di Micco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy.
| |
Collapse
|
28
|
Paricharak S, Méndez-Lucio O, Chavan Ravindranath A, Bender A, IJzerman AP, van Westen GJP. Data-driven approaches used for compound library design, hit triage and bioactivity modeling in high-throughput screening. Brief Bioinform 2018; 19:277-285. [PMID: 27789427 PMCID: PMC6018726 DOI: 10.1093/bib/bbw105] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/26/2016] [Indexed: 12/25/2022] Open
Abstract
High-throughput screening (HTS) campaigns are routinely performed in pharmaceutical companies to explore activity profiles of chemical libraries for the identification of promising candidates for further investigation. With the aim of improving hit rates in these campaigns, data-driven approaches have been used to design relevant compound screening collections, enable effective hit triage and perform activity modeling for compound prioritization. Remarkable progress has been made in the activity modeling area since the recent introduction of large-scale bioactivity-based compound similarity metrics. This is evidenced by increased hit rates in iterative screening strategies and novel insights into compound mode of action obtained through activity modeling. Here, we provide an overview of the developments in data-driven approaches, elaborate on novel activity modeling techniques and screening paradigms explored and outline their significance in HTS.
Collapse
Affiliation(s)
- Shardul Paricharak
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, United Kingdom
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, RA Leiden, The Netherlands
| | - Oscar Méndez-Lucio
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, United Kingdom
- Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Mexico City, Mexico
| | - Aakash Chavan Ravindranath
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, United Kingdom
| | - Andreas Bender
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, United Kingdom
| | - Adriaan P IJzerman
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, RA Leiden, The Netherlands
| | - Gerard J P van Westen
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, RA Leiden, The Netherlands
| |
Collapse
|
29
|
Naveja JJ, Oviedo-Osornio CI, Trujillo-Minero NN, Medina-Franco JL. Chemoinformatics: a perspective from an academic setting in Latin America. Mol Divers 2018; 22:247-258. [PMID: 29204824 DOI: 10.1007/s11030-017-9802-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/26/2017] [Indexed: 12/13/2022]
Abstract
This perspective discusses the current progress of a chemoinformatics group in a major university in Latin America. Three major aspects are discussed in a critical manner: research, education, and collaboration with industry and other public research networks. It is also presented an overview of the progress in applied research and development of research concepts. Efforts to teach chemoinformatics at the undergraduate and graduate levels are discussed. It is addressed how the partnership with industry and other not-for-profit research institutions not only brings additional sources of funding but, more importantly, increases the impact of the multidisciplinary work and offers the students to be exposed to other research environments. We also discuss the main perspectives and challenges that remain to be addressed in these settings.
Collapse
Affiliation(s)
- J Jesús Naveja
- School of Chemistry, Department of Pharmacy, Universidad Nacional Autónoma de México, Avenida Universidad 3000, 04510, Mexico City, Mexico
- PECEM, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, 04510, Mexico City, Mexico
| | - C Iluhí Oviedo-Osornio
- School of Chemistry, Department of Pharmacy, Universidad Nacional Autónoma de México, Avenida Universidad 3000, 04510, Mexico City, Mexico
| | - Nicole N Trujillo-Minero
- School of Chemistry, Department of Pharmacy, Universidad Nacional Autónoma de México, Avenida Universidad 3000, 04510, Mexico City, Mexico
| | - José L Medina-Franco
- School of Chemistry, Department of Pharmacy, Universidad Nacional Autónoma de México, Avenida Universidad 3000, 04510, Mexico City, Mexico.
| |
Collapse
|
30
|
Yuan Z, Sun Q, Li D, Miao S, Chen S, Song L, Gao C, Chen Y, Tan C, Jiang Y. Design, synthesis and anticancer potential of NSC-319745 hydroxamic acid derivatives as DNMT and HDAC inhibitors. Eur J Med Chem 2017; 134:281-292. [DOI: 10.1016/j.ejmech.2017.04.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/01/2017] [Accepted: 04/08/2017] [Indexed: 12/12/2022]
|
31
|
Krishna S, Shukla S, Lakra AD, Meeran SM, Siddiqi MI. Identification of potent inhibitors of DNA methyltransferase 1 (DNMT1) through a pharmacophore-based virtual screening approach. J Mol Graph Model 2017; 75:174-188. [PMID: 28582695 DOI: 10.1016/j.jmgm.2017.05.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/20/2017] [Accepted: 05/22/2017] [Indexed: 02/06/2023]
Abstract
DNA methylation is an epigenetic change that results in the addition of a methyl group at the carbon-5 position of cytosine residues. DNA methyltransferase (DNMT) inhibitors can suppress tumour growth and have significant therapeutic value. However, the established inhibitors are limited in their application due to their substantial cytotoxicity. Additionally, the standard drugs for DNMT inhibition are non-selective cytosine analogues with considerable cytotoxic side-effects. In the present study, we have designed a workflow by integrating various ligand-based and structure-based approaches to discover new agents active against DNMT1. We have derived a pharmacophore model with the help of available DNMT1 inhibitors. Utilising this model, we performed the virtual screening of Maybridge chemical library and the identified hits were then subsequently filtered based on the Naïve Bayesian classification model. The molecules that have returned from this classification model were subjected to ensemble based docking. We have selected 10 molecules for the biological assay by inspecting the interactions portrayed by these molecules. Three out of the ten tested compounds have shown DNMT1 inhibitory activity. These compounds were also found to demonstrate potential inhibition of cellular proliferation in human breast cancer MDA-MB-231 cells. In the present study, we have utilized a multi-step virtual screening protocol to identify inhibitors of DNMT1, which offers a starting point to develop more potent DNMT1 inhibitors as anti-cancer agents.
Collapse
Affiliation(s)
- Shagun Krishna
- Molecular & Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, 260031, India
| | - Samriddhi Shukla
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, 260031, India
| | - Amar Deep Lakra
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, 260031, India
| | - Syed Musthapa Meeran
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, 260031, India
| | - Mohammad Imran Siddiqi
- Molecular & Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, 260031, India.
| |
Collapse
|
32
|
Prachayasittikul V, Prathipati P, Pratiwi R, Phanus-Umporn C, Malik AA, Schaduangrat N, Seenprachawong K, Wongchitrat P, Supokawej A, Prachayasittikul V, Wikberg JES, Nantasenamat C. Exploring the epigenetic drug discovery landscape. Expert Opin Drug Discov 2017; 12:345-362. [PMID: 28276705 DOI: 10.1080/17460441.2017.1295954] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Epigenetic modification has been implicated in a wide range of diseases and the ability to modulate such systems is a lucrative therapeutic strategy in drug discovery. Areas covered: This article focuses on the concepts and drug discovery aspects of epigenomics. This is achieved by providing a survey of the following concepts: (i) factors influencing epigenetics, (ii) diseases arising from epigenetics, (iii) epigenetic enzymes as druggable targets along with coverage of existing FDA-approved drugs and pharmacological agents, and (iv) drug repurposing/repositioning as a means for rapid discovery of pharmacological agents targeting epigenetics. Expert opinion: Despite significant interests in targeting epigenetic modifiers as a therapeutic route, certain classes of target proteins are heavily studied while some are less characterized. Thus, such orphan target proteins are not yet druggable with limited report of active modulators. Current research points towards a great future with novel drugs directed to the many complex multifactorial diseases of humans, which are still often poorly understood and difficult to treat.
Collapse
Affiliation(s)
- Veda Prachayasittikul
- a Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology , Mahidol University , Bangkok , Thailand
| | - Philip Prathipati
- b National Institutes of Biomedical Innovation, Health and Nutrition , Osaka , Japan
| | - Reny Pratiwi
- a Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology , Mahidol University , Bangkok , Thailand
| | - Chuleeporn Phanus-Umporn
- a Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology , Mahidol University , Bangkok , Thailand
| | - Aijaz Ahmad Malik
- a Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology , Mahidol University , Bangkok , Thailand
| | - Nalini Schaduangrat
- a Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology , Mahidol University , Bangkok , Thailand
| | - Kanokwan Seenprachawong
- c Department of Clinical Microscopy, Faculty of Medical Technology , Mahidol University , Bangkok , Thailand
| | - Prapimpun Wongchitrat
- d Center for Research and Innovation, Faculty of Medical Technology , Mahidol University , Bangkok , Thailand
| | - Aungkura Supokawej
- c Department of Clinical Microscopy, Faculty of Medical Technology , Mahidol University , Bangkok , Thailand
| | - Virapong Prachayasittikul
- e Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology , Mahidol University , Bangkok , Thailand
| | - Jarl E S Wikberg
- f Department of Pharmaceutical Biosciences , Uppsala University , Uppsala , Sweden
| | - Chanin Nantasenamat
- a Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology , Mahidol University , Bangkok , Thailand
| |
Collapse
|
33
|
Saldívar-González F, Prieto-Martínez FD, Medina-Franco JL. Descubrimiento y desarrollo de fármacos: un enfoque computacional. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.eq.2016.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
34
|
García-Sánchez MO, Cruz-Monteagudo M, Medina-Franco JL. Quantitative Structure-Epigenetic Activity Relationships. CHALLENGES AND ADVANCES IN COMPUTATIONAL CHEMISTRY AND PHYSICS 2017. [DOI: 10.1007/978-3-319-56850-8_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
35
|
Issa NT, Wathieu H, Ojo A, Byers SW, Dakshanamurthy S. Drug Metabolism in Preclinical Drug Development: A Survey of the Discovery Process, Toxicology, and Computational Tools. Curr Drug Metab 2017; 18:556-565. [PMID: 28302026 PMCID: PMC5892202 DOI: 10.2174/1389200218666170316093301] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 12/16/2016] [Accepted: 01/17/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND While establishing efficacy in translational models and humans through clinically-relevant endpoints for disease is of great interest, assessing the potential toxicity of a putative therapeutic drug is critical. Toxicological assessments in the pre-clinical discovery phase help to avoid future failure in the clinical phases of drug development. Many in vitro assays exist to aid in modular toxicological assessment, such as hepatotoxicity and genotoxicity. While these methods have provided tremendous insight into human toxicity by investigational new drugs, they are expensive, require substantial resources, and do not account for pharmacogenomics as well as critical ADME properties. Computational tools can fill this niche in toxicology if in silico models are accurate in relating drug molecular properties to toxicological endpoints as well as reliable in predicting important drug-target interactions that mediate known adverse events or adverse outcome pathways (AOPs). METHODS We undertook an unstructured search of multiple bibliographic databases for peer-reviewed literature regarding computational methods in predictive toxicology for in silico drug discovery. As this review paper is meant to serve as a survey of available methods for the interested reader, no focused criteria were applied. Literature chosen was based on the writers' expertise and intent in communicating important aspects of in silico toxicology to the interested reader. CONCLUSION This review provides a purview of computational methods of pre-clinical toxicologic assessments for novel small molecule drugs that may be of use for novice and experienced investigators as well as academic and commercial drug discovery entities.
Collapse
Affiliation(s)
- Naiem T. Issa
- Georgetown-Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University Medical Center, Washington DC, 20057 USA
| | - Henri Wathieu
- Georgetown-Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University Medical Center, Washington DC, 20057 USA
| | - Abiola Ojo
- College of Pharmacy, Howard University, Washington, DC 20059, USA
| | - Stephen W. Byers
- Georgetown-Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University Medical Center, Washington DC, 20057 USA
- Department of Biochemistry & Molecular Biology, Georgetown University, Washington DC, 20057, USA
| | - Sivanesan Dakshanamurthy
- Georgetown-Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University Medical Center, Washington DC, 20057 USA
- Department of Biochemistry & Molecular Biology, Georgetown University, Washington DC, 20057, USA
| |
Collapse
|
36
|
Aldawsari FS, Aguayo-Ortiz R, Kapilashrami K, Yoo J, Luo M, Medina-Franco JL, Velázquez-Martínez CA. Resveratrol-salicylate derivatives as selective DNMT3 inhibitors and anticancer agents. J Enzyme Inhib Med Chem 2016; 31:695-703. [PMID: 26118420 PMCID: PMC4828318 DOI: 10.3109/14756366.2015.1058256] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 05/22/2015] [Indexed: 12/30/2022] Open
Abstract
Resveratrol is a natural polyphenol with plethora of biological activities. Resveratrol has previously shown to decrease DNA-methyltransferase (DNMT) enzymes expression and to reactivate silenced tumor suppressor genes. Currently, it seems that no resveratrol analogs have been developed as DNMT inhibitors. Recently, we reported the synthesis of resveratrol-salicylate derivatives and by examining the chemical structure of these analogs, we proposed that these compounds could exhibit DNMT inhibition especially that they resembled NSC 14778, a compound we previously identified as a DNMT inhibitor by virtual screening. Indeed, using in vitro DNMT inhibition assay, some of the resveratrol-salicylate analogs we screened in this work that showed selective inhibition against DNMT3 enzymes which were greater than resveratrol. A molecular docking study revealed key binding interactions with DNMT3A and DNMT3B enzymes. In addition, the most active analog, 10 showed considerable cytotoxicity against three human cancer cells; HT-29, HepG2 and SK-BR-3, which was greater than resveratrol. Further studies are needed to understand the anticancer mechanisms of these derivatives.
Collapse
Affiliation(s)
- Fahad S. Aldawsari
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Rodrigo Aguayo-Ortiz
- Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, México City, México
| | - Kanishk Kapilashrami
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, N.Y., USA
| | - Jakyung Yoo
- Life Science Research Institute, Daewoong Pharmaceutical Co., Ltd, Pogok-Eup, Republic of Korea
| | - Minkui Luo
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, N.Y., USA
| | - José L. Medina-Franco
- Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, México City, México
| | | |
Collapse
|
37
|
Levine DJ, Runčevski T, Kapelewski MT, Keitz BK, Oktawiec J, Reed DA, Mason JA, Jiang HZH, Colwell KA, Legendre CM, FitzGerald SA, Long JR. Olsalazine-Based Metal–Organic Frameworks as Biocompatible Platforms for H2 Adsorption and Drug Delivery. J Am Chem Soc 2016; 138:10143-50. [DOI: 10.1021/jacs.6b03523] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
| | - Tomče Runčevski
- Materials
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Matthew T. Kapelewski
- Materials
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | | | | | | | - Jarad A. Mason
- Materials
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Henry Z. H. Jiang
- Materials
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | | | | | - Stephen A. FitzGerald
- Department
of Physics and Astronomy, Oberlin College, Oberlin, Ohio 44074, United States
| | - Jeffrey R. Long
- Materials
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
38
|
Garella D, Atlante S, Borretto E, Cocco M, Giorgis M, Costale A, Stevanato L, Miglio G, Cencioni C, Fernández-de Gortari E, Medina-Franco JL, Spallotta F, Gaetano C, Bertinaria M. Design and synthesis of N-benzoyl amino acid derivatives as DNA methylation inhibitors. Chem Biol Drug Des 2016; 88:664-676. [PMID: 27225604 DOI: 10.1111/cbdd.12794] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/02/2016] [Accepted: 05/14/2016] [Indexed: 12/11/2022]
Abstract
The inhibition of human DNA Methyl Transferases (DNMT) is a novel promising approach to address the epigenetic dysregulation of gene expression in different diseases. Inspired by the validated virtual screening hit NSC137546, a series of N-benzoyl amino acid analogues was synthesized and obtained compounds were assessed for their ability to inhibit DNMT-dependent DNA methylation in vitro. The biological screening allowed the definition of a set of preliminary structure-activity relationships and the identification of compounds promising for further development. Among the synthesized compounds, L-glutamic acid derivatives 22, 23, and 24 showed the highest ability to prevent DNA methylation in a total cell lysate. Compound 22 inhibited DNMT1 and DNMT3A activity in a concentration-dependent manner in the micromolar range. In addition, compound 22 proved to be stable in human serum and it was thus selected as a starting point for further biological studies.
Collapse
Affiliation(s)
- Davide Garella
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Torino, Italy.
| | - Sandra Atlante
- Division of Cardiovascular Epigenetics, Department of Cardiology, Goethe University, Frankfurt am Main, Germany
| | - Emily Borretto
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Torino, Italy
| | - Mattia Cocco
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Torino, Italy
| | - Marta Giorgis
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Torino, Italy
| | - Annalisa Costale
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Torino, Italy
| | - Livio Stevanato
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Torino, Italy
| | - Gianluca Miglio
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Torino, Italy
| | - Chiara Cencioni
- Division of Cardiovascular Epigenetics, Department of Cardiology, Goethe University, Frankfurt am Main, Germany
| | - Eli Fernández-de Gortari
- Facultad de Química , Departamento de Farmacia, Universidad Nacional Autónoma de México, Mexico City, México
| | - José L Medina-Franco
- Facultad de Química , Departamento de Farmacia, Universidad Nacional Autónoma de México, Mexico City, México
| | - Francesco Spallotta
- Division of Cardiovascular Epigenetics, Department of Cardiology, Goethe University, Frankfurt am Main, Germany
| | - Carlo Gaetano
- Division of Cardiovascular Epigenetics, Department of Cardiology, Goethe University, Frankfurt am Main, Germany.
| | - Massimo Bertinaria
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Torino, Italy
| |
Collapse
|
39
|
Molecular Modeling and Chemoinformatics to Advance the Development of Modulators of Epigenetic Targets: A Focus on DNA Methyltransferases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2016; 105:1-26. [PMID: 27567482 DOI: 10.1016/bs.apcsb.2016.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In light of the emerging field of Epi-informatics, ie, computational methods applied to epigenetic research, molecular docking, and dynamics, pharmacophore and activity landscape modeling and QSAR play a key role in the development of modulators of DNA methyltransferases (DNMTs), one of the major epigenetic target families. The increased chemical information available for modulators of DNMTs has opened up the avenue to explore the epigenetic relevant chemical space (ERCS). Herein, we discuss recent progress on the identification and development of inhibitors of DNMTs as potential epi-drugs and epi-probes that have been driven by molecular modeling and chemoinformatics methods. We also survey advances on the elucidation of their structure-activity relationships and exploration of ERCS. Finally, it is illustrated how computational approaches can be applied to identify modulators of DNMTs in food chemicals.
Collapse
|
40
|
Activity and property landscape modeling is at the interface of chemoinformatics and medicinal chemistry. Future Med Chem 2016; 7:1197-211. [PMID: 26132526 DOI: 10.4155/fmc.15.51] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Property landscape modeling (PLM) methods are at the interface of experimental sciences and computational chemistry. PLM are becoming a common strategy to describe systematically structure-property relationships of datasets. Thus far, PLM have been used mainly in medicinal chemistry and drug discovery. Herein, we survey advances on key topics on PLM with emphasis on questions often raised regarding the outcomes of the property landscape studies. We also emphasize on concepts of PLM that are being extended to other experimental areas beyond drug discovery. Topics discussed in this paper include applications of PLM to further characterize protein-ligand interactions, the utility of PLM as a quantitative and descriptive approach, and the statistical validation of property cliffs.
Collapse
|
41
|
Anderson SJ, Feye KM, Schmidt-McCormack GR, Malovic E, Mlynarczyk GSA, Izbicki P, Arnold LF, Jefferson MA, de la Rosa BM, Wehrman RF, Luna KC, Hu HZ, Kondru NC, Kleinhenz MD, Smith JS, Manne S, Putra MR, Choudhary S, Massey N, Luo D, Berg CA, Acharya S, Sharma S, Kanuri SH, Lange JK, Carlson SA. Off-Target drug effects resulting in altered gene expression events with epigenetic and "Quasi-Epigenetic" origins. Pharmacol Res 2016; 107:229-233. [PMID: 27025785 DOI: 10.1016/j.phrs.2016.03.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/23/2016] [Accepted: 03/24/2016] [Indexed: 12/16/2022]
Abstract
This review synthesizes examples of pharmacological agents who have off-target effects of an epigenetic nature. We expand upon the paradigm of epigenetics to include "quasi-epigenetic" mechanisms. Quasi-epigenetics includes mechanisms of drugs acting upstream of epigenetic machinery or may themselves impact transcription factor regulation on a more global scale. We explore these avenues with four examples of conventional pharmaceuticals and their unintended, but not necessarily adverse, biological effects. The quasi-epigenetic drugs identified in this review include the use of beta-lactam antibiotics to alter glutamate receptor activity and the action of cyclosporine on multiple transcription factors. In addition, we report on more canonical epigenome changes associated with pharmacological agents such as lithium impacting autophagy of aberrant proteins, and opioid drugs whose chronic use increases the expression of genes associated with addictive phenotypes. By expanding our appreciation of transcriptomic regulation and the effects these drugs have on the epigenome, it is possible to enhance therapeutic applications by exploiting off-target effects and even repurposing established pharmaceuticals. That is, exploration of "pharmacoepigenetic" mechanisms can expand the breadth of the useful activity of a drug beyond the traditional drug targets such as receptors and enzymes.
Collapse
Affiliation(s)
- Stephen J Anderson
- Department of Psychology, Iowa State University College of Liberal Arts and Sciences, Ames, IA 50011, United States; Neuroscience Interdepartmental Program, Iowa State University, Ames, IA 50011, United States
| | - Kristina M Feye
- Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA 50011, United States
| | - Garrett R Schmidt-McCormack
- Neuroscience Interdepartmental Program, Iowa State University, Ames, IA 50011, United States; Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA 50011, United States
| | - Emir Malovic
- Neuroscience Interdepartmental Program, Iowa State University, Ames, IA 50011, United States
| | - Gregory S A Mlynarczyk
- Neuroscience Interdepartmental Program, Iowa State University, Ames, IA 50011, United States; Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA 50011, United States
| | - Patricia Izbicki
- Neuroscience Interdepartmental Program, Iowa State University, Ames, IA 50011, United States
| | - Larissa F Arnold
- Department of Psychology, Iowa State University College of Liberal Arts and Sciences, Ames, IA 50011, United States; Neuroscience Interdepartmental Program, Iowa State University, Ames, IA 50011, United States
| | - Matthew A Jefferson
- Department of Kinesiology, Iowa State University College of Liberal Arts and Sciences, Ames, IA 50011, United States
| | - Bierlein M de la Rosa
- Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA 50011, United States
| | - Rita F Wehrman
- Department of Veterinary Clinical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA 50011, United States
| | - K C Luna
- Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA 50011, United States
| | - Hilary Z Hu
- Neuroscience Interdepartmental Program, Iowa State University, Ames, IA 50011, United States
| | - Naveen C Kondru
- Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA 50011, United States
| | - Michael D Kleinhenz
- Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA 50011, United States
| | - Joe S Smith
- Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA 50011, United States
| | - Sireesha Manne
- Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA 50011, United States
| | - Marson R Putra
- Neuroscience Interdepartmental Program, Iowa State University, Ames, IA 50011, United States
| | - Shivani Choudhary
- Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA 50011, United States
| | - Nyzil Massey
- Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA 50011, United States
| | - Diou Luo
- Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA 50011, United States
| | - Carrie A Berg
- Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA 50011, United States
| | - Sreemoyee Acharya
- Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA 50011, United States
| | - Shaunik Sharma
- Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA 50011, United States
| | - Sri Harsha Kanuri
- Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA 50011, United States
| | - Jennifer K Lange
- Department of Kinesiology, Iowa State University College of Liberal Arts and Sciences, Ames, IA 50011, United States
| | - Steve A Carlson
- Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA 50011, United States.
| |
Collapse
|
42
|
Prieto-Martínez FD, Gortari EFD, Méndez-Lucio O, Medina-Franco JL. A chemical space odyssey of inhibitors of histone deacetylases and bromodomains. RSC Adv 2016. [DOI: 10.1039/c6ra07224k] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The interest in epigenetic drug and probe discovery is growing as reflected in the large amount of structure-epigenetic activity information available.
Collapse
Affiliation(s)
| | - Eli Fernández-de Gortari
- Facultad de Química
- Departamento de Farmacia
- Universidad Nacional Autónoma de México
- Mexico City 04510
- Mexico
| | - Oscar Méndez-Lucio
- Facultad de Química
- Departamento de Farmacia
- Universidad Nacional Autónoma de México
- Mexico City 04510
- Mexico
| | - José L. Medina-Franco
- Facultad de Química
- Departamento de Farmacia
- Universidad Nacional Autónoma de México
- Mexico City 04510
- Mexico
| |
Collapse
|
43
|
Lavecchia A, Cerchia C. In silico methods to address polypharmacology: current status, applications and future perspectives. Drug Discov Today 2015; 21:288-98. [PMID: 26743596 DOI: 10.1016/j.drudis.2015.12.007] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/20/2015] [Accepted: 12/21/2015] [Indexed: 12/15/2022]
Abstract
Polypharmacology, a new paradigm in drug discovery that focuses on multi-target drugs (MTDs), has potential application for drug repurposing, the process of finding new uses for existing approved drugs, prediction of off-target toxicities and rational design of MTDs. In this scenario, computational strategies have demonstrated great potential in predicting polypharmacology and in facilitating drug repurposing. Here, we provide a comprehensive overview of various computational approaches that enable the prediction and analysis of in vitro and in vivo drug-response phenotypes and outline their potential for drug discovery. We give an outlook on the latest advances in rational design of MTDs and discuss possible future directions of algorithm development in this field.
Collapse
Affiliation(s)
- Antonio Lavecchia
- Department of Pharmacy, Drug Discovery Laboratory, University of Napoli Federico II, via D. Montesano 49, I-80131 Napoli, Italy.
| | - Carmen Cerchia
- Department of Pharmacy, Drug Discovery Laboratory, University of Napoli Federico II, via D. Montesano 49, I-80131 Napoli, Italy
| |
Collapse
|
44
|
Duenas-Gonzalez A, Medina-Franco JL, Chavez-Blanco A, Dominguez-Gomez G, Fernández-de Gortari E. Developmental DNA methyltransferase inhibitors in the treatment of gynecologic cancers. Expert Opin Pharmacother 2015; 17:323-38. [PMID: 26559668 DOI: 10.1517/14656566.2016.1118053] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION DNA methylation has become an attractive target for the treatment of cancer. DNA methyltransferase inhibitors have proven useful for the treatment of myelodysplastic syndrome and are being evaluated in gynecological neoplasias. AREAS COVERED We provide an overview of the current knowledge on DNA methylation and cancer and the role of DNA methylation in cervical, ovarian and endometrial carcinomas. The results of recent clinical trials with demethylating agents for cervical and ovarian cancer treatment are also discussed. EXPERT OPINION There are few studies of DNA demethylating agents for cervical and ovarian cancer treatment; nevertheless, the results are promising. To accelerate these advances, there are at least two actions that can be simultaneously pursued. One is to greatly increase the number of small clinical exploratory trials with existing demethylating drugs and using methylome analyses to identify predictive factors for response and/or toxicity. The second is finding out epigenetic 'drivers' unique to gynecological cancers and their subtypes, and then proceed to clinical trials in a highly selected population of patients. It is expected that in the future, DNA demethylation could have a role in the treatment of gynecologic cancers.
Collapse
Affiliation(s)
- Alfonso Duenas-Gonzalez
- a Instituto de Investigaciones Biomédicas , Universidad Nacional Autónoma de México/Instituto Nacional de Cancerología , Mexico City , Mexico
| | - José L Medina-Franco
- b Facultad de Química, Departamento de Farmacia , Universidad Nacional Autónoma de México , México City , México
| | - Alma Chavez-Blanco
- c Division of Basic Research , Instituto Nacional de Cancerología , Mexico City , México
| | | | - Eli Fernández-de Gortari
- b Facultad de Química, Departamento de Farmacia , Universidad Nacional Autónoma de México , México City , México
| |
Collapse
|
45
|
Naveja JJ, Medina-Franco JL. Activity landscape of DNA methyltransferase inhibitors bridges chemoinformatics with epigenetic drug discovery. Expert Opin Drug Discov 2015; 10:1059-70. [DOI: 10.1517/17460441.2015.1073257] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
46
|
Computational fishing of new DNA methyltransferase inhibitors from natural products. J Mol Graph Model 2015; 60:43-54. [PMID: 26099696 DOI: 10.1016/j.jmgm.2015.04.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/28/2015] [Accepted: 04/22/2015] [Indexed: 12/31/2022]
Abstract
DNA methyltransferase inhibitors (DNMTis) have become an alternative for cancer therapies. However, only two DNMTis have been approved as anticancer drugs, although with some restrictions. Natural products (NPs) are a promising source of drugs. In order to find NPs with novel chemotypes as DNMTis, 47 compounds with known activity against these enzymes were used to build a LDA-based QSAR model for active/inactive molecules (93% accuracy) based on molecular descriptors. This classifier was employed to identify potential DNMTis on 800 NPs from NatProd Collection. 447 selected compounds were docked on two human DNA methyltransferase (DNMT) structures (PDB codes: 3SWR and 2QRV) using AutoDock Vina and Surflex-Dock, prioritizing according to their score values, contact patterns at 4 Å and molecular diversity. Six consensus NPs were identified as virtual hits against DNMTs, including 9,10-dihydro-12-hydroxygambogic, phloridzin, 2',4'-dihydroxychalcone 4'-glucoside, daunorubicin, pyrromycin and centaurein. This method is an innovative computational strategy for identifying DNMTis, useful in the identification of potent and selective anticancer drugs.
Collapse
|
47
|
Cereto-Massagué A, Ojeda MJ, Valls C, Mulero M, Pujadas G, Garcia-Vallve S. Tools for in silico target fishing. Methods 2015; 71:98-103. [DOI: 10.1016/j.ymeth.2014.09.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 09/18/2014] [Accepted: 09/19/2014] [Indexed: 12/17/2022] Open
|
48
|
Medina-Franco JL, Méndez-Lucio O, Dueñas-González A, Yoo J. Discovery and development of DNA methyltransferase inhibitors using in silico approaches. Drug Discov Today 2014; 20:569-77. [PMID: 25526932 DOI: 10.1016/j.drudis.2014.12.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/19/2014] [Accepted: 12/10/2014] [Indexed: 01/08/2023]
Abstract
Multiple strategies have evolved during the past few years to advance epigenetic compounds targeting DNA methyltransferases (DNMTs). Significant progress has been made in HTS, lead optimization and determination of 3D structures of DNMTs. In light of the emerging concept of epi-informatics, computational approaches are employed to accelerate the development of DNMT inhibitors helping to screen chemical databases, mine the DNMT-relevant chemical space, uncover SAR and design focused libraries. Computational methods also synergize with natural-product-based drug discovery and drug repurposing. Herein, we survey the latest developments of in silico approaches to advance epigenetic drug and probe discovery targeting DNMTs.
Collapse
Affiliation(s)
- José L Medina-Franco
- Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Mexico City 04510, Mexico.
| | - Oscar Méndez-Lucio
- Unilever Centre for Molecular Science Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Alfonso Dueñas-González
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Cancerología, Av. San Fernando 22, Mexico City 14080, Mexico
| | - Jakyung Yoo
- Life Science Research Institute, Daewoong Pharmaceutical Co. Ltd., 72 Dugye-Ro, Pogok-Eup, Gyeonggi-do 449-814, Republic of Korea
| |
Collapse
|
49
|
Rationalization of activity cliffs of a sulfonamide inhibitor of DNA methyltransferases with induced-fit docking. Int J Mol Sci 2014; 15:3253-61. [PMID: 24566147 PMCID: PMC3958909 DOI: 10.3390/ijms15023253] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 02/12/2014] [Accepted: 02/14/2014] [Indexed: 12/04/2022] Open
Abstract
Inhibitors of human DNA methyltransferases (DNMT) are of increasing interest to develop novel epi-drugs for the treatment of cancer and other diseases. As the number of compounds with reported DNMT inhibition is increasing, molecular docking is shedding light to elucidate their mechanism of action and further interpret structure–activity relationships. Herein, we present a structure-based rationalization of the activity of SW155246, a distinct sulfonamide compound recently reported as an inhibitor of human DNMT1 obtained from high-throughput screening. We used flexible and induce-fit docking to develop a binding model of SW155246 with a crystallographic structure of human DNMT1. Results were in excellent agreement with experimental information providing a three-dimensional structural interpretation of ‘activity cliffs’, e.g., analogues of SW155246 with a high structural similarity to the sulfonamide compound, but with no activity in the enzymatic assay.
Collapse
|
50
|
Medina-Franco JL, Méndez-Lucio O, Martinez-Mayorga K. The Interplay Between Molecular Modeling and Chemoinformatics to Characterize Protein–Ligand and Protein–Protein Interactions Landscapes for Drug Discovery. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2014; 96:1-37. [DOI: 10.1016/bs.apcsb.2014.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|