1
|
Sun J, Bai J, Huang Y, Langford PR, Zhang Y, Li G. A CRISPR/Cas12a-based DNAzyme visualization platform for rapid discrimination of Streptococcus suis serotype 2 versus 1/2 and serotype 1 versus 14. Talanta 2025; 294:128241. [PMID: 40318489 DOI: 10.1016/j.talanta.2025.128241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/22/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
Streptococcus suis is a major swine pathogen with serotypes 2 and 14 posing zoonotic risks. However, distinguishing serotypes 1/2 from 2 or 1 from 14 remains challenging due to high similarity in their capsule polysaccharide (CPS) loci. Here, we developed a rapid, equipment-free discriminating platform targeting a single nucleotide polymorphism (SNP) at position 483 of the cpsK gene (G in serotypes 2/14 vs. T/C in 1/2/1). The method integrates recombinase polymerase amplification (RPA) with CRISPR/Cas12a and a G-quadruplex-hemin DNAzyme visualization system. RPA enables isothermal amplification, while CRISPR/Cas12a ensures single-nucleotide specificity by cleaving target DNA. Subsequent DNAzyme catalysis converts colorimetric substrates, enabling naked-eye differentiation via distinct color changes (blue for serotypes 1/2/1 vs. colorless for 2/14). This approach achieved a sensitivity of 101-102 copies per reaction and demonstrated 100 % specificity across 29 S. suis serotypes and related strains. Compared to PCR-based or sequencing methods, our platform eliminates reliance on thermocyclers or fluorescence detectors, reducing costs and operational complexity. The entire workflow, completed within 70 min, offers a practical solution for point-of-care testing in resource-limited settings. By enabling rapid, accurate discrimination, this tool will become a complementary tool for resolving ambiguous serotypes and enhances outbreak management in swine populations and mitigates zoonotic transmission.
Collapse
Affiliation(s)
- Jing Sun
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Jieyu Bai
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China; College of Veterinary Medicine, Xinjiang Agricultural University, Xinjiang, 830052, China.
| | - Yuxuan Huang
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Paul R Langford
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, St. Mary's Campus, London, W2 1NY, United Kingdom.
| | - Yueling Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Gang Li
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| |
Collapse
|
2
|
Roy S, Pramanik P, Bhattacharya S. Exploring the role of G-quadruplex DNA, and their structural polymorphism, in targeting small molecules for the design of anticancer therapeutics: Progress, challenges, and future directions. Biochimie 2025; 234:120-145. [PMID: 40250703 DOI: 10.1016/j.biochi.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 04/13/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
Selective stabilization of non-canonical G-quadruplex DNA structures by small molecules can be a potential target for anticancer therapeutics. The primary motivation for the molecular design of these G-quadruplex binders is to restrict the transcriptional machinery, which can impede cancer cell progression. This review article comprises the structural diversity of different G-quadruplex DNA, the design strategy for targeting these structures with small molecules, and various G-quadruplex binding ligands which have been expanded by the chemists and biologists over the past few decades. Further, the existence of G-quadruplex structures inside human cells, the significant challenges for designing these selective G-quadruplex binding ligands, current status, and progress towards achieving this goal have also been discussed.
Collapse
Affiliation(s)
- Soma Roy
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India; School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, India
| | - Pulakesh Pramanik
- School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, India
| | - Santanu Bhattacharya
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India; School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, India; Technical Research Centre, Indian Association for the Cultivation of Science, Kolkata, 700032, India; Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati, 517619, India.
| |
Collapse
|
3
|
Salim U, Menon MB, Dhamija S, Vivekanandan P. RNA G-quadruplexes regulate mammalian mirtron biogenesis. J Biol Chem 2025; 301:108276. [PMID: 39922486 PMCID: PMC11927685 DOI: 10.1016/j.jbc.2025.108276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 01/08/2025] [Accepted: 01/27/2025] [Indexed: 02/10/2025] Open
Abstract
Mirtrons are a predominant class of noncanonical microRNAs derived from introns through a Drosha-independent, splicing-dependent pathway. Unregulated splicing of introns containing hairpins may adversely impact Dicer/Ago-mediated canonical microRNA biogenesis. However, the mechanism regulating mirtron biogenesis remains poorly understood. We found that the 5' arm of plant mirtrons and invertebrate mirtrons are enriched for uracils; in contrast, the 5' arm of vertebrate mirtrons are enriched for guanines. Further analysis revealed that most of the mammalian mirtrons contain an RNA G-quadruplex (rG4); this was not observed among plant/invertebrate mirtrons. Interestingly, almost all the rG4s in mammalian mirtrons were present in the 5' arm. Predicted rG4s in human mirtrons form a G-quadruplex structure in vitro and rG4 formation in the 5' arm of mirtrons facilitates splicing-mediated biogenesis of mirtrons. Notably, the disruption of rG4s in the 5' arm of mirtrons inhibits splicing and maturation; while mutations outside the rG4-motif do not impact mirtron biogenesis. Our findings support the notion that rG4s at the 5' arm are key regulatory elements in the evolutionary landscape of mammalian mirtrons. This work advances our current understanding of mirtron biogenesis and highlights additional roles for rG4s in small RNA biology.
Collapse
Affiliation(s)
- Uzma Salim
- Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi, India
| | - Manoj B Menon
- Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi, India
| | - Sonam Dhamija
- Integrative and Functional Biology Unit, CSIR - Institute of Genomics and Integrative Biology, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), CSIR - Institute of Genomics and Integrative Biology, New Delhi, India.
| | - Perumal Vivekanandan
- Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi, India.
| |
Collapse
|
4
|
Guo XC, Shi DZ, Huang S, Zhang YH, Zhang WY, Chen J, Huang Z, Wu H, Hou JQ, Jin FJ, Chen XC, Wong WL, Lu YJ. PET Imaging of Solid Tumors with a G-Quadruplex-Targeting 18F-Labeled Peptide Probe. J Med Chem 2025; 68:2804-2814. [PMID: 39807685 DOI: 10.1021/acs.jmedchem.4c02121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Positron emission tomography (PET) is a common imaging technique and can provide accurate information about the size, shape, and location of tumors. Recent evidence has shown that G-quadruplex structures (G4s) are identified in human oncogenes, and these special structures are recognized as diagnostic cancer markers and drug targets for anticancer therapies. Although a number of techniques for in vivo imaging of G4s have been developed, achieving sufficient sensitivity and selectivity in vivo remains challenging. Herein, we have engineered and developed a radiolabeled peptide probe [18F]AlF-NOTA-RHAU18 targeting mitochondrial DNA G4s for in vivo PET imaging. The results of the study indicate that this probe is able to visualize and detect solid tumors in living homozygous mice. In addition, the distribution of the probe in cancer cells was investigated using FITC-RHAU18. This work may offer new insights into the development of cancer diagnostic tools by targeting in vivo G4s.
Collapse
Affiliation(s)
- Xiao-Chun Guo
- Guangdong Medicine-Engineering Interdisciplinary Technology Research Center, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Da-Zhi Shi
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Shun Huang
- Department of Nuclear Medicine, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan 523059, China
| | - Yi-Han Zhang
- Guangdong Medicine-Engineering Interdisciplinary Technology Research Center, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Wan-Ying Zhang
- Guangdong Medicine-Engineering Interdisciplinary Technology Research Center, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Jing Chen
- Guangdong Medicine-Engineering Interdisciplinary Technology Research Center, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Zebin Huang
- Guangdong Medicine-Engineering Interdisciplinary Technology Research Center, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Hubing Wu
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jin-Qiang Hou
- Department of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
- Thunder Bay Regional Health Research Institute, 980 Oliver Road, Thunder Bay, Ontario P7B 6 V4, Canada
| | - Fu-Jun Jin
- Guangdong Medicine-Engineering Interdisciplinary Technology Research Center, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiu-Cai Chen
- Guangdong Medicine-Engineering Interdisciplinary Technology Research Center, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Yu-Jing Lu
- Guangdong Medicine-Engineering Interdisciplinary Technology Research Center, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
- Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
5
|
Sekine R, Takeda K, Suenaga T, Tsuno S, Kaiya T, Kiso M, Yamayoshi S, Takaku Y, Ohno S, Yamaguchi Y, Nishizawa S, Sumitomo K, Ikuta K, Kanda T, Kawaoka Y, Nishimura H, Kuge S. G-quadruplex-forming small RNA inhibits coronavirus and influenza A virus replication. Commun Biol 2025; 8:27. [PMID: 39815031 PMCID: PMC11735773 DOI: 10.1038/s42003-024-07351-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 12/03/2024] [Indexed: 01/18/2025] Open
Abstract
Future pandemic threats may be caused by novel coronaviruses and influenza A viruses. Here we show that when directly added to a cell culture, 12mer guanine RNA (G12) and its phosphorothioate-linked derivatives (G12(S)), rapidly entered cytoplasm and suppressed the propagation of human coronaviruses and influenza A viruses to between 1/100 and nearly 1/1000 of normal virus infectivity without cellular toxicity and induction of innate immunity. Moreover, G12(S) alleviated the weight loss caused by coronavirus infection in mice. G12(S) might exhibit a stable G-tetrad with left-handed parallel-stranded G-quadruplex, and inhibit the replication process by impeding interaction between viral nucleoproteins and viral RNA in the cytoplasm. Unlike previous antiviral strategies that target the G-quadruplexes of the viral genome, we now show that excess exogenous G-quadruplex-forming small RNA displaces genomic RNA from ribonucleoprotein, effectively inhibiting viral replication. The approach has the potential to facilitate the creation of versatile middle-molecule antivirals featuring lipid nanoparticle-free delivery.
Collapse
Affiliation(s)
- Ryoya Sekine
- Division of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsuhima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Kouki Takeda
- Division of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsuhima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Tsukasa Suenaga
- Division of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsuhima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Satsuki Tsuno
- Division of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsuhima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Takumi Kaiya
- Division of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsuhima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Maki Kiso
- Division of Virology, Institute of Medical Sciences, The University of Tokyo, 4-6-1 Shiroganedai, Minato-ku, Tokyo, 108-8639, Japan
- The University of Tokyo, Pandemic Preparedness, Infection, and Advanced Research Center, Tokyo, Japan
| | - Seiya Yamayoshi
- Division of Virology, Institute of Medical Sciences, The University of Tokyo, 4-6-1 Shiroganedai, Minato-ku, Tokyo, 108-8639, Japan
- The University of Tokyo, Pandemic Preparedness, Infection, and Advanced Research Center, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Yoshihide Takaku
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Azaaoba, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Shiho Ohno
- Division of Structural Glycobiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsuhima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Yoshiki Yamaguchi
- Division of Structural Glycobiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsuhima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Seiichi Nishizawa
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Azaaoba, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Kazuhiro Sumitomo
- Division of Geriatric and Community Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1, Fukumuro, Miyagino-ku, Sendai, Miyagi, 983-8536, Japan
| | - Kazufumi Ikuta
- Division of Microbiology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1, Fukumuro, Miyagino-ku, Sendai, Miyagi, 983-8536, Japan
| | - Teru Kanda
- Division of Microbiology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1, Fukumuro, Miyagino-ku, Sendai, Miyagi, 983-8536, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Institute of Medical Sciences, The University of Tokyo, 4-6-1 Shiroganedai, Minato-ku, Tokyo, 108-8639, Japan
- The University of Tokyo, Pandemic Preparedness, Infection, and Advanced Research Center, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Hidekazu Nishimura
- Virus Research Center, Clinical Research Division, National Hospital Organization Sendai Medical Center, 2-1-12, Miyagino, Miyagino-ku, Sendai, Miyagi, 983-8520, Japan
| | - Shusuke Kuge
- Division of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsuhima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan.
| |
Collapse
|
6
|
Moura NMM, Guedes S, Salvador D, Oliveira H, Neves MGPMS, Ramos CIV. Is Silver a Precious Metal for G-Quadruplex Stabilization Mediated by Porphyrins? Int J Mol Sci 2024; 25:13556. [PMID: 39769320 PMCID: PMC11678824 DOI: 10.3390/ijms252413556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/08/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Cancer is a leading cause of death, so continuous efforts into cancer therapy are imperative. In tumor cells, telomerase and oncogene activity are key points for uncontrolled cell growth. Targeting these processes with ligands that inhibit telomerase and/or reduce oncogene expression has been identified as a promising cancer therapy. This study evaluated the selectivity and affinity of the silverII complex of 5,10,15,20-tetrakis(N-methyl-4-pyridinium)porphyrin (AgTMPyP) to stabilize DNA sequences capable of forming G4 structures mimicking the telomeric and oncogene regions, using spectroscopic, biochemical methods and in vitro assays. The tetracationic silver complex was compared with the free base, H2TMPyP, and the zincII complex, ZnTMPyP. The results obtained from UV-Vis and fluorescence methods pointed to a great affinity and good selectivity of AgTMPyP to G4 structures, especially for the oncogene MYC. In general, an increase in the ability of the studied ligands for 1O2 generation when interacting with oncogenic and telomeric G4 sequences was found. The results of the PCR stop assays proved that AgTMPyP has the ability to inhibit Taq polymerase. Additionally, in vitro assays demonstrated that the silverII complex exhibits low cytotoxicity against HaCaT- an immortalized, non-tumorigenic, skin keratinocytes cell line-and, although nonexclusive, AgTMPyP shows nuclear co-localization.
Collapse
Affiliation(s)
- Nuno M. M. Moura
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (N.M.M.M.); (S.G.)
| | - Sofia Guedes
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (N.M.M.M.); (S.G.)
| | - Diana Salvador
- CESAM-Centre for Environmental and Marine Studies, Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; (D.S.); (H.O.)
- CICECO, Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Helena Oliveira
- CESAM-Centre for Environmental and Marine Studies, Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; (D.S.); (H.O.)
| | - M. Graça P. M. S. Neves
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (N.M.M.M.); (S.G.)
| | - Catarina I. V. Ramos
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (N.M.M.M.); (S.G.)
| |
Collapse
|
7
|
Gualtieri G, Citriniti EL, Rocca R, Arciuolo V, Amato J, Randazzo A, Alcaro S. Kanamycin and G-Quadruplexes: An Exploration of Binding Interactions. Molecules 2024; 29:5932. [PMID: 39770021 PMCID: PMC11676551 DOI: 10.3390/molecules29245932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/05/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
G-quadruplexes (G4s) are distinctive four-stranded nucleic acid structures formed by guanine-rich sequences, making them attractive targets for drug repurposing efforts. Modulating their stability and function holds promise for treating diseases like cancer. To identify potential drug candidates capable of interacting with these complex DNA formations, docking studies and molecular dynamics (MDs) simulations were conducted. Our analysis revealed kanamycin's ability to bind to various G4 structures, offering valuable insights into its potential as a modulator of G4 activity. Kanamycin exhibited favorable interactions with both parallel and hybrid G4 topologies in human structures, suggesting a broader mechanism of action for aminoglycosides. These findings may also shed light on aminoglycoside-associated toxicities, indicating that their effects might extend to binding non-ribosomal RNA structures. In summary, this research highlights kanamycin's potential as a promising tool for influencing G4 dynamics, paving the way for innovative therapeutic strategies targeting G4-related pathways.
Collapse
Affiliation(s)
- Gianmarco Gualtieri
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (G.G.); (E.L.C.); (S.A.)
| | - Emanuele Liborio Citriniti
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (G.G.); (E.L.C.); (S.A.)
| | - Roberta Rocca
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (G.G.); (E.L.C.); (S.A.)
- Net4Science SRL, Università “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Valentina Arciuolo
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (V.A.); (J.A.); (A.R.)
| | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (V.A.); (J.A.); (A.R.)
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (V.A.); (J.A.); (A.R.)
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (G.G.); (E.L.C.); (S.A.)
- Net4Science SRL, Università “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| |
Collapse
|
8
|
Parveen S, Chaurasia N, Gupta S, Vidyarthi S, Gupta N, Pandey P, Pant B, Srivastava KR, Kumar N, Goel A. Rationally Designed G-Quadruplex Selective "Turn-On" NIR Fluorescent Probe with Large Stokes Shift for Nucleic Acid Research-Based Applications. ACS APPLIED BIO MATERIALS 2024; 7:7233-7243. [PMID: 39466599 DOI: 10.1021/acsabm.4c00940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Guanine-rich DNA/RNA sequences can form Hoogsteen bonds to adopt noncanonical secondary structures called G-quadruplexes, and these have been associated with diverse cellular processes. There has been considerable research interest in the design of G4-interacting ligands for cellular probing of the G4 structure and understanding its associated biological function. Most of the fluorescent G4 ligands either do not have significant selectivity over other nucleic acid structures, have high Stokes shift, or are not in the near-infrared (NIR) region, which limits its cellular visualization. The current work involves the rational design and synthesis of NIR fluorescent probes comprising a (Z)-1-methyl-2-((3-methylbenzo[d]thiazol-2(3H)-ylidene)methyl)quinolin-1-ium scaffold. Among the designed molecules, 4a exhibited far-red fluorescence (λmax = 680 nm) with large Stokes shift (∼182 nm) upon selective binding to human telomeric G-quadruplexes. The dye 4a does not disturb the conformation and stability of G-quadruplexes, thereby making it suitable for nucleic acid research based applications. Interestingly, 4a showed remarkable selectivity over single- and double-stranded structures in contrast to a commercially available quadruplex binding probe, Thiazole orange (TO). The molecular docking studies indicate that 4a binds at the groove region of the telomeric DNA G-quadruplex through π-π stacking interactions with the quinoline and amine-substituted phenyl ring and with the phosphate backbone through anion-π interactions with the benzothiazole ring. The designed molecule 4a has interesting photophysical properties, cell permeability, and biocompatibility with minimal cytotoxicity. Fluorescence imaging studies in live HeLa cells showed that probe 4a binds to the transient population of the DNA G-quadruplex in the nucleus and RNA quadruplexes in the cytoplasm. In brief, G-quadruplex NIR fluorescent probe 4a with a higher signal/noise ratio has significant potential for cellular imaging studies and thus opens avenues to decipher the biological pathways for better understanding of G-quadruplex biology.
Collapse
Affiliation(s)
- Sajiya Parveen
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Nirupa Chaurasia
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Suchitra Gupta
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Seema Vidyarthi
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Nisha Gupta
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Priyanka Pandey
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Bhaskar Pant
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Kinshuk Raj Srivastava
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Niti Kumar
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Atul Goel
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
9
|
Obara P, Wolski P, Pańczyk T. Insights into the Molecular Structure, Stability, and Biological Significance of Non-Canonical DNA Forms, with a Focus on G-Quadruplexes and i-Motifs. Molecules 2024; 29:4683. [PMID: 39407611 PMCID: PMC11477922 DOI: 10.3390/molecules29194683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
This article provides a comprehensive examination of non-canonical DNA structures, particularly focusing on G-quadruplexes (G4s) and i-motifs. G-quadruplexes, four-stranded structures formed by guanine-rich sequences, are stabilized by Hoogsteen hydrogen bonds and monovalent cations like potassium. These structures exhibit diverse topologies and are implicated in critical genomic regions such as telomeres and promoter regions of oncogenes, playing significant roles in gene expression regulation, genome stability, and cellular aging. I-motifs, formed by cytosine-rich sequences under acidic conditions and stabilized by hemiprotonated cytosine-cytosine (C:C+) base pairs, also contribute to gene regulation despite being less prevalent than G4s. This review highlights the factors influencing the stability and dynamics of these structures, including sequence composition, ionic conditions, and environmental pH. Molecular dynamics simulations and high-resolution structural techniques have been pivotal in advancing our understanding of their folding and unfolding mechanisms. Additionally, the article discusses the therapeutic potential of small molecules designed to selectively bind and stabilize G4s and i-motifs, with promising implications for cancer treatment. Furthermore, the structural properties of these DNA forms are explored for applications in nanotechnology and molecular devices. Despite significant progress, challenges remain in observing these structures in vivo and fully elucidating their biological functions. The review underscores the importance of continued research to uncover new insights into the genomic roles of G4s and i-motifs and their potential applications in medicine and technology. This ongoing research promises exciting developments in both basic science and applied fields, emphasizing the relevance and future prospects of these intriguing DNA structures.
Collapse
Affiliation(s)
| | | | - Tomasz Pańczyk
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30239 Cracow, Poland; (P.O.); (P.W.)
| |
Collapse
|
10
|
Sharma P, Sweta Jha N. Curcumin Knoevenagel's Schiff Base as a Promising Stabilizer of G-Quadruplex Structure. Chem Biodivers 2024; 21:e202400797. [PMID: 38946104 DOI: 10.1002/cbdv.202400797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/02/2024]
Abstract
G-quadruplex DNA sequences present in the promoter and telomere regions of the genomic sequence are considered therapeutic targets for the treatment of cancer. Curcumin, derived from Curcuma longa, has been known as a quadruplex binder and has a potential role in the apoptosis of cancer cells. Here, we have reported the Schiff base ligand of curcumin synthesized through the condensation of the amino acid L-tryptophan and the knoevenagel derivative of curcumin (4-nitrobenzylidene curcumin (NBC)) as a potential G-quadruplex binder. Thus, spectroscopic and biophysical studies reveal a higher binding affinity of the ligand Sb-NBC towards the promoter and telomere G-quadruplex sequence as compared to the parent NBC. The ligand Sb-NBC highly stabilizes the parallel and hybrid G-quadruplex topologies to 10.5 °C-6.4 °C. Interestingly, the ligands also exhibit selective cytotoxicity toward cancer cells over normal cells. Taken together, this work provides evidence of the possibility of applying curcumin Schiff base in cancer therapy to regulate oncogene expression in cancer cells.
Collapse
Affiliation(s)
- Padma Sharma
- Department of Chemistry, National Institute of Technology, 800005, Patna, Bihar, India
| | - Niki Sweta Jha
- Department of Chemistry, National Institute of Technology, 800005, Patna, Bihar, India
| |
Collapse
|
11
|
Mazzini S, Borgonovo G, Princiotto S, Artali R, Musso L, Aviñó A, Eritja R, Gargallo R, Dallavalle S. Quadruplex-duplex junction in LTR-III: A molecular insight into the complexes with BMH-21, namitecan and doxorubicin. PLoS One 2024; 19:e0306239. [PMID: 39046961 PMCID: PMC11268700 DOI: 10.1371/journal.pone.0306239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/13/2024] [Indexed: 07/27/2024] Open
Abstract
Quadruplex-Duplex (Q-D) junctions are unique structural motifs garnering increasing interest as drug targets, due to their frequent occurrence in genomic sequences. The viral HIV LTR-III sequence was chosen as a Q-D junction model to study the affinity of the selected compounds BMH-21, namitecan (ST-1968), and doxorubicin (DOXO), all containing a planar polycyclic aromatic moiety, linked to either one short aminoalkyl or an aminoglycosyl group. A multidisciplinary approach that combines NMR spectroscopy, molecular modelling, circular dichroism (CD) and fluorescence spectroscopy was employed. The studied ligands induced moderate but clear stabilization to the Q-D junction by interacting with the interfacial tetrad. DOXO was found to be the best Q-D junction binder. Interestingly, the removal of the aminoglycosyl group significantly changed the pattern of the interactions, indicating that highly polar substituents have a stronger affinity with the exposed regions of the Q-D junction, particularly at the level of the interfacial tetrad.
Collapse
Affiliation(s)
- Stefania Mazzini
- Department of Food, Environmental and Nutritional Sciences (DEFENS), University of Milan, Milan, Italy
| | - Gigliola Borgonovo
- Department of Food, Environmental and Nutritional Sciences (DEFENS), University of Milan, Milan, Italy
| | - Salvatore Princiotto
- Department of Food, Environmental and Nutritional Sciences (DEFENS), University of Milan, Milan, Italy
| | - Roberto Artali
- Scientia Advice di Roberto Artali, Cesano Maderno (MB), Italy
| | - Loana Musso
- Department of Food, Environmental and Nutritional Sciences (DEFENS), University of Milan, Milan, Italy
| | - Anna Aviñó
- Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), ISCIII, Barcelona, Spain
| | - Ramon Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), ISCIII, Barcelona, Spain
| | - Raimundo Gargallo
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Barcelona, Spain
| | - Sabrina Dallavalle
- Department of Food, Environmental and Nutritional Sciences (DEFENS), University of Milan, Milan, Italy
- National Institute of Fundamental Studies, Kandy, Sri Lanka
| |
Collapse
|
12
|
Gadgil RY, Rider SD, Shrestha R, Alhawach V, Hitch D, Leffak M. Microsatellite break-induced replication generates highly mutagenized extrachromosomal circular DNAs. NAR Cancer 2024; 6:zcae027. [PMID: 38854437 PMCID: PMC11161834 DOI: 10.1093/narcan/zcae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 06/11/2024] Open
Abstract
Extrachromosomal circular DNAs (eccDNAs) are produced from all regions of the eucaryotic genome. We used inverse PCR of non-B microsatellites capable of forming hairpin, triplex, quadruplex and AT-rich structures integrated at a common ectopic chromosomal site to show that these non-B DNAs generate highly mutagenized eccDNAs by replication-dependent mechanisms. Mutagenesis occurs within the non-B DNAs and extends several kilobases bidirectionally into flanking and nonallelic DNA. Each non-B DNA exhibits a different pattern of mutagenesis, while sister clones containing the same non-B DNA also display distinct patterns of recombination, microhomology-mediated template switching and base substitutions. Mutations include mismatches, short duplications, long nontemplated insertions, large deletions and template switches to sister chromatids and nonallelic chromosomes. Drug-induced replication stress or the depletion of DNA repair factors Rad51, the COPS2 signalosome subunit or POLη change the pattern of template switching and alter the eccDNA mutagenic profiles. We propose an asynchronous capture model based on break-induced replication from microsatellite-induced DNA double strand breaks to account for the generation and circularization of mutagenized eccDNAs and the appearance of genomic homologous recombination deficiency (HRD) scars. These results may help to explain the appearance of tumor eccDNAS and their roles in neoantigen production, oncogenesis and resistance to chemotherapy.
Collapse
Affiliation(s)
- Rujuta Yashodhan Gadgil
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - S Dean Rider
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Resha Shrestha
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Venicia Alhawach
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - David C Hitch
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Michael Leffak
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| |
Collapse
|
13
|
Turcotte MA, Perreault JP. Pathogenic SNPs Affect Both RNA and DNA G-Quadruplexes' Responses to Ligands. ACS Chem Biol 2024; 19:1045-1050. [PMID: 38688038 PMCID: PMC11106744 DOI: 10.1021/acschembio.4c00104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/12/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Single nucleotide polymorphisms (SNPs) are common genetic variations that are present in over 1% of the population and can significantly modify the structures of both DNA and RNA. G-quadruplex structures (G4) are formed by the superposition of tetrads of guanines. To date, the impact of SNPs on both G4 ligands' binding efficacies and specificities has not been investigated. Here, using a bioinformatically predicted G4 and SNPs found in the α-synuclein gene as a proof-of-concept, it was demonstrated that SNPs can modulate both DNA and RNA G4s' responses to ligands. Specifically, six widely recognized ligands (Phen-DC3, PDS, 360A, RHPS4, BRACO19, and TMPyP4) were shown to differentially affect both the structure and the polymerase stalling of the different SNPs. This work highlights the importance of choosing the appropriate G4 ligand when dealing with an SNP identified in a G-rich gene.
Collapse
Affiliation(s)
- Marc-Antoine Turcotte
- Department
of Biochemistry and Functional Genomics, Pavillon de Recherche Appliquée
sur le Cancer, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Jean-Pierre Perreault
- Department
of Biochemistry and Functional Genomics, Pavillon de Recherche Appliquée
sur le Cancer, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| |
Collapse
|
14
|
Bağda E. Insights into the G-quadruplex DNA interaction landscape: Comparative analysis of anionic Zn(II) and Co(II) phthalocyanine-tetrasulfonate complexes. J Mol Recognit 2024; 37:e3082. [PMID: 38471837 DOI: 10.1002/jmr.3082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/15/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
G-quadruplexes play a pivotal role in regulating various cellular processes, including gene expression and replication, making them essential structures in understanding, and manipulating cellular functions. The development of G-quadruplex ligands holds significant promise in therapeutic and research applications, offering targeted tools to modulate G-quadruplex structures and potentially influence critical biological pathways. An exciting frontier in G-quadruplex research lies in the exploration of anionic ligands, and their profound impact on stabilizing and modulating G-quadruplex DNA. In this study, the interaction of two anionic phthalocyanine compounds (Zinc (II) phthalocyanine 3,4',4″,4‴-tetrasulfonic acid, tetrasodium salt, ZnAPC; cobalt (II) phthalocyanine 3,4',4″,4‴-tetrasulfonic acid, tetrasodium salt, CoAPC) and three separate G-quadruplex-forming DNA sequences was investigated. Interactions were carried out by DNA polymerase stop studies along with spectroscopic studies. According to the results of experimental data, it was determined that ZnAPC actively interacts with the G-quadruplex DNA structures. On the other hand, it was thought that the interaction with CoAPC was less and even occurred in simple electrostatic interactions. KD constants and Bmax constants for the interaction with ZnAPC were calculated. The KD constants for ZnAPC were found to be (1.16 ± 0.07) × 10-5, (9.75 ± .24) × 10-6 and (1.00 ± 0.36) × 10-4 M for AS1411, Vegf, and Tel21, respectively. Accordingly, it was concluded that ZnAPC interacts with G-quadruplex DNA ligands effectively.
Collapse
Affiliation(s)
- Efkan Bağda
- Molecular Biology and Genetics, Faculty of Science, Sivas Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
15
|
Kaur J, Sharma A, Mundlia P, Sood V, Pandey A, Singh G, Barnwal RP. RNA-Small-Molecule Interaction: Challenging the "Undruggable" Tag. J Med Chem 2024; 67:4259-4297. [PMID: 38498010 DOI: 10.1021/acs.jmedchem.3c01354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
RNA targeting, specifically with small molecules, is a relatively new and rapidly emerging avenue with the promise to expand the target space in the drug discovery field. From being "disregarded" as an "undruggable" messenger molecule to FDA approval of an RNA-targeting small-molecule drug Risdiplam, a radical change in perspective toward RNA has been observed in the past decade. RNAs serve important regulatory functions beyond canonical protein synthesis, and their dysregulation has been reported in many diseases. A deeper understanding of RNA biology reveals that RNA molecules can adopt a variety of structures, carrying defined binding pockets that can accommodate small-molecule drugs. Due to its functional diversity and structural complexity, RNA can be perceived as a prospective target for therapeutic intervention. This perspective highlights the proof of concept of RNA-small-molecule interactions, exemplified by targeting of various transcripts with functional modulators. The advent of RNA-oriented knowledge would help expedite drug discovery.
Collapse
Affiliation(s)
- Jaskirat Kaur
- Department of Biophysics, Panjab University, Chandigarh 160014, India
| | - Akanksha Sharma
- Department of Biophysics, Panjab University, Chandigarh 160014, India
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Poonam Mundlia
- Department of Biophysics, Panjab University, Chandigarh 160014, India
| | - Vikas Sood
- Department of Biochemistry, Jamia Hamdard, New Delhi 110062, India
| | - Ankur Pandey
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | | |
Collapse
|
16
|
Gemmill DL, Nelson CR, Badmalia MD, Pereira HS, Kerr L, Wolfinger MT, Patel TR. The 3' terminal region of Zika virus RNA contains a conserved G-quadruplex and is unfolded by human DDX17. Biochem Cell Biol 2024; 102:96-105. [PMID: 37774422 DOI: 10.1139/bcb-2023-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023] Open
Abstract
Zika virus (ZIKV) infection remains a worldwide concern, and currently no effective treatments or vaccines are available. Novel therapeutics are an avenue of interest that could probe viral RNA-human protein communication to stop viral replication. One specific RNA structure, G-quadruplexes (G4s), possess various roles in viruses and all domains of life, including transcription and translation regulation and genome stability, and serves as nucleation points for RNA liquid-liquid phase separation. Previous G4 studies on ZIKV using a quadruplex forming G-rich sequences Mapper located a potential G-quadruplex sequence in the 3' terminal region (TR) and was validated structurally using a 25-mer oligo. It is currently unknown if this structure is conserved and maintained in a large ZIKV RNA transcript and its specific roles in viral replication. Using bioinformatic analysis and biochemical assays, we demonstrate that the ZIKV 3' TR G4 is conserved across all ZIKV isolates and maintains its structure in a 3' TR full-length transcript. We further established the G4 formation using pyridostatin and the BG4 G4-recognizing antibody binding assays. Our study also demonstrates that the human DEAD-box helicases, DDX3X132-607 and DDX17135-555, bind to the 3' TR and that DDX17135-555 unfolds the G4 present in the 3' TR. These findings provide a path forward in potential therapeutic targeting of DDX3X or DDX17's binding to the 3' TR G4 region for novel treatments against ZIKV.
Collapse
Affiliation(s)
- Dannielle L Gemmill
- Alberta RNA Research and Training Institute & Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Corey R Nelson
- Alberta RNA Research and Training Institute & Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Maulik D Badmalia
- Alberta RNA Research and Training Institute & Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Higor S Pereira
- Alberta RNA Research and Training Institute & Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Liam Kerr
- Alberta RNA Research and Training Institute & Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Michael T Wolfinger
- Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Währinger Strasse 29, 1090, Vienna, Austria
- Department of Theoretical Chemistry, University of Vienna, Währinger Strasse 17, 1090, Vienna, Austria
- RNA Forecast e.U., 1140 Vienna, Austria
| | - Trushar R Patel
- Alberta RNA Research and Training Institute & Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
- Department of Microbiology, Immunology and Infectious Disease, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Li Ka Shing Institute of Virology and Discovery Lab, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
17
|
Gadgil RY, Rider SD, Shrestha R, Alhawach V, Hitch DC, Leffak M. Microsatellite break-induced replication generates highly mutagenized extrachromosomal circular DNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575055. [PMID: 38260482 PMCID: PMC10802558 DOI: 10.1101/2024.01.12.575055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Extrachromosomal circular DNAs (eccDNAs) are produced from all regions of the eucaryotic genome. In tumors, highly transcribed eccDNAs have been implicated in oncogenesis, neoantigen production and resistance to chemotherapy. Here we show that unstable microsatellites capable of forming hairpin, triplex, quadruplex and AT-rich structures generate eccDNAs when integrated at a common ectopic site in human cells. These non-B DNA prone microsatellites form eccDNAs by replication-dependent mechanisms. The microsatellite-based eccDNAs are highly mutagenized and display template switches to sister chromatids and to nonallelic chromosomal sites. High frequency mutagenesis occurs within the eccDNA microsatellites and extends bidirectionally for several kilobases into flanking DNA and nonallelic DNA. Mutations include mismatches, short duplications, longer nontemplated insertions and large deletions. Template switching leads to recurrent deletions and recombination domains within the eccDNAs. Template switching events are microhomology-mediated, but do not occur at all potential sites of complementarity. Each microsatellite exhibits a distinct pattern of recombination, microhomology choice and base substitution signature. Depletion of Rad51, the COPS2 signalosome subunit or POLη alter the eccDNA mutagenic profiles. We propose an asynchronous capture model based on break-induced replication from microsatellite-induced DNA breaks for the generation and circularization of mutagenized eccDNAs and genomic homologous recombination deficiency (HRD) scars.
Collapse
|
18
|
Khurana S, Kukreti S, Kaushik M. Prospecting the cancer therapeutic edge of chitosan-based gold nanoparticles through conformation selective binding to the parallel G-quadruplex formed by short telomeric DNA sequence: A multi-spectroscopic approach. Int J Biol Macromol 2023; 253:126835. [PMID: 37709220 DOI: 10.1016/j.ijbiomac.2023.126835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/16/2023]
Abstract
The biological relevance of G4 structures formed in telomere & oncogenes promoters make them extremely crucial therapeutic target for cancer treatment. Herein, we have synthesized chitosan-based gold nanoparticles (CH-Au NPs) through green method and have investigated their interaction with G4 structures formed by short telomeric sequences to evaluate their potential for targeting G4 structures. Firstly, we have characterized morphological/physical attributes of synthesized CH-Au NPs and salt dependent structural aspects of model G-rich DNA sequence, 12-mer d(T2G4)2 [TETRA] using spectroscopic and biophysical techniques. The molecular interactions between CH-Au NPs and parallel/antiparallel TETRA G4 structures were evaluated using UV-Visible, CD, Fluorescence, CD melting, DLS and Zeta potential studies. The experimental data indicated that CH-Au NPs showed strong binding interactions with Parallel TETRA G4 and provided thermal stabilization to the structure, whereas their interactions with Antiparallel TETRA G4 DNA and Ct-DNA (DNA duplex) were found to be negligible. Further, CH-Au NPs were also investigated for their selectivity aptitude for different G4 structures formed by human telomeric sequences; d(T2AG3)3 [HUM-12] and d(T2AG3)4T [HUM-25]. Our findings suggested that CH-Au NPs exhibited topology specific binding aptitude towards G4 structure, which can be utilized to inhibit/modulate crucial biological functions for potential anticancer activity.
Collapse
Affiliation(s)
- Sonia Khurana
- Nano-bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India; Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Shrikant Kukreti
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Mahima Kaushik
- Nano-bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India.
| |
Collapse
|
19
|
Roy L, Roy A, Bose D, Banerjee N, Chatterjee S. Unraveling the structural aspects of the G-quadruplex in SMO promoter and elucidating its contribution in transcriptional regulation. J Biomol Struct Dyn 2023; 42:12228-12243. [PMID: 37878583 DOI: 10.1080/07391102.2023.2268200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/03/2023] [Indexed: 10/27/2023]
Abstract
We located a 25 nt G-rich sequence in the promoter region of SMO oncogene. We performed an array of biophysical and biochemical assays and confirmed the formation of a parallel G quadruplex (SMO1-GQ) by the identified sequence. SMO1-GQ is highly conserved in primates. For a comprehensive characterization of the SMO quadruplex structure, we have performed spectroscopic and in silico analysis with established GQ binder small molecules TMPyP4 and BRACO-19. We observed comparatively higher stable interaction of BRACO-19 with SMO1-GQ. Structure-based, rational drug design against SMO1-GQ to target SMO oncogene requires a detailed molecular anatomy of the G-quadruplex. We structurally characterised the SMO1-GQ using DMS footprinting assay and molecular modelling, docking, and MD simulation to identify the probable atomic regions that interact with either of the small molecules. We further investigated SMO1-GQ in vivo by performing chromatin immunoprecipitation (ChIP) assay. ChIP data revealed that this gene element functions as a scaffold for a number of transcription factors: specificity protein (Sp1), nucleolin (NCL), non-metastatic cell 2 (NM23-H2), cellular nucleic acid binding protein (CNBP), and heterogeneous nuclear ribonucleoprotein K (hnRNPK) which reflects the SMO1-P1 G-quadruplex to be the master regulator of SMO1 transcriptional activity. The strong binding interaction detected between SMO1-GQ and BRACO-19 contemplates the potential of the G quadruplex as a promising anti-cancer druggable target to downregulate SMO1 oncogene driven cancers.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Laboni Roy
- Department of Biological Science, Bose Institute, Kolkata, West Bengal, India
| | - Ananya Roy
- Department of Biological Science, Bose Institute, Kolkata, West Bengal, India
| | - Debopriya Bose
- Department of Biological Science, Bose Institute, Kolkata, West Bengal, India
| | - Nilanjan Banerjee
- Department of Biological Science, Bose Institute, Kolkata, West Bengal, India
| | | |
Collapse
|
20
|
Kundu N, Sharma T, Kaur S, Mahto AK, Prasad Dewangan R, Shankaraswamy J, Saxena S. Significant destabilization of human telomeric G-quadruplex upon peptide binding: dramatic effect of flanking bases. J Biomol Struct Dyn 2023; 41:7119-7127. [PMID: 36038986 DOI: 10.1080/07391102.2022.2116602] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/16/2022] [Indexed: 10/14/2022]
Abstract
Human telomere is composed of highly repeated hexanucleotide sequence TTAGGG and a 3' single-stranded DNA tail. Many telomere G4 topologies characterized at atomic level by X-ray crystallography and NMR studies. Until now, various small ligands developed to interact with G-quadruplex mainly to stabilize the structure and least is known for its destabilization. In this study, we provide the first evidence of human telomeric G4 destabilization upon peptide binding in dilute and cell-mimicking molecular crowing conditions due to the changes in flanking bases of human telomeric sequences. Hence, our findings will open the new ways to target diseases related with increasing the efficiency of DNA replication, transcription or duplex reannealing.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nikita Kundu
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Taniya Sharma
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Sarvpreet Kaur
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Aman Kumar Mahto
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Rikeshwer Prasad Dewangan
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - J Shankaraswamy
- Department of Fruit Science, College of Horticulture, Mojerla, Sri Konda Laxman Telangana State Horticultural University, Hyderabad, India
| | - Sarika Saxena
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
21
|
Bhat-Ambure J, Ambure P, Serrano-Candelas E, Galiana-Roselló C, Gil-Martínez A, Guerrero M, Martin M, González-García J, García-España E, Gozalbes R. G4-QuadScreen: A Computational Tool for Identifying Multi-Target-Directed Anticancer Leads against G-Quadruplex DNA. Cancers (Basel) 2023; 15:3817. [PMID: 37568632 PMCID: PMC10416877 DOI: 10.3390/cancers15153817] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/16/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
The study presents 'G4-QuadScreen', a user-friendly computational tool for identifying MTDLs against G4s. Also, it offers a few hit MTDLs based on in silico and in vitro approaches. Multi-tasking QSAR models were developed using linear discriminant analysis and random forest machine learning techniques for predicting the responses of interest (G4 interaction, G4 stabilization, G4 selectivity, and cytotoxicity) considering the variations in the experimental conditions (e.g., G4 sequences, endpoints, cell lines, buffers, and assays). A virtual screening with G4-QuadScreen and molecular docking using YASARA (AutoDock-Vina) was performed. G4 activities were confirmed via FRET melting, FID, and cell viability assays. Validation metrics demonstrated the high discriminatory power and robustness of the models (the accuracy of all models is ~>90% for the training sets and ~>80% for the external sets). The experimental evaluations showed that ten screened MTDLs have the capacity to selectively stabilize multiple G4s. Three screened MTDLs induced a strong inhibitory effect on various human cancer cell lines. This pioneering computational study serves a tool to accelerate the search for new leads against G4s, reducing false positive outcomes in the early stages of drug discovery. The G4-QuadScreen tool is accessible on the ChemoPredictionSuite website.
Collapse
Affiliation(s)
| | - Pravin Ambure
- ProtoQSAR SL, Centro Europeo de Empresas Innovadoras (CEEI), Parque Tecnológico de Valencia, 46980 Valencia, Spain; (P.A.); (E.S.-C.)
| | - Eva Serrano-Candelas
- ProtoQSAR SL, Centro Europeo de Empresas Innovadoras (CEEI), Parque Tecnológico de Valencia, 46980 Valencia, Spain; (P.A.); (E.S.-C.)
| | - Cristina Galiana-Roselló
- Department of Inorganic Chemistry, Institute of Molecular Science, University of Valencia, 46980 Valencia, Spain; (C.G.-R.); (A.G.-M.); (J.G.-G.); (E.G.-E.)
| | - Ariadna Gil-Martínez
- Department of Inorganic Chemistry, Institute of Molecular Science, University of Valencia, 46980 Valencia, Spain; (C.G.-R.); (A.G.-M.); (J.G.-G.); (E.G.-E.)
| | - Mario Guerrero
- Biochemistry and Molecular Biology Unit, Biomedicine Department, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (M.G.); (M.M.)
| | - Margarita Martin
- Biochemistry and Molecular Biology Unit, Biomedicine Department, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (M.G.); (M.M.)
- Clinical and Experimental Respiratory Immunoallergy (IRCE), Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Jorge González-García
- Department of Inorganic Chemistry, Institute of Molecular Science, University of Valencia, 46980 Valencia, Spain; (C.G.-R.); (A.G.-M.); (J.G.-G.); (E.G.-E.)
| | - Enrique García-España
- Department of Inorganic Chemistry, Institute of Molecular Science, University of Valencia, 46980 Valencia, Spain; (C.G.-R.); (A.G.-M.); (J.G.-G.); (E.G.-E.)
| | - Rafael Gozalbes
- MolDrug AI Systems SL, c/Olimpia Arozena Torres, 46018 Valencia, Spain;
- ProtoQSAR SL, Centro Europeo de Empresas Innovadoras (CEEI), Parque Tecnológico de Valencia, 46980 Valencia, Spain; (P.A.); (E.S.-C.)
| |
Collapse
|
22
|
Roy A, Chatterjee O, Banerjee N, Roychowdhury T, Dhar G, Mukherjee G, Chatterjee S. Curcumin arrests G-quadruplex in the nuclear hyper-sensitive III 1 element of c-MYC oncogene leading to apoptosis in metastatic breast cancer cells. J Biomol Struct Dyn 2022; 40:10203-10219. [PMID: 34192476 DOI: 10.1080/07391102.2021.1940284] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
c-MYC is deregulated in triple negative breast cancer (TNBC) pointing to be a promising biomarker for breast cancer treatment. Precise level of MYC expression is important in the control of cellular growth and proliferation. Designing of c-MYC-targeted antidotes to restore its basal level of cellular expression holds an optimistic approach towards anti-cancer treatment. MYC transcription is dominantly controlled by Nuclear Hypersensitive Element III-1 (NHEIII1) upstream of the promoter region possessing G-Quadruplex silencer element (Pu-27). We have investigated the selective binding-interaction profile of a natural phytophenolic compound Curcumin with native MYC G-quadruplex by conducting an array of biophysical experiments and in silico based Molecular Docking and Molecular Dynamic (MDs) simulation studies. Curcumin possesses immense anti-cancerous properties. We have observed significantly increased stability of MYC-G Quadruplex and thermodynamic spontaneity of Curcumin-MYC GQ binding with negative ΔG value. Transcription of MYC is tightly regulated by a complex mechanism involving promoters, enhancers and multiple transcription factors. We have used Curcumin as a model drug to understand the innate mechanism of controlling deregulated MYC back to its basal expression level. We have checked MYC-expression at transcriptional and translational level and proceeded for Chromatin Immuno-Precipitation assay (ChIP) to study the occupancy level of SP1, Heterogeneous nuclear ribonucleoprotein K (hnRNPK), Nucleoside Diphosphate Kinase 2 (NM23-H2) and Nucleolin at NHEIII1 upon Curcumin treatment of MDA-MB-231 cells. We have concluded that Curcumin binding tends to drive the equilibrium towards stable G-quadruplex formation repressing MYC back to its threshold-level. On retrospection of the synergistic effect of upregulated c-MYC and BCL-2 in cancer, we have also reported a new pathway [MYC-E2F-1-BCL-2-axis] through which Curcumin trigger apoptosis in cancer cells.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ananya Roy
- Department of Biophysics, Bose Institute, Kolkata, India
| | | | | | - Tanaya Roychowdhury
- Department of Cancer Biology and Inflammatory Disorder, IICB, Kolkata, India
| | - Gopa Dhar
- Department of Biophysics, Bose Institute, Kolkata, India
| | | | | |
Collapse
|
23
|
Vianney YM, Weisz K. High-affinity binding at quadruplex-duplex junctions: rather the rule than the exception. Nucleic Acids Res 2022; 50:11948-11964. [PMID: 36416262 PMCID: PMC9723630 DOI: 10.1093/nar/gkac1088] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 11/24/2022] Open
Abstract
Quadruplex-duplex (Q-D) junctions constitute unique structural motifs in genomic sequences. Through comprehensive calorimetric as well as high-resolution NMR structural studies, Q-D junctions with a hairpin-type snapback loop coaxially stacked onto an outer G-tetrad were identified to be most effective binding sites for various polycyclic quadruplex ligands. The Q-D interface is readily recognized by intercalation of the ligand aromatic core structure between G-tetrad and the neighboring base pair. Based on the thermodynamic and structural data, guidelines for the design of ligands with enhanced selectivity towards a Q-D interface emerge. Whereas intercalation at Q-D junctions mostly outcompete stacking at the quadruplex free outer tetrad or intercalation between duplex base pairs to varying degrees, ligand side chains considerably contribute to the selectivity for a Q-D target over other binding sites. In contrast to common perceptions, an appended side chain that additionally interacts within the duplex minor groove may confer only poor selectivity. Rather, the Q-D selectivity is suggested to benefit from an extension of the side chain towards the exposed part of the G-tetrad at the junction. The presented results will support the design of selective high-affinity binding ligands for targeting Q-D interfaces in medicinal but also technological applications.
Collapse
Affiliation(s)
- Yoanes Maria Vianney
- Institute of Biochemistry, Universität Greifswald, Felix-Hausdorff-Str. 4, D-17489 Greifswald, Germany
| | - Klaus Weisz
- To whom correspondence should be addressed. Tel: +49 3834 420 4426; Fax: +49 3834 420 4427;
| |
Collapse
|
24
|
Functional Downregulation of PD-L1 and PD-L2 by CpG and non-CpG Oligonucleotides in Melanoma Cells. Cancers (Basel) 2022; 14:cancers14194698. [PMID: 36230620 PMCID: PMC9562717 DOI: 10.3390/cancers14194698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/07/2022] [Accepted: 09/22/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Although metastatic melanoma is still not a curable disease, targeting of immunologically relevant checkpoints represents a turning point in the treatment. Particularly, targeting the interaction between PD-L1 and its referring receptor PD-1 with antibodies has been shown to activate T-cell function abrogating the evasion of tumor cells from immune recognition. Here, we present another approach that interferes with this system by showing that treatment of melanoma cells with oligonucleotides reduces the expression of PD-L1 (and PD-L2) on tumor cells. Specifically, non-CpG-6-PTO, an ODN that forms superstructures known as G-quartets, has been found to inhibit the interferon-γ-induced signaling cascade which fosters PD-L1 expression. These findings suggest a new therapeutic strategy to interfere with one of the most important immune checkpoints. Abstract The clinical application of immune checkpoint inhibitors represents a breakthrough progress in the treatment of metastasized melanoma and other tumor entities. In the present study, it was hypothesized that oligonucleotides (ODNs), known as modulators of the immune response, have an impact on the endogenous expression of checkpoint molecules, namely PD-L1 and PD-L2 (PD-L1/2). IFNγ-stimulated melanoma cells (A375, SK-Mel-28) were treated with different synthetically manufactured oligonucleotides which differed in sequence, length and backbone composition. It was found that a variety of different ODN sequences significantly suppressed PD-L1/2 expression. This effect was dependent on length and phosphorothioate (PTO) backbone. In particular, a sequence containing solely guanines (nCpG-6-PTO) was highly effective in downregulating PD-L1/2 at the protein, mRNA and promoter levels. Mechanistically, we gave evidence that ODNs with G-quartet-forming motifs suppress the interferon signaling axis (JAK/STAT/IRF1). Our findings identify a subset of ODNs as interesting pharmacological compounds that could expand the arsenal of targeted therapies to combat the immunological escape of tumor cells.
Collapse
|
25
|
New insights into the effect of molecular crowding environment induced by dimethyl sulfoxide on the conformation and stability of G-quadruplex. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.07.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Patro LPP, Rathinavelan T. STRIDER: Steric hindrance and metal coordination identifier. Comput Biol Chem 2022; 98:107686. [DOI: 10.1016/j.compbiolchem.2022.107686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 11/03/2022]
|
27
|
Jiang J, Teunens T, Tisaun J, Denuit L, Moucheron C. Ruthenium(II) Polypyridyl Complexes and Their Use as Probes and Photoreactive Agents for G-quadruplexes Labelling. Molecules 2022; 27:1541. [PMID: 35268640 PMCID: PMC8912042 DOI: 10.3390/molecules27051541] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/01/2023] Open
Abstract
Due to their optical and electrochemical properties, ruthenium(II) polypyridyl complexes have been used in a wide array of applications. Since the discovery of the light-switch ON effect of [Ru(bpy)2dppz]2+ when interacting with DNA, the design of new Ru(II) complexes as light-up probes for specific regions of DNA has been intensively explored. Amongst them, G-quadruplexes (G4s) are of particular interest. These structures formed by guanine-rich parts of DNA and RNA may be associated with a wide range of biological events. However, locating them and understanding their implications in biological pathways has proven challenging. Elegant approaches to tackle this challenge relies on the use of photoprobes capable of marking, reversibly or irreversibly, these G4s. Indeed, Ru(II) complexes containing ancillary π-deficient TAP ligands can create a covalently linked adduct with G4s after a photoinduced electron transfer from a guanine residue to the excited complex. Through careful design of the ligands, high selectivity of interaction with G4 structures can be achieved. This allows the creation of specific Ru(II) light-up probes and photoreactive agents for G4 labelling, which is at the core of this review composed of an introduction dedicated to a brief description of G-quadruplex structures and two main sections. The first one will provide a general picture of ligands and metal complexes interacting with G4s. The second one will focus on an exhaustive and comprehensive overview of the interactions and (photo)reactions of Ru(II) complexes with G4s.
Collapse
Affiliation(s)
- Julie Jiang
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université Libre de Bruxelles, Avenue F. D. Roosevelt 50-CP 160/08, 1050 Brussels, Belgium; (J.J.); (T.T.); (J.T.); (L.D.)
| | - Titouan Teunens
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université Libre de Bruxelles, Avenue F. D. Roosevelt 50-CP 160/08, 1050 Brussels, Belgium; (J.J.); (T.T.); (J.T.); (L.D.)
- Laboratoire de Chimie des Matériaux Nouveaux, Université de Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Jérôme Tisaun
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université Libre de Bruxelles, Avenue F. D. Roosevelt 50-CP 160/08, 1050 Brussels, Belgium; (J.J.); (T.T.); (J.T.); (L.D.)
| | - Laura Denuit
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université Libre de Bruxelles, Avenue F. D. Roosevelt 50-CP 160/08, 1050 Brussels, Belgium; (J.J.); (T.T.); (J.T.); (L.D.)
| | - Cécile Moucheron
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université Libre de Bruxelles, Avenue F. D. Roosevelt 50-CP 160/08, 1050 Brussels, Belgium; (J.J.); (T.T.); (J.T.); (L.D.)
| |
Collapse
|
28
|
Yılmaz HE, Bağda E, Bağda E, Durmuş M. Interaction of water soluble cationic gallium(III) phthalocyanines with different G-quadruplex DNAs. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
29
|
Largy E, König A, Ghosh A, Ghosh D, Benabou S, Rosu F, Gabelica V. Mass Spectrometry of Nucleic Acid Noncovalent Complexes. Chem Rev 2021; 122:7720-7839. [PMID: 34587741 DOI: 10.1021/acs.chemrev.1c00386] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nucleic acids have been among the first targets for antitumor drugs and antibiotics. With the unveiling of new biological roles in regulation of gene expression, specific DNA and RNA structures have become very attractive targets, especially when the corresponding proteins are undruggable. Biophysical assays to assess target structure as well as ligand binding stoichiometry, affinity, specificity, and binding modes are part of the drug development process. Mass spectrometry offers unique advantages as a biophysical method owing to its ability to distinguish each stoichiometry present in a mixture. In addition, advanced mass spectrometry approaches (reactive probing, fragmentation techniques, ion mobility spectrometry, ion spectroscopy) provide more detailed information on the complexes. Here, we review the fundamentals of mass spectrometry and all its particularities when studying noncovalent nucleic acid structures, and then review what has been learned thanks to mass spectrometry on nucleic acid structures, self-assemblies (e.g., duplexes or G-quadruplexes), and their complexes with ligands.
Collapse
Affiliation(s)
- Eric Largy
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Alexander König
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Anirban Ghosh
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Debasmita Ghosh
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Sanae Benabou
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Frédéric Rosu
- Univ. Bordeaux, CNRS, INSERM, IECB, UMS 3033, F-33600 Pessac, France
| | - Valérie Gabelica
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| |
Collapse
|
30
|
Ramos CIV, Monteiro AR, Moura NMM, Faustino MAF, Trindade T, Neves MGPMS. The Interactions of H 2TMPyP, Analogues and Its Metal Complexes with DNA G-Quadruplexes-An Overview. Biomolecules 2021; 11:biom11101404. [PMID: 34680037 PMCID: PMC8533071 DOI: 10.3390/biom11101404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 12/26/2022] Open
Abstract
The evidence that telomerase is overexpressed in almost 90% of human cancers justifies the proposal of this enzyme as a potential target for anticancer drug design. The inhibition of telomerase by quadruplex stabilizing ligands is being considered a useful approach in anticancer drug design proposals. Several aromatic ligands, including porphyrins, were exploited for telomerase inhibition by adduct formation with G-Quadruplex (GQ). 5,10,15,20-Tetrakis(N-methyl-4-pyridinium)porphyrin (H2TMPyP) is one of the most studied porphyrins in this field, and although reported as presenting high affinity to GQ, its poor selectivity for GQ over duplex structures is recognized. To increase the desired selectivity, porphyrin modifications either at the peripheral positions or at the inner core through the coordination with different metals have been handled. Herein, studies involving the interactions of TMPyP and analogs with different DNA sequences able to form GQ and duplex structures using different experimental conditions and approaches are reviewed. Some considerations concerning the structural diversity and recognition modes of G-quadruplexes will be presented first to facilitate the comprehension of the studies reviewed. Additionally, considering the diversity of experimental conditions reported, we decided to complement this review with a screening where the behavior of H2TMPyP and of some of the reviewed metal complexes were evaluated under the same experimental conditions and using the same DNA sequences. In this comparison under unified conditions, we also evaluated, for the first time, the behavior of the AgII complex of H2TMPyP. In general, all derivatives showed good affinity for GQ DNA structures with binding constants in the range of 106–107 M−1 and ligand-GQ stoichiometric ratios of 3:1 and 4:1. A promising pattern of selectivity was also identified for the new AgII derivative.
Collapse
Affiliation(s)
- Catarina I. V. Ramos
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (A.R.M.); (N.M.M.M.); (M.A.F.F.); (M.G.P.M.S.N.)
- Correspondence: ; Tel.: +351-234-370-692
| | - Ana R. Monteiro
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (A.R.M.); (N.M.M.M.); (M.A.F.F.); (M.G.P.M.S.N.)
- CICECO-Aveiro, Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Nuno M. M. Moura
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (A.R.M.); (N.M.M.M.); (M.A.F.F.); (M.G.P.M.S.N.)
| | - Maria Amparo F. Faustino
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (A.R.M.); (N.M.M.M.); (M.A.F.F.); (M.G.P.M.S.N.)
| | - Tito Trindade
- CICECO-Aveiro, Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Maria Graça P. M. S. Neves
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (A.R.M.); (N.M.M.M.); (M.A.F.F.); (M.G.P.M.S.N.)
| |
Collapse
|
31
|
Weisz K. A world beyond double-helical nucleic acids: the structural diversity of tetra-stranded G-quadruplexes. CHEMTEXTS 2021. [DOI: 10.1007/s40828-021-00150-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractNucleic acids can adopt various secondary structures including double-, triple-, and tetra-stranded helices that differ by the specific hydrogen bond mediated pairing pattern between their nucleobase constituents. Whereas double-helical DNA relies on Watson–Crick base pairing to play a prominent role in storing genetic information, G-quadruplexes are tetra-stranded structures that are formed by the association of guanine bases from G-rich DNA and RNA sequences. During the last few decades, G-quadruplexes have attracted considerable interest after the realization that they form and exert regulatory functions in vivo. In addition, quadruplex architectures have also been recognized as versatile and powerful tools in a growing number of technological applications. To appreciate the astonishing structural diversity of these tetra-stranded structures and to give some insight into basic interactions that govern their folding, this article gives an overview of quadruplex structures and rules associated with the formation of different topologies. A brief discussion will also focus on nonconventional quadruplexes as well as on general principles when targeting quadruplexes with ligands.
Graphic abstract
Collapse
|
32
|
Cadoni E, De Paepe L, Manicardi A, Madder A. Beyond small molecules: targeting G-quadruplex structures with oligonucleotides and their analogues. Nucleic Acids Res 2021; 49:6638-6659. [PMID: 33978760 PMCID: PMC8266634 DOI: 10.1093/nar/gkab334] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/15/2021] [Accepted: 04/29/2021] [Indexed: 12/20/2022] Open
Abstract
G-Quadruplexes (G4s) are widely studied secondary DNA/RNA structures, naturally occurring when G-rich sequences are present. The strategic localization of G4s in genome areas of crucial importance, such as proto-oncogenes and telomeres, entails fundamental implications in terms of gene expression regulation and other important biological processes. Although thousands of small molecules capable to induce G4 stabilization have been reported over the past 20 years, approaches based on the hybridization of a synthetic probe, allowing sequence-specific G4-recognition and targeting are still rather limited. In this review, after introducing important general notions about G4s, we aim to list, explain and critically analyse in more detail the principal approaches available to target G4s by using oligonucleotides and synthetic analogues such as Locked Nucleic Acids (LNAs) and Peptide Nucleic Acids (PNAs), reporting on the most relevant examples described in literature to date.
Collapse
Affiliation(s)
- Enrico Cadoni
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Lessandro De Paepe
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Alex Manicardi
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Annemieke Madder
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| |
Collapse
|
33
|
Lauria A, La Monica G, Terenzi A, Mannino G, Bonsignore R, Bono A, Almerico AM, Barone G, Gentile C, Martorana A. Antiproliferative Properties and G-Quadruplex-Binding of Symmetrical Naphtho[1,2-b:8,7-b']dithiophene Derivatives. Molecules 2021; 26:molecules26144309. [PMID: 34299583 PMCID: PMC8303715 DOI: 10.3390/molecules26144309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 12/04/2022] Open
Abstract
Background: G-quadruplex (G4) forming sequences are recurrent in telomeres and promoter regions of several protooncogenes. In normal cells, the transient arrangements of DNA in G-tetrads may regulate replication, transcription, and translation processes. Tumors are characterized by uncontrolled cell growth and tissue invasiveness and some of them are possibly mediated by gene expression involving G-quadruplexes. The stabilization of G-quadruplex sequences with small molecules is considered a promising strategy in anticancer targeted therapy. Methods: Molecular virtual screening allowed us identifying novel symmetric bifunctionalized naphtho[1,2-b:8,7-b’]dithiophene ligands as interesting candidates targeting h-Telo and c-MYC G-quadruplexes. A set of unexplored naphtho-dithiophene derivatives has been synthesized and biologically tested through in vitro antiproliferative assays and spectroscopic experiments in solution. Results: The analysis of biological and spectroscopic data highlighted noteworthy cytotoxic effects on HeLa cancer cell line (GI50 in the low μM range), but weak interactions with G-quadruplex c-MYC promoter. Conclusions: The new series of naphtho[1,2-b:8,7-b’]dithiophene derivatives, bearing the pharmacophoric assumptions necessary to stabilize G-quadruplexes, have been designed and successfully synthesized. The interesting antiproliferative results supported by computer aided rational approaches suggest that these studies are a significant starting point for a lead optimization process and the isolation of a more efficacious set of G-quadruplexes stabilizers.
Collapse
Affiliation(s)
- Antonino Lauria
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche “STEBICEF”, University of Palermo, Viale delle Scienze—Ed. 17, 90128 Palermo, Italy; (A.L.); (G.L.M.); (A.T.); (A.B.); (A.M.A.); (G.B.); (C.G.)
| | - Gabriele La Monica
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche “STEBICEF”, University of Palermo, Viale delle Scienze—Ed. 17, 90128 Palermo, Italy; (A.L.); (G.L.M.); (A.T.); (A.B.); (A.M.A.); (G.B.); (C.G.)
| | - Alessio Terenzi
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche “STEBICEF”, University of Palermo, Viale delle Scienze—Ed. 17, 90128 Palermo, Italy; (A.L.); (G.L.M.); (A.T.); (A.B.); (A.M.A.); (G.B.); (C.G.)
| | - Giuseppe Mannino
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/A, 10135 Turin, Italy;
| | - Riccardo Bonsignore
- Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85747 Garching, Germany;
| | - Alessia Bono
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche “STEBICEF”, University of Palermo, Viale delle Scienze—Ed. 17, 90128 Palermo, Italy; (A.L.); (G.L.M.); (A.T.); (A.B.); (A.M.A.); (G.B.); (C.G.)
| | - Anna Maria Almerico
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche “STEBICEF”, University of Palermo, Viale delle Scienze—Ed. 17, 90128 Palermo, Italy; (A.L.); (G.L.M.); (A.T.); (A.B.); (A.M.A.); (G.B.); (C.G.)
| | - Giampaolo Barone
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche “STEBICEF”, University of Palermo, Viale delle Scienze—Ed. 17, 90128 Palermo, Italy; (A.L.); (G.L.M.); (A.T.); (A.B.); (A.M.A.); (G.B.); (C.G.)
| | - Carla Gentile
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche “STEBICEF”, University of Palermo, Viale delle Scienze—Ed. 17, 90128 Palermo, Italy; (A.L.); (G.L.M.); (A.T.); (A.B.); (A.M.A.); (G.B.); (C.G.)
| | - Annamaria Martorana
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche “STEBICEF”, University of Palermo, Viale delle Scienze—Ed. 17, 90128 Palermo, Italy; (A.L.); (G.L.M.); (A.T.); (A.B.); (A.M.A.); (G.B.); (C.G.)
- Correspondence: ; Tel.: +39-091-2389-6821
| |
Collapse
|
34
|
Palma E, Carvalho J, Cruz C, Paulo A. Metal-Based G-Quadruplex Binders for Cancer Theranostics. Pharmaceuticals (Basel) 2021; 14:605. [PMID: 34201682 PMCID: PMC8308583 DOI: 10.3390/ph14070605] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 12/11/2022] Open
Abstract
The ability of fluorescent small molecules, such as metal complexes, to selectively recognize G-quadruplex (G4) structures has opened a route to develop new probes for the visualization of these DNA structures in cells. The main goal of this review is to update the most recent research efforts towards the development of novel cancer theranostic agents using this type of metal-based probes that specifically recognize G4 structures. This encompassed a comprehensive overview of the most significant progress in the field, namely based on complexes with Cu, Pt, and Ru that are among the most studied metals to obtain this class of molecules. It is also discussed the potential interest of obtaining G4-binders with medical radiometals (e.g., 99mTc, 111In, 64Cu, 195mPt) suitable for diagnostic and/or therapeutic applications within nuclear medicine modalities, in order to enable their theranostic potential.
Collapse
Affiliation(s)
- Elisa Palma
- C2TN-Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal;
| | - Josué Carvalho
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.C.); (C.C.)
| | - Carla Cruz
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.C.); (C.C.)
| | - António Paulo
- C2TN-Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal;
- DECN-Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| |
Collapse
|
35
|
Pandya N, Jain N, Kumar A. Interaction analysis of anti-cancer drug Methotrexate with bcl-2 promoter stabilization and its transcription regulation. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
36
|
Lauria A, La Monica G, Bono A, Martorana A. Quinoline anticancer agents active on DNA and DNA-interacting proteins: From classical to emerging therapeutic targets. Eur J Med Chem 2021; 220:113555. [PMID: 34052677 DOI: 10.1016/j.ejmech.2021.113555] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 12/25/2022]
Abstract
Quinoline is one of the most important and versatile nitrogen heterocycles embodied in several biologically active molecules. Within the numerous quinolines developed as antiproliferative agents, this review is focused on compounds interfering with DNA structure or with proteins/enzymes involved in the regulation of double helix functional processes. In this light, a special focus is given to the quinoline compounds, acting with classical/well-known mechanisms of action (DNA intercalators or Topoisomerase inhibitors). In particular, the quinoline drugs amsacrine and camptothecin (CPT) have been studied as key lead compounds for the development of new agents with improved PK and tolerability properties. Moreover, notable attention has been paid to the quinoline molecules, which are able to interfere with emerging targets involved in cancer progression, as G-quadruplexes or the epigenetic ones (e.g.: histone deacetylase, DNA and histones methyltransferase). The antiproliferative and the enzymatic inhibition data of the reviewed compounds have been analyzed. Furthermore, concerning the SAR (structure-activity relationship) aspects, the most recurrent ligand-protein interactions are summarized, underling the structural requirements for each kind of mechanism of action.
Collapse
Affiliation(s)
- Antonino Lauria
- Dipartimento di Scienze e Technologie Biologiche Chimiche e Farmaceutiche "STEBICEF" - University of Palermo, Via Archirafi - 32, 90123, Palermo, Italy
| | - Gabriele La Monica
- Dipartimento di Scienze e Technologie Biologiche Chimiche e Farmaceutiche "STEBICEF" - University of Palermo, Via Archirafi - 32, 90123, Palermo, Italy
| | - Alessia Bono
- Dipartimento di Scienze e Technologie Biologiche Chimiche e Farmaceutiche "STEBICEF" - University of Palermo, Via Archirafi - 32, 90123, Palermo, Italy
| | - Annamaria Martorana
- Dipartimento di Scienze e Technologie Biologiche Chimiche e Farmaceutiche "STEBICEF" - University of Palermo, Via Archirafi - 32, 90123, Palermo, Italy.
| |
Collapse
|
37
|
Unraveling the binding characteristics of small ligands to telomeric DNA by pressure modulation. Sci Rep 2021; 11:9714. [PMID: 33958702 PMCID: PMC8102477 DOI: 10.1038/s41598-021-89215-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/15/2021] [Indexed: 02/03/2023] Open
Abstract
Recently, non-canonical DNA structures, such as G-quadruplexes (GQs), were found to be highly pressure sensitive, suggesting that pressure modulation studies can provide additional mechanistic details of such biomolecular systems. Using FRET and CD spectroscopy as well as binding equilibrium measurements, we investigated the effect of pressure on the binding reaction of the ligand ThT to the quadruplex 22AG in solutions containing different ionic species and a crowding agent mimicking the intracellular milieu. Pressure modulation helped us to identify the different conformational substates adopted by the quadruplex at the different solution conditions and to determine the volumetric changes during complex formation and the conformational transitions involved. The magnitudes of the binding volumes are a hallmark of packing defects and hydrational changes upon ligand binding. The conformational substates of the GQ as well as the binding strength and the stoichiometry of complex formation depend strongly on the solution conditions as well as on pressure. High hydrostatic pressure can also impact GQs inside living cells and thus affect expression of genetic information in deep sea organisms. We show that sub-kbar pressures do not only affect the conformational dynamics and structures of GQs, but also their ligand binding reactions.
Collapse
|
38
|
Volek M, Kolesnikova S, Svehlova K, Srb P, Sgallová R, Streckerová T, Redondo JA, Veverka V, Curtis EA. Overlapping but distinct: a new model for G-quadruplex biochemical specificity. Nucleic Acids Res 2021; 49:1816-1827. [PMID: 33544841 PMCID: PMC7913677 DOI: 10.1093/nar/gkab037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 01/09/2021] [Accepted: 01/18/2021] [Indexed: 11/29/2022] Open
Abstract
G-quadruplexes are noncanonical nucleic acid structures formed by stacked guanine tetrads. They are capable of a range of functions and thought to play widespread biological roles. This diversity raises an important question: what determines the biochemical specificity of G-quadruplex structures? The answer is particularly important from the perspective of biological regulation because genomes can contain hundreds of thousands of G-quadruplexes with a range of functions. Here we analyze the specificity of each sequence in a 496-member library of variants of a reference G-quadruplex with respect to five functions. Our analysis shows that the sequence requirements of G-quadruplexes with these functions are different from one another, with some mutations altering biochemical specificity by orders of magnitude. Mutations in tetrads have larger effects than mutations in loops, and changes in specificity are correlated with changes in multimeric state. To complement our biochemical data we determined the solution structure of a monomeric G-quadruplex from the library. The stacked and accessible tetrads rationalize why monomers tend to promote a model peroxidase reaction and generate fluorescence. Our experiments support a model in which the sequence requirements of G-quadruplexes with different functions are overlapping but distinct. This has implications for biological regulation, bioinformatics, and drug design.
Collapse
Affiliation(s)
- Martin Volek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic.,Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Prague 128 44, Czech Republic
| | - Sofia Kolesnikova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic.,Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague 166 28, Czech Republic
| | - Katerina Svehlova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic.,Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Prague 128 44, Czech Republic
| | - Pavel Srb
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic
| | - Ráchel Sgallová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic.,Department of Low-Temperature Physics, Faculty of Mathematics and Physics, Charles University in Prague, Prague 180 00, Czech Republic
| | - Tereza Streckerová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic.,Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague 166 28, Czech Republic
| | - Juan A Redondo
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic
| | - Václav Veverka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague 128 44, Czech Republic
| | - Edward A Curtis
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic
| |
Collapse
|
39
|
Stadlbauer P, Islam B, Otyepka M, Chen J, Monchaud D, Zhou J, Mergny JL, Šponer J. Insights into G-Quadruplex-Hemin Dynamics Using Atomistic Simulations: Implications for Reactivity and Folding. J Chem Theory Comput 2021; 17:1883-1899. [PMID: 33533244 DOI: 10.1021/acs.jctc.0c01176] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Guanine quadruplex nucleic acids (G4s) are involved in key biological processes such as replication or transcription. Beyond their biological relevance, G4s find applications as biotechnological tools since they readily bind hemin and enhance its peroxidase activity, creating a G4-DNAzyme. The biocatalytic properties of G4-DNAzymes have been thoroughly studied and used for biosensing purposes. Despite hundreds of applications and massive experimental efforts, the atomistic details of the reaction mechanism remain unclear. To help select between the different hypotheses currently under investigation, we use extended explicit-solvent molecular dynamics (MD) simulations to scrutinize the G4/hemin interaction. We find that besides the dominant conformation in which hemin is stacked atop the external G-quartets, hemin can also transiently bind to the loops and be brought to the external G-quartets through diverse delivery mechanisms. The simulations do not support the catalytic mechanism relying on a wobbling guanine. Similarly, the catalytic role of the iron-bound water molecule is not in line with our results; however, given the simulation limitations, this observation should be considered with some caution. The simulations rather suggest tentative mechanisms in which the external G-quartet itself could be responsible for the unique H2O2-promoted biocatalytic properties of the G4/hemin complexes. Once stacked atop a terminal G-quartet, hemin rotates about its vertical axis while readily sampling shifted geometries where the iron transiently contacts oxygen atoms of the adjacent G-quartet. This dynamics is not apparent from the ensemble-averaged structure. We also visualize transient interactions between the stacked hemin and the G4 loops. Finally, we investigated interactions between hemin and on-pathway folding intermediates of the parallel-stranded G4 fold. The simulations suggest that hemin drives the folding of parallel-stranded G4s from slip-stranded intermediates, acting as a G4 chaperone. Limitations of the MD technique are briefly discussed.
Collapse
Affiliation(s)
- Petr Stadlbauer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Barira Islam
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Michal Otyepka
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Křížkovského 8, 779 00 Olomouc, Czech Republic
| | - Jielin Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - David Monchaud
- Institut de Chimie Moléculaire (ICMUB), CNRS UMR6302, UBFC, Dijon 21078, France
| | - Jun Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jean-Louis Mergny
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.,State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China.,Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128 Palaiseau cedex, France
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| |
Collapse
|
40
|
Matsumoto K, Okamoto K, Okabe S, Fujii R, Ueda K, Ohashi K, Seimiya H. G-quadruplex-forming nucleic acids interact with splicing factor 3B subunit 2 and suppress innate immune gene expression. Genes Cells 2021; 26:65-82. [PMID: 33290632 PMCID: PMC7898707 DOI: 10.1111/gtc.12824] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/20/2020] [Accepted: 12/03/2020] [Indexed: 12/16/2022]
Abstract
G‐quadruplex (G4), a non‐canonical higher‐order structure formed by guanine‐rich nucleic acid sequences, affects various genetic events in cis, including replication, transcription and translation. Whereas up‐regulation of innate immune/interferon‐stimulated genes (ISGs) is implicated in cancer progression, G4‐forming oligonucleotides that mimic telomeric repeat‐containing RNA suppress ISG induction in three‐dimensional (3D) culture of cancer cells. However, it is unclear how G4 suppresses ISG expression in trans. In this study, we found that G4 binding to splicing factor 3B subunit 2 (SF3B2) down‐regulated STAT1 phosphorylation and ISG expression in 3D‐cultured cancer cells. Liquid chromatography‐tandem mass spectrometry analysis identified SF3B2 as a G4‐binding protein. Either G4‐forming oligonucleotides or SF3B2 knockdown suppressed ISG induction, whereas Phen‐DC3, a G4‐stabilizing compound, reversed the inhibitory effect of G4‐forming oligonucleotides on ISG induction. Phen‐DC3 inhibited SF3B2 binding to G4 in vitro. SF3B2‐mediated ISG induction appeared to occur independently of RNA splicing because SF3B2 knockdown did not affect pre‐mRNA splicing under the experimental conditions, and pharmacological inhibition of splicing by pladienolide B did not repress ISG induction. These observations suggest that G4 disrupts the ability of SF3B2 to induce ISGs in cancer. We propose a new mode for gene regulation, which employs G4 as an inhibitory trans‐element.
Collapse
Affiliation(s)
- Kyoko Matsumoto
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan.,Department of Pathology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Keiji Okamoto
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Sachiko Okabe
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Risa Fujii
- Cancer Proteomics Group, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Koji Ueda
- Cancer Proteomics Group, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kenichi Ohashi
- Department of Pathology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan.,Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroyuki Seimiya
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan.,Department of Pathology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| |
Collapse
|
41
|
Jiang S, Awadasseid A, Narva S, Cao S, Tanaka Y, Wu Y, Fu W, Zhao X, Wei C, Zhang W. Anti-cancer activity of benzoxazinone derivatives via targeting c-Myc G-quadruplex structure. Life Sci 2020; 258:118252. [PMID: 32791149 DOI: 10.1016/j.lfs.2020.118252] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 11/17/2022]
Abstract
AIMS This study aimed to analyze the impact of four synthesized benzoxazinone derivatives as screening drugs on c-Myc-overexpressed cancer cells (H7402, HeLa, SK-RC-42, SGC7901, and A549) and to explore their interaction mechanisms in detail. MATERIALS AND METHODS Using morphological analysis, real-time cytotoxicity analysis, wound healing assay, reverse transcription PCR, electrophoretic mobility shift assay, and circular dichroism spectroscopy techniques. KEY FINDINGS Results revealed that these four compounds could inhibit proliferation of SK-RC-42, SGC7901, and A549 cells in five cancer cell lines to varying degrees and significantly hinder migration. More importantly, the RT-PCR assay showed that the compounds could surprisingly downregulate the expression of c-Myc mRNA in a dose-dependent manner in the five cancer cells, which may be one of the causes of cancer cell proliferation in vitro inhibition. Further EMSA assays demonstrated that at the molecular level of DNA, four compounds can induce the formation of G-quadruplexes (G4-DNAs) in the c-Myc gene promoter. In addition, the CD result of compound 1 clearly indicates that it specifically induces a c-Myc GC-rich 36mer double-stranded DNA in the c-Myc promoter to form a G-quadruplex hybrid configuration. In conclusion, the compounds studied could dose-dependently inhibit the growth and migration of the cancer cells being investigated. This is positively associated with the reduction of overexpression of the c-Myc gene, which may be significantly regulated by the association of compounds with the G-quadruplexes produced in the c-Myc gene promoter region. SIGNIFICANCE We conclude that three compounds merit further study, particularly against non-small-cell lung cancer, as leading compounds of anticancer drugs.
Collapse
Affiliation(s)
- Shikun Jiang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Annoor Awadasseid
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Suresh Narva
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Song Cao
- College of Pharmacy, East China University of Science and Technology, Shanghai 021, China.
| | - Yoshimasa Tanaka
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Yanling Wu
- Lab of Molecular Immunology, Virus Inspection Department, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China.
| | - Wei Fu
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiaoyin Zhao
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chuanhe Wei
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wen Zhang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
42
|
Human MYC G-quadruplex: From discovery to a cancer therapeutic target. Biochim Biophys Acta Rev Cancer 2020; 1874:188410. [PMID: 32827579 DOI: 10.1016/j.bbcan.2020.188410] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023]
Abstract
Overexpression of the MYC oncogene is a molecular hallmark of both cancer initiation and progression. Targeting MYC is a logical and effective cancer therapeutic strategy. A special DNA secondary structure, the G-quadruplex (G4), is formed within the nuclease hypersensitivity element III1 (NHE III1) region, located upstream of the MYC gene's P1 promoter that drives the majority of its transcription. Targeting such G4 structures has been a focus of anticancer therapies in recent decades. Thus, a comprehensive review of the MYC G4 structure and its role as a potential therapeutic target is timely. In this review, we first outline the discovery of the MYC G4 structure and evidence of its formation in vitro and in cells. Then, we describe the functional role of G4 in regulating MYC gene expression. We also summarize three types of MYC G4-interacting proteins that can promote, stabilize and unwind G4 structures. Finally, we discuss G4-binding molecules and the anticancer activities of G4-stabilizing ligands, including small molecular compounds and peptides, and assess their potential as novel anticancer therapeutics.
Collapse
|
43
|
Grover J, Trujillo C, Saad M, Emandi G, Stipaničev N, Bernhard SSR, Guédin A, Mergny JL, Senge MO, Rozas I. Dual-binding conjugates of diaromatic guanidines and porphyrins for recognition of G-quadruplexes. Org Biomol Chem 2020; 18:5617-5624. [PMID: 32648871 DOI: 10.1039/d0ob01264e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The first conceptualised class of dual-binding guanine quadruplex binders has been designed, synthesised and biophysically studied. These compounds combine diaromatic guanidinium systems and neutral tetra-phenylporphyrins (classical binding moiety for guanine quadruplexes) by means of a semi-rigid linker. An extensive screening of a variety of guanine quadruplex structures and double stranded DNA via UV-vis, FRET and CD experiments revealed the preference of the conjugates towards guanine quadruplexes. Additionally, docking studies indicate the potential dual mode of binding.
Collapse
Affiliation(s)
- Jagdeep Grover
- School of Chemistry, Trinity Biomedical Science Institute, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Azuaje-Hualde E, Arroyo-Jimenez S, Garai-Ibabe G, de Pancorbo MM, Benito-Lopez F, Basabe-Desmonts L. Naked eye Y amelogenin gene fragment detection using DNAzymes on a paper-based device. Anal Chim Acta 2020; 1123:1-8. [DOI: 10.1016/j.aca.2020.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 04/28/2020] [Accepted: 05/01/2020] [Indexed: 11/26/2022]
|
45
|
He YD, Zheng KW, Wen CJ, Li XM, Gong JY, Hao YH, Zhao Y, Tan Z. Selective Targeting of Guanine-Vacancy-Bearing G-Quadruplexes by G-Quartet Complementation and Stabilization with a Guanine-Peptide Conjugate. J Am Chem Soc 2020; 142:11394-11403. [PMID: 32491844 DOI: 10.1021/jacs.0c00774] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stabilization of G-quadruplexes (G4s) formed in guanine-rich (G-rich) nucleic acids by small-molecule ligands has been extensively explored as a therapeutic approach for diseases such as cancer. Finding ligands with sufficient affinity and specificity toward G4s remains a challenge, and many ligands reported seemed to compromise between the two features. To cope with this challenge, we focused on targeting a particular type of G4s, i.e., the G-vacancy-bearing G-quadruplexes (GVBQs), by taking a structure complementation strategy to enhance both affinity and selectivity. In this approach, a G-quadruplex-binding peptide RHAU23 is guided toward a GVBQ by a guanine moiety covalently linked to the peptide. The filling-in of the vacancy in a GVBQ by the guanine ensures an exclusive recognition of GVBQ. Moreover, the synergy between the RHAU23 and the guanine dramatically improves both the affinity toward and stabilization of the GVBQ. Targeting a GVBQ in DNA by this bifunctional peptide strongly suppresses in vitro replication. This study demonstrates a novel and promising alternative targeting strategy to a distinctive panel of G4s that are as abundant as the canonical ones in the human genome.
Collapse
Affiliation(s)
- Yi-de He
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Ke-Wei Zheng
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Cui-Jiao Wen
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Xin-Min Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Jia-Yuan Gong
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Yu-Hua Hao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | | | - Zheng Tan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China.,Center for Healthy Aging, Changzhi Medical College, Changzhi 046000, Shanxi, P. R. China
| |
Collapse
|
46
|
Arévalo-Ruiz M, Amrane S, Rosu F, Belmonte-Reche E, Peñalver P, Mergny JL, Morales JC. Symmetric and dissymmetric carbohydrate-phenyl ditriazole derivatives as DNA G-quadruplex ligands: Synthesis, biophysical studies and antiproliferative activity. Bioorg Chem 2020; 99:103786. [DOI: 10.1016/j.bioorg.2020.103786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 02/27/2020] [Accepted: 03/20/2020] [Indexed: 02/04/2023]
|
47
|
Di Fonzo S, Amato J, D'Aria F, Caterino M, D'Amico F, Gessini A, Brady JW, Cesàro A, Pagano B, Giancola C. Ligand binding to G-quadruplex DNA: new insights from ultraviolet resonance Raman spectroscopy. Phys Chem Chem Phys 2020; 22:8128-8140. [PMID: 32246758 DOI: 10.1039/d0cp01022g] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
G-Quadruplexes (G4s) are noncanonical nucleic acid structures involved in the regulation of several biological processes of many organisms. The rational design of G4-targeting molecules developed as potential anticancer and antiviral therapeutics is a complex problem intrinsically due to the structural polymorphism of these peculiar DNA structures. The aim of the present work is to show how Ultraviolet Resonance Raman (UVRR) spectroscopy can complement other techniques in providing valuable information about ligand/G4 interactions in solution. Here, the binding of BRACO-19 and Pyridostatin - two of the most potent ligands - to selected biologically relevant G4s was investigated by polarized UVRR scattering at 266 nm. The results give new insights into the binding mode of these ligands to G4s having different sequences and topologies by performing an accurate analysis of peaks assigned to specific groups and their changes upon binding. Indeed, the UVRR data not only show that BRACO-19 and Pyridostatin interact with different G4 sites, but also shed light on the ligand and G4 chemical groups really involved in the interaction. In addition, UVRR results complemented by circular dichroism data clearly indicate that the binding mode of a ligand can also depend on the conformation(s) of the target G4. Overall, these findings demonstrate the utility of using UVRR spectroscopy in the investigation of G4s and G4-ligand interactions in solution.
Collapse
Affiliation(s)
- Silvia Di Fonzo
- Elettra-Sincrotrone Trieste S. C. p. A., Science Park, Trieste, I-34149, Italy.
| | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, Naples, I-80131, Italy.
| | - Federica D'Aria
- Department of Pharmacy, University of Naples Federico II, Naples, I-80131, Italy.
| | - Marco Caterino
- Department of Pharmacy, University of Naples Federico II, Naples, I-80131, Italy.
| | - Francesco D'Amico
- Elettra-Sincrotrone Trieste S. C. p. A., Science Park, Trieste, I-34149, Italy.
| | - Alessandro Gessini
- Elettra-Sincrotrone Trieste S. C. p. A., Science Park, Trieste, I-34149, Italy.
| | - John W Brady
- Department of Food Science, Cornell University, Ithaca, New York, NY 14853, USA
| | - Attilio Cesàro
- Elettra-Sincrotrone Trieste S. C. p. A., Science Park, Trieste, I-34149, Italy. and Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, I-34127, Italy
| | - Bruno Pagano
- Department of Pharmacy, University of Naples Federico II, Naples, I-80131, Italy.
| | - Concetta Giancola
- Department of Pharmacy, University of Naples Federico II, Naples, I-80131, Italy.
| |
Collapse
|
48
|
Chi X, Li Y, Qiu X. V(D)J recombination, somatic hypermutation and class switch recombination of immunoglobulins: mechanism and regulation. Immunology 2020; 160:233-247. [PMID: 32031242 DOI: 10.1111/imm.13176] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 12/30/2019] [Accepted: 01/08/2020] [Indexed: 02/06/2023] Open
Abstract
Immunoglobulins emerging from B lymphocytes and capable of recognizing almost all kinds of antigens owing to the extreme diversity of their antigen-binding portions, known as variable (V) regions, play an important role in immune responses. The exons encoding the V regions are known as V (variable), D (diversity), or J (joining) genes. V, D, J segments exist as multiple copy arrays on the chromosome. The recombination of the V(D)J gene is the key mechanism to produce antibody diversity. The recombinational process, including randomly choosing a pair of V, D, J segments, introducing double-strand breaks adjacent to each segment, deleting (or inverting in some cases) the intervening DNA and ligating the segments together, is defined as V(D)J recombination, which contributes to surprising immunoglobulin diversity in vertebrate immune systems. To enhance both the ability of immunoglobulins to recognize and bind to foreign antigens and the effector capacities of the expressed antibodies, naive B cells will undergo class switching recombination (CSR) and somatic hypermutation (SHM). However, the genetics mechanisms of V(D)J recombination, CSR and SHM are not clear. In this review, we summarize the major progress in mechanism studies of immunoglobulin V(D)J gene recombination and CSR as well as SHM, and their regulatory mechanisms.
Collapse
Affiliation(s)
- Xiying Chi
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China.,NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Yue Li
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China.,NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Xiaoyan Qiu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China.,NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| |
Collapse
|
49
|
Nuthanakanti A, Ahmed I, Khatik SY, Saikrishnan K, Srivatsan SG. Probing G-quadruplex topologies and recognition concurrently in real time and 3D using a dual-app nucleoside probe. Nucleic Acids Res 2020; 47:6059-6072. [PMID: 31106340 PMCID: PMC6614846 DOI: 10.1093/nar/gkz419] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/30/2019] [Accepted: 05/06/2019] [Indexed: 12/30/2022] Open
Abstract
Comprehensive understanding of structure and recognition properties of regulatory nucleic acid elements in real time and atomic level is highly important to devise efficient therapeutic strategies. Here, we report the establishment of an innovative biophysical platform using a dual-app nucleoside analog, which serves as a common probe to detect and correlate different GQ structures and ligand binding under equilibrium conditions and in 3D by fluorescence and X-ray crystallography techniques. The probe (SedU) is composed of a microenvironment-sensitive fluorophore and an excellent anomalous X-ray scatterer (Se), which is assembled by attaching a selenophene ring at 5-position of 2'-deoxyuridine. SedU incorporated into the loop region of human telomeric DNA repeat fluorescently distinguished subtle differences in GQ topologies and enabled quantify ligand binding to different topologies. Importantly, anomalous X-ray dispersion signal from Se could be used to determine the structure of GQs. As the probe is minimally perturbing, a direct comparison of fluorescence data and crystal structures provided structural insights on how the probe senses different GQ conformations without affecting the native fold. Taken together, our dual-app probe represents a new class of tool that opens up new experimental strategies to concurrently investigate nucleic acid structure and recognition in real time and 3D.
Collapse
Affiliation(s)
- Ashok Nuthanakanti
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune 411008, India
| | - Ishtiyaq Ahmed
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune 411008, India
| | - Saddam Y Khatik
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune 411008, India
| | - Kayarat Saikrishnan
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune 411008, India
- Correspondence may also be addressed to Kayarat Saikrishnan.
| | - Seergazhi G Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune 411008, India
- To whom correspondence should be addressed. Tel: +91 2025908086;
| |
Collapse
|
50
|
Yang P, Deng P, Du H, Hou X, Zhang J, Chen J, Hou X, Zhou R. Building an anti-interfering DNAzyme-powered micromachine resistant to being inhibited by biological matrices. Chem Commun (Camb) 2020; 56:2658-2661. [PMID: 32022034 DOI: 10.1039/c9cc08515g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A DNAzyme-powered micromachine with anti-interfering properties and displaying resistance to being inhibited by biological matrices was built.
Collapse
Affiliation(s)
- Peng Yang
- Analytical & Testing Center
- Sichuan University
- 29 Wangjiang Road
- Chengdu
- China
| | - Ping Deng
- Nephrology Division
- the Third Affiliated Hospital of Sun Yat-sen University
- Guangzhou
- China
| | - Huan Du
- Analytical & Testing Center
- Sichuan University
- 29 Wangjiang Road
- Chengdu
- China
| | - Xin Hou
- Key Lab of Green Chem & Tech of MOE, and College of Chemistry, Sichuan University
- Chengdu
- China
| | - Jie Zhang
- Biliary Surgical Department of West China Hospital
- Sichuan University
- Chengdu
- China
| | - Junbo Chen
- Analytical & Testing Center
- Sichuan University
- 29 Wangjiang Road
- Chengdu
- China
| | - Xiandeng Hou
- Analytical & Testing Center
- Sichuan University
- 29 Wangjiang Road
- Chengdu
- China
| | - Rongxing Zhou
- Biliary Surgical Department of West China Hospital
- Sichuan University
- Chengdu
- China
| |
Collapse
|