1
|
Rizet J, Maveyraud L, Rengel D, Guillet V, Publicola G, Rodriguez F, Lherbet C, Mourey L. Is Mycobacterial InhA a Suitable Target for Rational Drug Design? ChemMedChem 2025:e2500079. [PMID: 40192582 DOI: 10.1002/cmdc.202500079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/02/2025] [Indexed: 05/01/2025]
Abstract
InhA, an NAD-dependent enoyl-acyl carrier protein reductase, is involved in the biosynthesis of mycolic acids, specific lipids to mycobacteria. InhA is the target of isoniazid, a first-line antituberculosis drug used since the 1950s. Isoniazid is a prodrug that needs to be activated by the catalase-peroxidase KatG. Due to resistance problems, a substantial amount of work has been carried out to identify or design direct inhibitors of InhA, demonstrating that this enzyme is still considered a relevant target for the discovery of new antituberculosis drugs. Much of this work included the resolution of crystallographic structures. Indeed, over a hundred structures have been deposited in the Protein Data Bank for different forms of the enzyme (apo, holo, and complexes), demonstrating a real crystalline polymorphism. Taken together, these structures constitute a valuable dataset. However, the complete decoding of the enzyme's properties and its inhibition literally comes up against its molecular plasticity at the level of a motif essential to the definition of the active site: the substrate-binding loop. In this article, a detailed analysis of this structural dataset is proposed, describing in particular the different families of inhibitors and attempting to establish structural links of causality.
Collapse
Affiliation(s)
- Julien Rizet
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), 205 route de Narbonne, BP 64182, 31077, Toulouse Cedex 4, France
- Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (SPCMIB), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), 118 route de Narbonne, 31062, Toulouse Cedex 09, France
| | - Laurent Maveyraud
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), 205 route de Narbonne, BP 64182, 31077, Toulouse Cedex 4, France
| | - David Rengel
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), 205 route de Narbonne, BP 64182, 31077, Toulouse Cedex 4, France
| | - Valérie Guillet
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), 205 route de Narbonne, BP 64182, 31077, Toulouse Cedex 4, France
| | - Gabriel Publicola
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), 205 route de Narbonne, BP 64182, 31077, Toulouse Cedex 4, France
| | - Frédéric Rodriguez
- Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (SPCMIB), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), 118 route de Narbonne, 31062, Toulouse Cedex 09, France
| | - Christian Lherbet
- Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (SPCMIB), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), 118 route de Narbonne, 31062, Toulouse Cedex 09, France
| | - Lionel Mourey
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), 205 route de Narbonne, BP 64182, 31077, Toulouse Cedex 4, France
| |
Collapse
|
2
|
Shekhar, Roquet-Banères F, Anand A, Kremer L, Kumar V. Rational design and microwave-promoted synthesis of triclosan-based dimers: targeting InhA for anti-mycobacterial profiling. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240676. [PMID: 39392739 PMCID: PMC11461061 DOI: 10.1098/rsos.240676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/02/2024] [Accepted: 08/06/2024] [Indexed: 10/13/2024]
Abstract
A set of alkyl-/1H-1,2,3-triazole-based dimers was strategically designed and synthesized to evaluate their in vitro anti-mycobacterial activities against Mycobacterium tuberculosis and the non-tuberculous Mycobacterium abscessus strains. Systematic variations in the nature (alkyl/1H-1,2,3-triazole) and positioning of the linker were implemented based on the docking scores observed in the binding sites identified in the crystal structures of InhA from M. tuberculosis and M. abscessus. However, the in vitro evaluation results revealed that the synthesized compounds did not exhibit inhibitory effects on the growth of mycobacteria, even at the highest tested concentrations. The elevated lipophilicity values determined through ADMET studies for these synthesized dimers might be a contributing factor to their poor activity profiles.
Collapse
Affiliation(s)
- Shekhar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, Punjab143005, India
| | - Francoise Roquet-Banères
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France
| | - Amit Anand
- Department of Chemistry, Khalsa College, Amritsar, Punjab143005, India
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France
- INSERM, IRIM, 34293 Montpellier, France
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, Punjab143005, India
| |
Collapse
|
3
|
Hoffmann P, Azéma-Despeyroux J, Goncalves F, Stamilla A, Saffon-Merceron N, Rodriguez F, Degiacomi G, Pasca MR, Lherbet C. Imidazoquinoline Derivatives as Potential Inhibitors of InhA Enzyme and Mycobacterium tuberculosis. Molecules 2024; 29:3076. [PMID: 38999028 PMCID: PMC11243711 DOI: 10.3390/molecules29133076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
Tuberculosis is a serious public health problem worldwide. The search for new antibiotics has become a priority, especially with the emergence of resistant strains. A new family of imidazoquinoline derivatives, structurally analogous to triazolophthalazines, which had previously shown good antituberculosis activity, were designed to inhibit InhA, an essential enzyme for Mycobacterium tuberculosis survival. Over twenty molecules were synthesized and the results showed modest inhibitory efficacy against the protein. Docking experiments were carried out to show how these molecules could interact with the protein's substrate binding site. Disappointingly, unlike triazolophthlazines, these imidazoquinoline derivatives showed an absence of inhibition on mycobacterial growth.
Collapse
Affiliation(s)
- Pascal Hoffmann
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (SPCMIB), UMR5068, CNRS, Université Paul Sabatier Toulouse III, 31062 Toulouse, France
| | - Joëlle Azéma-Despeyroux
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (SPCMIB), UMR5068, CNRS, Université Paul Sabatier Toulouse III, 31062 Toulouse, France
| | - Fernanda Goncalves
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (SPCMIB), UMR5068, CNRS, Université Paul Sabatier Toulouse III, 31062 Toulouse, France
| | - Alessandro Stamilla
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Nathalie Saffon-Merceron
- Institut de Chimie de Toulouse, ICT-UAR2599, Université Paul Sabatier Toulouse III, 31062 Toulouse, France
| | - Frédéric Rodriguez
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (SPCMIB), UMR5068, CNRS, Université Paul Sabatier Toulouse III, 31062 Toulouse, France
| | - Giulia Degiacomi
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Maria Rosalia Pasca
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Christian Lherbet
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (SPCMIB), UMR5068, CNRS, Université Paul Sabatier Toulouse III, 31062 Toulouse, France
| |
Collapse
|
4
|
Shekhar, Alcaraz M, Anand A, Sharma RK, Kremer L, Kumar V. Cu-promoted synthesis of triclosan-Mannich and Glaser adducts: anti-mycobacterial evaluation with in silico validations. Future Med Chem 2024; 16:949-961. [PMID: 38910577 DOI: 10.4155/fmc-2023-0298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/26/2024] [Indexed: 06/25/2024] Open
Abstract
Aim: The WHO, Global tuberculosis report 2022 estimated number of tuberculosis (TB) cases reached 10.6 million in 2021, reflecting a 4.5% increase compared with the 10.1 million reported in 2020. The incidence rate of TB showed 3.6% rise from 2020 to 2021. Results/methodology: This manuscript discloses Cu-promoted single pot A3-coupling between triclosan (TCS)-based alkyne, formaldehyde and secondary amines to yield TCS-based Mannich adducts. Additionally, the coupling of TCS-alkynes in the presence of Cu(OAc)2 afforded the corresponding homodimers. Among tested compounds, the most potent one in the series 11 exhibited fourfold higher potency than rifabutin against drug-resistant Mycobacterium abscessus. The selectivity index was also substantially improved, being 26 (day 1) and 15 (day 3), which is four-times better than TCS.
Collapse
Affiliation(s)
- Shekhar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Matthéo Alcaraz
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, Montpellier, 34293, France
| | - Amit Anand
- Department of Chemistry, Khalsa college, Amritsar, Punjab, 143005, India
| | - Rajni Kant Sharma
- Department of Chemistry, College of Basic Science & Humanities CCS, Haryana Agricultural University, Hisar, Haryana, India
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, Montpellier, 34293, France
- INSERM, IRIM, Montpellier, 34293, France
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| |
Collapse
|
5
|
Chebaiki M, Delfourne E, Tamhaev R, Danoun S, Rodriguez F, Hoffmann P, Grosjean E, Goncalves F, Azéma-Despeyroux J, Pál A, Korduláková J, Preuilh N, Britton S, Constant P, Marrakchi H, Maveyraud L, Mourey L, Lherbet C. Discovery of new diaryl ether inhibitors against Mycobacterium tuberculosis targeting the minor portal of InhA. Eur J Med Chem 2023; 259:115646. [PMID: 37482022 DOI: 10.1016/j.ejmech.2023.115646] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/25/2023]
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) affects 10 million people each year and the emergence of resistant TB augurs for a growing incidence. In the last 60 years, only three new drugs were approved for TB treatment, for which resistances are already emerging. Therefore, there is a crucial need for new chemotherapeutic agents capable of eradicating TB. Enzymes belonging to the type II fatty acid synthase system (FAS-II) are involved in the biosynthesis of mycolic acids, cell envelope components essential for mycobacterial survival. Among them, InhA is the primary target of isoniazid (INH), one of the most effective compounds to treat TB. INH acts as a prodrug requiring activation by the catalase-peroxidase KatG, whose mutations are the major cause for INH resistance. Herein, a new series of direct InhA inhibitors were designed based on a molecular hybridization approach. They exhibit potent inhibitory activities of InhA and, for some of them, good antitubercular activities. Moreover, they display a low toxicity on human cells. A study of the mechanism of action of the most effective molecules shows that they inhibit the biosynthesis of mycolic acids. The X-ray structures of two InhA/NAD+/inhibitor complexes have been obtained showing a binding mode of a part of the molecule in the minor portal, rarely seen in the InhA structures reported so far.
Collapse
Affiliation(s)
- Mélina Chebaiki
- Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (LSPCMIB), UMR 5068, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France; Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Evelyne Delfourne
- Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (LSPCMIB), UMR 5068, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Rasoul Tamhaev
- Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (LSPCMIB), UMR 5068, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France; Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Saïda Danoun
- Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (LSPCMIB), UMR 5068, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Frédéric Rodriguez
- Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (LSPCMIB), UMR 5068, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Pascal Hoffmann
- Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (LSPCMIB), UMR 5068, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Emeline Grosjean
- Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (LSPCMIB), UMR 5068, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Fernanda Goncalves
- Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (LSPCMIB), UMR 5068, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Joëlle Azéma-Despeyroux
- Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (LSPCMIB), UMR 5068, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Adrián Pál
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215, Bratislava, Slovakia
| | - Jana Korduláková
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215, Bratislava, Slovakia
| | - Nadège Preuilh
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Sébastien Britton
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Patricia Constant
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Hedia Marrakchi
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Laurent Maveyraud
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France.
| | - Lionel Mourey
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France.
| | - Christian Lherbet
- Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (LSPCMIB), UMR 5068, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France.
| |
Collapse
|
6
|
Shekhar, Alcaraz M, Seboletswe P, Manhas N, Kremer L, Singh P, Kumar V. Tailoring selective triclosan azo-adducts: Design, synthesis, and anti-mycobacterial evaluation. Heliyon 2023; 9:e22182. [PMID: 38034623 PMCID: PMC10685269 DOI: 10.1016/j.heliyon.2023.e22182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023] Open
Abstract
A series of triclosan azo-adducts were synthesized to investigate their structure-activity relationship against Mycobacterium tuberculosis and non-tuberculous mycobacteria. The series' most potent compound was four and sixteen times more active than triclosan and rifabutin against drug-resistant Mycobacterium abscessus, respectively, while being less cytotoxic to human macrophages than triclosan on day one. Additionally, one of the azo-adducts was twice as efficient against M. tuberculosis as triclosan and twice as effective against Mycobacterium marinum as isoniazid. Furthermore, the synthesized azo-adducts were equally effective against M. abscessus strains overexpressing InhA, suggesting that these compounds work through a distinct mechanism.
Collapse
Affiliation(s)
- Shekhar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, India
| | - Matthéo Alcaraz
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293, Montpellier, France
| | - Pule Seboletswe
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Neha Manhas
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293, Montpellier, France
- INSERM, IRIM, 34293 Montpellier, France
| | - Parvesh Singh
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
7
|
Alcaraz M, Edwards TE, Kremer L. New therapeutic strategies for Mycobacterium abscessus pulmonary diseases - untapping the mycolic acid pathway. Expert Rev Anti Infect Ther 2023; 21:813-829. [PMID: 37314394 PMCID: PMC10529309 DOI: 10.1080/14787210.2023.2224563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/08/2023] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Treatment options against Mycobacterium abscessus infections are very limited. New compounds are needed to cure M. abscessus pulmonary diseases. While the mycolic acid biosynthetic pathway has been largely exploited for the treatment of tuberculosis, this metabolic process has been overlooked in M. abscessus, although it offers many potential drug targets for the treatment of this opportunistic pathogen. AREAS COVERED Herein, the authors review the role of the MmpL3 membrane protein and the enoyl-ACP reductase InhA involved in the transport and synthesis of mycolic acids, respectively. They discuss their importance as two major vulnerable drug targets in M. abscessus and report the activity of MmpL3 and InhA inhibitors. In particular, they focus on NITD-916, a direct InhA inhibitor against M. abscessus, particularly warranted in the context of multidrug resistance. EXPERT OPINION There is an increasing body of evidence validating the mycolic acid pathway as an attractive drug target to be further exploited for M. abscessus lung disease treatments. The NITD-916 studies provide a proof-of-concept that direct inhibitors of InhA are efficient in vitro, in macrophages and in zebrafish. Future work is now required to improve the activity and pharmacological properties of these inhibitors and their evaluation in pre-clinical models.
Collapse
Affiliation(s)
- Matthéo Alcaraz
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293, Montpellier, France
| | - Thomas E. Edwards
- UCB BioSciences, Bainbridge Island, WA 98109 USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA 98109 USA
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293, Montpellier, France
- INSERM, IRIM, 34293 Montpellier, France
| |
Collapse
|
8
|
Abdelaziz OA, Othman DIA, Abdel-Aziz MM, Badr SMI, Eisa HM. Novel diaryl ether derivatives as InhA inhibitors: Design, synthesis and antimycobacterial activity. Bioorg Chem 2022; 129:106125. [PMID: 36126606 DOI: 10.1016/j.bioorg.2022.106125] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/16/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022]
Abstract
A new series of triclosan (TCL)-mimicking diaryl ether derivatives 7-25 were synthesized and evaluated as inhibitors of enoyl acyl carrier protein reductase InhA enzyme. In addition, these derivatives were screened as inhibitors of drug-susceptible (DS), multidrug-resistant (MDR), and extensive drug-resistant (XDR) Mycobacterium tuberculosis (MTB) strains. Most compounds exihibted superior anti-TB activities and improved ClogP compared to TCL as a standard drug. The present work has led to the identification of compounds 14, 19 and 24 which possess remarkable activities against DS, MDR and XDR MTB strains with MIC values of 1.95, 3.9 and 15.63 µg/ml, respectively for compound 14, 1.95, 3.9 and 7.81 µg/ml, respectively for compound 19 and 0.98, 1.95 and 3.9 µg/ml, respectively for compound 24. Most compounds did not exhibit toxicity to HePG2 normal cell line. Compounds 14, 19 and 24, presenting the best MIC values, were further evaluated as inhibitors of InhA enzyme. They showed high binding affinities in the micromolar range with IC50 values of 1.33, 0.6, and 0.29 µM for compounds 14, 19, and 24, respectively. Furthermore, molecular docking approach was utilized to understand the difference in bioactivities between the new compounds. In particular, the results revealed strong binding interactions and high docking scores of compounds 14, 19 and 24, which could correlate with their high activities. Mainly, the molecular modelling study of compound 24 provides an excellent platform for understanding the molecular mechanism regarding InhA inhibition. Thus, compound 24 could be a lead compound for future development of new antitubercular drugs.
Collapse
Affiliation(s)
- Ola A Abdelaziz
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Dina I A Othman
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Marwa M Abdel-Aziz
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo, Egypt
| | - Sahar M I Badr
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Hassan M Eisa
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
9
|
Rodríguez-Hernández JA, Araújo RG, López-Pacheco IY, Rodas-Zuluaga LI, González-González RB, Parra-Arroyo L, Sosa-Hernández JE, Melchor-Martínez EM, Martínez-Ruiz M, Barceló D, Pastrana LM, Iqbal HMN, Parra-Saldívar R. Environmental persistence, detection, and mitigation of endocrine disrupting contaminants in wastewater treatment plants – a review with a focus on tertiary treatment technologies. ENVIRONMENTAL SCIENCE: ADVANCES 2022; 1:680-704. [DOI: 10.1039/d2va00179a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Endocrine disrupting chemicals are a group of contaminants that have severe effects on humans and animals when exposed, like cancer and alterations to the nervous and reproductive systems.
Collapse
Affiliation(s)
| | - Rafael G. Araújo
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey, Mexico, 64849
| | - Itzel Y. López-Pacheco
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey, Mexico, 64849
| | | | - Reyna Berenice González-González
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey, Mexico, 64849
| | - Lizeth Parra-Arroyo
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey, Mexico, 64849
| | - Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey, Mexico, 64849
| | - Elda M. Melchor-Martínez
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey, Mexico, 64849
| | - Manuel Martínez-Ruiz
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey, Mexico, 64849
| | - Damià Barceló
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Jordi Girona, 18-26, 08034 Barcelona, Spain
- Catalan Institute for Water Research (ICRA-CERCA), Parc Científic i Tecnològic de la Universitat de Girona, c/Emili Grahit, 101, Edifici H2O, 17003 Girona, Spain
- Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun, 248007, Uttarakhand, India
| | - Lorenzo M. Pastrana
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey, Mexico, 64849
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey, Mexico, 64849
| |
Collapse
|
10
|
New InhA Inhibitors Based on Expanded Triclosan and Di-Triclosan Analogues to Develop a New Treatment for Tuberculosis. Pharmaceuticals (Basel) 2021; 14:ph14040361. [PMID: 33919737 PMCID: PMC8070701 DOI: 10.3390/ph14040361] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/07/2021] [Accepted: 04/10/2021] [Indexed: 11/16/2022] Open
Abstract
The emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis (TB) has reinforced the need for the development of new anti-TB drugs. The first line drug isoniazid inhibits InhA. This is a prodrug requiring activation by the enzyme KatG. Mutations in KatG have largely contributed to clinical isoniazid resistance. We aimed to design new 'direct' InhA inhibitors that obviate the need for activation by KatG, circumventing pre-existing resistance. In silico molecular modelling was used as part of a rational structure-based drug-design approach involving inspection of protein crystal structures of InhA:inhibitor complexes, including the broad spectrum antibiotic triclosan (TCS). One crystal structure exhibited the unusual presence of two triclosan molecules within the Mycobacterium tuberculosis InhA binding site. This became the basis of a strategy for the synthesis of novel inhibitors. A series of new, flexible ligands were designed and synthesised, expanding on the triclosan structure. Low Minimum Inhibitory Concentrations (MICs) were obtained for benzylphenyl compounds (12, 43 and 44) and di-triclosan derivative (39), against Mycobacterium bovis BCG although these may also be inhibiting other enzymes. The ether linked di-triclosan derivative (38) displayed excellent in vitro isolated enzyme inhibition results comparable with triclosan, but at a higher MIC (125 µg mL-1). These compounds offer good opportunities as leads for further optimisation.
Collapse
|
11
|
Puhl AC, Lane TR, Vignaux PA, Zorn KM, Capodagli GC, Neiditch MB, Freundlich JS, Ekins S. Computational Approaches to Identify Molecules Binding to Mycobacterium tuberculosis KasA. ACS OMEGA 2020; 5:29935-29942. [PMID: 33251429 PMCID: PMC7689923 DOI: 10.1021/acsomega.0c04271] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/07/2020] [Indexed: 05/05/2023]
Abstract
Tuberculosis is caused by Mycobacterium tuberculosis (Mtb) and is a deadly disease resulting in the deaths of approximately 1.5 million people with 10 million infections reported in 2018. Recently, a key condensation step in the synthesis of mycolic acids was shown to require β-ketoacyl-ACP synthase (KasA). A crystal structure of KasA with the small molecule DG167 was recently described, which provided a starting point for using computational structure-based approaches to identify additional molecules binding to this protein. We now describe structure-based pharmacophores, docking and machine learning studies with Assay Central as a computational tool for the identification of small molecules targeting KasA. We then tested these compounds using nanoscale differential scanning fluorimetry and microscale thermophoresis. Of note, we identified several molecules including the Food and Drug Administration (FDA)-approved drugs sildenafil and flubendazole with K d values between 30-40 μM. This may provide additional starting points for further optimization.
Collapse
Affiliation(s)
- Ana C. Puhl
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Thomas R. Lane
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Patricia A. Vignaux
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Kimberley M. Zorn
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Glenn C. Capodagli
- Department
of Microbiology, Biochemistry, and Molecular Genetics, Rutgers University − New Jersey Medical School, Newark, New Jersey 07103, United States
| | - Matthew B. Neiditch
- Department
of Microbiology, Biochemistry, and Molecular Genetics, Rutgers University − New Jersey Medical School, Newark, New Jersey 07103, United States
| | - Joel S. Freundlich
- Department
of Pharmacology, Physiology, and Neuroscience, Rutgers University − New Jersey Medical School, Newark, New Jersey 07103, United States
- Division
of Infectious Disease, Department of Medicine and the Ruy V. Lourenço
Center for the Study of Emerging and Re-emerging Pathogens, Rutgers University - New Jersey Medical School, Newark, New Jersey 07103, United States
| | - Sean Ekins
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
- . Tel.: +1 215-687-1320
| |
Collapse
|
12
|
Fernández de Luco J, Recio-Balsells AI, Ghiano DG, Bortolotti A, Belardinelli JM, Liu N, Hoffmann P, Lherbet C, Tonge PJ, Tekwani B, Morbidoni HR, Labadie GR. Exploring the chemical space of 1,2,3-triazolyl triclosan analogs for discovery of new antileishmanial chemotherapeutic agents. RSC Med Chem 2020; 12:120-128. [PMID: 34046604 DOI: 10.1039/d0md00291g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/13/2020] [Indexed: 01/02/2023] Open
Abstract
Triclosan and isoniazid are known antitubercular compounds that have proven to be also active against Leishmania parasites. On these grounds, a collection of 37 diverse 1,2,3-triazoles based on the antitubercular molecules triclosan and 5-octyl-2-phenoxyphenol (8PP) were designed in search of novel structures with leishmanicidal activity and prepared using different alkynes and azides. The 37 compounds were assayed against Leishmania donovani, the etiological agent of leishmaniasis, yielding some analogs with activity at micromolar concentrations and against M. tuberculosis H37Rv resulting in scarce active compounds with an MIC of 20 μM. To study the mechanism of action of these catechols, we analyzed the inhibition activity of the library on the M. tuberculosis enoyl-ACP reductase (ENR) InhA, obtaining poor inhibition of the enzyme. The cytotoxicity against Vero cells was also tested, resulting in none of the compounds being cytotoxic at concentrations of up to 20 μM. Derivative 5f could be considered a valuable starting point for future antileishmanial drug development. The validation of a putative leishmanial InhA orthologue as a therapeutic target needs to be further investigated.
Collapse
Affiliation(s)
- Julia Fernández de Luco
- Instituto de Química Rosario, UNR, CONICET Suipacha 531 S2002LRK Rosario Argentina +54 341 4370477 +54 341 4370477
| | - Alejandro I Recio-Balsells
- Instituto de Química Rosario, UNR, CONICET Suipacha 531 S2002LRK Rosario Argentina +54 341 4370477 +54 341 4370477
| | - Diego G Ghiano
- Instituto de Química Rosario, UNR, CONICET Suipacha 531 S2002LRK Rosario Argentina +54 341 4370477 +54 341 4370477
| | - Ana Bortolotti
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario Santa Fe 3100 S2002KTR Rosario Argentina
| | - Juán Manuel Belardinelli
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario Santa Fe 3100 S2002KTR Rosario Argentina
| | - Nina Liu
- Department of Chemistry, Institute of Chemical Biology & Drug Discovery, Stony Brook University Stony Brook NY 11794 USA
| | - Pascal Hoffmann
- LSPCMIB, UMR-CNRS 5068, Université Paul Sabatier-Toulouse III 118 Route de Narbonne 31062 Toulouse Cedex 9 France
| | - Christian Lherbet
- LSPCMIB, UMR-CNRS 5068, Université Paul Sabatier-Toulouse III 118 Route de Narbonne 31062 Toulouse Cedex 9 France
| | - Peter J Tonge
- Department of Chemistry, Institute of Chemical Biology & Drug Discovery, Stony Brook University Stony Brook NY 11794 USA
| | - Babu Tekwani
- National Center for Natural Products Research & Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi MS 38677 USA
| | - Héctor R Morbidoni
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario Santa Fe 3100 S2002KTR Rosario Argentina .,Consejo de Investigaciones, Universidad Nacional de Rosario Argentina
| | - Guillermo R Labadie
- Instituto de Química Rosario, UNR, CONICET Suipacha 531 S2002LRK Rosario Argentina +54 341 4370477 +54 341 4370477.,Departamento de Química Orgánica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario Suipacha 531 S2002LRK Rosario Argentina
| |
Collapse
|
13
|
Armstrong T, Lamont M, Lanne A, Alderwick LJ, Thomas NR. Inhibition of Mycobacterium tuberculosis InhA: Design, synthesis and evaluation of new di-triclosan derivatives. Bioorg Med Chem 2020; 28:115744. [PMID: 33007556 DOI: 10.1016/j.bmc.2020.115744] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 11/25/2022]
Abstract
Multi-drug resistant tuberculosis (MDR-TB) represents a growing problem for global healthcare systems. In addition to 1.3 million deaths in 2018, the World Health Organisation reported 484,000 new cases of MDR-TB. Isoniazid is a key anti-TB drug that inhibits InhA, a crucial enzyme in the cell wall biosynthesis pathway and identical in Mycobacterium tuberculosis and M. bovis. Isoniazid is a pro-drug which requires activation by the enzyme KatG, mutations in KatG prevent activation and confer INH-resistance. 'Direct inhibitors' of InhA are attractive as they would circumvent the main clinically observed resistance mechanisms. A library of new 1,5-triazoles, designed to mimic the structures of both triclosan molecules uniquely bound to InhA have been synthesised. The inhibitory activity of these compounds was evaluated using isolated enzyme assays with 2 (5-chloro-2-(4-(5-(((4-(4-chloro-2-hydroxyphenoxy)benzyl)oxy)methyl)-1H-1,2,3-triazol-1-yl)phenoxy)phenol) exhibiting an IC50 of 5.6 µM. Whole-cell evaluation was also performed, with 11 (5-chloro-2-(4-(5-(((4-(cyclopropylmethoxy)benzyl)oxy)methyl)-1H-1,2,3-triazol-1-yl)phenoxy)phenol) showing the greatest potency, with an MIC99 of 12.9 µM against M. bovis.
Collapse
Affiliation(s)
- Tom Armstrong
- Biodiscovery Institute, School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Malcolm Lamont
- Biodiscovery Institute, School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Alice Lanne
- Institute of Microbiology and Infection, School of Bioscience, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Luke J Alderwick
- Institute of Microbiology and Infection, School of Bioscience, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Neil R Thomas
- Biodiscovery Institute, School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom.
| |
Collapse
|
14
|
Ibrahim TS, Taher ES, Samir E, M. Malebari A, Khayyat AN, Mohamed MFA, Bokhtia RM, AlAwadh MA, Seliem IA, Asfour HZ, Alhakamy NA, Panda SS, AL-Mahmoudy AMM. In Vitro Antimycobacterial Activity and Physicochemical Characterization of Diaryl Ether Triclosan Analogues as Potential InhA Reductase Inhibitors. Molecules 2020; 25:molecules25143125. [PMID: 32650556 PMCID: PMC7397076 DOI: 10.3390/molecules25143125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 11/29/2022] Open
Abstract
Two sets of diphenyl ether derivatives incorporating five-membered 1,3,4-oxadiazoles, and their open-chain aryl hydrazone analogs were synthesized in good yields. Most of the synthesized compounds showed promising in vitro antimycobacterial activity against Mycobacterium tuberculosis H37Rv. Three diphenyl ether derivatives, namely hydrazide 3, oxadiazole 4 and naphthylarylidene 8g exhibited pronounced activity with minimum inhibitory concentrations (MICs) of 0.61, 0.86 and 0.99 μg/mL, respectively compared to triclosan (10 μg/mL) and isoniazid (INH) (0.2 μg/mL). Compounds 3, 4, and 8g showed the InhA reductase enzyme inhibition with higher IC50 values (3.28–4.23 µM) in comparison to triclosan (1.10 µM). Correlation between calculated physicochemical parameters and biological activity has been discussed which justifies a strong correlation with respect to the inhibition of InhA reductase enzyme. Molecular modeling and drug-likeness studies showed good agreement with the obtained biological evaluation. The structural and experimental information concerning these three InhA inhibitors will likely contribute to the lead optimization of new antibiotics for M. tuberculosis.
Collapse
Affiliation(s)
- Tarek S. Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.M.M.); (A.N.K.); (M.A.A.)
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (R.M.B.); (I.A.S.); (A.M.M.A.-M.)
- Correspondence: (T.S.I.); (S.S.P.)
| | - Ehab S. Taher
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt;
| | - Ebtihal Samir
- Physical Chemistry, Department of Analytical Chemistry, Faculty of Pharmacy, Deraya University, New Minia 61519, Egypt;
| | - Azizah M. Malebari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.M.M.); (A.N.K.); (M.A.A.)
| | - Ahdab N. Khayyat
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.M.M.); (A.N.K.); (M.A.A.)
| | - Mamdouh F. A. Mohamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt;
| | - Riham M. Bokhtia
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (R.M.B.); (I.A.S.); (A.M.M.A.-M.)
- Department of Chemistry & Physics, Augusta University, Augusta, GA 30912, USA
| | - Mohammed A. AlAwadh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.M.M.); (A.N.K.); (M.A.A.)
| | - Israa A. Seliem
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (R.M.B.); (I.A.S.); (A.M.M.A.-M.)
- Department of Chemistry & Physics, Augusta University, Augusta, GA 30912, USA
| | - Hani Z. Asfour
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Siva S. Panda
- Department of Chemistry & Physics, Augusta University, Augusta, GA 30912, USA
- Correspondence: (T.S.I.); (S.S.P.)
| | - Amany M. M. AL-Mahmoudy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (R.M.B.); (I.A.S.); (A.M.M.A.-M.)
| |
Collapse
|
15
|
Wang X, Inoyama D, Russo R, Li SG, Jadhav R, Stratton TP, Mittal N, Bilotta JA, Singleton E, Kim T, Paget SD, Pottorf RS, Ahn YM, Davila-Pagan A, Kandasamy S, Grady C, Hussain S, Soteropoulos P, Zimmerman MD, Ho HP, Park S, Dartois V, Ekins S, Connell N, Kumar P, Freundlich JS. Antitubercular Triazines: Optimization and Intrabacterial Metabolism. Cell Chem Biol 2020; 27:172-185.e11. [PMID: 31711854 PMCID: PMC7035970 DOI: 10.1016/j.chembiol.2019.10.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 09/02/2019] [Accepted: 10/22/2019] [Indexed: 01/13/2023]
Abstract
The triazine antitubercular JSF-2019 was of interest due to its in vitro efficacy and the nitro group shared with the clinically relevant delamanid and pretomanid. JSF-2019 undergoes activation requiring F420H2 and one or more nitroreductases in addition to Ddn. An intrabacterial drug metabolism (IBDM) platform was leveraged to demonstrate the system kinetics, evidencing formation of NO⋅ and a des-nitro metabolite. Structure-activity relationship studies focused on improving the solubility and mouse pharmacokinetic profile of JSF-2019 and culminated in JSF-2513, relying on the key introduction of a morpholine. Mechanistic studies with JSF-2019, JSF-2513, and other triazines stressed the significance of achieving potent in vitro efficacy via release of intrabacterial NO⋅ along with inhibition of InhA and, more generally, the FAS-II pathway. This study highlights the importance of probing IBDM and its potential to clarify mechanism of action, which in this case is a combination of NO⋅ release and InhA inhibition.
Collapse
Affiliation(s)
- Xin Wang
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - Daigo Inoyama
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - Riccardo Russo
- Division of Infectious Disease, Department of Medicine and the Ruy V. Lourenço Center for the Study of Emerging and Re-emerging Pathogens, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - Shao-Gang Li
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - Ravindra Jadhav
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - Thomas P Stratton
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - Nisha Mittal
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - Joseph A Bilotta
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - Eric Singleton
- Division of Infectious Disease, Department of Medicine and the Ruy V. Lourenço Center for the Study of Emerging and Re-emerging Pathogens, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - Thomas Kim
- Division of Infectious Disease, Department of Medicine and the Ruy V. Lourenço Center for the Study of Emerging and Re-emerging Pathogens, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - Steve D Paget
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - Richard S Pottorf
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - Yong-Mo Ahn
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - Alejandro Davila-Pagan
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - Srinivasan Kandasamy
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - Courtney Grady
- Division of Infectious Disease, Department of Medicine and the Ruy V. Lourenço Center for the Study of Emerging and Re-emerging Pathogens, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - Seema Hussain
- Genomics Center, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA; Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - Patricia Soteropoulos
- Genomics Center, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA; Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - Matthew D Zimmerman
- Public Health Research Institute, Rutgers University - New Jersey Medical School, Newark, NJ, USA
| | - Hsin Pin Ho
- Public Health Research Institute, Rutgers University - New Jersey Medical School, Newark, NJ, USA
| | - Steven Park
- Public Health Research Institute, Rutgers University - New Jersey Medical School, Newark, NJ, USA
| | - Véronique Dartois
- Public Health Research Institute, Rutgers University - New Jersey Medical School, Newark, NJ, USA
| | - Sean Ekins
- Collaborations in Chemistry Inc., Raleigh, NC 27606, USA
| | - Nancy Connell
- Division of Infectious Disease, Department of Medicine and the Ruy V. Lourenço Center for the Study of Emerging and Re-emerging Pathogens, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - Pradeep Kumar
- Division of Infectious Disease, Department of Medicine and the Ruy V. Lourenço Center for the Study of Emerging and Re-emerging Pathogens, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - Joel S Freundlich
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA; Division of Infectious Disease, Department of Medicine and the Ruy V. Lourenço Center for the Study of Emerging and Re-emerging Pathogens, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA.
| |
Collapse
|
16
|
Antimycotic sensitivity evaluation against Candida ATCC species of 1,2,3-triazoles derived from 5-chloro-2(2,4-dichlorophenoxy)phenol. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02490-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
Wang X, Perryman AL, Li SG, Paget SD, Stratton TP, Lemenze A, Olson AJ, Ekins S, Kumar P, Freundlich JS. Intrabacterial Metabolism Obscures the Successful Prediction of an InhA Inhibitor of Mycobacterium tuberculosis. ACS Infect Dis 2019; 5:2148-2163. [PMID: 31625383 DOI: 10.1021/acsinfecdis.9b00295] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis (M. tuberculosis), kills 1.6 million people annually. To bridge the gap between structure- and cell-based drug discovery strategies, we are pioneering a computer-aided discovery paradigm that merges structure-based virtual screening with ligand-based, machine learning methods trained with cell-based data. This approach successfully identified N-(3-methoxyphenyl)-7-nitrobenzo[c][1,2,5]oxadiazol-4-amine (JSF-2164) as an inhibitor of purified InhA with whole-cell efficacy versus in vitro cultured M. tuberculosis. When the intrabacterial drug metabolism (IBDM) platform was leveraged, mechanistic studies demonstrated that JSF-2164 underwent a rapid F420H2-dependent biotransformation within M. tuberculosis to afford intrabacterial nitric oxide and two amines, identified as JSF-3616 and JSF-3617. Thus, metabolism of JSF-2164 obscured the InhA inhibition phenotype within cultured M. tuberculosis. This study demonstrates a new docking/Bayesian computational strategy to combine cell- and target-based drug screening and the need to probe intrabacterial metabolism when clarifying the antitubercular mechanism of action.
Collapse
Affiliation(s)
- Xin Wang
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University−New Jersey Medical School, Medical Sciences Building, 185 South Orange Avenue, Newark, New Jersey 07103, United States
| | - Alexander L. Perryman
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University−New Jersey Medical School, Medical Sciences Building, 185 South Orange Avenue, Newark, New Jersey 07103, United States
| | - Shao-Gang Li
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University−New Jersey Medical School, Medical Sciences Building, 185 South Orange Avenue, Newark, New Jersey 07103, United States
| | - Steve D. Paget
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University−New Jersey Medical School, Medical Sciences Building, 185 South Orange Avenue, Newark, New Jersey 07103, United States
| | - Thomas P. Stratton
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University−New Jersey Medical School, Medical Sciences Building, 185 South Orange Avenue, Newark, New Jersey 07103, United States
| | - Alex Lemenze
- Division of Infectious Disease, Department of Medicine, and the Ruy V. Lourenço Center for the Study of Emerging and Reemerging Pathogens, Rutgers University−New Jersey Medical School, Medical Sciences Building, 185 South Orange Avenue, Newark, New Jersey 07103, United States
| | - Arthur J. Olson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Room MB112/Mail Drop MB5, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Sean Ekins
- Collaborations in Chemistry, 5616 Hilltop Needmore Road, Fuquay-Varina, North Carolina 27526, United States
| | - Pradeep Kumar
- Division of Infectious Disease, Department of Medicine, and the Ruy V. Lourenço Center for the Study of Emerging and Reemerging Pathogens, Rutgers University−New Jersey Medical School, Medical Sciences Building, 185 South Orange Avenue, Newark, New Jersey 07103, United States
| | - Joel S. Freundlich
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University−New Jersey Medical School, Medical Sciences Building, 185 South Orange Avenue, Newark, New Jersey 07103, United States
- Division of Infectious Disease, Department of Medicine, and the Ruy V. Lourenço Center for the Study of Emerging and Reemerging Pathogens, Rutgers University−New Jersey Medical School, Medical Sciences Building, 185 South Orange Avenue, Newark, New Jersey 07103, United States
| |
Collapse
|
18
|
Kouman KC, Keita M, Kre N’Guessan R, Owono Owono LC, Megnassan E, Frecer V, Miertus S. Structure-Based Design and in Silico Screening of Virtual Combinatorial Library of Benzamides Inhibiting 2-trans Enoyl-Acyl Carrier Protein Reductase of Mycobacterium tuberculosis with Favorable Predicted Pharmacokinetic Profiles. Int J Mol Sci 2019; 20:ijms20194730. [PMID: 31554227 PMCID: PMC6802012 DOI: 10.3390/ijms20194730] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/18/2019] [Accepted: 09/21/2019] [Indexed: 01/24/2023] Open
Abstract
Background: During the previous decade a new class of benzamide-based inhibitors of 2-trans enoyl-acyl carrier protein reductase (InhA) of Mycobacterium tuberculosis (Mt) with unusual binding mode have emerged. Here we report in silico design and evaluation of novel benzamide InhA-Mt inhibitors with favorable predicted pharmacokinetic profiles. Methods: By using in situ modifications of the crystal structure of N-benzyl-4-((heteroaryl)methyl) benzamide (BHMB)-InhA complex (PDB entry 4QXM), 3D models of InhA-BHMBx complexes were prepared for a training set of 19 BHMBs with experimentally determined inhibitory potencies (half-maximal inhibitory concentrations IC50exp). In the search for active conformation of the BHMB1-19, linear QSAR model was prepared, which correlated computed gas phase enthalpies of formation (∆∆HMM) of InhA-BHMBx complexes with the IC50exp. Further, taking into account the solvent effect and entropy changes upon ligand, binding resulted in a superior QSAR model correlating computed complexation Gibbs free energies (∆∆Gcom). The successive pharmacophore model (PH4) generated from the active conformations of BHMBs served as a virtual screening tool of novel analogs included in a virtual combinatorial library (VCL) of compounds containing benzamide scaffolds. The VCL filtered by Lipinski’s rule-of-five was screened by the PH4 model to identify new BHMB analogs. Results: Gas phase QSAR model: −log10(IC50exp) = pIC50exp = −0.2465 × ∆∆HMM + 7.95503, R2 = 0.94; superior aqueous phase QSAR model: pIC50exp = −0.2370 × ∆∆Gcom + 7.8783, R2 = 0.97 and PH4 pharmacophore model: pIC50exp = 1.0013 × pIC50exp − 0.0085, R2 = 0.95. The VCL of more than 114 thousand BHMBs was filtered down to 73,565 analogs Lipinski’s rule. The five-point PH4 screening retained 90 new and potent BHMBs with predicted inhibitory potencies IC50pre up to 65 times lower than that of BHMB1 (IC50exp = 20 nM). Predicted pharmacokinetic profile of the new analogs showed enhanced cell membrane permeability and high human oral absorption compared to current anti-tuberculotics. Conclusions: Combined use of QSAR models that considered binding of the BHMBs to InhA, pharmacophore model, and ADME properties helped to recognize bound active conformation of the benzamide inhibitors, permitted in silico screening of VCL of compounds sharing benzamide scaffold and identification of new analogs with predicted high inhibitory potencies and favorable pharmacokinetic profiles.
Collapse
Affiliation(s)
- Koffi Charles Kouman
- Laboratoire de Physique Fondamentale et Appliquée (LPFA), University of Abobo Adjamé (now Nangui Abrogoua), Abidjan 02, Côte d’Ivoire; (K.C.K.); (M.K.)
| | - Melalie Keita
- Laboratoire de Physique Fondamentale et Appliquée (LPFA), University of Abobo Adjamé (now Nangui Abrogoua), Abidjan 02, Côte d’Ivoire; (K.C.K.); (M.K.)
| | - Raymond Kre N’Guessan
- Laboratoire de Physique Fondamentale et Appliquée (LPFA), University of Abobo Adjamé (now Nangui Abrogoua), Abidjan 02, Côte d’Ivoire; (K.C.K.); (M.K.)
| | - Luc Calvin Owono Owono
- International Centre for Theoretical Physics, ICTP-UNESCO, Strada Costiera 11, I-34151 Trieste, Italy;
- Department of Physics, Ecole Normale Supérieure, University of Yaoundé I, P.O. Box 47, Yaoundé 1, Cameroon
- International Centre for Applied Research and Sustainable Technology, SK-84104 Bratislava, Slovakia; (V.F.); (S.M.)
| | - Eugene Megnassan
- Laboratoire de Physique Fondamentale et Appliquée (LPFA), University of Abobo Adjamé (now Nangui Abrogoua), Abidjan 02, Côte d’Ivoire; (K.C.K.); (M.K.)
- International Centre for Theoretical Physics, ICTP-UNESCO, Strada Costiera 11, I-34151 Trieste, Italy;
- International Centre for Applied Research and Sustainable Technology, SK-84104 Bratislava, Slovakia; (V.F.); (S.M.)
- Laboratoire de Cristallographie—Physique Moléculaire, University of Cocody (now Felix Houphouët-Boigny), Abidjan 22, Côte d’Ivoire
- Laboratoire de Chimie Organique Structurale et Théorique, University of Cocody (now Felix Houphouët-Boigny), Abidjan 22, Côte d’Ivoire
- Correspondence: ; Tel.: +225-02-36-30-08
| | - Vladimir Frecer
- International Centre for Applied Research and Sustainable Technology, SK-84104 Bratislava, Slovakia; (V.F.); (S.M.)
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, SK-83232 Bratislava, Slovakia
| | - Stanislav Miertus
- International Centre for Applied Research and Sustainable Technology, SK-84104 Bratislava, Slovakia; (V.F.); (S.M.)
- Department of Biotechnologies, Faculty of Natural Sciences, University of SS. Cyril and Methodius, SK-91701 Trnava, Slovakia
| |
Collapse
|
19
|
Duca G, Pogrebnoi S, Boldescu V, Aksakal F, Uncu A, Valica V, Uncu L, Negres S, Nicolescu F, Macaev F. Tryptanthrin Analogues as Inhibitors of Enoyl-acyl Carrier Protein Reductase: Activity against Mycobacterium tuberculosis, Toxicity, Modeling of Enzyme Binding. Curr Top Med Chem 2019; 19:609-619. [PMID: 30834838 DOI: 10.2174/1568026619666190304125740] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 10/01/2018] [Accepted: 11/01/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND High numbers of infection with resistant forms of Micobacterium tuberculosis (Mtb) contribute to a constant growing demand in new highly active and effective therapeutics. Current drug discovery efforts directed towards new antituberculosis agents include the development of new inhibitors of enoyl-acyl carrier protein reductase (InhA) that do not require activation by the specific enzymes. Tryptanthrin is a known inhibitor of Mtb InhA and its analogues are investigated as potential agents with antimycobacterial efficiency. OBJECTIVE The main objective of the presented research was to develop a new group of tryptanthrin analogues with good inhibition properties against Mtb. METHODS Synthesis of new derivatives of 5H-[1,3,4]thiadiazolo[2,3- b]quinazolin-5-one and evaluation of their activity against Mtb, as well as acute and chronic toxicity studies were carried out. Molecular modeling studies were performed to investigate the binding mechanisms of the synthesized ligands with InhA. Binding energies and non-covalent interactions stabilizing the ligand-receptor complexes were obtained from the results of molecular docking. RESULTS The most active compound in the obtained series, 2-(propylthio)-5H-[1,3,4]thiadiazolo[2,3- b]quinazolin-5-one, exhibited the superior inhibition activity (up to 100%) against mycobacterial growth at MIC 6.5 µg/mL, showed good affinity to the InhA enzyme in docking studies and demonstrated a very low per oral toxicity in animals falling under the category 5 according to GHS classification. CONCLUSION 2-(propylthio)-5H-[1,3,4]thiadiazolo[2,3-b]quinazolin-5-one can be further explored for the development of a new series of compounds active against Mtb.
Collapse
Affiliation(s)
- Gheorghe Duca
- Laboratory of Organic Synthesis and Biopharmaceuticals, Institute of Chemistry, Chisinau, Moldova, Republic of
| | - Serghei Pogrebnoi
- Laboratory of Organic Synthesis and Biopharmaceuticals, Institute of Chemistry, Chisinau, Moldova, Republic of
| | - Veaceslav Boldescu
- Laboratory of Organic Synthesis and Biopharmaceuticals, Institute of Chemistry, Chisinau, Moldova, Republic of
| | - Fatma Aksakal
- Department of Chemistry, Gebze Technical University, Kocaeli, Turkey
| | - Andrei Uncu
- Scientific Center for Drug Research, "Nicolae Testemitanu" State University of Medicine and Pharmacy, Chisinau, Moldova, Republic of
| | - Vladimir Valica
- Scientific Center for Drug Research, "Nicolae Testemitanu" State University of Medicine and Pharmacy, Chisinau, Moldova, Republic of
| | - Livia Uncu
- Scientific Center for Drug Research, "Nicolae Testemitanu" State University of Medicine and Pharmacy, Chisinau, Moldova, Republic of
| | - Simona Negres
- Department of Pharmacology and Clinical Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Florica Nicolescu
- Department of Pharmacology and Clinical Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Fliur Macaev
- Laboratory of Organic Synthesis and Biopharmaceuticals, Institute of Chemistry, Chisinau, Moldova, Republic of.,Scientific Center for Drug Research, "Nicolae Testemitanu" State University of Medicine and Pharmacy, Chisinau, Moldova, Republic of
| |
Collapse
|
20
|
Swatko-Ossor M, Klimek K, Belcarz A, Kaczor AA, Pitucha M, Ginalska G. Do new N-substituted 3-amino-4-phenyl-5-oxo-pyrazolinecarboxamide derivatives exhibit antitubercular potential? Eur J Pharm Sci 2018; 121:155-165. [PMID: 29802898 DOI: 10.1016/j.ejps.2018.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 04/20/2018] [Accepted: 05/23/2018] [Indexed: 11/27/2022]
Abstract
As a continuation of previous tests concerning new N-substituted 3-amino-4-phenyl-5-oxo-pyrazolinecarboxamide derivatives (R3, R4 and R8) of notable antibacterial activity, their antitubercular potential against different mycobacterial strains was estimated. Tests performed on virulent (reference and clinical) strains of Mycobacterium bovis and Mycobacterium tuberculosis revealed the highest therapeutic potential of R8 derivative: MIC within the range 7.8-15.6 μg/ml and TI (therapeutic index) within the range 46.5-93. Moreover, the synergistic interaction was found between R3, R4 and R8 derivatives and rifampicin, one of the front-line antitubercular drugs. R8/rifampicin mixture in concentrations effective in inhibition of Mycobacterium tuberculosis strain was non-cytotoxic against GMK cells, displaying cell viability approximately 88-97% when compared to control. Molecular docking study enabled to conclude that enoyl acyl carrier protein reductase (InhA) can be considered as a potential molecular target of tested pyrazole derivatives. Although further modifications of chemical structure of the investigated pyrazole derivatives is required, in order to increase their antitubercular efficacy and therapeutic safety, these compounds, in particular R8 compound, can be promising for the treatment of human and bovine tuberculosis.
Collapse
Affiliation(s)
- Marta Swatko-Ossor
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| | - Katarzyna Klimek
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| | - Anna Belcarz
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland.
| | - Agnieszka Anna Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modelling Lab, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland; University of Eastern Finland, School of Pharmacy, Department of Pharmaceutical Chemistry, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Monika Pitucha
- Independent Radiopharmacy Unit Department of Organic Chemistry, Medical University of Lublin, Chodzki 4A, 20-093 Lublin, Poland
| | - Grazyna Ginalska
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| |
Collapse
|
21
|
Campaniço A, Moreira R, Lopes F. Drug discovery in tuberculosis. New drug targets and antimycobacterial agents. Eur J Med Chem 2018; 150:525-545. [DOI: 10.1016/j.ejmech.2018.03.020] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/05/2018] [Accepted: 03/06/2018] [Indexed: 01/24/2023]
|
22
|
Vosátka R, Krátký M, Vinšová J. Triclosan and its derivatives as antimycobacterial active agents. Eur J Pharm Sci 2018; 114:318-331. [DOI: 10.1016/j.ejps.2017.12.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/06/2017] [Accepted: 12/17/2017] [Indexed: 12/16/2022]
|
23
|
Fernandes GFDS, Man Chin C, Dos Santos JL. Advances in Drug Discovery of New Antitubercular Multidrug-Resistant Compounds. Pharmaceuticals (Basel) 2017; 10:ph10020051. [PMID: 28587160 PMCID: PMC5490408 DOI: 10.3390/ph10020051] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/09/2017] [Accepted: 05/29/2017] [Indexed: 12/13/2022] Open
Abstract
Tuberculosis (TB), a disease caused mainly by the Mycobacterium tuberculosis (Mtb), is according to the World Health Organization (WHO) the infectious disease responsible for the highest number of deaths worldwide. The increased number of multidrug-resistant (MDR-TB) and extensively drug-resistant (XDR-TB) strains, and the ineffectiveness of the current treatment against latent tuberculosis are challenges to be overcome in the coming years. The scenario of drug discovery becomes alarming when it is considered that the number of new drugs does not increase proportionally to the emergence of drug resistance. In this review, we will demonstrate the current advances in antitubercular drug discovery, focusing on the research of compounds with potent antituberculosis activity against MDR-TB strains. Herein, active compounds against MDR-TB with minimum inhibitory concentrations (MICs) less than 11 µM and low toxicity published in the last 4 years in the databases PubMed, Web of Science and Scopus will be presented and discussed.
Collapse
Affiliation(s)
- Guilherme Felipe Dos Santos Fernandes
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14800060, Brazil.
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800903, Brazil.
| | - Chung Man Chin
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800903, Brazil.
| | - Jean Leandro Dos Santos
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14800060, Brazil.
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800903, Brazil.
| |
Collapse
|
24
|
Spagnuolo LA, Eltschkner S, Yu W, Daryaee F, Davoodi S, Knudson SE, Allen EKH, Merino J, Pschibul A, Moree B, Thivalapill N, Truglio JJ, Salafsky J, Slayden RA, Kisker C, Tonge PJ. Evaluating the Contribution of Transition-State Destabilization to Changes in the Residence Time of Triazole-Based InhA Inhibitors. J Am Chem Soc 2017; 139:3417-3429. [PMID: 28151657 DOI: 10.1021/jacs.6b11148] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A critical goal of lead compound selection and optimization is to maximize target engagement while minimizing off-target binding. Since target engagement is a function of both the thermodynamics and kinetics of drug-target interactions, it follows that the structures of both the ground states and transition states on the binding reaction coordinate are needed to rationally modulate the lifetime of the drug-target complex. Previously, we predicted the structure of the rate-limiting transition state that controlled the time-dependent inhibition of the enoyl-ACP reductase InhA. This led to the discovery of a triazole-containing diphenyl ether with an increased residence time on InhA due to transition-state destabilization rather than ground-state stabilization. In the present work, we evaluate the inhibition of InhA by 14 triazole-based diphenyl ethers and use a combination of enzyme kinetics and X-ray crystallography to generate a structure-kinetic relationship for time-dependent binding. We show that the triazole motif slows the rate of formation for the final drug-target complex by up to 3 orders of magnitude. In addition, we identify a novel inhibitor with a residence time on InhA of 220 min, which is 3.5-fold longer than that of the INH-NAD adduct formed by the tuberculosis drug, isoniazid. This study provides a clear example in which the lifetime of the drug-target complex is controlled by interactions in the transition state for inhibitor binding rather than the ground state of the enzyme-inhibitor complex, and demonstrates the important role that on-rates can play in drug-target residence time.
Collapse
Affiliation(s)
- Lauren A Spagnuolo
- Institute of Chemical Biology and Drug Discovery, Department of Chemistry, Stony Brook University , Stony Brook, New York 11794-3400, United States
| | - Sandra Eltschkner
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg , 97080 Würzburg, Germany
| | - Weixuan Yu
- Institute of Chemical Biology and Drug Discovery, Department of Chemistry, Stony Brook University , Stony Brook, New York 11794-3400, United States
| | - Fereidoon Daryaee
- Institute of Chemical Biology and Drug Discovery, Department of Chemistry, Stony Brook University , Stony Brook, New York 11794-3400, United States
| | - Shabnam Davoodi
- Institute of Chemical Biology and Drug Discovery, Department of Chemistry, Stony Brook University , Stony Brook, New York 11794-3400, United States
| | - Susan E Knudson
- Department of Microbiology, Immunology and Pathology, Colorado State University , Fort Collins, Colorado 80523-2025, United States
| | - Eleanor K H Allen
- Institute of Chemical Biology and Drug Discovery, Department of Chemistry, Stony Brook University , Stony Brook, New York 11794-3400, United States
| | - Jonathan Merino
- Institute of Chemical Biology and Drug Discovery, Department of Chemistry, Stony Brook University , Stony Brook, New York 11794-3400, United States
| | - Annica Pschibul
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg , 97080 Würzburg, Germany
| | - Ben Moree
- Biodesy, Inc. , 384 Oyster Point Boulevard, South San Francisco, California 94080, United States
| | - Neil Thivalapill
- Great Neck South High School , 341 Lakeville Road, Great Neck, New York 11020, United States
| | - James J Truglio
- Great Neck South High School , 341 Lakeville Road, Great Neck, New York 11020, United States
| | - Joshua Salafsky
- Biodesy, Inc. , 384 Oyster Point Boulevard, South San Francisco, California 94080, United States
| | - Richard A Slayden
- Department of Microbiology, Immunology and Pathology, Colorado State University , Fort Collins, Colorado 80523-2025, United States
| | - Caroline Kisker
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg , 97080 Würzburg, Germany
| | - Peter J Tonge
- Institute of Chemical Biology and Drug Discovery, Department of Chemistry, Stony Brook University , Stony Brook, New York 11794-3400, United States
| |
Collapse
|
25
|
Rožman K, Sosič I, Fernandez R, Young RJ, Mendoza A, Gobec S, Encinas L. A new 'golden age' for the antitubercular target InhA. Drug Discov Today 2016; 22:492-502. [PMID: 27663094 DOI: 10.1016/j.drudis.2016.09.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/01/2016] [Accepted: 09/12/2016] [Indexed: 11/16/2022]
Abstract
The increasing prevalence of multidrug-resistant strains of Mycobacterium tuberculosis is the main contributing factor in unfavorable outcomes in the treatment of tuberculosis. Studies suggest that direct inhibitors of InhA, an enoyl-ACP-reductase, might yield promising clinical candidates that can be developed into new antitubercular drugs. In this review, we describe the application of different hit-identification strategies to InhA, which clearly illustrate the druggability of its active site through distinct binding mechanisms. We further characterize four classes of InhA inhibitors that show novel binding modes, and provide evidence of their successful target engagement as well as their in vivo activity.
Collapse
Affiliation(s)
- Kaja Rožman
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| | - Izidor Sosič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| | - Raquel Fernandez
- Diseases of the Developing World, Tres Cantos Medicines Development Campus, GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | - Robert J Young
- GlaxoSmithKline Medicines Research Centre, Stevenage, Herfordshire SG1 2NY, UK
| | - Alfonso Mendoza
- Diseases of the Developing World, Tres Cantos Medicines Development Campus, GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | - Stanislav Gobec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000 Ljubljana, Slovenia.
| | - Lourdes Encinas
- Diseases of the Developing World, Tres Cantos Medicines Development Campus, GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain.
| |
Collapse
|
26
|
Zitko J, Doležal M. Enoyl acyl carrier protein reductase inhibitors: an updated patent review (2011 – 2015). Expert Opin Ther Pat 2016; 26:1079-94. [DOI: 10.1080/13543776.2016.1211112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
27
|
Triclosan-induced genes Rv1686c-Rv1687c and Rv3161c are not involved in triclosan resistance in Mycobacterium tuberculosis. Sci Rep 2016; 6:26221. [PMID: 27193696 PMCID: PMC4872132 DOI: 10.1038/srep26221] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 04/28/2016] [Indexed: 11/08/2022] Open
Abstract
A key issue towards developing new chemotherapeutic approaches to fight Mycobacterium tuberculosis is to understand the mechanisms underlying drug resistance. Previous studies have shown that genes Rv1686c-Rv1687c and Rv3161c, predicted to encode an ATP-binding cassette transporter and a dioxygenase respectively, are induced in the presence of triclosan and other antimicrobial compounds. Therefore a possible role in drug resistance has been suggested for the products of these genes although no functional studies have been done. The aim of the present study was to clarify the role of Rv1686c-Rv1687c and Rv3161c in M. tuberculosis resistance to triclosan and other drugs. To this end, deficient mutants and overproducing strains for both systems were constructed and their minimal inhibitory concentration (MIC) against over 20 compounds, including triclosan, was evaluated. Unexpectedly, no differences between the MIC of these strains and the wild-type H37Rv were observed for any of the compounds tested. Moreover the MIC of triclosan was not affected by efflux pump inhibitors that inhibit the activity of transporters similar to the one encoded by Rv1686c-Rv1687c. These results suggest that none of the two systems is directly involved in M. tuberculosis resistance to triclosan or to any of the antimicrobials tested.
Collapse
|
28
|
Recently disclosed chemical entities as potential candidates for management of tuberculosis. Pharm Pat Anal 2016; 4:317-47. [PMID: 26174569 DOI: 10.4155/ppa.15.13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tuberculosis (TB) is one of the deadliest infectious diseases worldwide. The drug discovery process of novel, safe and effective agents to combat TB involves identification of new molecular targets and novel chemical scaffolds. The current anti-TB drug pipeline includes several small molecules with more to follow as new candidates are disclosed. This review highlights the most significant findings described in 78 international, European and US patents for chemically diverse compounds as prospective anti-TB medications. Main points of emphasis include chemical classification, in vitro and in vivo activity, ADME/Tox profile and mycobacterial target as described in each patent. The collective mass of compounds disclosed in the reviewed patents introduces new candidates as potential therapeutic agents for TB infections.
Collapse
|
29
|
Perryman AL, Yu W, Wang X, Ekins S, Forli S, Li SG, Freundlich JS, Tonge PJ, Olson AJ. A virtual screen discovers novel, fragment-sized inhibitors of Mycobacterium tuberculosis InhA. J Chem Inf Model 2015; 55:645-59. [PMID: 25636146 DOI: 10.1021/ci500672v] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Isoniazid (INH) is usually administered to treat latent Mycobacterium tuberculosis (Mtb) infections and is used in combination therapy to treat active tuberculosis (TB). Unfortunately, resistance to this drug is hampering its clinical effectiveness. INH is a prodrug that must be activated by Mtb catalase-peroxidase (KatG) before it can inhibit InhA (Mtb enoyl-acyl-carrier-protein reductase). Isoniazid-resistant cases of TB found in clinical settings usually involve mutations in or deletion of katG, which abrogate INH activation. Compounds that inhibit InhA without requiring prior activation by KatG would not be affected by this resistance mechanism and hence would display continued potency against these drug-resistant isolates of Mtb. Virtual screening experiments versus InhA in the GO Fight Against Malaria (GO FAM) project were designed to discover new scaffolds that display base-stacking interactions with the NAD cofactor. GO FAM experiments included targets from other pathogens, including Mtb, when they had structural similarity to a malaria target. Eight of the 16 soluble compounds identified by docking against InhA plus visual inspection were modest inhibitors and did not require prior activation by KatG. The best two inhibitors discovered are both fragment-sized compounds and displayed Ki values of 54 and 59 μM, respectively. Importantly, the novel inhibitors discovered have low structural similarity to known InhA inhibitors and thus help expand the number of chemotypes on which future medicinal chemistry efforts can be focused. These new fragment hits could eventually help advance the fight against INH-resistant Mtb strains, which pose a significant global health threat.
Collapse
Affiliation(s)
- Alexander L Perryman
- †Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | | | | | - Sean Ekins
- ⊥Collaborations in Chemistry, 5616 Hilltop Needmore Road, Fuquay-Varina, North Carolina 27526, United States.,#Collaborative Drug Discovery, 1633 Bayshore Highway, Suite 342, Burlingame, California 94010, United States
| | - Stefano Forli
- †Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | | | | | | | - Arthur J Olson
- †Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|