1
|
Adams JS, Sutar Y, Mukkirwar S, Miglani C, Date AA. Sweetening the Deal: Sweetener-Based Ionic Liquid of Albendazole Significantly Enhances Its Solubility and Oral Bioavailability. Mol Pharm 2025; 22:2568-2580. [PMID: 40257223 DOI: 10.1021/acs.molpharmaceut.4c01508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Albendazole (ABZ) is a hydrophobic and weakly basic anthelmintic benzimidazole with a very low (5%) oral bioavailability. Conversion of hydrophobic ionizable drugs such as ABZ into ionic liquids (ILs) or liquid salts is an emerging strategy for improving their solubility and oral bioavailability. To date, FDA-approved non-nutritive anionic sweeteners have not been evaluated for the development of ILs of weakly basic and hydrophobic drugs. Hence, we evaluated the ability of various anionic non-nutritive sweeteners, acesulfame potassium (ACE-K), saccharin sodium (SAC-Na), and cyclamate sodium (CYM-Na), to transform ABZ into an IL. Interestingly, only ACE-K, upon interaction with ABZ at the ABZ to ACE molar ratio of 1:2, converted ABZ into a room-temperature IL [ABZ-ACE (1:2) IL], whereas SAC-Na and CYM-Na yielded salts or coamorphous systems. The interaction of ABZ with anionic sweeteners was confirmed using FT-IR and NMR. Compared to pure ABZ, all ABZ-sweetener ILs/salts/coamorphous systems displayed a 1.2- to 2-fold decrease in Log P value and a significant increase in the equilibrium solubility of ABZ in water, pH 1.2 buffer, and pH 6.8 buffer. ABZ-ACE (1:2) IL exhibited remarkably higher (∼92-fold) solubility in water and ∼5-fold improvement in pH 6.8 buffer solubility, with a complete lack of crystallinity at room temperature, even after 1 month of storage at room temperature. Finally, compared to ABZ oral suspension, orally delivered ABZ-ACE (1:2) IL showed an 11-fold increment in Cmax and a 7.6-fold increase in the oral bioavailability of ABZ in mice. Hence, the development of a sweetener-based IL could be an effective approach to improving the solubility and oral bioavailability of hydrophobic weakly basic drugs, including ABZ.
Collapse
Affiliation(s)
- Joseph S Adams
- Department of Pharmacology and Toxicology, R. K. Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Yogesh Sutar
- Department of Pharmacology and Toxicology, R. K. Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Srushti Mukkirwar
- Department of Pharmacology and Toxicology, R. K. Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Chirag Miglani
- Department of Pharmacology and Toxicology, R. K. Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Abhijit A Date
- Department of Pharmacology and Toxicology, R. K. Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
- Department of Ophthalmology and Vision Science, University of Arizona College of Medicine, Tucson, Arizona 85711, United States
| |
Collapse
|
2
|
Govindaraj S, Ganesan K, Elumalai P, Jeevitha R, Sindya J, Annadurai S, Ahmed SSSJ, Shahid M. Solid-phase synthesis and cytotoxic evaluation of novel pyridinium bromides. Sci Rep 2025; 15:10151. [PMID: 40128293 PMCID: PMC11933358 DOI: 10.1038/s41598-025-92672-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 03/03/2025] [Indexed: 03/26/2025] Open
Abstract
A series of amide-based mono and dimeric pyridinium bromides were synthesized using conventional and microwave-assisted solvent-free methods. The quaternization reactions of m-xylene dibromide and 4-nitrobenzylbromide with amide-based substituted pyridine proceeded efficiently, whereas 1,6-dibromohexane required reflux conditions. A comparative analysis of the solvent-free microwave-assisted reactions revealed a significant reduction in reaction time (up to 20-fold) and increased yields, accompanied by simplified work-up procedures. Notably, these reactions exhibited 100% atom economy and generated no environmental waste. The cytotoxic effects of the synthesized compounds were assessed using the MTT assay, nuclear staining, and Real Time-Polymerase Chain Reaction (PCR) on the lung cancer cell line (A-549).Molecular docking studies were performed to investigate the interaction and binding of B-Raf kinase inhibitors with the amide-based mono and dimeric pyridinium bromides. Furthermore, the toxicity of the drug molecules was assessed using the BOILED-Egg plot at the central nervous system.
Collapse
Affiliation(s)
| | - Kilivelu Ganesan
- Department of Chemistry, Presidency College, Chennai, 600005, India.
| | - Perumal Elumalai
- Cancer Genomics Lab, Department of Biochemistry, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India
| | - Rajanathadurai Jeevitha
- Cancer Genomics Lab, Department of Biochemistry, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India
| | - Jospin Sindya
- Cancer Genomics Lab, Department of Biochemistry, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India
| | - Subramani Annadurai
- Department of Biochemistry, Dwaraka Doss Goverdhan Doss Vaishnav College, Chennai, 600106, India
| | - Shiek S S J Ahmed
- Drug Discovery and Multi-omics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, 603103, India
| | - Mudassar Shahid
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Parsyan A, Bhat V, Athwal H, Goebel EA, Allan AL. Artemis and its role in cancer. Transl Oncol 2025; 51:102165. [PMID: 39520877 PMCID: PMC11584690 DOI: 10.1016/j.tranon.2024.102165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/03/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
Artemis is a key nuclease involved in the non-homologous end joining repair pathway upon DNA double-stranded breaks and during V(D)J recombination. It participates in various cellular processes and cooperates with various proteins involved in tumorigenesis. Its hereditary mutations lead to several pathological conditions, such as severe combined immunodeficiency with radiation sensitivity. Recent studies suggest that Artemis deregulation plays an important role in cancer and is associated with poorer oncologic outcomes and resistance to treatment including radiotherapy, chemotherapy and targeted therapeutics. Artemis emerges as an attractive candidate for cancer prognosis and treatment. Its role in modulating sensitivity to ionizing radiation and DNA-damaging agents makes it an appealing target for drug development. Various existing drugs and novel compounds have been described to inhibit Artemis activity. This review synthesizes the up-to-date information regarding Artemis function, its role in different malignancies and its clinical utility as a potential biomarker and therapeutic target in Oncology.
Collapse
Affiliation(s)
- Armen Parsyan
- Department of Anatomy and Cell Biology, Western University, London, ON, N6A 3K7, Canada; Verspeeten Family Cancer Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada; Department of Oncology, Western University, London, ON, N6A 3K7, Canada; Department of Surgery, St Joseph's Health Care and London Health Sciences Centre, Western University, London, ON, N6A 4V2, Canada.
| | - Vasudeva Bhat
- Department of Anatomy and Cell Biology, Western University, London, ON, N6A 3K7, Canada; Verspeeten Family Cancer Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
| | - Harjot Athwal
- Department of Anatomy and Cell Biology, Western University, London, ON, N6A 3K7, Canada
| | - Emily A Goebel
- Department of Pathology and Laboratory Medicine, London Health Sciences Centre and Western University, London, ON, N6A 5A5, Canada
| | - Alison L Allan
- Department of Anatomy and Cell Biology, Western University, London, ON, N6A 3K7, Canada; Verspeeten Family Cancer Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada; Department of Oncology, Western University, London, ON, N6A 3K7, Canada
| |
Collapse
|
4
|
Kuddushi M, Xu BB, Malek N, Zhang X. Review of ionic liquid and ionogel-based biomaterials for advanced drug delivery. Adv Colloid Interface Sci 2024; 331:103244. [PMID: 38959813 DOI: 10.1016/j.cis.2024.103244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/19/2024] [Accepted: 06/23/2024] [Indexed: 07/05/2024]
Abstract
Ionic liquids (ILs) play a crucial role in the design of novel materials. The ionic nature of ILs provides numerous advantages in drug delivery, acting as a green solvent or active ingredient to enhance the solubility, permeability, and binding efficiency of drugs. They could also function as a structuring agent in the development of nano/micro particles for drug delivery, including micelles, vesicles, gels, emulsion, and more. This review summarize the ILs and IL-based gel structures with their advanced drug delivery applications. The first part of review focuses on the role of ILs in drug formulation and the applications of ILs in drug delivery. The second part of review offers a comprehensive overview of recent drug delivery applications of IL-based gel. It aims to offer new perspectives and attract more attention to open up new avenues in the biomedical applications of ILs and IL-based gels.
Collapse
Affiliation(s)
- Muzammil Kuddushi
- Department of Chemical and Materials Engineering, University of Alberta, Alberta T6G 1H9, Canada
| | - Ben Bin Xu
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| | - Naved Malek
- Ionic Liquid Research Laboratory, Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat 07, India
| | - Xuehua Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Alberta T6G 1H9, Canada.
| |
Collapse
|
5
|
Jeong Y, Ahmad S, Irudayaraj J. Dynamic Effect of β-Lactam Antibiotic Inactivation Due to the Inter- and Intraspecies Interaction of Drug-Resistant Microbes. ACS Biomater Sci Eng 2024; 10:1461-1472. [PMID: 38315631 PMCID: PMC10936524 DOI: 10.1021/acsbiomaterials.3c01678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
The presence of β-lactamase positive microorganisms imparts a pharmacological effect on a variety of organisms that can impact drug efficacy by influencing the function or composition of bacteria. Although studies to assess dynamic intra- and interspecies communication with bacterial communities exist, the efficacy of drug treatment and quantitative assessment of multiorganism response is not well understood due to the lack of technological advances that can be used to study coculture interactions in a dynamic format. In this study, we investigate how β-lactamase positive microorganisms can neutralize the effect of β-lactam antibiotics in a dynamic format at the inter- and intraspecies level using microbial bead technology. Three interactive models for the biological compartmentalization of organisms were demonstrated to evaluate the effect of β-lactam antibiotics on coculture systems. Our model at the intraspecies level attempts to mimic the biofilm matrix more closely as a community-level feature of microorganisms, which acknowledges the impact of nondrug-resistant species in shaping the dynamic response. In particular, the results of intraspecies studies are highly supportive of the biofilm mode of bacterial growth, which can provide structural support and protect the bacteria from an assault on host or environmental factors. Our findings also indicate that β-lactamase positive bacteria can neutralize the cytotoxic effect of β-lactam antibiotics at the interspecies level when cocultured with cancer cells. Results were validated using β-lactamase positive bacteria isolated from environmental niches, which can trigger phenotypical alteration of β-lactams when cocultured with other organisms. Our compartmentalization strategy acts as an independent ecosystem and provides a new avenue for multiscale studies to assess intra- and interspecies interactions.
Collapse
Affiliation(s)
- Yoon Jeong
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, Urbana, Illinois 61801, United States
- Cancer
Center at Illinois, University of Illinois
at Urbana−Champaign, Urbana, Illinois 61801, United States
- Biomedical
Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois 61801, United States
| | - Saeed Ahmad
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, Urbana, Illinois 61801, United States
- Biomedical
Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois 61801, United States
| | - Joseph Irudayaraj
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, Urbana, Illinois 61801, United States
- Cancer
Center at Illinois, University of Illinois
at Urbana−Champaign, Urbana, Illinois 61801, United States
- Biomedical
Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois 61801, United States
- Carle
R. Woese Institute for Genomic Biology, Beckman Institute, Urbana, Illinois 61801, United States
| |
Collapse
|
6
|
Khachatrian AA, Mukhametzyanov TA, Salikhov RZ, Klimova AE, Gafurov ZN, Kantyukov AO, Yakhvarov DG, Garifullin BF, Mironova DA, Voloshina AD, Solomonov BN. New ionic liquids based on 5-fluorouracil: Tuning of BSA binding and cytotoxicity. Int J Biol Macromol 2024; 257:128642. [PMID: 38061517 DOI: 10.1016/j.ijbiomac.2023.128642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 01/26/2024]
Abstract
In this work, we describe the synthesis, interactions with bovine serum albumin, and cytotoxicity of new ionic liquids based on 5-fluorouracil (API-ILs) with different cations (imidazolium, choline, isoquinolinium, guanidinium). The secondary and tertiary structure of BSA in solutions with different concentrations of API-ILs was monitored by the circular dichroism (CD) technique. The addition of API-ILs does not lead to structural changes in BSA. A quenching of fluorescence spectra intensity of BSA in presence of all API-ILs was observed, allowing the quantification of binding between API-ILs and BSA. The preferred localization of both ions in API-ILs differs significantly depending on the structure of the cation according to molecular docking. The aggregation of BSA in presence of API-ILs was analyzed by the dynamic light scattering (DLS) method, revealing a moderate increase in particle size. Cytotoxicity and selectivity of API-ILs on cancer and normal cell lines were estimated, showing a clear modification of the pharmaceutic activity of ionic liquid compared to 5-fluorouracil.
Collapse
Affiliation(s)
- Artashes A Khachatrian
- Department of Physical Chemistry, Kazan Federal University, Kremlyovskaya str.18, Kazan 420008, Russian Federation.
| | - Timur A Mukhametzyanov
- Department of Physical Chemistry, Kazan Federal University, Kremlyovskaya str.18, Kazan 420008, Russian Federation
| | - Ramazan Z Salikhov
- Department of Physical Chemistry, Kazan Federal University, Kremlyovskaya str.18, Kazan 420008, Russian Federation
| | - Alexandra E Klimova
- Department of Physical Chemistry, Kazan Federal University, Kremlyovskaya str.18, Kazan 420008, Russian Federation
| | - Zufar N Gafurov
- Department of Physical Chemistry, Kazan Federal University, Kremlyovskaya str.18, Kazan 420008, Russian Federation; Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str. 8, 420088 Kazan, Russian Federation
| | - Artyom O Kantyukov
- Department of Physical Chemistry, Kazan Federal University, Kremlyovskaya str.18, Kazan 420008, Russian Federation; Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str. 8, 420088 Kazan, Russian Federation
| | - Dmitry G Yakhvarov
- Department of Physical Chemistry, Kazan Federal University, Kremlyovskaya str.18, Kazan 420008, Russian Federation; Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str. 8, 420088 Kazan, Russian Federation
| | - Bulat F Garifullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str. 8, 420088 Kazan, Russian Federation
| | - Diana A Mironova
- Department of Organic and Medicinal Chemistry, Kazan Federal University, Kremlyovskaya str. 18, 420008 Kazan, Russian Federation
| | - Alexandra D Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str. 8, 420088 Kazan, Russian Federation
| | - Boris N Solomonov
- Department of Physical Chemistry, Kazan Federal University, Kremlyovskaya str.18, Kazan 420008, Russian Federation
| |
Collapse
|
7
|
Costa FMS, Granja A, Pérez RL, Warner IM, Reis S, Passos MLC, Saraiva MLMFS. Fluoroquinolone-Based Organic Salts (GUMBOS) with Antibacterial Potential. Int J Mol Sci 2023; 24:15714. [PMID: 37958698 PMCID: PMC10650486 DOI: 10.3390/ijms242115714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Antimicrobial resistance is a silent pandemic considered a public health concern worldwide. Strategic therapies are needed to replace antibacterials that are now ineffective. One approach entails the use of well-known antibacterials along with adjuvants that possess non-antibiotic properties but can extend the lifespan and enhance the effectiveness of the treatment, while also improving the suppression of resistance. In this regard, a group of uniform materials based on organic salts (GUMBOS) presents an alternative to this problem allowing the combination of antibacterials with adjuvants. Fluoroquinolones are a family of antibacterials used to treat respiratory and urinary tract infections with broad-spectrum activity. Ciprofloxacin and moxifloxacin-based GUMBOS were synthesized via anion exchange reactions with lithium and sodium salts. Structural characterization, thermal stability and octanol/water partition ratios were evaluated. The antibacterial profiles of most GUMBOS were comparable to their cationic counterparts when tested against Gram-positive S. aureus and Gram-negative E. coli, except for deoxycholate anion, which demonstrated the least effective antibacterial activity. Additionally, some GUMBOS were less cytotoxic to L929 fibroblast cells and non-hemolytic to red blood cells. Therefore, these agents exhibit promise as an alternative approach to combining drugs for treating infections caused by resistant bacteria.
Collapse
Affiliation(s)
- Fábio M. S. Costa
- LAQV, REQUIMTE, Laboratory of Applied Pharmacy, Department of Chemical Sciences, Faculty of Pharmacy, Porto University, Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal; (F.M.S.C.); (A.G.); (S.R.)
| | - Andreia Granja
- LAQV, REQUIMTE, Laboratory of Applied Pharmacy, Department of Chemical Sciences, Faculty of Pharmacy, Porto University, Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal; (F.M.S.C.); (A.G.); (S.R.)
| | - Rocío L. Pérez
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA; (R.L.P.); (I.M.W.)
- Department of Chemistry and Biochemistry, Georgia Southern University, Statesboro, GA 30458, USA
| | - Isiah M. Warner
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA; (R.L.P.); (I.M.W.)
- Department of Chemistry, Cincinnati University, Cincinnati, OH 45221, USA
| | - Salette Reis
- LAQV, REQUIMTE, Laboratory of Applied Pharmacy, Department of Chemical Sciences, Faculty of Pharmacy, Porto University, Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal; (F.M.S.C.); (A.G.); (S.R.)
| | - Marieta L. C. Passos
- LAQV, REQUIMTE, Laboratory of Applied Pharmacy, Department of Chemical Sciences, Faculty of Pharmacy, Porto University, Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal; (F.M.S.C.); (A.G.); (S.R.)
| | - M. Lúcia M. F. S. Saraiva
- LAQV, REQUIMTE, Laboratory of Applied Pharmacy, Department of Chemical Sciences, Faculty of Pharmacy, Porto University, Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal; (F.M.S.C.); (A.G.); (S.R.)
| |
Collapse
|
8
|
Shamshina JL, Rogers RD. Ionic Liquids: New Forms of Active Pharmaceutical Ingredients with Unique, Tunable Properties. Chem Rev 2023; 123:11894-11953. [PMID: 37797342 DOI: 10.1021/acs.chemrev.3c00384] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
This Review aims to summarize advances over the last 15 years in the development of active pharmaceutical ingredient ionic liquids (API-ILs), which make up a prospective game-changing strategy to overcome multiple problems with conventional solid-state drugs, for example, polymorphism. A critical part of the present Review is the collection of API-ILs and deep eutectic solvents (DESs) prepared to date. The Review covers rules for rational design of API-ILs and tools for API-IL formation, syntheses, and characterization. Nomenclature and ionic speciation, and the confusion that these may cause, are highlighted, particularly for speciation in both ILs and DESs of intermediate ionicity. We also highlight in vivo and in vitro pharmaceutical activity studies, with differences in pharmacokinetic/pharmacodynamic depending on ionicity of API-ILs. A brief overview is provided for the ILs used to deliver drugs, and the Review concludes with key prospects and roadblocks in translating API-ILs into pharmaceutical manufacturing.
Collapse
Affiliation(s)
- Julia L Shamshina
- Fiber and Biopolymer Research Institute (FBRI), Texas Tech University, Lubbock, Texas 79409, United States
| | - Robin D Rogers
- 525 Solutions, Inc., P.O. Box 2206, Tuscaloosa, Alabama 35403, United States
| |
Collapse
|
9
|
Niesyto K, Skonieczna M, Adamiec-Organiściok M, Neugebauer D. Toxicity evaluation of choline ionic liquid-based nanocarriers of pharmaceutical agents for lung treatment. J Biomed Mater Res B Appl Biomater 2023; 111:1374-1385. [PMID: 36863708 DOI: 10.1002/jbm.b.35241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/19/2023] [Accepted: 02/14/2023] [Indexed: 03/04/2023]
Abstract
In vitro cytotoxicity evaluation of linear copolymer (LC) containing choline ionic liquid units and its conjugates with an antibacterial drug in anionic form, that is, p-aminosalicylate (LC_PAS), clavulanate (LC_CLV), or piperacillin (LC_PIP) was carried out. These systems were tested against normal: human bronchial epithelial cells (BEAS-2B), and cancers: adenocarcinoma human alveolar basal epithelial cells (A549), and human non-small cell lung carcinoma cell line (H1299). Cells viability, after linear copolymer LC and their conjugates addition for 72 h, was measured at concentration range of 3.125-100 μg/mL. The MTT test allowed the designation of IC50 index, which was higher for BEAS-2B, and significantly lower in the case of cancer cell lines. The cytometric analyzes, that is, Annexin-V FITC apoptosis assay and cell cycle analysis as well as gene expression measurements for interleukins IL6 and IL8 were carried out, and showed pro-inflammatory activity of tested compounds toward cancer cells, while it was not observed against normal cell line.
Collapse
Affiliation(s)
- Katarzyna Niesyto
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Gliwice, Poland
| | - Magdalena Skonieczna
- Department of Systems Biology and Engineering, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Gliwice, Poland
- Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Małgorzata Adamiec-Organiściok
- Department of Systems Biology and Engineering, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Gliwice, Poland
- Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Dorota Neugebauer
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Gliwice, Poland
| |
Collapse
|
10
|
Thermodynamics and In-Plane Viscoelasticity of Anionic Phospholipid Membranes Modulated by an Ionic Liquid. Pharm Res 2022; 39:2447-2458. [PMID: 35902532 DOI: 10.1007/s11095-022-03348-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/20/2022] [Indexed: 11/27/2022]
Abstract
This article presents the effects of an imidazolium-based ionic liquid (IL) on the thermodynamics and in-plane viscoelastic properties of model membranes of anionic phospholipids. The negative Zeta potential of multilamellar vesicles of 14 carbon lipid 1,2-dimyristoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DMPG) is observed to reduce due to the presence of few mole % of an IL 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]). The effect was found to be stronger on enhancing the chain length of the lipid. The surface pressure-area isotherms of lipid monolayer formed at air-water interface are modified by the IL reducing the effective area per molecule. Further, the equilibrium elasticity of the film is altered depending upon the thermodynamic phase of the lipids. While the presence of the IL in the DMPG lipid makes it ordered in the gel phase by reducing the entropy, the effect is opposite in the fluid phase. The in-plane viscoelastic parameters of the lipid film is quantified by dilation rheology using the oscillatory barriers of a Langmuir trough. Even though the low chain lipid DMPG does not show any effect of IL on its storage and loss moduli, the longer chain lipids exhibit a prominent effect in the liquid extended (LE) phase. Further, the dynamic response of the lipid film is found to be distinctly different in the liquid condensed (LC) phase from that of the LE phase.
Collapse
|
11
|
Handa M, Almalki WH, Shukla R, Afzal O, Altamimi ASA, Beg S, Rahman M. Active pharmaceutical ingredients (APIs) in ionic liquids: An effective approach for API physiochemical parameter optimization. Drug Discov Today 2022; 27:2415-2424. [PMID: 35697283 DOI: 10.1016/j.drudis.2022.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/31/2022] [Accepted: 06/08/2022] [Indexed: 11/03/2022]
Abstract
Ionic liquids (ILs) are widely used as solvents, co-solvents and permeation enhancers in the biomedical and pharmaceutical fields. There are many advantages to using active pharmaceutical ingredients (APIs) in the production of ILs for drug delivery, including the ability to tailor solubility, improve thermal stability, increase dissolution, regulate drug release, improve API permeability, and modulate cytotoxicity on tumor cells. Such an approach has shown significant potential as a tool for drug delivery. As a result, APIs converted into ILs are used as active components in solutions, emulsions, and even nanoparticles (NPs). In this review, we explore the use and physiochemical characteristics of APIs via ILs, including improvements of their physicochemical properties in preformulation and formulation development.
Collapse
Affiliation(s)
- Mayank Handa
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, UP, India
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Saudi Arabia
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, UP, India
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | | | - Sarwar Beg
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mahfoozur Rahman
- Department of Pharmaceutical Sciences, SIHAS, Faculty of Health Science, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, India.
| |
Collapse
|
12
|
Starling PDJ, Metilda P. Influence of alkyl chain length of monocationic ionic liquids towards pharmacological activities. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Zhuang W, Hachem K, Bokov D, Javed Ansari M, Taghvaie Nakhjiri A. Ionic liquids in pharmaceutical industry: A systematic review on applications and future perspectives. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118145] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
14
|
Delgado A, Guddati AK. Infections in Hospitalized Cancer Patients. World J Oncol 2022; 12:195-205. [PMID: 35059079 PMCID: PMC8734501 DOI: 10.14740/wjon1410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/01/2021] [Indexed: 11/11/2022] Open
Abstract
Cancer patients are at an increased risk of developing infections that are primarily treatment-driven but may also be malignancy-driven. While cancer treatments such as chemotherapy, radiotherapy, and surgery have been known to improve malignancy morbidity and mortality, they also have the potential to weaken immune defenses and induce periods of severe cytopenia. These adverse effects pave the way for opportunistic infections to complicate a hospitalized cancer patient's clinical course. Understanding the risk each patient inherently has for developing a bacterial, fungal, or viral infection is critical to choosing the correct prophylactic treatment in conjunction with their scheduled cancer therapy. This review discusses the most common types of infections found in hospitalized cancer patients as well as the current guidelines for prophylactic and antimicrobial treatment in cancer patients. In addition, it describes the interaction between antibiotics and cancer therapies for consideration when treating infection in a cancer patient.
Collapse
Affiliation(s)
- Amanda Delgado
- Division of Hematology/Oncology, Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Achuta Kumar Guddati
- Division of Hematology/Oncology, Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
15
|
Rostami S, Tekkeşin AI, Ercan UK, Garipcan B. Biomimetic sharkskin surfaces with antibacterial, cytocompatible, and drug delivery properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 134:112565. [DOI: 10.1016/j.msec.2021.112565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/02/2021] [Accepted: 11/21/2021] [Indexed: 11/29/2022]
|
16
|
Wu X, Zhu Q, Chen Z, Wu W, Lu Y, Qi J. Ionic liquids as a useful tool for tailoring active pharmaceutical ingredients. J Control Release 2021; 338:268-283. [PMID: 34425167 DOI: 10.1016/j.jconrel.2021.08.032] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023]
Abstract
Ionic liquids (ILs) have been widely used in biomedical and pharmaceutical fields as solvents or permeation enhancers. Recently, more and more researchers focused on optimizing the physicochemical properties of active pharmaceutical ingredient (API) by ILs technology. Converting APIs into ILs (API-ILs) has shown great potential for drug delivery by eliminating polymorphism, tailoring solubility, improving thermal stability, increasing dissolution, controlling drug release, modulating the surfactant properties, enhancing permeability of APIs and modulating cytotoxicity on tumor cells. In addition, API-ILs are also used in various formulations as active ingredients, such as solutions, emulsions, even tablets or nanoparticles. This paper aims to review current status of API-ILs, including the rational and design, preparation and characterization, the improvement on the physicochemical characteristics of APIs, the compatibility of API-ILs with various formulations, and the future prospects of API-ILs in biomedical and pharmaceutical fields.
Collapse
Affiliation(s)
- Xiying Wu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China; Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Wei Wu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China; Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yi Lu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China; Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jianping Qi
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China; Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
17
|
Tri-tert-butyl(n-alkyl)phosphonium Ionic Liquids: Structure, Properties and Application as Hybrid Catalyst Nanomaterials. SUSTAINABILITY 2021. [DOI: 10.3390/su13179862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A series of sterically hindered tri-tert-butyl(n-alkyl)phosphonium salts (n-CnH2n+1 with n = 1, 3, 5, 7, 9, 11, 13, 15, 17) was synthesized and systematically studied by 1H, 13C, 31P NMR spectroscopy, ESI-MS, single-crystal X-ray diffraction analysis and melting point measurement. Formation and stabilization palladium nanoparticles (PdNPs) were used to characterize the phosphonium ionic liquid (PIL) nanoscale interaction ability. The colloidal Pd in the PIL systems was described with TEM and DLS analyses and applied in the Suzuki cross-coupling reaction. The PILs were proven to be suitable stabilizers of PdNPs possessing high catalytic activity. The tri-tert-butyl(n-alkyl)phosphonium salts showed a complex nonlinear correlation of the structure–property relationship. The synthesized family of PILs has a broad variety of structural features, including hydrophobic and hydrophilic structures that are entirely expressed in the diversity of their properties
Collapse
|
18
|
Hut EF, Radulescu M, Pilut N, Macasoi I, Berceanu D, Coricovac D, Pinzaru I, Cretu O, Dehelean C. Two Antibiotics, Ampicillin and Tetracycline, Exert Different Effects in HT-29 Colorectal Adenocarcinoma Cells in Terms of Cell Viability and Migration Capacity. Curr Oncol 2021; 28:2466-2480. [PMID: 34287268 PMCID: PMC8293052 DOI: 10.3390/curroncol28040225] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/18/2021] [Accepted: 06/29/2021] [Indexed: 01/19/2023] Open
Abstract
Antibiotics are considered the cornerstone of modern medicine; however, currently, antibiotic resistance has become a global health issue. Antibiotics also find new uses in the treatment of other pathologies as well as cancer. The present study aimed to verify the impact of tetracycline and ampicillin in a colorectal adenocarcinoma cell line, HT-29. The effects of the two antibiotics on cell viability and nucleus were evaluated by the means of MTT assay and the Hoechst staining method, respectively. The irritant potential at vascular level of the chorioallantoic membrane was tested by the HET-CAM assay. Treatment of HT-29 cells with the two antibiotics determined different effects: (i) tetracycline induced a dose- and time-dependent cytotoxic effect characterized by decreased cell viability, changes in cells morphology, apoptotic features (nuclear fragmentation), and inhibition of cellular migration, whereas (ii) ampicillin exerted a biphasic response-cytotoxic at low doses and proliferative at high concentrations. In terms of effect on blood vessels, both antibiotics exerted a mild irritant effect. These results are promising and could be considered as starting point for further in vitro studies to define the molecular mechanisms involved in the cytotoxic/proliferative effects.
Collapse
Affiliation(s)
- Emil-Florin Hut
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania; (E.-F.H.); (M.R.); (N.P.); (O.C.)
| | - Matilda Radulescu
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania; (E.-F.H.); (M.R.); (N.P.); (O.C.)
| | - Nicolae Pilut
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania; (E.-F.H.); (M.R.); (N.P.); (O.C.)
| | - Ioana Macasoi
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania; (D.C.); (I.P.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania
| | - Delia Berceanu
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania; (E.-F.H.); (M.R.); (N.P.); (O.C.)
| | - Dorina Coricovac
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania; (D.C.); (I.P.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania
| | - Iulia Pinzaru
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania; (D.C.); (I.P.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania
| | - Octavian Cretu
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania; (E.-F.H.); (M.R.); (N.P.); (O.C.)
| | - Cristina Dehelean
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania; (D.C.); (I.P.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania
| |
Collapse
|
19
|
Silva AT, Teixeira C, Marques EF, Prudêncio C, Gomes P, Ferraz R. Surfing the Third Wave of Ionic Liquids: A Brief Review on the Role of Surface-Active Ionic Liquids in Drug Development and Delivery. ChemMedChem 2021; 16:2604-2611. [PMID: 33908193 DOI: 10.1002/cmdc.202100215] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Indexed: 12/12/2022]
Abstract
The relevance of ionic liquids (ILs) is now well established in many fields, as their unique properties make them appealing as 1) greener alternatives to organic solvents (first-generation ILs), 2) tunable task-specific materials (second-generation ILs), and 3) multifunctional players in life and pharmaceutical sciences (third-generation ILs). This third wave of ILs encompasses a wide range of compounds, from bioactive molecules with single or even dual therapeutic action, to potential ingredient molecules for drug formulation and transport systems. In this context, the focus of this review is the emergent role of surface-active ionic liquids (SAILs) in drug development and delivery.
Collapse
Affiliation(s)
- Ana Teresa Silva
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007, Porto, Portugal
| | - Cátia Teixeira
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007, Porto, Portugal
| | - Eduardo F Marques
- CIQ-UP, Centro de Investigação em Química da Universidade do Porto, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007, Porto, Portugal
| | - Cristina Prudêncio
- CQB/CISA - Ciências Químicas e das Biomoléculas, Escola Superior de Saúde, Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-072, Porto, Portugal
| | - Paula Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007, Porto, Portugal
| | - Ricardo Ferraz
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007, Porto, Portugal.,CQB/CISA - Ciências Químicas e das Biomoléculas, Escola Superior de Saúde, Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072, Porto, Portugal
| |
Collapse
|
20
|
Hartmann DO, Shimizu K, Rothkegel M, Petkovic M, Ferraz R, Petrovski Ž, Branco LC, Canongia Lopes JN, Silva Pereira C. Tailoring amphotericin B as an ionic liquid: an upfront strategy to potentiate the biological activity of antifungal drugs. RSC Adv 2021; 11:14441-14452. [PMID: 35423994 PMCID: PMC8697833 DOI: 10.1039/d1ra00234a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/12/2021] [Indexed: 11/21/2022] Open
Abstract
Aspergillus species are the primary cause of invasive aspergillosis, which afflicts hundreds of thousands of patients yearly, with high mortality rates. Amphotericin B is considered the gold standard in antifungal drug therapy, due to its broad-spectrum activity and rarely reported resistance. However, low solubility and permeability, as well as considerable toxicity, challenge its administration. Lipid formulations of amphotericin B have been used to promote its slow release and diminish toxicity, but these are expensive and adverse health effects of their prolonged use have been reported. In the past decades, great interest emerged on converting biologically active molecules into an ionic liquid form to overcome limitations such as low solubility or polymorphisms. In this study, we evaluated the biological activity of novel ionic liquid formulations where the cholinium, cetylpyridinium or trihexyltetradecylphosphonium cations were combined with an anionic form of amphotericin B. We observed that two formulations increased the antifungal activity of the drug, while maintaining its mode of action. Molecular dynamics simulations showed that higher biological activity was due to increased interaction of the ionic liquid with the fungal membrane ergosterol compared with amphotericin B alone. Increased cytotoxicity could also be observed, probably due to greater interaction of the cation with cholesterol, the main sterol in animal cells. Importantly, one formulation also displayed antibacterial activity (dual functionality), likely preserved from the cation. Collectively, the data set ground for the guided development of ionic liquid formulations that could improve the administration, efficacy and safety of antifungal drugs or even the exploitation of their dual functionality.
Collapse
Affiliation(s)
- Diego O Hartmann
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA) Av. da República Oeiras 2780-157 Portugal
| | - Karina Shimizu
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa Av. Rovisco Pais 1049-001 Lisboa Portugal
| | - Maika Rothkegel
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA) Av. da República Oeiras 2780-157 Portugal
| | - Marija Petkovic
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA) Av. da República Oeiras 2780-157 Portugal
| | - Ricardo Ferraz
- Ciências Químicas e das Biomoléculas (CQB) e Centro de Investigação em Saúde e Ambiente (CISA), Escola Superior de Saúde do Instituto Politécnico do Porto 4400-330 Porto Portugal.,LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto Rua do Campo Alegre 687 4169-007 Porto Portugal
| | - Željko Petrovski
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa 2829-516 Caparica Portugal
| | - Luís C Branco
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa 2829-516 Caparica Portugal
| | - José N Canongia Lopes
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa Av. Rovisco Pais 1049-001 Lisboa Portugal
| | - Cristina Silva Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA) Av. da República Oeiras 2780-157 Portugal
| |
Collapse
|
21
|
Physicochemical study on molecular interactions in ternary aqueous solutions of the pharmaceutically active ionic liquid cetylpyridinium salicylate and amino acid/glycylglycine at different temperatures. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115258] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
22
|
The Impact of [C16Pyr][Amp] on the Aggressiveness in Breast and Prostate Cancer Cell Lines. Int J Mol Sci 2020; 21:ijms21249584. [PMID: 33339207 PMCID: PMC7765672 DOI: 10.3390/ijms21249584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/05/2020] [Accepted: 12/14/2020] [Indexed: 12/18/2022] Open
Abstract
Breast (BrCa) and prostate (PCa) cancers are the most common malignancies in women and men, respectively. The available therapeutic options for these tumors are still not curative and have severe side effects. Therefore, there is an urgent need for more effective antineoplastic agents. Herein, BrCa, PCa, and benign cell lines were treated with two ionic liquids and two quinoxalines and functional experiments were performed-namely cell viability, apoptosis, cytotoxicity, and colony formation assays. At the molecular level, an array of gene expressions encompassing several molecular pathways were used to explore the impact of treatment on gene expression. Although both quinoxalines and the ionic liquid [C2OHMIM][Amp] did not show any effect on the BrCa and PCa cell lines, [C16Pyr][Amp] significantly decreased cell viability and colony formation ability, while it increased the apoptosis levels of all cell lines. Importantly, [C16Pyr][Amp] was found to be more selective for cancer cells and less toxic than cisplatin. At the molecular level, this ionic liquid was also associated with reduced expression levels of CPT2, LDHA, MCM2, and SKP2, in both BrCa and PCa cell lines. Hence, [C16Pyr][Amp] was shown to be a promising anticancer therapeutic agent for BrCa and PCa cell lines.
Collapse
|
23
|
Arkhipova DM, Ermolaev VV, Miluykov VA, Gubaidullin AT, Islamov DR, Kataeva ON, Ananikov VP. Sterically Hindered Phosphonium Salts: Structure, Properties and Palladium Nanoparticle Stabilization. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2457. [PMID: 33316907 PMCID: PMC7763823 DOI: 10.3390/nano10122457] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 01/06/2023]
Abstract
A new family of sterically hindered alkyl(tri-tert-butyl) phosphonium salts (n-CnH2n+1 with n = 2, 4, 6, 8, 10, 12, 14, 16, 18, 20) was synthesized and evaluated as stabilizers for the formation of palladium nanoparticles (PdNPs), and the prepared PdNPs, stabilized by a series of phosphonium salts, were applied as catalysts of the Suzuki cross-coupling reaction. All investigated phosphonium salts were found to be excellent stabilizers of metal nanoparticles of small catalytically active size with a narrow size distribution. In addition, palladium nanoparticles exhibited exceptional stability: the presence of phosphonium salts prevented agglomeration and precipitation during the catalytic reaction.
Collapse
Affiliation(s)
- Daria M Arkhipova
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect, 47, 119991 Moscow, Russia
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbusov Street 8, 420088 Kazan, Russia
| | - Vadim V Ermolaev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbusov Street 8, 420088 Kazan, Russia
| | - Vasily A Miluykov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbusov Street 8, 420088 Kazan, Russia
| | - Aidar T Gubaidullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbusov Street 8, 420088 Kazan, Russia
| | - Daut R Islamov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbusov Street 8, 420088 Kazan, Russia
| | - Olga N Kataeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbusov Street 8, 420088 Kazan, Russia
| | - Valentine P Ananikov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect, 47, 119991 Moscow, Russia
| |
Collapse
|
24
|
Pedro SN, R. Freire CS, Silvestre AJD, Freire MG. The Role of Ionic Liquids in the Pharmaceutical Field: An Overview of Relevant Applications. Int J Mol Sci 2020; 21:E8298. [PMID: 33167474 PMCID: PMC7663996 DOI: 10.3390/ijms21218298] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 01/12/2023] Open
Abstract
Solubility, bioavailability, permeation, polymorphism, and stability concerns associated to solid-state pharmaceuticals demand for effective solutions. To overcome some of these drawbacks, ionic liquids (ILs) have been investigated as solvents, reagents, and anti-solvents in the synthesis and crystallization of active pharmaceutical ingredients (APIs), as solvents, co-solvents and emulsifiers in drug formulations, as pharmaceuticals (API-ILs) aiming liquid therapeutics, and in the development and/or improvement of drug-delivery-based systems. The present review focuses on the use of ILs in the pharmaceutical field, covering their multiple applications from pharmaceutical synthesis to drug delivery. The most relevant research conducted up to date is presented and discussed, together with a critical analysis of the most significant IL-based strategies in order to improve the performance of therapeutics and drug delivery systems.
Collapse
Affiliation(s)
| | | | | | - Mara G. Freire
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (S.N.P.); (C.S.R.F.); (A.J.D.S.)
| |
Collapse
|
25
|
Santos F, Branco LC, Duarte ARC. Organic Salts Based on Isoniazid Drug: Synthesis, Bioavailability and Cytotoxicity Studies. Pharmaceutics 2020; 12:pharmaceutics12100952. [PMID: 33050373 PMCID: PMC7600673 DOI: 10.3390/pharmaceutics12100952] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 11/23/2022] Open
Abstract
Tuberculosis is one of the ten causes of morbidity and mortality worldwide caused by Mycobacterium tuberculosis complex. Some of the anti-tuberculosis drugs used in clinic studies, despite being effective for the treatment of tuberculosis, present serious adverse effects as well as poor bioavailability, stability, and drug-resistance problems. Thus, it is important to develop approaches that could provide shorter drug regimens, preventing drug resistance, toxicity of the antibiotics, and improve their bioavailability. Herein, we reported the use of organic salts based on the isoniazid drug, which can act as an organic cation combined with suitable organic anions such as alkylsulfonate-based (mesylate, R or S-Camphorsulfonate), carboxylate-based (glycolate, vanylate) and sacharinate. The synthesis, characterization, and cytotoxicity studies comparing with the original isoniazid drug have been performed. The possibility to explore dicationic salts seems promising in order to improve original bioavailability, and promote the elimination of polymorphic forms as well as higher stability, which are relevant characteristics that the pharmaceutical industry pursues.
Collapse
|
26
|
Santos MM, Alves C, Silva J, Florindo C, Costa A, Petrovski Ž, Marrucho IM, Pedrosa R, Branco LC. Antimicrobial Activities of Highly Bioavailable Organic Salts and Ionic Liquids from Fluoroquinolones. Pharmaceutics 2020; 12:pharmaceutics12080694. [PMID: 32717808 PMCID: PMC7464485 DOI: 10.3390/pharmaceutics12080694] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/28/2020] [Accepted: 07/13/2020] [Indexed: 12/16/2022] Open
Abstract
As the development of novel antibiotics has been at a halt for several decades, chemically enhancing existing drugs is a very promising approach to drug development. Herein, we report the preparation of twelve organic salts and ionic liquids (OSILs) from ciprofloxacin and norfloxacin as anions with enhanced antimicrobial activity. Each one of the fluoroquinolones (FQs) was combined with six different organic hydroxide cations in 93-100% yield through a buffer-assisted neutralization methodology. Six of those were isomorphous salts while the remaining six were ionic liquids, with four of them being room temperature ionic liquids. The prepared compounds were not toxic to healthy cell lines and displayed between 47- and 1416-fold more solubility in water at 25 and 37 °C than the original drugs, with the exception of the ones containing the cetylpyridinium cation. In general, the antimicrobial activity against Klebsiella pneumoniae was particularly enhanced for the ciprofloxacin-based OSILs, with up to ca. 20-fold decreases of the inhibitory concentrations in relation to the parent drug, while activity against Staphylococcus aureus and the commensal Bacillus subtilis strain was often reduced. Depending on the cation-drug combination, broad-spectrum or strain-specific antibiotic salts were achieved, potentially leading to the future development of highly bioavailable and safe antimicrobial ionic formulations.
Collapse
Affiliation(s)
- Miguel M. Santos
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (A.C.); (Ž.P.)
- Correspondence: (M.M.S.); (R.P.); (L.C.B.)
| | - Celso Alves
- MARE–Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal; (C.A.); (J.S.)
| | - Joana Silva
- MARE–Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal; (C.A.); (J.S.)
| | - Catarina Florindo
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal; (C.F.); (I.M.M.)
| | - Alexandra Costa
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (A.C.); (Ž.P.)
| | - Željko Petrovski
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (A.C.); (Ž.P.)
| | - Isabel M. Marrucho
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal; (C.F.); (I.M.M.)
| | - Rui Pedrosa
- MARE–Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal; (C.A.); (J.S.)
- Correspondence: (M.M.S.); (R.P.); (L.C.B.)
| | - Luís C. Branco
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (A.C.); (Ž.P.)
- Correspondence: (M.M.S.); (R.P.); (L.C.B.)
| |
Collapse
|
27
|
Khazalpour S, Yarie M, Kianpour E, Amani A, Asadabadi S, Seyf JY, Rezaeivala M, Azizian S, Zolfigol MA. Applications of phosphonium-based ionic liquids in chemical processes. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-01901-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
28
|
Rezki N, Al-blewi FF, Al-Sodies SA, Alnuzha AK, Messali M, Ali I, Aouad MR. Synthesis, Characterization, DNA Binding, Anticancer, and Molecular Docking Studies of Novel Imidazolium-Based Ionic Liquids with Fluorinated Phenylacetamide Tethers. ACS OMEGA 2020; 5:4807-4815. [PMID: 32201766 PMCID: PMC7081306 DOI: 10.1021/acsomega.9b03468] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/28/2020] [Indexed: 05/23/2023]
Abstract
Newer imidazolium ionic liquid (IL) halides 4a-f appending variety of fluorinated phenylacetamide side chains were designed and synthesized through quaternization of 1-methyl and/or 1,2-dimethylimidazole with appropriate 2-chloro-N-(fluorinatedphenyl)acetamides. The resulting ILs were converted to their respective ionic liquid analogues carrying fluorinated counteranions (PF6 -, BF4 -, and/or CF3COO-) 5a-r. All newly synthesized ILs were fully characterized using several spectroscopic experiments such as 1H, 13C, 11B, 19F, 31P NMR, and mass analysis. The synthesized ionic liquids were investigated for their DNA binding and anticancer activities. The obtained DNA binding constants ranged from 1.444 × 105 to 3.518 × 105, indicating a reasonably good binding affinity. The percentage of anticancer activities ranged from 48 to 59 with H-1229 cell line, showing quite good anticancer potential. The modeling studies indicated the interactions of the reported molecules with DNA via hydrogen bonds. These were in agreement with those of DNA binding and anticancer results. Briefly, the designed ionic liquids may be used as good anticancer candidates for treating human cancer.
Collapse
Affiliation(s)
- Nadjet Rezki
- Department of Chemistry,
Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia
- Department
of Chemistry, Faculty of Sciences, University
of Sciences and Technology Mohamed Boudiaf, Laboratoire de Chimie
and Electrochimie des Complexes Metalliques (LCECM) USTO-MB, P.O. Box 1505, El M‘nouar, Oran 31000, Algeria
| | - Fawzia Faleh Al-blewi
- Department of Chemistry,
Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia
| | - Salsabeel A. Al-Sodies
- Department of Chemistry,
Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia
| | - Asaad Khalid Alnuzha
- Department of Chemistry,
Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia
| | - Mouslim Messali
- Department of Chemistry,
Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia
| | - Imran Ali
- Department of Chemistry,
Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia
- Department of Chemistry, Jamia Millia Islamia
(A Central University), New Delhi 110025, India
| | - Mohamed Reda Aouad
- Department of Chemistry,
Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia
- Department
of Chemistry, Faculty of Sciences, University
of Sciences and Technology Mohamed Boudiaf, Laboratoire de Chimie
and Electrochimie des Complexes Metalliques (LCECM) USTO-MB, P.O. Box 1505, El M‘nouar, Oran 31000, Algeria
| |
Collapse
|
29
|
Ferraz R, Silva D, Dias AR, Dias V, Santos MM, Pinheiro L, Prudêncio C, Noronha JP, Petrovski Ž, Branco LC. Synthesis and Antibacterial Activity of Ionic Liquids and Organic Salts Based on Penicillin G and Amoxicillin hydrolysate Derivatives against Resistant Bacteria. Pharmaceutics 2020; 12:pharmaceutics12030221. [PMID: 32131540 PMCID: PMC7150922 DOI: 10.3390/pharmaceutics12030221] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 12/21/2022] Open
Abstract
The preparation and characterization of ionic liquids and organic salts (OSILs) that contain anionic penicillin G [secoPen] and amoxicillin [seco-Amx] hydrolysate derivatives and their in vitro antibacterial activity against sensitive and resistant Escherichia coli and Staphylococcus aureus strains is reported. Eleven hydrolyzed β-lactam-OSILs were obtained after precipitation in moderate-to-high yields via the neutralization of the basic ammonia buffer of antibiotics with different cation hydroxide salts. The obtained minimum inhibitory concentration (MIC) data of the prepared compounds showed a relative decrease of the inhibitory concentrations (RDIC) in the order of 100 in the case of [C2OHMIM][seco-Pen] against sensitive S. aureus ATCC25923 and, most strikingly, higher than 1000 with [C16Pyr][seco-Amx] against methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300. These outstanding in vitro results showcase that a straightforward transformation of standard antibiotics into hydrolyzed organic salts can dramatically change the pharmaceutical activity of a drug, including giving rise to potent formulations of antibiotics against deadly bacteria strains.
Collapse
Affiliation(s)
- Ricardo Ferraz
- Ciências Químicas e das Biomoléculas (CQB) e Centro de Investigação em Saúde e Ambiente (CISA), Escola Superior de Saúde do Instituto Politécnico do Porto, 4400-330 Porto, Portugal; (A.R.D.); (V.D.); (C.P.)
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
- Correspondence: (R.F.); (Ž.P.); (L.C.B.)
| | - Dário Silva
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (D.S.); (M.M.S.); (L.P.); (J.P.N.)
| | - Ana Rita Dias
- Ciências Químicas e das Biomoléculas (CQB) e Centro de Investigação em Saúde e Ambiente (CISA), Escola Superior de Saúde do Instituto Politécnico do Porto, 4400-330 Porto, Portugal; (A.R.D.); (V.D.); (C.P.)
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | - Vitorino Dias
- Ciências Químicas e das Biomoléculas (CQB) e Centro de Investigação em Saúde e Ambiente (CISA), Escola Superior de Saúde do Instituto Politécnico do Porto, 4400-330 Porto, Portugal; (A.R.D.); (V.D.); (C.P.)
| | - Miguel M. Santos
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (D.S.); (M.M.S.); (L.P.); (J.P.N.)
| | - Luís Pinheiro
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (D.S.); (M.M.S.); (L.P.); (J.P.N.)
| | - Cristina Prudêncio
- Ciências Químicas e das Biomoléculas (CQB) e Centro de Investigação em Saúde e Ambiente (CISA), Escola Superior de Saúde do Instituto Politécnico do Porto, 4400-330 Porto, Portugal; (A.R.D.); (V.D.); (C.P.)
- i3S, Instituto de Inovação e Investigação em Saúde, Universidade do Porto, 4099-002 Porto, Portugal
| | - João Paulo Noronha
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (D.S.); (M.M.S.); (L.P.); (J.P.N.)
| | - Željko Petrovski
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (D.S.); (M.M.S.); (L.P.); (J.P.N.)
- Correspondence: (R.F.); (Ž.P.); (L.C.B.)
| | - Luís C. Branco
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (D.S.); (M.M.S.); (L.P.); (J.P.N.)
- Correspondence: (R.F.); (Ž.P.); (L.C.B.)
| |
Collapse
|
30
|
Chantereau G, Sharma M, Abednejad A, Vilela C, Costa E, Veiga M, Antunes F, Pintado M, Sèbe G, Coma V, Freire M, Freire C, Silvestre A. Bacterial nanocellulose membranes loaded with vitamin B-based ionic liquids for dermal care applications. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112547] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
31
|
Dias AR, Costa-Rodrigues J, Teixeira C, Prudêncio C, Gomes P, Ferraz R. Ionic Liquids for Topical Delivery in Cancer. Curr Med Chem 2020; 26:7520-7532. [DOI: 10.2174/0929867325666181026110227] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/08/2018] [Accepted: 08/12/2018] [Indexed: 11/22/2022]
Abstract
:
The unique properties of ionic liquids make them quite appealing for diverse applications,
from “green” solvents (1st generation ionic liquids) to finely tuned materials (2nd generation
ionic liquids). A decade ago, a 3rd generation of ionic liquids emerged which is focused
on their prospective clinical applications, either as drugs per se or as adjuvants in drug formulations.
In recent years, research focused on the use of ionic liquids for topical drug delivery
has been increasing and holds great promise towards clinical application against skin cancers.
This article highlights the growing relevance of ionic liquids in medicinal chemistry and pharmaceutical
technology, which is opening new windows of opportunity.
Collapse
Affiliation(s)
- Ana Rita Dias
- Ciências Químicas e das Biomoléculas, Centro de Investigação em Saúde e Ambiente, Escola Superior de Saúde do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - João Costa-Rodrigues
- Ciências Químicas e das Biomoléculas, Centro de Investigação em Saúde e Ambiente, Escola Superior de Saúde do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Cátia Teixeira
- Ciências Químicas e das Biomoléculas, Centro de Investigação em Saúde e Ambiente, Escola Superior de Saúde do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Cristina Prudêncio
- Ciências Químicas e das Biomoléculas, Centro de Investigação em Saúde e Ambiente, Escola Superior de Saúde do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Paula Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Ricardo Ferraz
- Ciências Químicas e das Biomoléculas, Centro de Investigação em Saúde e Ambiente, Escola Superior de Saúde do Porto, Instituto Politécnico do Porto, Porto, Portugal
| |
Collapse
|
32
|
Tang J, Song H, Feng X, Yohannes A, Yao S. Ionic Liquid-Like Pharmaceutical Ingredients and Applications of Ionic Liquids in Medicinal Chemistry: Development, Status and Prospects. Curr Med Chem 2019; 26:5947-5967. [DOI: 10.2174/0929867325666180605123436] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/20/2018] [Accepted: 05/31/2018] [Indexed: 11/22/2022]
Abstract
Background:As a new kind of green media and bioactive compounds with special structure, Ionic Liquids (ILs) are attracting much attention and applied widely in many fields. However, their roles and potential have not been fully recognized by many researchers of medicinal chemistry. Because of obvious differences from other traditional drugs and reagents, their uses and performance together with advantages and disadvantages need to be explored and reviewed in detail.Methods:For a systematic and explicit description of the relationship between ILs and medicinal chemistry, all of the contents were elucidated and summarized in a series of independent parts. In each part, it started from the research background or a conceptual framework and then specific examples were introduced to illustrate the theme. Finally, the important conclusions were drawn and its future was outlooked after the discussion about related key problems appearing in each mentioned research. Meanwhile, methodologies such as empirical analysis, comparison and induction were applied in different sections to exposit our subject.Results:The whole review was composed of five parts, and 148 papers were cited in total. Related basic information of ionic liquids was provided on the basis of representative references, including their concepts and important characters. Then 82 papers outlined ionic liquid-like active pharmaceutical ingredients, which unfolded with their major biological activities (antimicrobial activity, antibiofilm activity, antitumor activity, anticholinesterase activity and so on). Applications of ionic liquids in the synthesis of drugs and pharmaceutical intermediates were elaborated in 92 papers to illustrate the important roles of ILs and their extraordinary properties in this field. Moreover, new technologies (such as immobilization of IL, microwave reaction, solventfree synthesis, microreactor, etc) were introduced for further innovation. Finally, 26 papers were included to expound the status of the IL-assisted derivatization of various natural lead compounds.Conclusion:This review placed emphasis on chemical structures of ILs and their structureactivity relationships in a specific manner, leading to meaningful and valuable related information to some related fields and thus promotes further development and application of various ILs for medicinal chemistry. The deep exploration for key scientific problems is the driving force to propel their theoretical breakthrough and industrial production.
Collapse
Affiliation(s)
- Jie Tang
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Hang Song
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Xueting Feng
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Alula Yohannes
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Shun Yao
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
33
|
Teixeira S, Santos MM, Ferraz R, Prudêncio C, Fernandes MH, Costa-Rodrigues J, Branco LC. A Novel Approach for Bisphosphonates: Ionic Liquids and Organic Salts from Zoledronic Acid. ChemMedChem 2019; 14:1767-1770. [PMID: 31603287 DOI: 10.1002/cmdc.201900397] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/27/2019] [Indexed: 11/06/2022]
Abstract
Novel ionic liquids and organic salts based on mono- or dianionic zoledronate and protonated superbases, choline and n-alkylmethylimidazolium cations, were prepared and characterized by spectroscopic and thermal analyses. Most of the prepared salts display amorphous structures and very high solubility in water and saline solutions, especially the dianionic salts. Among the zoledronate-based ionic compounds, those containing choline [Ch] and methoxyethylmethylimidazolium [C3 OMIM] cations appear to have significant cytotoxicity against human osteosarcoma cells (MG63) and low toxicity toward healthy skin fibroblast cells. Because osteosarcoma is a bone pathology characterized by an increase in bone turnover rate, the results presented herein may be a promising starting point for the development of new ionic pharmaceutical drugs against osteosarcoma.
Collapse
Affiliation(s)
- Sónia Teixeira
- Faculdade de Medicina Dentária, Universidade do Porto, Rua Dr. Manuel Pereira da Silva, Porto, Portugal.,Department of Chemistry, LAQV-REQUIMTE, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica, Portugal
| | - Miguel M Santos
- Department of Chemistry, LAQV-REQUIMTE, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica, Portugal
| | - Ricardo Ferraz
- Ciências Químicas e das Biomoléculas/Centro de Investigação em Saúde e Ambiente (CISA), ESS-Escola Superior de Saú de do Porto do Instituto Politécnico do Porto, Porto, Portugal.,LAQV-REQUIMTE, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Cristina Prudêncio
- Ciências Químicas e das Biomoléculas/Centro de Investigação em Saúde e Ambiente (CISA), ESS-Escola Superior de Saú de do Porto do Instituto Politécnico do Porto, Porto, Portugal.,ESS-Escola Superior de Saúde, Porto, Portugal
| | - Maria H Fernandes
- Faculdade de Medicina Dentária, Universidade do Porto, Rua Dr. Manuel Pereira da Silva, Porto, Portugal.,Chemistry Department, UCIBIO-REQUIMTE, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - João Costa-Rodrigues
- Faculdade de Medicina Dentária, Universidade do Porto, Rua Dr. Manuel Pereira da Silva, Porto, Portugal.,ESS-Escola Superior de Saúde, Porto, Portugal.,Instituto Politécnico de Viana do Castelo, Escola Superior de Saúde, Porto, Portugal
| | - Luís C Branco
- Department of Chemistry, LAQV-REQUIMTE, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica, Portugal
| |
Collapse
|
34
|
Szepiński E, Martynow D, Szweda P, Milewska MJ, Milewski S. Voriconazole-Based Salts Are Active against Multidrug-Resistant Human Pathogenic Yeasts. Molecules 2019; 24:molecules24203635. [PMID: 31600925 PMCID: PMC6832385 DOI: 10.3390/molecules24203635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/03/2019] [Accepted: 10/06/2019] [Indexed: 11/16/2022] Open
Abstract
Voriconazole (VOR) hydrochloride is unequivocally converted into VOR lactates and valinates upon reaction with silver salts of organic acids. This study found that the anticandidal in vitro activity of these compounds was comparable or slightly better than that of VOR. The Candida albicans clinical isolate overexpressing CaCDR1/CaCDR2 genes, highly resistant to VOR, was apparently more susceptible to VOR salts. On the other hand, the susceptibility of another C. albicans clinical isolate (demonstrating multidrug resistance due to the overexpression of CaMDR1) to VOR salts was comparable to that to VOR. Comparative studies on the influence of VOR and its salts on Rhodamine 6G efflux from susceptible and multidrug-resistant C. albicans cells revealed that VOR salts are poorer substrates for the CaCdr1p drug efflux pump than VOR.
Collapse
Affiliation(s)
- Emil Szepiński
- Department of Organic Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza Str., 80-233 Gdańsk, Poland.
| | - Dorota Martynow
- Department of Pharmaceutical Technology and Biochemistry, Gdańsk University of Technology, 11/12 G. Narutowicza Str., 80-233 Gdańsk, Poland.
| | - Piotr Szweda
- Department of Pharmaceutical Technology and Biochemistry, Gdańsk University of Technology, 11/12 G. Narutowicza Str., 80-233 Gdańsk, Poland.
| | - Maria J Milewska
- Department of Organic Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza Str., 80-233 Gdańsk, Poland.
| | - Sławomir Milewski
- Department of Pharmaceutical Technology and Biochemistry, Gdańsk University of Technology, 11/12 G. Narutowicza Str., 80-233 Gdańsk, Poland.
| |
Collapse
|
35
|
Al-Blewi F, Rezki N, Naqvi A, Qutb Uddin H, Al-Sodies S, Messali M, Aouad MR, Bardaweel S. A Profile of the In Vitro Anti-Tumor Activity and In Silico ADME Predictions of Novel Benzothiazole Amide-Functionalized Imidazolium Ionic Liquids. Int J Mol Sci 2019; 20:ijms20122865. [PMID: 31212762 PMCID: PMC6627815 DOI: 10.3390/ijms20122865] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 06/01/2019] [Accepted: 06/01/2019] [Indexed: 12/24/2022] Open
Abstract
A focused array of green imidazolium ionic liquids (ILs) encompassing benzothiazole ring and amide linkage were designed and synthesized using quaternization and metathesis protocols. The synthesized ILs have been fully characterized by usual spectroscopic methods and screened for their anticancer activities against human cancer cell lines originating from breast and colon cancers. Collectively, our biological data demonstrate that the newly synthesized series has variable anticancer activities in the examined cancer types. The synthesized ILs 8, 10 and 21-29 comprising the methyl and methyl sulfonyl benzothiazole ring emerged as the most potent compounds with promising antiproliferative activities relative to their benzothiazole ring counterparts. Furthermore, the mechanism underlying the observed anticancer activity was investigated. The most active compound 22 appears to exert its anticancer effect through apoptosis dependent pathway in breast cancer cells. Interestingly, compound 22 has also shown good in silico absorption (81.75%) along with high gastro-intestinal absorption as per ADME predictions.
Collapse
Affiliation(s)
- Fawzia Al-Blewi
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia.
| | - Nadjet Rezki
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia.
- Department of Chemistry, Faculty of Sciences, University of Sciences and Technology Mohamed Boudiaf, Laboratoire de Chimie et Electrochimie des Complexes Metalliques (LCECM) USTO-MB, P.O. Box 1505, El M'nouar, Oran 31000, Algeria.
| | - Arshi Naqvi
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia.
| | - Husna Qutb Uddin
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia.
| | - Salsabeel Al-Sodies
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia.
| | - Mouslim Messali
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia.
| | - Mohamed Reda Aouad
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia.
| | - Sanaa Bardaweel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman 11942, Jordan.
| |
Collapse
|
36
|
Synthesis, characterization and in vitro antiproliferative evaluation of ionic liquids based on alkyl-substituted thiabendazolium. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Zanoni BV, Brasil Romão G, Andrade RS, Barretto Cicarelli RM, Trovatti E, Chiari-Andrèo BG, Iglesias M. Cytotoxic effect of protic ionic liquids in HepG2 and HaCat human cells: in vitro and in silico studies. Toxicol Res (Camb) 2019; 8:447-458. [PMID: 31160977 PMCID: PMC6505392 DOI: 10.1039/c8tx00338f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 02/26/2019] [Indexed: 01/27/2023] Open
Abstract
Protic ionic liquids (PILs) are innovative chemical compounds, which due to their peculiar nature and amazing physico-chemical properties, have been studied as potential sustainable solvents in many areas of modern science, such as in the industrial fields of textile dyeing, pharmaceuticals, biotechnology, energy and many others. Due to their more than probable large-scale use in a short space of time, a wider analysis in terms of ecotoxicity and biological safety to humans has been attracting significant attention, once many ionic liquids were found to be "a little less than green compounds" towards cells and living organisms. The aim of this study is to investigate the cytotoxicity of 13 recently synthesized PILs, as well as to reinforce knowledge in terms of key thermodynamic magnitudes. All the studied compounds were tested for their in vitro toxic activities on two human cell lines (normal keratinocytes HaCaT and hepatocytes HepG2). In addition, due to the enormous number of possible combinations of anions and cations that can form ionic liquids, a group contribution QSAR model has been tested in order to predict their cytotoxicity. The estimated and experimental values were adequately correlated (correlation coefficient R 2 = 0.9260). The experimental obtained results showed their remarkable low toxicity for the studied in vitro systems.
Collapse
Affiliation(s)
- Bruna Varela Zanoni
- Universidade de Araraquara - UNIARA , R. Carlos Gomes , 1217 , CEP 14801-340 , Araraquara , SP , Brazil
| | - Gabriela Brasil Romão
- Universidade Federal da Bahia , Rua Aristides Novis , 2 , Federação , CEP 40210-630 , Salvador , BA , Brazil
| | - Rebecca S Andrade
- Universidade Federal do Recôncavo da Bahia , Av. Centenário , 697 , Sim , CEP 44042-280 , Feira de Santana , BA , Brazil .
| | - Regina Maria Barretto Cicarelli
- Universidade Estadual Paulista (UNESP) , Faculdade de Ciências Farmacêuticas , Rod.Araraquara - Jaú , Km 1 , CEP 14800-903 , Araraquara , Brazil
| | - Eliane Trovatti
- Universidade de Araraquara - UNIARA , R. Carlos Gomes , 1217 , CEP 14801-340 , Araraquara , SP , Brazil
| | - Bruna Galdorfini Chiari-Andrèo
- Universidade de Araraquara - UNIARA , R. Carlos Gomes , 1217 , CEP 14801-340 , Araraquara , SP , Brazil
- Universidade Estadual Paulista (UNESP) , Faculdade de Ciências Farmacêuticas , Rod.Araraquara - Jaú , Km 1 , CEP 14800-903 , Araraquara , Brazil
| | - Miguel Iglesias
- Universidade Federal da Bahia , Rua Aristides Novis , 2 , Federação , CEP 40210-630 , Salvador , BA , Brazil
| |
Collapse
|
38
|
Huang CH, Chou YH, Yeh HW, Huang JY, Yang SF, Yeh CB. Risk of Cancer after Lower Urinary Tract Infection: A Population-Based Cohort Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16030390. [PMID: 30704106 PMCID: PMC6388119 DOI: 10.3390/ijerph16030390] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 01/23/2019] [Accepted: 01/28/2019] [Indexed: 12/28/2022]
Abstract
To investigate the association among lower urinary tract infection (UTI), the type and timing of antibiotic usage, and the subsequent risk of developing cancers, especially genitourinary cancers (GUC), in Taiwan. This retrospective population-based cohort study was conducted using 2009–2013 data from the Longitudinal Health Insurance Database. This study enrolled patients who were diagnosed with a UTI between 2010 and 2012. A 1:2 propensity score-matched control population without UTI served as the control group. Multivariate analysis with a multiple Cox regression model was applied to analyze the data. A total of 38,084 patients with UTI were included in the study group, and 76,168 participants without UTI were included in the control group. The result showed a higher hazard ratio of any cancer in both sexes with UTI (for males, adjusted hazard ratio (aHR) = 1.32; 95% confidence interval (CI) = 1.12–1.54; for females, aHR = 1.21; 95% CI = 1.08–1.35). Patients with UTI had a higher probability of developing new GUC than those without UTI. Moreover, the genital organs, kidney, and urinary bladder of men were significantly more affected than those of women with prior UTI. Furthermore, antibiotic treatment for more than 7 days associated the incidence of bladder cancer in men (7–13 days, aHR = 1.23, 95% CI = 0.50–3.02; >14 days, aHR = 2.73, CI = 1.32–5.64). In conclusion, UTI is significantly related to GUC and may serve as an early sign of GUC, especially in the male genital organs, prostate, kidney, and urinary bladder. During UTI treatment, physicians should cautiously prescribe antibiotics to patients.
Collapse
Affiliation(s)
- Chia-Hung Huang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
- Division of Nephrology, Department of Internal Medicine, Lin Shin Hospital, Taichung 402, Taiwan.
| | - Ying-Hsiang Chou
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung 402, Taiwan.
- Department of Radiation Oncology, Chung Shan Medical University Hospital, Taichung 402, Taiwan.
| | - Han-Wei Yeh
- School of Medicine, Chang Gung University, Taoyuan City 333, Taiwan.
| | - Jing-Yang Huang
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan.
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan.
| | - Chao-Bin Yeh
- Department of Emergency Medicine, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
- Department of Emergency Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan.
| |
Collapse
|
39
|
Celik S, Albayrak AT, Akyuz S, E. Ozel A. Molecular modelling and vibrational investigations of ammonium-based ionic liquid (CLTOAB). J Biomol Struct Dyn 2018; 37:2515-2526. [DOI: 10.1080/07391102.2018.1495578] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Sefa Celik
- Electrical-Electronics Engineering Department, Engineering Faculty, Istanbul University - Cerrahpasa, Istanbul, Turkey
| | - Ali Tugrul Albayrak
- Chemical Engineering Department, Engineering Faculty, Istanbul University - Cerrahpasa, Istanbul, Turkey
| | - Sevim Akyuz
- Physics Department, Science and Letters Faculty, Istanbul Kultur University, Atakoy Campus, Istanbul, Turkey
| | - Aysen E. Ozel
- Physics Department, Science Faculty, Istanbul University, Istanbul, Turkey
| |
Collapse
|
40
|
Boldescu V, Sucman N, Hassan S, Iqbal J, Neamtu M, Lecka J, Sévigny J, Prodius D, Macaev F. Ectonucleotidase Inhibitory and Redox Activity of Imidazole‐Based Organic Salts and Ionic Liquids. ChemMedChem 2018; 13:2297-2304. [DOI: 10.1002/cmdc.201800520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Indexed: 01/18/2023]
Affiliation(s)
- Veaceslav Boldescu
- Laboratory of Organic Synthesis and BiopharmaceuticalsInstitute of Chemistry 3 Academiei str. 2028 Chisinau Moldova
| | - Natalia Sucman
- Laboratory of Organic Synthesis and BiopharmaceuticalsInstitute of Chemistry 3 Academiei str. 2028 Chisinau Moldova
| | - Sidra Hassan
- Department of Pharmaceutical SciencesCOMSATS Institute of Information Technology 22060 Abbottabad Pakistan
| | - Jamshed Iqbal
- Department of Pharmaceutical SciencesCOMSATS Institute of Information Technology 22060 Abbottabad Pakistan
| | - Mariana Neamtu
- Interdisciplinary Research Department“Alexandru Ioan Cuza” University 54 Lascar Catargi str. 700107 Iasi Romania
| | - Joanna Lecka
- Département de microbiologie-infectiologie et d'immunologieFaculté de MédecineUniversité Laval Québec QC G1V 0A6 Canada
- Centre de Recherche du CHU de QuébecUniversité Laval Québec QC G1V 4G2 Canada
| | - Jean Sévigny
- Département de microbiologie-infectiologie et d'immunologieFaculté de MédecineUniversité Laval Québec QC G1V 0A6 Canada
- Centre de Recherche du CHU de QuébecUniversité Laval Québec QC G1V 4G2 Canada
| | - Denis Prodius
- Laboratory of Bioinorganic Chemistry and NanocompositesInstitute of Chemistry 3 Academiei str. 2028 Chisinau Moldova
- Current address: US Department of Energy and Critical Materials Institute Ames IA 50011-3020 USA
| | - Fliur Macaev
- Laboratory of Organic Synthesis and BiopharmaceuticalsInstitute of Chemistry 3 Academiei str. 2028 Chisinau Moldova
| |
Collapse
|
41
|
In-vitro antitumor activity of new quaternary phosphonium salts, derivatives of 3-hydroxypyridine. Anticancer Drugs 2018; 29:682-690. [PMID: 29738336 DOI: 10.1097/cad.0000000000000642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This work presents the results of in-vitro biological activity studies of three novel anticancer agents, phosphonium salts based on the 3-hydroxypyridine scaffold, including one derivative of 4-deoxypyridoxine. Proliferation and viability of cells treated with these compounds was assessed by the colony formation and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays. Effects of the compounds on apoptosis and cell cycle were studied by flow cytometry using annexin V-FITC/propidium iodide and propidium iodide staining, respectively. The influence of the compounds on mitochondrial membrane potential and intracellular reactive oxygen species was evaluated using tetramethyl rhodamine ethyl and DCFHA staining. Western blot analysis was used to study the changes in the expression of Bcl-xL, Bax, and caspase-3 apoptotic proteins. The treatment of ovarian adenocarcinoma cells OVCAR-4 with the tested compounds inhibited the growth and induced cell cycle arrest in the G1 phase. 3-Hydroxypyridine derivatives induced apoptosis by hyperexpression of Bax and caspase-3, whereas 4-deoxypyridoxine derivative induced cell death partly by reactive oxygen species generation and caspase-3 hyperexpression. These results indicate that the quaternary phosphonium salts studied represent potential therapeutic agents for the treatment of ovarian cancer.
Collapse
|
42
|
Gravel J, Schmitzer AR. Imidazolium and benzimidazolium-containing compounds: from simple toxic salts to highly bioactive drugs. Org Biomol Chem 2018; 15:1051-1071. [PMID: 28045182 DOI: 10.1039/c6ob02293f] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The toxicity of simple imidazolium and benzimidazolium salts started to be more and more investigated in the last few years and was taken in consideration in the context of microorganisms, plants and more evolved organisms' exposure. However, the toxicity of these salts can be exploited in the development of different biological applications by incorporating them in the structure of compounds that specifically target microorganisms and cancer cells. We highlight in this minireview the way researchers became aware of the inherent problem of the stability and bioaccumulation of imidazolium and benzimidazolium salts and how they found inspiration to exploit their toxicity by incorporating them into new highly potent drugs.
Collapse
Affiliation(s)
- J Gravel
- Département de Chimie- Université de Montréal, 2900 Edouard Montpetit CP 6128 Succursalle Centre Ville Montréal Québec, Canada H3C 3J7.
| | - A R Schmitzer
- Département de Chimie- Université de Montréal, 2900 Edouard Montpetit CP 6128 Succursalle Centre Ville Montréal Québec, Canada H3C 3J7.
| |
Collapse
|
43
|
Ferraz R, Pinheiro M, Gomes A, Teixeira C, Prudêncio C, Reis S, Gomes P. Effects of novel triple-stage antimalarial ionic liquids on lipid membrane models. Bioorg Med Chem Lett 2017; 27:4190-4193. [PMID: 28733082 DOI: 10.1016/j.bmcl.2017.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/28/2017] [Accepted: 07/01/2017] [Indexed: 11/17/2022]
Abstract
Primaquine-based ionic liquids, obtained by acid-base reaction between parent primaquine and cinnamic acids, were recently found as triple-stage antimalarial hits. These ionic compounds displayed significant activity against both liver- and blood-stage Plasmodium parasites, as well as against stage V P. falciparum parasites. Remarkably, blood-stage activity of the ionic liquids against both chloroquine-sensitive (3D7) and resistant (Dd2) P. falciparum strains was clearly superior to those of the respective covalent (amide) analogues and of parent primaquine. Having hypothesized that such behaviour might be ascribed to an enhanced ability of the ionic compounds to permeate into Plasmodium-infected erythrocytes, we have carried out a differential scanning calorimetry-based study of the interactions between the ionic liquids and membrane models. Results provide evidence, at the molecular level, that the primaquine-derived ionic liquids may contribute to an increased permeation of the parent drug into malaria-infected erythrocytes, which has relevant implications towards novel antimalarial approaches based on ionic liquids.
Collapse
Affiliation(s)
- Ricardo Ferraz
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4069-007 Porto, Portugal; ESS - Escola Superior de Saúde, Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal
| | - Marina Pinheiro
- LAQV-REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Ana Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4069-007 Porto, Portugal; ESS - Escola Superior de Saúde, Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal
| | - Cátia Teixeira
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4069-007 Porto, Portugal; ESS - Escola Superior de Saúde, Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal
| | - Cristina Prudêncio
- ESS - Escola Superior de Saúde, Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Salette Reis
- LAQV-REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Paula Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4069-007 Porto, Portugal.
| |
Collapse
|
44
|
Egorova KS, Gordeev EG, Ananikov VP. Biological Activity of Ionic Liquids and Their Application in Pharmaceutics and Medicine. Chem Rev 2017; 117:7132-7189. [PMID: 28125212 DOI: 10.1021/acs.chemrev.6b00562] [Citation(s) in RCA: 963] [Impact Index Per Article: 120.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ionic liquids are remarkable chemical compounds, which find applications in many areas of modern science. Because of their highly tunable nature and exceptional properties, ionic liquids have become essential players in the fields of synthesis and catalysis, extraction, electrochemistry, analytics, biotechnology, etc. Apart from physical and chemical features of ionic liquids, their high biological activity has been attracting significant attention from biochemists, ecologists, and medical scientists. This Review is dedicated to biological activities of ionic liquids, with a special emphasis on their potential employment in pharmaceutics and medicine. The accumulated data on the biological activity of ionic liquids, including their antimicrobial and cytotoxic properties, are discussed in view of possible applications in drug synthesis and drug delivery systems. Dedicated attention is given to a novel active pharmaceutical ingredient-ionic liquid (API-IL) concept, which suggests using traditional drugs in the form of ionic liquid species. The main aim of this Review is to attract a broad audience of chemical, biological, and medical scientists to study advantages of ionic liquid pharmaceutics. Overall, the discussed data highlight the importance of the research direction defined as "Ioliomics", studies of ions in liquids in modern chemistry, biology, and medicine.
Collapse
Affiliation(s)
- Ksenia S Egorova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences , Leninsky prospect 47, Moscow 119991, Russia
| | - Evgeniy G Gordeev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences , Leninsky prospect 47, Moscow 119991, Russia
| | - Valentine P Ananikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences , Leninsky prospect 47, Moscow 119991, Russia.,Department of Chemistry, Saint Petersburg State University , Stary Petergof 198504, Russia
| |
Collapse
|
45
|
Carrera GVSM, Santos MM, Costa A, Rebelo LPN, Marrucho IM, Nunes da Ponte M, Branco LC. Highly water soluble room temperature superionic liquids of APIs. NEW J CHEM 2017. [DOI: 10.1039/c7nj01398a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein a straightforward approach for the enhancement of the water solubility of common antibiotic and NSAID active pharmaceutical ingredients (APIs) is presented.
Collapse
Affiliation(s)
- Gonçalo V. S. M. Carrera
- LAQV-REQUIMTE
- Departamento de Química
- Faculdade de Ciências e Tecnologia
- Universidade Nova de Lisboa
- 2829-516 Caparica
| | - Miguel M. Santos
- LAQV-REQUIMTE
- Departamento de Química
- Faculdade de Ciências e Tecnologia
- Universidade Nova de Lisboa
- 2829-516 Caparica
| | - Alexandra Costa
- LAQV-REQUIMTE
- Departamento de Química
- Faculdade de Ciências e Tecnologia
- Universidade Nova de Lisboa
- 2829-516 Caparica
| | - Luis Paulo N. Rebelo
- LAQV-REQUIMTE
- Departamento de Química
- Faculdade de Ciências e Tecnologia
- Universidade Nova de Lisboa
- 2829-516 Caparica
| | - Isabel M. Marrucho
- Instituto de Tecnologia Química e Biológica
- Universidade Nova de Lisboa
- Avenida da República
- Estação Agronómica Nacional
- Oeiras
| | - M. Nunes da Ponte
- LAQV-REQUIMTE
- Departamento de Química
- Faculdade de Ciências e Tecnologia
- Universidade Nova de Lisboa
- 2829-516 Caparica
| | - Luis C. Branco
- LAQV-REQUIMTE
- Departamento de Química
- Faculdade de Ciências e Tecnologia
- Universidade Nova de Lisboa
- 2829-516 Caparica
| |
Collapse
|
46
|
Dias AR, Costa-Rodrigues J, Fernandes MH, Ferraz R, Prudêncio C. The Anticancer Potential of Ionic Liquids. ChemMedChem 2016; 12:11-18. [PMID: 27911045 DOI: 10.1002/cmdc.201600480] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Indexed: 11/09/2022]
Abstract
Among the many challenges that the pharmaceutical industry currently faces is the need to develop innovative and effective therapies. The investigation of alternative and effective therapies against cancer is a current goal of the pharmaceutical industry. Ionic liquids (ILs) have emerged recently as a topic of study by researchers in the pharmaceutical industry in their search for new therapeutic agents. By definition, ILs are organic salts with melting points below 100 °C that are composed only by ions. Their main advantage lies in the numerous possible combinations of cations and anions, which allow adjustments in their physicochemical properties. The combination between ILs and active pharmaceutical ingredients (APIs) may improve the properties of APIs. In addition, the antitumor properties of these compounds have been described. Several studies have reported the use of ILs in biomedical applications as therapeutic agents, namely as antitumor agents. This review describes the recent proposed applications of ILs as antitumor agents.
Collapse
Affiliation(s)
- Ana Rita Dias
- Ciências Químicas e das Biomoléculas / Centro de Investigação em Saúde e Ambiente (CISA), ESS-Escola Superior de Saúde do Porto do Instituto Politécnico do Porto, Portugal, Rua Dr. António Bernardino de Almeida, 400, 4200-072, Porto, Portugal
| | - João Costa-Rodrigues
- Laboratório de Farmacologia e Biocompatibilidade Celular, Faculdade de Medicina Dentária, Universidade do Porto, Rua Dr. Manuel Pereira da Silva, 4200-393, Porto, Portugal.,ESS-Escola Superior de Saúde do Porto do Instituto Politécnico do Porto, (Portugal).,Instituto Politécnico de Viana do Castelo, Escola Superior de Saúde, Portugal
| | - Maria Helena Fernandes
- Laboratório de Farmacologia e Biocompatibilidade Celular, Faculdade de Medicina Dentária, Universidade do Porto, Rua Dr. Manuel Pereira da Silva, 4200-393, Porto, Portugal
| | - Ricardo Ferraz
- Ciências Químicas e das Biomoléculas / Centro de Investigação em Saúde e Ambiente (CISA), ESS-Escola Superior de Saúde do Porto do Instituto Politécnico do Porto, Portugal, Rua Dr. António Bernardino de Almeida, 400, 4200-072, Porto, Portugal.,UCIBIO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007, Porto, Portugal
| | - Cristina Prudêncio
- Ciências Químicas e das Biomoléculas / Centro de Investigação em Saúde e Ambiente (CISA), ESS-Escola Superior de Saúde do Porto do Instituto Politécnico do Porto, Portugal, Rua Dr. António Bernardino de Almeida, 400, 4200-072, Porto, Portugal.,I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| |
Collapse
|
47
|
Ferraz R, Noronha J, Murtinheira F, Nogueira F, Machado M, Prudêncio M, Parapini S, D'Alessandro S, Teixeira C, Gomes A, Prudêncio C, Gomes P. Primaquine-based ionic liquids as a novel class of antimalarial hits. RSC Adv 2016. [DOI: 10.1039/c6ra10759a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ionic liquids derived from active pharmaceutical ingredients may open new perspectives towards low-cost rescuing of classical antimalarial drugs.
Collapse
|