1
|
Berida T, Huang TY, Weck SC, Lutz M, McKee SR, Kagerah N, Manning D, Jahan ME, Mishra SK, Doerksen RJ, Stallings CL, Ducho C, Roy S. 1,2,4-Triazole-based first-in-class non-nucleoside inhibitors of bacterial enzyme MraY. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.30.635793. [PMID: 39975250 PMCID: PMC11838528 DOI: 10.1101/2025.01.30.635793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
MraY, a bacterial enzyme crucial for the synthesis of peptidoglycans, represents a promising yet underexplored target for the development of effective antibacterial agents. Nature has provided several classes of nucleoside inhibitors of MraY and scientists have modified these structures further to obtain natural product-like inhibitors of MraY. The natural products and their synthetic analogs suffer from non-optimal in vivo efficacy, and the synthetic complexity of the structures renders the synthesis and structure-activity relationship (SAR) studies of these molecules particularly challenging. In this study, we present our findings on the discovery of first-in-class 1,2,4-triazole-based MraY inhibitors that are not nucleoside-derived. A series of 1,2,4-triazole analogous were identified by a structure-activity-relationship (SAR) study using a structure-based drug design strategy. Compound 1 , with an IC 50 of 171 µM against MraY from Staphylococcus aureus (MraY SA ), was optimized to compound 12a , exhibiting an IC 50 of 25 µM. Molecular docking studies against MraY SA provided insights into these compounds' binding interactions and activity. Furthermore, screening against the ESKAPE bacterial panel was also conducted, through which we discovered compounds demonstrating broad-spectrum antibacterial activity against E. faecium , methicillin-resistant S. aureus (MRSA), vancomycin-resistant Enterococci (VRE) strains and Mycobacterium tuberculosis . The novel, first-in-class non-nucleoside inhibitors of MraY highlighted in this work provide a strong proof-of-concept of how to leverage structural information of the protein to develop future antibacterial agents targeting MraY. Abstract Figure
Collapse
|
2
|
Lu Y, Li Y, Fan J, Li X, Sun H, Wang L, Han X, Zhu Y, Zhang T, Shi Y, Xie Y, Hong B. Expanding structural diversity of 5'-aminouridine moiety of sansanmycin via mutational biosynthesis. Front Bioeng Biotechnol 2023; 11:1278601. [PMID: 38026887 PMCID: PMC10643210 DOI: 10.3389/fbioe.2023.1278601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Sansanmycins represent a family of uridyl peptide antibiotics with antimicrobial activity specifically against Mycobacterium tuberculosis (including drug-resistant M. tuberculosis) and Pseudomonas aeruginosa. They target translocase I (MraY) to inhibit bacterial cell wall assembly. Given the unique mechanism of action, sansanmycin has emerged as a potential lead compound for developing new anti-tuberculosis drugs, while the 5'-aminouridine moiety plays a crucial role in the pharmacophore of sansanmycin. For expanding the structural diversity of the 5'-aminouridine moiety of sansanmycin through biosynthetic methods, we firstly demonstrated that SsaM and SsaK are responsible for the biosynthesis of the 5'-aminouridine moiety of sansanmycin in vivo. Using the ssaK deletion mutant (SS/KKO), we efficiently obtained a series of new analogues with modified 5'-aminouridine moieties through mutational biosynthesis. Based on molecular networking analysis of MS/MS, twenty-two new analogues (SS-KK-1 to -13 and SS-KK-A to -I) were identified. Among them, four new analogues (SS-KK-1 to -3 and SS-KK-C) were purified and bioassayed. SS-KK-2 showed better antibacterial activity against E. coli ΔtolC than the parent compound sansanmycin A. SS-KK-3 showed the same anti-TB activity as sansanmycin A against M. tuberculosis H37Rv as well as clinically isolated, drug-sensitive and multidrug-resistant M. tuberculosis strains. Furthermore, SS-KK-3 exhibited significantly improved structural stability compared to sansanmycin A. The results suggested that mutasynthesis is an effective and practical strategy for expanding the structural diversity of 5'-aminouridine moiety in sansanmycin.
Collapse
Affiliation(s)
- Yuan Lu
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation and NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yihong Li
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation and NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiahui Fan
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation and NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xingxing Li
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation and NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongmin Sun
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation and NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lifei Wang
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation and NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xingli Han
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China
- China-New Zealand Joint Laboratory of Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Yuting Zhu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China
- China-New Zealand Joint Laboratory of Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China
- China-New Zealand Joint Laboratory of Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Yuanyuan Shi
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation and NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yunying Xie
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation and NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Hong
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation and NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Manning D, Huang TY, Berida T, Roy S. The challenges and opportunities of developing small molecule inhibitors of MraY. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2023; 60:1-27. [PMID: 39015353 PMCID: PMC11250723 DOI: 10.1016/bs.armc.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Affiliation(s)
- Destinee Manning
- Department of BioMolecular Sciences, University of Mississippi, University, MS, United States
| | - Tzu-Yu Huang
- Department of BioMolecular Sciences, University of Mississippi, University, MS, United States
| | - Tomayo Berida
- Department of BioMolecular Sciences, University of Mississippi, University, MS, United States
| | - Sudeshna Roy
- Department of BioMolecular Sciences, University of Mississippi, University, MS, United States
| |
Collapse
|
4
|
Rohrbacher C, Zscherp R, Weck SC, Klahn P, Ducho C. Synthesis of an Antimicrobial Enterobactin-Muraymycin Conjugate for Improved Activity Against Gram-Negative Bacteria. Chemistry 2023; 29:e202202408. [PMID: 36222466 PMCID: PMC10107792 DOI: 10.1002/chem.202202408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Indexed: 12/12/2022]
Abstract
Overcoming increasing antibiotic resistance requires the development of novel antibacterial agents that address new targets in bacterial cells. Naturally occurring nucleoside antibiotics (such as muraymycins) inhibit the bacterial membrane protein MraY, a clinically unexploited essential enzyme in peptidoglycan (cell wall) biosynthesis. Even though a range of synthetic muraymycin analogues has already been reported, they generally suffer from limited cellular uptake and a lack of activity against Gram-negative bacteria. We herein report an approach to overcome these hurdles: a synthetic muraymycin analogue has been conjugated to a siderophore, i. e. the enterobactin derivative EntKL , to increase the cellular uptake into Gram-negative bacteria. The resultant conjugate showed significantly improved antibacterial activity against an efflux-deficient E. coli strain, thus providing a proof-of-concept of this novel approach and a starting point for the future optimisation of such conjugates towards potent agents against Gram-negative pathogens.
Collapse
Affiliation(s)
- Christian Rohrbacher
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123, Saarbrücken, Germany
| | - Robert Zscherp
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Stefanie C Weck
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123, Saarbrücken, Germany
| | - Philipp Klahn
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany.,Department of Chemistry and Molecular Biology, Division of Organic and Medicinal Chemistry, University of Gothenburg, Kemigården 4, 412 96, Göteborg, Sweden
| | - Christian Ducho
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123, Saarbrücken, Germany
| |
Collapse
|
5
|
Pandey P, Chatterjee S, Berida T, Doerksen RJ, Roy S. Identification of potential non-nucleoside MraY inhibitors for tuberculosis chemotherapy using structure-based virtual screening. J Biomol Struct Dyn 2022; 40:4832-4849. [PMID: 33353500 PMCID: PMC9948644 DOI: 10.1080/07391102.2020.1862705] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/07/2020] [Indexed: 02/02/2023]
Abstract
The efforts to limit the spread of the tuberculosis epidemic have been challenged by the rise of drug-resistant strains of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis. It is critical to discover new chemical scaffolds acting on novel or unexploited targets to beat this drug-resistant pathogen. MraY (phospho-MurNAc-pentapeptide translocase or translocase I) is an in vivo validated target for antibacterials-discovery. MraY is inhibited by nucleoside-based natural products that suffer from poor in vivo efficacy. The current study is focused on discovering novel chemical entities, particularly, non-nucleoside small molecules, as MraYMtb inhibitors possessing antituberculosis activity. In the absence of any reported X-ray crystal structures of MraYMtb, we used a homology model-based virtual screening approach combined with the ligand-based e-pharmacophore screening. We screened ∼12 million commercially available compounds from the ZINC15 database using GOLD software. The resulting hits were filtered using a 2-pronged screening method comprising e-pharmacophore hypotheses and docking against the MraYMtb homology model using Glide. Further clustering based on Glide scores and optimal binding interactions resulted in 15 in silico hits. We performed molecular dynamics (MD) simulations for the three best-ranking compounds and one other poorer-ranking compound, out of the 15 in silico hits, to analyze the interaction modes in detail. The MD simulations indicated stable interactions between the compounds and key residues in the MraY active site that are crucial for maintaining the enzymatic activity. These in silico hits could advance the antibacterial drug discovery campaign to find new MraY inhibitors for tuberculosis treatment.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Pankaj Pandey
- Department of BioMolecular Sciences, Division of Medicinal Chemistry, University of Mississippi, University, MS 38677, USA
- National Center for Natural Products Research, University of Mississippi, University, MS 38677, USA
| | - Shamba Chatterjee
- Department of BioMolecular Sciences, Division of Medicinal Chemistry, University of Mississippi, University, MS 38677, USA
| | - Tomayo Berida
- Department of BioMolecular Sciences, Division of Medicinal Chemistry, University of Mississippi, University, MS 38677, USA
| | - Robert J. Doerksen
- Department of BioMolecular Sciences, Division of Medicinal Chemistry, University of Mississippi, University, MS 38677, USA
| | - Sudeshna Roy
- Department of BioMolecular Sciences, Division of Medicinal Chemistry, University of Mississippi, University, MS 38677, USA
| |
Collapse
|
6
|
A Sub-Micromolar MraY AA Inhibitor with an Aminoribosyl Uridine Structure and a ( S, S)-Tartaric Diamide: Synthesis, Biological Evaluation and Molecular Modeling. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061769. [PMID: 35335131 PMCID: PMC8954382 DOI: 10.3390/molecules27061769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 01/28/2023]
Abstract
New inhibitors of the bacterial tranferase MraY are described. Their structure is based on an aminoribosyl uridine scaffold, which is known to be important for the biological activity of natural MraY inhibitors. A decyl alkyl chain was introduced onto this scaffold through various linkers. The synthesized compounds were tested against the MraYAA transferase activity, and the most active compound with an original (S,S)-tartaric diamide linker inhibits MraY activity with an IC50 equal to 0.37 µM. Their antibacterial activity was also evaluated on a panel of Gram-positive and Gram-negative strains; however, the compounds showed no antibacterial activity. Docking and molecular dynamics studies revealed that this new linker established two stabilizing key interactions with N190 and H325, as observed for the highly potent inhibitors carbacaprazamycin, muraymycin D2 and tunicamycin.
Collapse
|
7
|
Cui Z, Nguyen H, Bhardwaj M, Wang X, Büschleb M, Lemke A, Schütz C, Rohrbacher C, Junghanns P, Koppermann S, Ducho C, Thorson JS, Van Lanen SG. Enzymatic C β-H Functionalization of l-Arg and l-Leu in Nonribosomally Derived Peptidyl Natural Products: A Tale of Two Oxidoreductases. J Am Chem Soc 2021; 143:19425-19437. [PMID: 34767710 DOI: 10.1021/jacs.1c08177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Muraymycins are peptidyl nucleoside antibiotics that contain two Cβ-modified amino acids, (2S,3S)-capreomycidine and (2S,3S)-β-OH-Leu. The former is also a component of chymostatins, which are aldehyde-containing peptidic protease inhibitors that─like muraymycin─are derived from nonribosomal peptide synthetases (NRPSs). Using feeding experiments and in vitro characterization of 12 recombinant proteins, the biosynthetic mechanism for both nonproteinogenic amino acids is now defined. The formation of (2S,3S)-capreomycidine is shown to involve an FAD-dependent dehydrogenase:cyclase that requires an NRPS-bound pathway intermediate as a substrate. This cryptic dehydrogenation strategy is both temporally and mechanistically distinct in comparison to the biosynthesis of other capreomycidine diastereomers, which has previously been shown to proceed by Cβ-hydroxylation of free l-Arg catalyzed by a member of the nonheme Fe2+- and α-ketoglutarate (αKG)-dependent dioxygenase family and (eventually) a dehydration-mediated cyclization process catalyzed by a distinct enzyme(s). Contrary to our initial expectation, the sole nonheme Fe2+- and αKG-dependent dioxygenase candidate Mur15 encoded within the muraymycin gene cluster is instead demonstrated to catalyze specific Cβ hydroxylation of the Leu residue to generate (2S,3S)-β-OH-Leu that is found in most muraymycin congeners. Importantly, and in contrast to known l-Arg-Cβ-hydroxylases, the Mur15-catalyzed reaction occurs after the NRPS-mediated assembly of the peptide scaffold. This late-stage functionalization affords the opportunity to exploit Mur15 as a biocatalyst, proof of concept of which is provided.
Collapse
Affiliation(s)
- Zheng Cui
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Han Nguyen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Minakshi Bhardwaj
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Xiachang Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Martin Büschleb
- Department of Chemistry, Institute of Organic and Biomolecular Chemistry, Georg-August-University, GöTammannstr. 2, 37077 Göttingen, Germany
| | - Anke Lemke
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123 Saarbrücken, Germany
| | - Christian Schütz
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123 Saarbrücken, Germany
| | - Christian Rohrbacher
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123 Saarbrücken, Germany
| | - Pierre Junghanns
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123 Saarbrücken, Germany
| | - Stefan Koppermann
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123 Saarbrücken, Germany
| | - Christian Ducho
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123 Saarbrücken, Germany
| | - Jon S Thorson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Steven G Van Lanen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| |
Collapse
|
8
|
Guo Z, Tang Y, Tang W, Chen Y. Heptose-containing bacterial natural products: structures, bioactivities, and biosyntheses. Nat Prod Rep 2021; 38:1887-1909. [PMID: 33704304 DOI: 10.1039/d0np00075b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: up to 2020Glycosylated natural products hold great potential as drugs for the treatment of human and animal diseases. Heptoses, known as seven-carbon-chain-containing sugars, are a group of saccharides that are rarely observed in natural products. Based on the structures of the heptoses, the heptose-containing natural products can be divided into four groups, characterized by heptofuranose, highly-reduced heptopyranose, d-heptopyranose, and l-heptopyranose. Many of them possess remarkable biological properties, including antibacterial, antifungal, antitumor, and pain relief activities, thereby attracting great interest in biosynthesis and chemical synthesis studies to understand their construction mechanisms and structure-activity relationships. In this review, we summarize the structural properties, biological activities, and recent progress in the biosynthesis of bacterial natural products featuring seven-carbon-chain-containing sugars. The biosynthetic origins of the heptose moieties are emphasized.
Collapse
Affiliation(s)
- Zhengyan Guo
- State Key Laboratory of Microbial Resources, CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China. and University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yue Tang
- State Key Laboratory of Microbial Resources, CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China. and University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Wei Tang
- State Key Laboratory of Microbial Resources, CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China. and University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yihua Chen
- State Key Laboratory of Microbial Resources, CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China. and University of Chinese Academy of Sciences, 100049 Beijing, China
| |
Collapse
|
9
|
Kwak SH, Lim WY, Hao A, Mashalidis EH, Kwon DY, Jeong P, Kim MJ, Lee SY, Hong J. Synthesis and evaluation of cyclopentane-based muraymycin analogs targeting MraY. Eur J Med Chem 2021; 215:113272. [PMID: 33607457 DOI: 10.1016/j.ejmech.2021.113272] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/21/2021] [Accepted: 02/02/2021] [Indexed: 11/27/2022]
Abstract
Antibiotic resistance is one of the most challenging global health issues and presents an urgent need for the development of new antibiotics. In this regard, phospho-MurNAc-pentapeptide translocase (MraY), an essential enzyme in the early stages of peptidoglycan biosynthesis, has emerged as a promising new antibiotic target. We recently reported the crystal structures of MraY in complex with representative members of naturally occurring nucleoside antibiotics, including muraymycin D2. However, these nucleoside antibiotics are synthetically challenging targets, which limits the scope of medicinal chemistry efforts on this class of compounds. To gain access to active muraymycin analogs with reduced structural complexity and improved synthetic tractability, we prepared and evaluated cyclopentane-based muraymycin analogs for targeting MraY. For the installation of the 1,2-syn-amino alcohol group of analogs, the diastereoselective isocyanoacetate aldol reaction was explored. The structure-activity relationship analysis of the synthesized analogs suggested that a lipophilic side chain is essential for MraY inhibition. Importantly, the analog 20 (JH-MR-23) showed antibacterial efficacy against Staphylococcus aureus. These findings provide insights into designing new muraymycin-based MraY inhibitors with improved chemical tractability.
Collapse
Affiliation(s)
- Seung-Hwa Kwak
- Department of Chemistry, Duke University, Durham, NC, 27708, United States
| | - Won Young Lim
- Department of Chemistry, Duke University, Durham, NC, 27708, United States
| | - Aili Hao
- Department of Biochemistry, Duke University Medical Center, Durham, NC, 27710, United States
| | - Ellene H Mashalidis
- Department of Biochemistry, Duke University Medical Center, Durham, NC, 27710, United States
| | - Do-Yeon Kwon
- Department of Chemistry, Duke University, Durham, NC, 27708, United States
| | - Pyeonghwa Jeong
- Department of Chemistry, Duke University, Durham, NC, 27708, United States
| | - Mi Jung Kim
- Department of Chemistry, Duke University, Durham, NC, 27708, United States
| | - Seok-Yong Lee
- Department of Biochemistry, Duke University Medical Center, Durham, NC, 27710, United States.
| | - Jiyong Hong
- Department of Chemistry, Duke University, Durham, NC, 27708, United States.
| |
Collapse
|
10
|
Niro G, Weck SC, Ducho C. Merging Natural Products: Muraymycin-Sansanmycin Hybrid Structures as Novel Scaffolds for Potential Antibacterial Agents. Chemistry 2020; 26:16875-16887. [PMID: 32897546 PMCID: PMC7756498 DOI: 10.1002/chem.202003387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/07/2020] [Indexed: 02/01/2023]
Abstract
To overcome bacterial resistances, the need for novel antimicrobial agents is urgent. The class of so-called nucleoside antibiotics furnishes promising candidates for the development of new antibiotics, as these compounds block a clinically unexploited bacterial target: the integral membrane protein MraY, a key enzyme in cell wall (peptidoglycan) biosynthesis. Nucleoside antibiotics exhibit remarkable structural diversity besides their uridine-derived core motifs. Some sub-classes also show specific selectivities towards different Gram-positive and Gram-negative bacteria, which are poorly understood so far. Herein, the synthesis of a novel hybrid structure is reported, derived from the 5'-defunctionalized uridine core moiety of muraymycins and the peptide chain of sansanmycin B, as a new scaffold for the development of antimicrobial agents. The reported muraymycin-sansanmycin hybrid scaffold showed nanomolar activity against the bacterial target enzyme MraY, but displayed no significant antibacterial activity against S. aureus, E. coli, and P. aeruginosa.
Collapse
Affiliation(s)
- Giuliana Niro
- Department of Pharmacy, Pharmaceutical and Medicinal ChemistrySaarland UniversityCampus C2 366123SaarbrückenGermany
| | - Stefanie C. Weck
- Department of Pharmacy, Pharmaceutical and Medicinal ChemistrySaarland UniversityCampus C2 366123SaarbrückenGermany
| | - Christian Ducho
- Department of Pharmacy, Pharmaceutical and Medicinal ChemistrySaarland UniversityCampus C2 366123SaarbrückenGermany
| |
Collapse
|
11
|
Wojtyniak M, Schmidtgall B, Kirsch P, Ducho C. Towards Zwitterionic Oligonucleotides with Improved Properties: the NAA/LNA-Gapmer Approach. Chembiochem 2020; 21:3234-3243. [PMID: 32662164 PMCID: PMC7754139 DOI: 10.1002/cbic.202000450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Indexed: 01/21/2023]
Abstract
Oligonucleotides (ON) are promising therapeutic candidates, for instance by blocking endogenous mRNA (antisense mechanism). However, ON usually require structural modifications of the native nucleic acid backbone to ensure satisfying pharmacokinetic properties. One such strategy to design novel antisense oligonucleotides is to replace native phosphate diester units by positively charged artificial linkages, thus leading to (partially) zwitterionic backbone structures. Herein, we report a "gapmer" architecture comprised of one zwitterionic central segment ("gap") containing nucleosyl amino acid (NAA) modifications and two outer segments of locked nucleic acid (LNA). This NAA/LNA-gapmer approach furnished a partially zwitterionic ON with optimised properties: i) the formation of stable ON-RNA duplexes with base-pairing fidelity and superior target selectivity at 37 °C; and ii) excellent stability in complex biological media. Overall, the NAA/LNA-gapmer approach is thus established as a strategy to design partially zwitterionic ON for the future development of novel antisense agents.
Collapse
Affiliation(s)
- Melissa Wojtyniak
- Department of PharmacyPharmaceutical and Medicinal ChemistrySaarland UniversityCampus C2 366123SaarbrückenGermany
| | - Boris Schmidtgall
- Department of ChemistryUniversity of PaderbornWarburger Str. 10033098PaderbornGermany
| | - Philine Kirsch
- Department of PharmacyPharmaceutical and Medicinal ChemistrySaarland UniversityCampus C2 366123SaarbrückenGermany
| | - Christian Ducho
- Department of PharmacyPharmaceutical and Medicinal ChemistrySaarland UniversityCampus C2 366123SaarbrückenGermany
- Department of ChemistryUniversity of PaderbornWarburger Str. 10033098PaderbornGermany
| |
Collapse
|
12
|
Patel B, Kerr RV, Malde AK, Zunk M, Bugg TDH, Grant G, Rudrawar S. Simplified Novel Muraymycin Analogues; using a Serine Template Strategy for Linking Key Pharmacophores. ChemMedChem 2020; 15:1429-1438. [PMID: 32476294 DOI: 10.1002/cmdc.202000033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/25/2020] [Indexed: 12/15/2022]
Abstract
The present status of antibiotic research requires the urgent invention of novel agents that act on multidrug-resistant bacteria. The World Health Organization has classified antibiotic-resistant bacteria into critical, high and medium priority according to the urgency of need for new antibiotics. Naturally occurring uridine-derived "nucleoside antibiotics" have shown promising activity against numerous priority resistant organisms by inhibiting the transmembrane protein MraY (translocase I), which is yet to be explored in a clinical context. The catalytic activity of MraY is an essential process for bacterial cell viability and growth including that of priority organisms. Muraymycins are one subclass of naturally occurring MraY inhibitors. Despite having potent antibiotic properties, the structural complexity of muraymycins advocates for simplified analogues as potential lead structures. Herein, we report a systematic structure-activity relationship (SAR) study of serine template-linked, simplified muraymycin-type analogues. This preliminary SAR lead study of serine template analogues successfully revealed that the complex structure of naturally occurring muraymycins could be easily simplified to afford bioactive scaffolds against resistant priority organisms. This study will pave the way for the development of novel antibacterial lead compounds based on a simplified serine template.
Collapse
Affiliation(s)
- Bhautikkumar Patel
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia.,School of Pharmacy and Pharmacology, Griffith University, Gold Coast, QLD 4222, Australia.,Quality Use of Medicines Network, Griffith University, Gold Coast, QLD 4222, Australia
| | - Rachel V Kerr
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Alpeshkumar K Malde
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia.,MaldE Scientific, Australia
| | - Matthew Zunk
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia.,School of Pharmacy and Pharmacology, Griffith University, Gold Coast, QLD 4222, Australia.,Quality Use of Medicines Network, Griffith University, Gold Coast, QLD 4222, Australia
| | - Timothy D H Bugg
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Gary Grant
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia.,School of Pharmacy and Pharmacology, Griffith University, Gold Coast, QLD 4222, Australia.,Quality Use of Medicines Network, Griffith University, Gold Coast, QLD 4222, Australia
| | - Santosh Rudrawar
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia.,School of Pharmacy and Pharmacology, Griffith University, Gold Coast, QLD 4222, Australia.,Quality Use of Medicines Network, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
13
|
Kido M, Idogaki H, Nishikawa K, Motoishi K, Omasa T. Screening of new cell cycle suppressive compounds from marine-derived microorganisms in Chinese hamster ovary cells. J Biosci Bioeng 2020; 130:106-113. [PMID: 32253091 DOI: 10.1016/j.jbiosc.2020.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/01/2020] [Accepted: 03/03/2020] [Indexed: 02/06/2023]
Abstract
Monoclonal antibodies (mAbs) are active pharmaceutical ingredients in antibody drugs, produced mainly using recombinant Chinese hamster ovary (CHO) cells. The regulation of recombinant CHO cell proliferation can improve the productivity of heterologous proteins. Chemical compound approaches for cell cycle regulation have the advantages of simplicity and ease of use in industrial processes. However, CHO cells have genetic and phenotypic diversity, and the effects of such compounds might depend on cell line and culture conditions. Increasing the variety of cell cycle inhibitors is a promising strategy to overcome the dependency. Marine microorganisms are a vast and largely undeveloped source of secondary metabolites with physiological activity. In this study, we focused on secondary metabolites of marine microorganisms and evaluated their effectiveness as cell cycle inhibitory compounds. Of 720 extracts from microorganisms (400 actinomycetes and 320 filamentous fungi) collected from the Okinawan Sea, we identified nine extracts that decreased the specific growth rate and increased the specific production rate without reducing cell viability. After fractionating the extracts, the components of active fractions were estimated using time-of-flight mass spectrometry analysis. Then, four compounds, including staurosporine and undecylprodigiosin were deduced to be active compounds. These compounds have been reported to exert a cell cycle inhibitory effect on mammalian cells. These compounds might serve as additives to improve mAb production in CHO cells. This study indicates that secondary metabolites of marine microorganisms are a useful source for new cell cycle inhibitory compounds that can increase mAb production in CHO cells.
Collapse
Affiliation(s)
- Masahide Kido
- Research and Development Division of OSAKA SODA Co., Ltd., Amagasaki, Hyogo 660-0842, Japan; Graduate School of Engineering. Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Hideaki Idogaki
- Research and Development Division of OSAKA SODA Co., Ltd., Amagasaki, Hyogo 660-0842, Japan
| | - Kouji Nishikawa
- Research and Development Division of OSAKA SODA Co., Ltd., Amagasaki, Hyogo 660-0842, Japan
| | - Kana Motoishi
- Research and Development Division of OSAKA SODA Co., Ltd., Amagasaki, Hyogo 660-0842, Japan
| | - Takeshi Omasa
- Graduate School of Engineering. Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
14
|
Heib A, Niro G, Weck SC, Koppermann S, Ducho C. Muraymycin Nucleoside Antibiotics: Structure-Activity Relationship for Variations in the Nucleoside Unit. Molecules 2019; 25:molecules25010022. [PMID: 31861655 PMCID: PMC6983020 DOI: 10.3390/molecules25010022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 12/04/2022] Open
Abstract
Muraymycins are a subclass of naturally occurring nucleoside antibiotics with promising antibacterial activity. They inhibit the bacterial enzyme translocase I (MraY), a clinically yet unexploited target mediating an essential intracellular step of bacterial peptidoglycan biosynthesis. Several structurally simplified muraymycin analogues have already been synthesized for structure–activity relationship (SAR) studies. We now report on novel derivatives with unprecedented variations in the nucleoside unit. For the synthesis of these new muraymycin analogues, we employed a bipartite approach facilitating the introduction of different nucleosyl amino acid motifs. This also included thymidine- and 5-fluorouridine-derived nucleoside core structures. Using an in vitro assay for MraY activity, it was found that the introduction of substituents in the 5-position of the pyrimidine nucleobase led to a significant loss of inhibitory activity towards MraY. The loss of nucleobase aromaticity (by reduction of the uracil C5-C6 double bond) resulted in a ca. tenfold decrease in inhibitory potency. In contrast, removal of the 2′-hydroxy group furnished retained activity, thus demonstrating that modifications of the ribose moiety might be well-tolerated. Overall, these new SAR insights will guide the future design of novel muraymycin analogues for their potential development towards antibacterial drug candidates.
Collapse
|
15
|
Leyerer K, Koppermann S, Ducho C. Solid Phase‐Supported Synthesis of Muraymycin Analogues. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901256] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kristin Leyerer
- Department of Pharmacy Pharmaceutical and Medicinal Chemistry Saarland University Campus C2 3 66123 Saarbrücken Germany
| | - Stefan Koppermann
- Department of Pharmacy Pharmaceutical and Medicinal Chemistry Saarland University Campus C2 3 66123 Saarbrücken Germany
| | - Christian Ducho
- Department of Pharmacy Pharmaceutical and Medicinal Chemistry Saarland University Campus C2 3 66123 Saarbrücken Germany
| |
Collapse
|
16
|
Mashalidis EH, Kaeser B, Terasawa Y, Katsuyama A, Kwon DY, Lee K, Hong J, Ichikawa S, Lee SY. Chemical logic of MraY inhibition by antibacterial nucleoside natural products. Nat Commun 2019; 10:2917. [PMID: 31266949 PMCID: PMC6606608 DOI: 10.1038/s41467-019-10957-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/06/2019] [Indexed: 01/01/2023] Open
Abstract
Novel antibacterial agents are needed to address the emergence of global antibiotic resistance. MraY is a promising candidate for antibiotic development because it is the target of five classes of naturally occurring nucleoside inhibitors with potent antibacterial activity. Although these natural products share a common uridine moiety, their core structures vary substantially and they exhibit different activity profiles. An incomplete understanding of the structural and mechanistic basis of MraY inhibition has hindered the translation of these compounds to the clinic. Here we present crystal structures of MraY in complex with representative members of the liposidomycin/caprazamycin, capuramycin, and mureidomycin classes of nucleoside inhibitors. Our structures reveal cryptic druggable hot spots in the shallow inhibitor binding site of MraY that were not previously appreciated. Structural analyses of nucleoside inhibitor binding provide insights into the chemical logic of MraY inhibition, which can guide novel approaches to MraY-targeted antibiotic design.
Collapse
Affiliation(s)
- Ellene H Mashalidis
- Department of Biochemistry, Duke University Medical Center, 303 Research Drive, Durham, NC, 27710, USA
| | - Benjamin Kaeser
- Department of Biochemistry, Duke University Medical Center, 303 Research Drive, Durham, NC, 27710, USA
| | - Yuma Terasawa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nihi-6, Kita-ku, Sapporo, 060-0812, Japan
| | - Akira Katsuyama
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nihi-6, Kita-ku, Sapporo, 060-0812, Japan
| | - Do-Yeon Kwon
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
| | - Kiyoun Lee
- Department of Chemistry, The Catholic University of Korea, Bucheon, 14662, Korea
| | - Jiyong Hong
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
| | - Satoshi Ichikawa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nihi-6, Kita-ku, Sapporo, 060-0812, Japan
| | - Seok-Yong Lee
- Department of Biochemistry, Duke University Medical Center, 303 Research Drive, Durham, NC, 27710, USA.
| |
Collapse
|
17
|
Wiker F, Hauck N, Grond S, Gust B. Caprazamycins: Biosynthesis and structure activity relationship studies. Int J Med Microbiol 2019; 309:319-324. [PMID: 31138496 DOI: 10.1016/j.ijmm.2019.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/14/2019] [Accepted: 05/20/2019] [Indexed: 11/28/2022] Open
Abstract
Cell wall biosynthesis represents a valid target for antibacterial action but only a limited number of chemical structure classes selectively interact with specific enzymes or protein structures like transporters of the cell envelope. The integral membrane protein MraY translocase is essential for peptidoglycan biosynthesis catalysing the transfer of the peptidoglycan precursor phospho-MurNAc-pentapeptide to the lipid carrier undecaprenyl phosphate, thereby generating the cell wall intermediate lipid I. Not present in eukaryotic cells, MraY is a member of the superfamily of yet not well-understood integral membrane enzymes which involve proteins for bacterial lipopolysaccharide and teichoic acid or eukaryotic N-linked saccharides biosynthesis. Different natural nucleoside antibiotics as inhibitors of MraY translocase have been discovered comprising a glycosylated heterocyclic pyrimidin base among other potential lipid-, peptidic- or sugar moieties. Caprazamycins are liponucleoside antibiotics isolated from Streptomyces sp. MK730-62F2. They possess activity in vitro against Gram-positive bacteria, in particular against the genus Mycobacterium including M. intracellulare, M. avium and M. tuberculosis. Structural elucidation revealed the (+)-caprazol core skeleton as a unique moiety, the caprazamycins share with other MraY inhibitors such as the liposidomycins, A-90289 and the muraminomicins. They also share structural features such as uridyl-, aminoribosyl- and fatty acyl-moieties with other MraY translocase inhibitors like FR-900493 and the muraymycins. Intensive studies on their biosynthesis during the last decade identified not only common initial biosynthetic steps, but also revealed possible branching points towards individual biosynthesis of the respective compound. Structural diversity of caprazamycins was generated by feeding experiments, genetic engineering of the biosynthetic gene clusters and chemical synthesis for structure activity relationship studies with its target, MraY translocase.
Collapse
Affiliation(s)
- Franziska Wiker
- Pharmaceutical Biology, Pharmaceutical Institute, University of Tübingen, 72076 Tübingen, Germany
| | - Nils Hauck
- Pharmaceutical Biology, Pharmaceutical Institute, University of Tübingen, 72076 Tübingen, Germany
| | - Stephanie Grond
- Institute of Organic Chemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Bertolt Gust
- Pharmaceutical Biology, Pharmaceutical Institute, University of Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
18
|
Linder R, Ducho C. Unified Synthesis of Densely Functionalized Amino Acid Building Blocks for the Preparation of Caprazamycin Nucleoside Antibiotics. European J Org Chem 2019. [DOI: 10.1002/ejoc.201801667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ruth Linder
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry; Saarland University; Campus C2 3 66123 Saarbrücken Germany
| | - Christian Ducho
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry; Saarland University; Campus C2 3 66123 Saarbrücken Germany
| |
Collapse
|
19
|
Zhang B, Kopper TJ, Liu X, Cui Z, Van Lanen SG, Gensel JC. Macrolide derivatives reduce proinflammatory macrophage activation and macrophage-mediated neurotoxicity. CNS Neurosci Ther 2019; 25:591-600. [PMID: 30677254 PMCID: PMC6488883 DOI: 10.1111/cns.13092] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/07/2018] [Accepted: 11/15/2018] [Indexed: 12/21/2022] Open
Abstract
Introduction Azithromycin (AZM) and other macrolide antibiotics are applied as immunomodulatory treatments for CNS disorders. The immunomodulatory and antibiotic properties of AZM are purportedly independent. Aims To improve the efficacy and reduce antibiotic resistance risk of AZM‐based therapies, we evaluated the immunomodulatory and neuroprotective properties of novel AZM derivatives. We semisynthetically prepared derivatives by altering sugar moieties established as important for inhibiting bacterial protein synthesis. Bone marrow‐derived macrophages (BMDMs) were stimulated in vitro with proinflammatory, M1, stimuli (LPS + INF‐gamma) with and without derivative costimulation. Pro‐ and anti‐inflammatory cytokine production, IL‐12 and IL‐10, respectively, was quantified using ELISA. Neuron culture treatment with BMDM supernatant was used to assess derivative neuroprotective potential. Results Azithromycin and some derivatives increased IL‐10 and reduced IL‐12 production of M1 macrophages. IL‐10/IL‐12 cytokine shifts closely correlated with the ability of AZM and derivatives to mitigate macrophage neurotoxicity. Conclusions Sugar moieties that bind bacterial ribosomal complexes can be modified in a manner that retains AZM immunomodulation and neuroprotection. Since the effects of BMDMs in vitro are predictive of CNS macrophage responses, our results open new therapeutic avenues for managing maladaptive CNS inflammation and support utilization of IL‐10/12 cytokine profiles as indicators of macrophage polarization and neurotoxicity.
Collapse
Affiliation(s)
- Bei Zhang
- Department of Physiology, College of Medicine, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| | - Timothy J Kopper
- Department of Physiology, College of Medicine, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| | - Xiaodong Liu
- Division of Bioorganic, Medicinal, & Computational Chemistry, College of Pharmacy, University of Kentucky, Lexington, Kentucky
| | - Zheng Cui
- Division of Bioorganic, Medicinal, & Computational Chemistry, College of Pharmacy, University of Kentucky, Lexington, Kentucky
| | - Steven G Van Lanen
- Division of Bioorganic, Medicinal, & Computational Chemistry, College of Pharmacy, University of Kentucky, Lexington, Kentucky
| | - John C Gensel
- Department of Physiology, College of Medicine, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
20
|
Wiegmann D, Koppermann S, Ducho C. Aminoribosylated Analogues of Muraymycin Nucleoside Antibiotics. Molecules 2018; 23:molecules23123085. [PMID: 30486316 PMCID: PMC6320880 DOI: 10.3390/molecules23123085] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 11/21/2018] [Accepted: 11/22/2018] [Indexed: 01/15/2023] Open
Abstract
Nucleoside antibiotics are uridine-derived natural products that inhibit the bacterial membrane protein MraY. MraY is a key enzyme in the membrane-associated intracellular stages of peptidoglycan biosynthesis and therefore considered to be a promising, yet unexploited target for novel antibacterial agents. Muraymycins are one subclass of such naturally occurring MraY inhibitors. As part of structure-activity relationship (SAR) studies on muraymycins and their analogues, we now report on novel derivatives with different attachment of one characteristic structural motif, i.e., the aminoribose moiety normally linked to the muraymycin glycyluridine core unit. Based on considerations derived from an X-ray co-crystal structure, we designed and synthesised muraymycin analogues having the aminoribose attached (via a linker) to either the glycyluridine amino group or to the uracil nucleobase. Reference compounds bearing the non-aminoribosylated linker units were also prepared. It was found that the novel aminoribosylated analogues were inactive as MraY inhibitors in vitro, but that the glycyluridine-modified reference compound retained most of the inhibitory potency relative to the unmodified parent muraymycin analogue. These results point to 6′-N-alkylated muraymycin analogues as a potential novel variation of the muraymycin scaffold for future SAR optimisation.
Collapse
Affiliation(s)
- Daniel Wiegmann
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123 Saarbrücken, Germany.
| | - Stefan Koppermann
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123 Saarbrücken, Germany.
| | - Christian Ducho
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123 Saarbrücken, Germany.
| |
Collapse
|
21
|
Analogues of Muraymycin Nucleoside Antibiotics with Epimeric Uridine-Derived Core Structures. Molecules 2018; 23:molecules23112868. [PMID: 30400295 PMCID: PMC6278576 DOI: 10.3390/molecules23112868] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/28/2018] [Accepted: 10/30/2018] [Indexed: 11/17/2022] Open
Abstract
Nucleoside analogues have found widespread application as antiviral and antitumor agents, but not yet as antibacterials. Naturally occurring uridine-derived ‘nucleoside antibiotics’ target the bacterial membrane protein MraY, an enzyme involved in peptidoglycan biosynthesis and a promising target for the development of novel antibacterial agents. Muraymycins represent a nucleoside-peptide subgroup of such MraY-inhibiting natural products. As part of detailed structure-activity relationship (SAR) studies on muraymycins and their analogues, we now report novel insights into the effects of stereochemical variations in the nucleoside core structure. Using a simplified version of the muraymycin scaffold, it was shown that some formal inversions of stereochemistry led to about one order of magnitude loss in inhibitory potency towards the target enzyme MraY. In contrast, epimers of the core motif with retained inhibitory activity were also identified. These 5′,6′-anti-configured analogues might serve as novel chemically tractable variations of the muraymycin scaffold for the future development of uridine-derived drug candidates.
Collapse
|
22
|
Hering J, Dunevall E, Ek M, Brändén G. Structural basis for selective inhibition of antibacterial target MraY, a membrane-bound enzyme involved in peptidoglycan synthesis. Drug Discov Today 2018; 23:1426-1435. [DOI: 10.1016/j.drudis.2018.05.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/13/2018] [Accepted: 05/14/2018] [Indexed: 12/16/2022]
|
23
|
Self-Resistance during Muraymycin Biosynthesis: a Complementary Nucleotidyltransferase and Phosphotransferase with Identical Modification Sites and Distinct Temporal Order. Antimicrob Agents Chemother 2018; 62:AAC.00193-18. [PMID: 29735559 DOI: 10.1128/aac.00193-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/29/2018] [Indexed: 11/20/2022] Open
Abstract
Muraymycins are antibacterial natural products from Streptomyces spp. that inhibit translocase I (MraY), which is involved in cell wall biosynthesis. Structurally, muraymycins consist of a 5'-C-glycyluridine (GlyU) appended to a 5″-amino-5″-deoxyribose (ADR), forming a disaccharide core that is found in several peptidyl nucleoside inhibitors of MraY. For muraymycins, the GlyU-ADR disaccharide is further modified with an aminopropyl-linked peptide to generate the simplest structures, annotated as the muraymycin D series. Two enzymes encoded in the muraymycin biosynthetic gene cluster, Mur29 and Mur28, were functionally assigned in vitro as a Mg·ATP-dependent nucleotidyltransferase and a Mg·ATP-dependent phosphotransferase, respectively, both modifying the 3″-OH of the disaccharide. Biochemical characterization revealed that both enzymes can utilize several nucleotide donors as cosubstrates and the acceptor substrate muraymycin also behaves as an inhibitor. Single-substrate kinetic analyses revealed that Mur28 preferentially phosphorylates a synthetic GlyU-ADR disaccharide, a hypothetical biosynthetic precursor of muraymycins, while Mur29 preferentially adenylates the D series of muraymycins. The adenylated or phosphorylated products have significantly reduced (170-fold and 51-fold, respectively) MraY inhibitory activities and reduced antibacterial activities, compared with the respective unmodified muraymycins. The results are consistent with Mur29-catalyzed adenylation and Mur28-catalyzed phosphorylation serving as complementary self-resistance mechanisms, with a distinct temporal order during muraymycin biosynthesis.
Collapse
|
24
|
Cui Z, Wang X, Koppermann S, Thorson JS, Ducho C, Van Lanen SG. Antibacterial Muraymycins from Mutant Strains of Streptomyces sp. NRRL 30471. JOURNAL OF NATURAL PRODUCTS 2018; 81:942-948. [PMID: 29553733 PMCID: PMC6434714 DOI: 10.1021/acs.jnatprod.7b01054] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Muraymycins are nucleoside antibiotics isolated from Streptomyces sp. NRRL 30471 and several mutant strains thereof that were generated by random, chemical mutagenesis. Reinvestigation of two mutant strains using new media conditions led to the isolation of three new muraymycin congeners, named B8, B9, and C6 (1-3), as well as a known muraymycin, C1. Structures of the compounds were elucidated by HRMS and 1D and 2D NMR spectroscopic analyses. Complete 2D NMR assignments for the known muraymycin C1 are also provided for the first time. Compounds 1 and 2, which differ from other muraymycins by having an elongated, terminally branched fatty acid side chain, had picomolar IC50 values against Staphylococcus aureus and Aquifex aeolicus MraY and showed good antibacterial activity against S. aureus (MIC = 2 and 6 μg/mL, respectively) and Escherichia coli Δ tolC (MIC = 4 and 2 μg/mL, respectively). Compound 3, which is characterized by an N-acetyl modification of the primary amine of the dissacharide core that is shared among nearly all of the reported muraymycin congeners, greatly reduced its inhibitory and antibacterial activity compared to nonacylated muraymycin C1, which possibly indicates this modification is used for self-resistance.
Collapse
Affiliation(s)
- Zheng Cui
- Department of Pharmaceutical Sciences, College of
Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Xiachang Wang
- Center for Pharmaceutical Research and Innovation,
College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United
States
- Jiangsu Key Laboratory for Functional Substance of
Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine,
Nanjing 210023, People’s Republic of China
| | - Stefan Koppermann
- Department of Pharmacy, Pharmaceutical and Medicinal
Chemistry, Saarland University Campus C2 3, 66123 Saarbrücken, Germany
| | - Jon S. Thorson
- Department of Pharmaceutical Sciences, College of
Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Center for Pharmaceutical Research and Innovation,
College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United
States
| | - Christian Ducho
- Department of Pharmacy, Pharmaceutical and Medicinal
Chemistry, Saarland University Campus C2 3, 66123 Saarbrücken, Germany
| | - Steven G. Van Lanen
- Department of Pharmaceutical Sciences, College of
Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| |
Collapse
|