1
|
Liu C, Yi S, Zhang M, Chen CC, Liu Y, Zhang Z, Guo RT, Yang Y. Molecular glue binding behavior of phosphoantigens to alpaca butyrophilins. J Biol Chem 2025; 301:108555. [PMID: 40294650 DOI: 10.1016/j.jbc.2025.108555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 04/06/2025] [Accepted: 04/24/2025] [Indexed: 04/30/2025] Open
Abstract
Vγ9Vδ2 T cells that respond to phosphoantigen (pAg) function as crucial sentinels of the immune system to eradicate pathogen-infected cells and tumor cells. Alpaca (Vicugna pacos) is the first nonprimate species identified to possess the pAg-reactive Vγ9Vδ2 T cell subset. However, the molecular mechanism accounting for the pAg recognition of alpaca Vγ9Vδ2 T cells remains unclear. Here, we report the crystal structures of alpaca butyrophilin 3 (VpBTN3) B30.2 domain in complex with the exogenous pAg analog, HMBPP-08, which is a valuable tool for studying the mechanism of butyrophilin-dependent Vγ9Vδ2 T cell activation, and the endogenous pAg analogue, dimethylallyl (S)-thiolodiphosphate (DMASPP). We elucidated that the function of pAgs is governed by their structural differences. Notably, DMASPP acts as a molecular glue in the interaction between the intracellular B30.2 domains of heterologous butyrophilins in alpaca and human. Interestingly, although HMBPP-08 has stronger affinity than DMASPP to VpBTN3 B30.2 domain, HMBPP-08 did not promote heterologous VpBTNs interaction. These findings establish a novel theoretical framework elucidating the mechanisms of Vγ9Vδ2 T cell activation and demonstrate the conserved evolutionary mechanisms underlying cross-species immune adaptation.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, PR China
| | - Simin Yi
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, PR China
| | - Mengting Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, PR China
| | - Chun-Chi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, PR China; Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, PR China
| | - Yingle Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, PR China
| | - Zhen Zhang
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, PR China
| | - Rey-Ting Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, PR China; Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, PR China.
| | - Yunyun Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, PR China.
| |
Collapse
|
2
|
Singh U, Pawge G, Kintigh PA, Sarno JP, Rani S, Hsiao CHC, Wiemer AJ, Wiemer DF. Synthesis and evaluation of triazole-containing aryl/acyloxy prodrugs of a BTN3A1 ligand. Eur J Med Chem 2025; 287:117345. [PMID: 39919440 PMCID: PMC11853949 DOI: 10.1016/j.ejmech.2025.117345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/15/2025] [Accepted: 01/29/2025] [Indexed: 02/09/2025]
Abstract
The most effective natural ligand for the butyrophilins is (E)-4-hydroxy-3-methyl-but-2-enyl diphosphate. However, due to its susceptibility to plasma hydrolysis and its high charge that limits passive diffusion across cell membranes, its potential as a drug is limited. Our efforts to identify compounds that stimulate γδ T cell proliferation have been focused on phosphonates to gain metabolic stability and phosphonate prodrugs to improve diffusion into cells. To identify potential prodrugs that are soluble, relatively stable in plasma, and undergo facile hydrolysis once inside the cell, we have prepared a series of aryl acyloxyesters where the acyl group includes a triazole moiety. Several of these novel prodrug forms have been shown to demonstrate nanomolar potency for T cell activation and relatively long half-lives in plasma. Interestingly, compound 26b stimulated T cells at sub-nanomolar levels (proliferation EC50 = 0.49 nM) while achieving a half-life of 63 min in human plasma. The details of these syntheses and the biological evaluation are presented here.
Collapse
Affiliation(s)
- Umed Singh
- Department of Chemistry, University of Iowa, Iowa City, IA, 52242-1294, United States
| | - Girija Pawge
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, 06269-3092, United States
| | - Parker A Kintigh
- Department of Chemistry, University of Iowa, Iowa City, IA, 52242-1294, United States
| | - Joseph P Sarno
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, 06269-3092, United States
| | - Sarita Rani
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, 06269-3092, United States
| | - Chia-Hung Christine Hsiao
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, 06269-3092, United States
| | - Andrew J Wiemer
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, 06269-3092, United States; Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, 06269-3092, United States
| | - David F Wiemer
- Department of Chemistry, University of Iowa, Iowa City, IA, 52242-1294, United States.
| |
Collapse
|
3
|
Herrmann T, Karunakaran MM. Phosphoantigen recognition by Vγ9Vδ2 T cells. Eur J Immunol 2024; 54:e2451068. [PMID: 39148158 DOI: 10.1002/eji.202451068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/17/2024]
Abstract
Vγ9Vδ2 T cells comprise 1-10% of human peripheral blood T cells. As multifunctional T cells with a strong antimicrobial and antitumor potential, they are of strong interest for immunotherapeutic development. Their hallmark is the eponymous Vγ9Vδ2 T-cell antigen receptor (TCR), which mediates activation by so-called "phosphoantigens" (PAg). PAg are small pyrophosphorylated intermediates of isoprenoid synthesis of microbial or host origin, with the latter elevated in some tumors and after administration of aminobisphosphonates. This review summarizes the progress in understanding PAg-recognition, with emphasis on the interaction between butyrophilins (BTN) and PAg and insights gained by phylogenetic studies on BTNs and Vγ9Vδ2 T cells, especially the comparison of human and alpaca. It proposes a composite ligand model in which BTN3A1-A2/A3-heteromers and BTN2A1 homodimers form a Vγ9Vδ2 TCR activating complex. An initiating step is the binding of PAg to the intracellular BTN3A1-B30.2 domain and formation of a complex with the B30.2 domains of BTN2A1. On the extracellular surface this results in BTN2A1-IgV binding to Vγ9-TCR framework determinants and BTN3A-IgV to additional complementarity determining regions of both TCR chains. Unresolved questions of this model are discussed, as well as questions on the structural basis and the physiological consequences of PAg-recognition.
Collapse
Affiliation(s)
- Thomas Herrmann
- Institute for Virology and Immunobiology, Dept of Medicine, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
4
|
Singh U, Pawge G, Rani S, Hsiao CHC, Wiemer DF, Wiemer AJ. Enhanced Plasma Stability and Potency of Aryl/Acyloxy Prodrugs of a BTN3A1 Ligand. ACS Med Chem Lett 2024; 15:1771-1777. [PMID: 39411535 PMCID: PMC11472817 DOI: 10.1021/acsmedchemlett.4c00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
While ester-based phosphonate prodrugs excel at delivering payloads into cells, their instability in plasma is a hurdle for their advancement. Here, we synthesized new aryl/acyloxy prodrugs of a phosphonate BTN3A1 ligand. We evaluated their phosphoantigen potency by flow cytometry and ELISA and their plasma and cellular metabolism by LC-MS. These compounds displayed low nanomolar to high picomolar potency. Addition of a p-isopropyl group to the phenyl substituent and use of cyclohexyl or p-methoxybenzyl groups as the acyloxy substituent significantly increased human, but not mouse or rat, plasma stability without negatively impacting potency. Combinations of these prodrug moieties further improved stability, with the best combination achieving a half-life of over 12 h in human plasma, a marked improvement on prior compounds. In contrast, oxane analogs improved water solubility and cellular payload delivery but remained unstable in human plasma. The studies suggest that certain ester-based phosphonate prodrugs quickly deliver active payloads inside cells and show substantial stability in human plasma.
Collapse
Affiliation(s)
- Umed Singh
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294, United
States
| | - Girija Pawge
- Department
of Pharmaceutical Sciences, University of
Connecticut, Storrs, Connecticut 06269-3092, United States
| | - Sarita Rani
- Department
of Pharmaceutical Sciences, University of
Connecticut, Storrs, Connecticut 06269-3092, United States
| | - Chia-Hung Christine Hsiao
- Department
of Pharmaceutical Sciences, University of
Connecticut, Storrs, Connecticut 06269-3092, United States
| | - David F. Wiemer
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294, United
States
| | - Andrew J. Wiemer
- Department
of Pharmaceutical Sciences, University of
Connecticut, Storrs, Connecticut 06269-3092, United States
- Institute
for Systems Genomics, University of Connecticut, Storrs, Connecticut 06269-3092, United
States
| |
Collapse
|
5
|
Singh R, Rani S, Jin Y, Hsiao CHC, Wiemer AJ. Synthesis and evaluation of (E)-4-hydroxy-3-methyl-but-2-enyl diphosphate analogs as competitive partial agonists of butyrophilin 3A1. Eur J Med Chem 2024; 276:116673. [PMID: 39029338 PMCID: PMC11323222 DOI: 10.1016/j.ejmech.2024.116673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/21/2024]
Abstract
Phosphoantigens (pAgs) induce conformational changes after binding to the intracellular region of BTN3A1 which result in its clustering with BTN2A1, forming an activating ligand for the Vγ9Vδ2 T cell receptor. Here, we designed a small panel of bulky analogs of the prototypical pAg (E)-4-hydroxy-3-methyl-but-2-enyl diphosphate (HMBPP) that contain an aromatic ring attached to the C-3 position in place of methyl group. These compounds bind with high affinity to BTN3A1 but fail to fully support its interaction with BTN2A1 and only partially trigger T cell activation relative to HMBPP. Furthermore, they can compete with HMBPP for cellular binding to BTN3A1 and reduce the cellular response to HMBPP, a classic partial agonist phenotype. Trifluoromethyl analog 6e was the weakest agonist but the strongest inhibitor of HMBPP ELISA response. Our study provides a rationale for the mode of action of pAg-induced γδ T cell activation and provides insights into other naturally occurring BTN proteins and their respective ligands.
Collapse
Affiliation(s)
- Rohit Singh
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, 06269-3092, United States; Department of Pharmaceutical Sciences, School of Health Sciences & Technology, Dr. Vishwanath Karad, MIT-World Peace University, Pune, 411038, India
| | - Sarita Rani
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, 06269-3092, United States
| | - Yiming Jin
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, 06269-3092, United States
| | - Chia-Hung Christine Hsiao
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, 06269-3092, United States
| | - Andrew J Wiemer
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, 06269-3092, United States; Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, 06269-3092, United States.
| |
Collapse
|
6
|
Mehdikhani F, Bahar A, Bashi M, Mohammadlou M, Yousefi B. From immunomodulation to therapeutic prospects: Unveiling the biology of butyrophilins in cancer. Cell Biochem Funct 2024; 42:e4081. [PMID: 38934382 DOI: 10.1002/cbf.4081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Butyrophilin (BTN) proteins are a type of membrane protein that belongs to the Ig superfamily. They exhibit a high degree of structural similarity to molecules in the B7 family. They fulfill a complex function in regulating immune responses, including immunomodulatory roles, as they influence γδ T cells. The biology of BTN molecules indicates that they are capable of inhibiting the immune system's ability to detect antigens within tumors. A dynamic association between BTN molecules and cellular surfaces is also recognized in specific contexts, influencing their biology. Notably, the dynamism of BTN3A1 is associated with the immunosuppression of T cells or the activation of Vγ9Vδ2 T cells. Cancer immunotherapy relies heavily on T cells to modulate immune function within the intricate interaction of the tumor microenvironment (TME). A significant interaction between the TME and antitumor immunity involves the presence of BTN, which should be taken into account when developing immunotherapy. This review explores potential therapeutic applications of BTN molecules, based on the current understanding of their biology.
Collapse
Affiliation(s)
- Fatemeh Mehdikhani
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aysa Bahar
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Marzieh Bashi
- Cancer Research Center, Semnan University of Medical, Semnan, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Maryam Mohammadlou
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Bahman Yousefi
- Cancer Research Center, Semnan University of Medical, Semnan, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
7
|
Singh U, Pawge G, Rani S, Hsiao CHC, Wiemer AJ, Wiemer DF. Diester Prodrugs of a Phosphonate Butyrophilin Ligand Display Improved Cell Potency, Plasma Stability, and Payload Internalization. J Med Chem 2023; 66:15309-15325. [PMID: 37934915 PMCID: PMC10683022 DOI: 10.1021/acs.jmedchem.3c01358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/09/2023]
Abstract
Activation of Vγ9Vδ2 T cells with butyrophilin 3A1 (BTN3A1) agonists such as (E)-4-hydroxy-3-methyl-but-2-enyl diphosphate (HMBPP) has the potential to boost the immune response. Because HMBPP is highly charged and metabolically unstable, prodrugs may be needed to overcome these liabilities, but the prodrugs themselves may be limited by slow payload release or low plasma stability. To identify effective prodrug forms of a phosphonate agonist of BTN3A1, we have prepared a set of diesters bearing one aryl and one acyloxymethyl group. The compounds were evaluated for their ability to stimulate Vγ9Vδ2 T cell proliferation, increase production of interferon γ, resist plasma metabolism, and internalize into leukemia cells. These bioassays have revealed that varied aryl and acyloxymethyl groups can decouple plasma and cellular metabolism and have a significant impact on bioactivity (>200-fold range) and stability (>10 fold range), including some with subnanomolar potency. Our findings increase the understanding of the structure-activity relationships of mixed aryl/acyloxymethyl phosphonate prodrugs.
Collapse
Affiliation(s)
- Umed Singh
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294, United
States
| | - Girija Pawge
- Department
of Pharmaceutical Sciences, University of
Connecticut, Storrs, Connecticut 06269-3092, United States
| | - Sarita Rani
- Department
of Pharmaceutical Sciences, University of
Connecticut, Storrs, Connecticut 06269-3092, United States
| | - Chia-Hung Christine Hsiao
- Department
of Pharmaceutical Sciences, University of
Connecticut, Storrs, Connecticut 06269-3092, United States
| | - Andrew J. Wiemer
- Department
of Pharmaceutical Sciences, University of
Connecticut, Storrs, Connecticut 06269-3092, United States
- Institute
for Systems Genomics, University of Connecticut, Storrs, Connecticut 06269-3092, United
States
| | - David F. Wiemer
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294, United
States
- Department
of Pharmacology, University of Iowa, Iowa City, Iowa 52242-1109, United
States
| |
Collapse
|
8
|
Karunakaran MM, Subramanian H, Jin Y, Mohammed F, Kimmel B, Juraske C, Starick L, Nöhren A, Länder N, Willcox CR, Singh R, Schamel WW, Nikolaev VO, Kunzmann V, Wiemer AJ, Willcox BE, Herrmann T. A distinct topology of BTN3A IgV and B30.2 domains controlled by juxtamembrane regions favors optimal human γδ T cell phosphoantigen sensing. Nat Commun 2023; 14:7617. [PMID: 37993425 PMCID: PMC10665462 DOI: 10.1038/s41467-023-41938-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 09/21/2023] [Indexed: 11/24/2023] Open
Abstract
Butyrophilin (BTN)-3A and BTN2A1 molecules control the activation of human Vγ9Vδ2 T cells during T cell receptor (TCR)-mediated sensing of phosphoantigens (PAg) derived from microbes and tumors. However, the molecular rules governing PAg sensing remain largely unknown. Here, we establish three mechanistic principles of PAg-mediated γδ T cell activation. First, in humans, following PAg binding to the intracellular BTN3A1-B30.2 domain, Vγ9Vδ2 TCR triggering involves the extracellular V-domain of BTN3A2/BTN3A3. Moreover, the localization of both protein domains on different chains of the BTN3A homo-or heteromers is essential for efficient PAg-mediated activation. Second, the formation of BTN3A homo-or heteromers, which differ in intracellular trafficking and conformation, is controlled by molecular interactions between the juxtamembrane regions of the BTN3A chains. Finally, the ability of PAg not simply to bind BTN3A-B30.2, but to promote its subsequent interaction with the BTN2A1-B30.2 domain, is essential for T-cell activation. Defining these determinants of cooperation and the division of labor in BTN proteins improves our understanding of PAg sensing and elucidates a mode of action that may apply to other BTN family members.
Collapse
Affiliation(s)
| | - Hariharan Subramanian
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Yiming Jin
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, 06269, USA
| | - Fiyaz Mohammed
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham, UK
| | - Brigitte Kimmel
- University Hospital Wuerzburg, Department of Internal Medicine II and Comprehensive Cancer Center (CCC) Mainfranken Wuerzburg, Wuerzburg, Germany
| | - Claudia Juraske
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Lisa Starick
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Anna Nöhren
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Nora Länder
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Carrie R Willcox
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham, UK
| | - Rohit Singh
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, 06269, USA
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, 06269, USA
- Department of Pharmaceutical Sciences, School of Health Sciences & Technology, Dr. Vishwanath Karad, MIT World peace University, Pune, 411038, India
| | - Wolfgang W Schamel
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Volker Kunzmann
- University Hospital Wuerzburg, Department of Internal Medicine II and Comprehensive Cancer Center (CCC) Mainfranken Wuerzburg, Wuerzburg, Germany
| | - Andrew J Wiemer
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, 06269, USA
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, 06269, USA
| | - Benjamin E Willcox
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham, UK
| | - Thomas Herrmann
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
9
|
Nguyen K, Jin Y, Howell M, Hsiao CHC, Wiemer AJ, Vinogradova O. Mutations to the BTN2A1 Linker Region Impact Its Homodimerization and Its Cytoplasmic Interaction with Phospho-Antigen-Bound BTN3A1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:23-33. [PMID: 37171180 PMCID: PMC10330345 DOI: 10.4049/jimmunol.2200949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/26/2023] [Indexed: 05/13/2023]
Abstract
Intracellular binding of small-molecule phospho-Ags to the HMBPP receptor complex in infected cells leads to extracellular detection by T cells expressing the Vγ9Vδ2 TCR, a noncanonical method of Ag detection. The butyrophilin proteins BTN2A1 and BTN3A1 are part of the complex; however, their precise roles are unclear. We suspected that BTN2A1 and BTN3A1 form a tetrameric (dimer of dimers) structure, and we wanted to probe the importance of the BTN2A1 homodimer. We analyzed mutations to human BTN2A1, using internal domain or full-length BTN2A1 constructs, expressed in Escherichia coli or human K562 cells, that might disrupt its structure and/or function. Although BTN2A1 is a disulfide-linked homodimer, mutation of cysteine residues C247 and C265 did not affect the ability to stimulate T cell IFN-γ production by ELISA. Two mutations of the juxtamembrane region (at EKE282) failed to impact BTN2A1 function. In contrast, single point mutations (L318G and L325G) near the BTN2A1 B30.2 domain blocked phospho-Ag response. Size exclusion chromatography and nuclear magnetic resonance (NMR) experiments showed that the isolated BTN2A1 B30.2 domain is a homodimer, even in the absence of its extracellular and transmembrane region. [31P]-NMR experiments confirmed that HMBPP binds to BTN3A1 but not BTN2A1, and binding abrogates signals from both phosphorus atoms. Furthermore, the BTN2A1 L325G mutation but not the L318G mutation prevents both homodimerization of BTN2A1 internal domain constructs in size exclusion chromatography (and NMR) experiments and their binding to HMBPP-bound BTN3A1 in isothermal titration calorimetry experiments. Together, these findings support the importance of homodimerization within the BTN2A1 internal domain for phospho-Ag detection.
Collapse
Affiliation(s)
- Khiem Nguyen
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT
| | - Yiming Jin
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT
| | - Matthew Howell
- Department of Chemistry, University of Connecticut, Storrs, CT
| | | | - Andrew J Wiemer
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT
- Institute for Systems Genomics, University of Connecticut, Storrs, CT
| | - Olga Vinogradova
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT
| |
Collapse
|
10
|
Karunakaran MM, Subramanian H, Jin Y, Mohammed F, Kimmel B, Juraske C, Starick L, Nöhren A, Länder N, Willcox CR, Singh R, Schamel WW, Nikolaev VO, Kunzmann V, Wiemer AJ, Willcox BE, Herrmann T. Division of labor and cooperation between different butyrophilin proteins controls phosphoantigen-mediated activation of human γδ T cells. RESEARCH SQUARE 2023:rs.3.rs-2583246. [PMID: 36824912 PMCID: PMC9949253 DOI: 10.21203/rs.3.rs-2583246/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Butyrophilin (BTN)-3A and BTN2A1 molecules control TCR-mediated activation of human Vγ9Vδ2 T-cells triggered by phosphoantigens (PAg) from microbes and tumors, but the molecular rules governing antigen sensing are unknown. Here we establish three mechanistic principles of PAg-action. Firstly, in humans, following PAg binding to the BTN3A1-B30.2 domain, Vγ9Vδ2 TCR triggering involves the V-domain of BTN3A2/BTN3A3. Moreover, PAg/B30.2 interaction, and the critical γδ-T-cell-activating V-domain, localize to different molecules. Secondly, this distinct topology as well as intracellular trafficking and conformation of BTN3A heteromers or ancestral-like BTN3A homomers are controlled by molecular interactions of the BTN3 juxtamembrane region. Finally, the ability of PAg not simply to bind BTN3A-B30.2, but to promote its subsequent interaction with the BTN2A1-B30.2 domain, is essential for T-cell activation. Defining these determinants of cooperation and division of labor in BTN proteins deepens understanding of PAg sensing and elucidates a mode of action potentially applicable to other BTN/BTNL family members.
Collapse
Affiliation(s)
| | - Hariharan Subramanian
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany
| | - Yiming Jin
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA; Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| | - Fiyaz Mohammed
- Institute of Immunology and Immunotherapy, University of Birmingham, UK
| | - Brigitte Kimmel
- University Hospital Wuerzburg, Department of Internal Medicine II and Comprehensive Cancer Center (CCC) Mainfranken Wuerzburg, Wuerzburg Germany
| | - Claudia Juraske
- Signaling Research Centers BIOSS and CIBSS and Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany; Centre for Chronic Immunodeficiency (CCI), Faculty of Medicine, University of Freiburg; Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Lisa Starick
- Institute for Virology und Immunobiology, University of Würzburg, Würzburg, Germany
| | - Anna Nöhren
- Institute for Virology und Immunobiology, University of Würzburg, Würzburg, Germany
| | - Nora Länder
- Institute for Virology und Immunobiology, University of Würzburg, Würzburg, Germany
| | - Carrie R Willcox
- Institute of Immunology and Immunotherapy, University of Birmingham, UK
| | - Rohit Singh
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA; Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| | - Wolfgang W Schamel
- Signaling Research Centers BIOSS and CIBSS and Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany; Centre for Chronic Immunodeficiency (CCI), Faculty of Medicine, University of Freiburg; Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany
| | - Volker Kunzmann
- University Hospital Wuerzburg, Department of Internal Medicine II and Comprehensive Cancer Center (CCC) Mainfranken Wuerzburg, Wuerzburg Germany
| | - Andrew J Wiemer
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA; Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| | - Benjamin E Willcox
- 6Institute of Immunology and Immunotherapy, University of Birmingham, UK
| | - Thomas Herrmann
- Institute for Virology und Immunobiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
11
|
The Multifaceted MEP Pathway: Towards New Therapeutic Perspectives. Molecules 2023; 28:molecules28031403. [PMID: 36771066 PMCID: PMC9919496 DOI: 10.3390/molecules28031403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Isoprenoids, a diverse class of natural products, are present in all living organisms. Their two universal building blocks are synthesized via two independent pathways: the mevalonate pathway and the 2-C-methyl-ᴅ-erythritol 4-phosphate (MEP) pathway. The presence of the latter in pathogenic bacteria and its absence in humans make all its enzymes suitable targets for the development of novel antibacterial drugs. (E)-4-Hydroxy-3-methyl-but-2-enyl diphosphate (HMBPP), the last intermediate of this pathway, is a natural ligand for the human Vγ9Vδ2 T cells and the most potent natural phosphoantigen known to date. Moreover, 5-hydroxypentane-2,3-dione, a metabolite produced by Escherichia coli 1-deoxy-ᴅ-xylulose 5-phosphate synthase (DXS), the first enzyme of the MEP pathway, structurally resembles (S)-4,5-dihydroxy-2,3-pentanedione, a signal molecule implied in bacterial cell communication. In this review, we shed light on the diversity of potential uses of the MEP pathway in antibacterial therapies, starting with an overview of the antibacterials developed for each of its enzymes. Then, we provide insight into HMBPP, its synthetic analogs, and their prodrugs. Finally, we discuss the potential contribution of the MEP pathway to quorum sensing mechanisms. The MEP pathway, providing simultaneously antibacterial drug targets and potent immunostimulants, coupled with its potential role in bacterial cell-cell communication, opens new therapeutic perspectives.
Collapse
|
12
|
Hsiao CHC, Wiemer AJ. Generation of effector Vγ9Vδ2 T cells and evaluation of their response to phosphoantigen-loaded cells. STAR Protoc 2022; 3:101422. [PMID: 35677612 PMCID: PMC9168146 DOI: 10.1016/j.xpro.2022.101422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Vγ9Vδ2 T cells are non-canonical T cells that use their T cell receptor to detect phosphoantigens bound to the internal domain of the HMBPP receptor (butyrophilin 3/2A1 complex). This protocol describes the expansion and purification of human effector Vγ9Vδ2 T cells from human buffy coat and describes how to assess their activation by antigen-containing target cells. While specifically focused on cytokine production, this protocol can be readily adapted to evaluate other effector functions of activated Vγ9Vδ2 T cells. For complete details on the use and execution of this protocol, please refer to Hsiao et al. (2022) and Hsiao and Wiemer (2018).
Collapse
Affiliation(s)
| | - Andrew J. Wiemer
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
13
|
Lentini NA, Huang X, Schladetsch MA, Hsiao CHC, Wiemer DF, Wiemer AJ. Efficiency of bis-amidate phosphonate prodrugs. Bioorg Med Chem Lett 2022; 66:128724. [PMID: 35405283 DOI: 10.1016/j.bmcl.2022.128724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/03/2022] [Accepted: 04/06/2022] [Indexed: 11/25/2022]
Abstract
Bis-amidate derivatives have been viewed as attractive phosphonate prodrug forms because of their straightforward synthesis, lack of phosphorus stereochemistry, plasma stability and nontoxic amino acid metabolites. However, the efficiency of bis-amidate prodrug forms is unclear, as prior studies on this class of prodrugs have not evaluated their activation kinetics. Here, we synthetized a small panel of bis-amidate prodrugs of butyrophilin ligands as potential immunotherapy agents. These compounds were examined relative to other prodrug forms delivering the same payload for their stability in plasma and cell lysate, their ability to stimulate T cell proliferation in human PBMCs, and their activation kinetics in a leukemia co-culture model of T cell cytokine production. The bis-amidate prodrugs demonstrate high plasma stability and improved cellular phosphoantigen activity relative to the free phosphonic acid. However, the efficiency of bis-amidate activation is low relative to other prodrugs that contain at least one ester such as aryl-amidate, aryl-acyloxyalkyl ester, and bis-acyloxyalkyl ester forms. Therefore, bis-amidate prodrugs do not drive rapid cellular payload accumulation and they would be more useful for payloads in which slower, sustained-release kinetics are preferred.
Collapse
Affiliation(s)
- Nicholas A Lentini
- Department of Chemistry, University of Iowa, Iowa City, IA 52242-1294, United States
| | - Xueting Huang
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269-3092, United States
| | - Megan A Schladetsch
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269-3092, United States
| | - Chia-Hung Christine Hsiao
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269-3092, United States
| | - David F Wiemer
- Department of Chemistry, University of Iowa, Iowa City, IA 52242-1294, United States; Department of Pharmacology, University of Iowa, Iowa City, IA 52242-1109, United States
| | - Andrew J Wiemer
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269-3092, United States; Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269-3092, United States.
| |
Collapse
|
14
|
Harmon N, Poe MM, Huang X, Singh R, Foust BJ, Hsiao CHC, Wiemer DF, Wiemer AJ. Synthesis and Metabolism of BTN3A1 Ligands: Studies on Diene Modifications to the Phosphoantigen Scaffold. ACS Med Chem Lett 2022; 13:164-170. [PMID: 35178171 PMCID: PMC8842111 DOI: 10.1021/acsmedchemlett.1c00408] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 01/24/2022] [Indexed: 02/08/2023] Open
Abstract
Phosphoantigens (pAgs) are small organophosphorus compounds such as (E)-4-hydroxy-3-methyl-but-2-enyl diphosphate (HMBPP) that trigger an immune response. These molecules bind to butyrophilin 3A1 (part of the HMBPP receptor) and activate Vγ9Vδ2 T cells. To explore the structure-activity relationships underlying this process, we evaluated a series of novel diene analogs of HMBPP. Here we report that prodrug forms of [(1E)-4-methylpenta-1,3-dien-1-yl] phosphonic acid that lack the allylic alcohol of HMBPP but instead contained a diene scaffold exhibit mid-nanomolar potency for the activation of Vγ9Vδ2 T cells. The compounds also trigger the production of T-cell interferon γ upon exposure to loaded K562 cells. Although both the allylic alcohol and the diene scaffold boost pAg activity, the combination of the two decreases the activity and results in glutathione conjugation. Together, these data show that the diene scaffold results in intermediate pAgs that may have implications for the mechanisms regulating the HMBPP receptor.
Collapse
Affiliation(s)
- Nyema
M. Harmon
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294, United States
| | - Michael M. Poe
- Department
of Pharmaceutical Sciences, University of
Connecticut, Storrs, Connecticut 06269-3092, United States
| | - Xueting Huang
- Department
of Pharmaceutical Sciences, University of
Connecticut, Storrs, Connecticut 06269-3092, United States
| | - Rohit Singh
- Department
of Pharmaceutical Sciences, University of
Connecticut, Storrs, Connecticut 06269-3092, United States
| | - Benjamin J. Foust
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294, United States
| | - Chia-Hung Christine Hsiao
- Department
of Pharmaceutical Sciences, University of
Connecticut, Storrs, Connecticut 06269-3092, United States
| | - David F. Wiemer
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294, United States
- Department
of Pharmacology, University of Iowa, Iowa City, Iowa 52242-1109, United States
| | - Andrew J. Wiemer
- Department
of Pharmaceutical Sciences, University of
Connecticut, Storrs, Connecticut 06269-3092, United States
- Institute
for Systems Genomics, University of Connecticut, Storrs, Connecticut 06269-3092, United States
| |
Collapse
|
15
|
Hsiao CHC, Nguyen K, Jin Y, Vinogradova O, Wiemer AJ. Ligand-induced interactions between butyrophilin 2A1 and 3A1 internal domains in the HMBPP receptor complex. Cell Chem Biol 2022; 29:985-995.e5. [DOI: 10.1016/j.chembiol.2022.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/30/2021] [Accepted: 01/06/2022] [Indexed: 11/27/2022]
|
16
|
Lentini NA, Schroeder CM, Harmon NM, Huang X, Schladetsch MA, Foust BJ, Poe MM, Hsiao CHC, Wiemer AJ, Wiemer DF. Synthesis and Metabolism of BTN3A1 Ligands: Studies on Modifications of the Allylic Alcohol. ACS Med Chem Lett 2021; 12:136-142. [PMID: 33488975 DOI: 10.1021/acsmedchemlett.0c00586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 11/30/2020] [Indexed: 12/26/2022] Open
Abstract
(E)-4-Hydroxy-3-methyl-but-2-enyl diphosphate (HMBPP) and its phosphonate analogs are potent phosphoantigens. HMBPP contains an (E)-allylic alcohol which interacts with the molecular target BTN3A1 giving an antigenic signal to activate Vγ9Vδ2 T cells. As probes of BTN3A1 function, we prepared prodrug derivatives of the HMBPP analog C-HMBP that lack the (E)-allylic alcohol or have modified it to an aldehyde or aldoxime and evaluated their biological activity. Removal of the alcohol completely abrogates phosphoantigenicity in these compounds while the aldoxime modification decreases potency relative to the (E)-allylic alcohol form. However, homoprenyl derivatives oxidized to an aldehyde stimulate Vγ9Vδ2 T cells at nanomolar concentrations. Selection of phosphonate protecting groups (i.e., prodrug forms) impacts the potency of phosphoantigen aldehydes, with mixed aryl acyloxyalkyl forms exhibiting superior activity relative to aryl amidate forms. The activity correlates with the cellular reduction of the aldehyde to the alcohol form. Thus, the functionality on this ligand framework can be altered concurrently with phosphonate protection to promote cellular transformation to highly potent phosphoantigens.
Collapse
Affiliation(s)
- Nicholas A. Lentini
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294, United States
| | - Chloe M. Schroeder
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294, United States
| | - Nyema M. Harmon
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294, United States
| | - Xueting Huang
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269-3092,United States
| | - Megan A. Schladetsch
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269-3092,United States
| | - Benjamin J. Foust
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294, United States
| | - Michael M. Poe
- Department of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008-5413, United States
| | - Chia-Hung Christine Hsiao
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269-3092,United States
| | - Andrew J. Wiemer
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269-3092,United States
- Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut 06269-3092, United States
| | - David F. Wiemer
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294, United States
- Department of Pharmacology, University of Iowa, Iowa City, Iowa 52242-1109, United States
| |
Collapse
|
17
|
Potent double prodrug forms of synthetic phosphoantigens. Bioorg Med Chem 2020; 28:115666. [DOI: 10.1016/j.bmc.2020.115666] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/19/2020] [Accepted: 07/22/2020] [Indexed: 12/24/2022]
|
18
|
Herrmann T, Karunakaran MM, Fichtner AS. A glance over the fence: Using phylogeny and species comparison for a better understanding of antigen recognition by human γδ T-cells. Immunol Rev 2020; 298:218-236. [PMID: 32981055 DOI: 10.1111/imr.12919] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/30/2020] [Accepted: 08/10/2020] [Indexed: 01/20/2023]
Abstract
Both, jawless and jawed vertebrates possess three lymphocyte lineages defined by highly diverse antigen receptors: Two T-cell- and one B-cell-like lineage. In both phylogenetic groups, the theoretically possible number of individual antigen receptor specificities can even outnumber that of lymphocytes of a whole organism. Despite fundamental differences in structure and genetics of these antigen receptors, convergent evolution led to functional similarities between the lineages. Jawed vertebrates possess αβ and γδ T-cells defined by eponymous αβ and γδ T-cell antigen receptors (TCRs). "Conventional" αβ T-cells recognize complexes of Major Histocompatibility Complex (MHC) class I and II molecules and peptides. Non-conventional T-cells, which can be αβ or γδ T-cells, recognize a large variety of ligands and differ strongly in phenotype and function between species and within an organism. This review describes similarities and differences of non-conventional T-cells of various species and discusses ligands and functions of their TCRs. A special focus is laid on Vγ9Vδ2 T-cells whose TCRs act as sensors for phosphorylated isoprenoid metabolites, so-called phosphoantigens (PAg), associated with microbial infections or altered host metabolism in cancer or after drug treatment. We discuss the role of butyrophilin (BTN)3A and BTN2A1 in PAg-sensing and how species comparison can help in a better understanding of this human Vγ9Vδ2 T-cell subset.
Collapse
Affiliation(s)
- Thomas Herrmann
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | | | | |
Collapse
|
19
|
Wiemer AJ. Metabolic Efficacy of Phosphate Prodrugs and the Remdesivir Paradigm. ACS Pharmacol Transl Sci 2020; 3:613-626. [PMID: 32821882 PMCID: PMC7409933 DOI: 10.1021/acsptsci.0c00076] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Indexed: 02/08/2023]
Abstract
![]()
Drugs that contain phosphates (and
phosphonates or phosphinates)
have intrinsic absorption issues and are therefore often delivered
in prodrug forms to promote their uptake. Effective prodrug forms
distribute their payload to the site of the intended target and release
it efficiently with minimal byproduct toxicity. The ability to balance
unwanted payload release during transit with desired release at the
site of action is critical to prodrug efficacy. Despite decades of
research on prodrug forms, choosing the ideal prodrug form remains
a challenge which is often solved empirically. The recent emergency
use authorization of the antiviral remdesivir for COVID-19 exemplifies
a new approach for delivery of phosphate prodrugs by parenteral dosing,
which minimizes payload release during transit and maximizes tissue
payload distribution. This review focuses on the role of metabolic
activation in efficacy during oral and parenteral dosing of phosphate,
phosphonate, and phosphinate prodrugs. Through examining prior structure–activity
studies on prodrug forms and the choices that led to development of
remdesivir and other clinical drugs and drug candidates, a better
understanding of their ability to distribute to the planned site of
action, such as the liver, plasma, PBMCs, or peripheral tissues, can
be gained. The structure–activity relationships described here
will facilitate the rational design of future prodrugs.
Collapse
Affiliation(s)
- Andrew J Wiemer
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, United States.,Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
20
|
An Update on the Molecular Basis of Phosphoantigen Recognition by Vγ9Vδ2 T Cells. Cells 2020; 9:cells9061433. [PMID: 32527033 PMCID: PMC7348870 DOI: 10.3390/cells9061433] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 01/29/2023] Open
Abstract
About 1-5% of human blood T cells are Vγ9Vδ2 T cells. Their hallmark is the expression of T cell antigen receptors (TCR) whose γ-chains contain a rearrangement of Vγ9 with JP (TRGV9JP or Vγ2Jγ1.2) and are paired with Vδ2 (TRDV2)-containing δ-chains. These TCRs respond to phosphoantigens (PAg) such as (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP), which is found in many pathogens, and isopentenyl pyrophosphate (IPP), which accumulates in certain tumors or cells treated with aminobisphosphonates such as zoledronate. Until recently, these cells were believed to be restricted to primates, while no such cells are found in rodents. The identification of three genes pivotal for PAg recognition encoding for Vγ9, Vδ2, and butyrophilin (BTN) 3 in various non-primate species identified candidate species possessing PAg-reactive Vγ9Vδ2 T cells. Here, we review the current knowledge of the molecular basis of PAg recognition. This not only includes human Vγ9Vδ2 T cells and the recent discovery of BTN2A1 as Vγ9-binding protein mandatory for the PAg response but also insights gained from the identification of functional PAg-reactive Vγ9Vδ2 T cells and BTN3 in the alpaca and phylogenetic comparisons. Finally, we discuss models of the molecular basis of PAg recognition and implications for the development of transgenic mouse models for PAg-reactive Vγ9Vδ2 T cells.
Collapse
|