1
|
Wysocki O, Mak S, Frost H, Graham DM, Landers D, Aslam T. Translating the machine; An assessment of clinician understanding of ophthalmological artificial intelligence outputs. Int J Med Inform 2025; 201:105958. [PMID: 40349525 DOI: 10.1016/j.ijmedinf.2025.105958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/30/2025] [Accepted: 05/02/2025] [Indexed: 05/14/2025]
Abstract
INTRODUCTION Advances in artificial intelligence offer the promise of automated analysis of optical coherence tomography (OCT) scans to detect ocular complications from anticancer drug therapy. To explore how such AI outputs are interpreted in clinical settings, we conducted a survey-based interview study with 27 clinicians -comprising 10 ophthalmic specialists, 10 ophthalmic practitioners, and 7 oncologists. Participants were first introduced to core AI concepts and realistic clinical scenarios, then asked to assess AI-generated OCT analyses using standardized Likert-scale questions, allowing us to gauge their understanding, trust, and readiness to integrate AI into practice. METHODS We developed a questionnaire through literature review and consultations with ophthalmologists, computer scientists, and AI researchers. A single investigator interviewed 27 clinicians across three specialties and transcribed their responses. Data were summarized as medians (ranges) and compared with Mann-Whitney U tests (α = 0.05). RESULTS We noted important differences in the impact of various explainability methods on trust, depending on the clinical or AI scenario nature and the staff expertise. Explanations of AI outputs increased trust in the AI algorithm when outputs simply reflected ground truth expert opinion. When clinical scenarios were complex with incorrect AI outcomes, a mixed response to explainability led to correctly reduced trust in experienced clinicians but mixed feedback amongst less experienced clinicians. All clinicians had a general consensus on lack of current knowledge in interacting with AI and desire more training. CONCLUSIONS Clinicians' trust in AI algorithms are affected by explainability methods and factors, including AI's performance, personal judgments and clinical experience. The development of clinical AI systems should consider the above and these responses ideally be factored into real-world assessments. Use of this study's findings could help improve the real world validity of medical AI systems by enhancing the human-computer interactions, with preferred explainability techniques tailored to specific situations.
Collapse
Affiliation(s)
- Oskar Wysocki
- Cancer Research UK Manchester Institute, University of Manchester, Oxford Rd, Manchester M13 9PL, United Kingdom; Idiap Research Institute, National University of Sciences, Rue Marconi 19, CH - 1920 Martigny, Switzerland
| | - Sammie Mak
- St.Jame's University Hospital, Beckett St, Harehills, Leeds LS9 7TF, United Kingdom; Leeds Teaching Hospitals NHS Trust, Great George St, Leeds LS13EX, United Kingdom
| | - Hannah Frost
- Cancer Research UK Manchester Institute, University of Manchester, Oxford Rd, Manchester M13 9PL, United Kingdom
| | - Donna M Graham
- Cancer Research UK Manchester Institute, University of Manchester, Oxford Rd, Manchester M13 9PL, United Kingdom; The Christie HNS Foundation Trust, Wilmslow Rd, Manchester M204BX, United Kingdom
| | - Dónal Landers
- DeLondra Oncology Ltd, 38, Carlton Avenue, Wilmslow SK9 4EP, United Kingdom
| | - Tariq Aslam
- Manchester Royal Eye Hospital, Oxford Road, Manchester M13 9WL, United Kingdom; School of Health Sciences, University of Manchester, Oxford Road, Manchester M139PL, United Kingdom.
| |
Collapse
|
2
|
Lv L, Han X, Sun Z, Li Z, Wang X, Jiang T, Liu Y, Li T, Xu J, You L, Yao G, Sun FR, Xing J. SSL-DA: Semi-and Self-Supervised Learning with Dual Attention for Echocardiogram Segmentation. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2025:10.1007/s10278-025-01532-4. [PMID: 40355692 DOI: 10.1007/s10278-025-01532-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 04/13/2025] [Accepted: 04/29/2025] [Indexed: 05/14/2025]
Abstract
Echocardiogram analysis plays a crucial role in assessing and diagnosing cardiac function, providing essential data to support medical diagnoses of heart disease. A key task, accurately identifying and segmenting the left ventricle (LV) in echocardiograms, remains challenging and labor-intensive. Current automated cardiac segmentation methods often lack the necessary accuracy and reproducibility, while semi-automated or manual annotations are excessively time-consuming. To address these limitations, we propose a novel segmentation framework, semi-and self-supervised learning with dual attention (SSL-DA) for echocardiogram segmentation. We start with a temporal masking network for pre-training. This network captures valuable information, such as echocardiogram periodicity. It also provides optimized initialization parameters for LV segmentation. We then employ a semi-supervised network to automatically segment the left ventricle, enhancing the model's learning with channel and spatial attention mechanisms to capture global channel dependencies and spatial dependencies across annotations. We evaluated SSL-DA on the publicly available EchoNet-Dynamic dataset, achieving a Dice similarity coefficient of 93.34% (95% CI, 93.23-93.46%), outperforming most prior CNN-based models. To further assess the generalization ability of SSL-DA, we conducted ablation experiments on the CAMUS dataset. Experimental results confirm that SSL-DA can quickly and accurately segment the left ventricle in echocardiograms, showing its potential for robust clinical application.
Collapse
Affiliation(s)
- Lin Lv
- School of Integrated Circuits, Shandong University, 1500 Shunhua Road, Jinan, 250101, Shandong, China
| | - Xing Han
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Zhengxiang Sun
- Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Zhaoguang Li
- School of Integrated Circuits, Shandong University, 1500 Shunhua Road, Jinan, 250101, Shandong, China
| | - Xiuying Wang
- Faculty of Engineering, The University of Sydney, Sydney, NSW, Australia
| | - Tong Jiang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing University of Chinese Medicine, Beijing, China
| | - Yiren Liu
- School of Integrated Circuits, Shandong University, 1500 Shunhua Road, Jinan, 250101, Shandong, China
| | - Tianshu Li
- School of Integrated Circuits, Shandong University, 1500 Shunhua Road, Jinan, 250101, Shandong, China
| | - Jingjing Xu
- School of Integrated Circuits, Shandong University, 1500 Shunhua Road, Jinan, 250101, Shandong, China
| | - Liangzhen You
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing University of Chinese Medicine, Beijing, China
| | - Guihua Yao
- Cardiology Department, Qilu Hospital of Shandong University (Qingdao), Qingdao, China
| | - Feng-Rong Sun
- School of Integrated Circuits, Shandong University, 1500 Shunhua Road, Jinan, 250101, Shandong, China.
| | - Jianping Xing
- School of Integrated Circuits, Shandong University, 1500 Shunhua Road, Jinan, 250101, Shandong, China.
| |
Collapse
|
3
|
Alkhafaf OS, Chase JG, Benyó B. Evaluation of insulin sensitivity temporal prediction by using quantile regression combined with neural network model. Int J Med Inform 2025; 202:105964. [PMID: 40367580 DOI: 10.1016/j.ijmedinf.2025.105964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 05/02/2025] [Accepted: 05/06/2025] [Indexed: 05/16/2025]
Abstract
BACKGROUND Stress-induced hyperglycemia, a pathologically high blood glucose level, is a frequent complication in intensive care units. Blood glucose (BG) level control is crucial but challenging due to patient variability. The Stochastic TARgeted (STAR) protocol is clinically used for blood glucose control, which uses the current and predicted future patient insulin sensitivity (SI) parameter to assess BG outcomes of alternative treatment options. OBJECTIVE Neural network (NN) models using quantile regression (QR) have enhanced SI prediction performance. However, remains a challenge in determining the optimal NN configuration to best predict SI. This study aims to find the NN configuration yielding the highest prediction accuracy to improve the STAR protocol and explores the behaviour of the QR method in predicting the percentiles of a non-Gaussian multi-mode distribution of a physiological parameter. METHOD Alternative NN architectures combined with QR were implemented and trained on a large dataset comprising 1,897 patients collected between 2011 and 2023 using five-fold cross-validation ensuring model robustness. Prediction performance was evaluated among NN configurations and compared using case-specific metrics across the global SI domain as well as within subdomains to analyse the models' local performance. RESULTS Outcomes indicate QR applied to simpler NN, consisting of one-hidden layer with four neurons, achieves a best prediction performance at a minimum network size. Using more complex NN did not improve the prediction performance significantly. However, at long prediction horizons, no compact network demonstrated improved outcomes. A more general methodological outcome of the study is that QR-based prediction does not need to be combined with complex NN to achieve the best prediction performance. CONCLUSION The QR-based method was found to be appropriate for the SI prediction problem in short-term predictions which may improve the STAR protocol's clinical outcomes. Overall, the study provides a generalisable, empirical approach to network configuration optimisation for similar problems.
Collapse
Affiliation(s)
- Omer S Alkhafaf
- Budapest University of Technology and Economics, Faculty of Electrical Engineering and Information Technology, Department of Control Engineering and Information Technology, Budapest, Hungary; College of Dentistry, University of Mosul, Mosul, Iraq.
| | - J Geoffrey Chase
- Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand
| | - Balázs Benyó
- Budapest University of Technology and Economics, Faculty of Electrical Engineering and Information Technology, Department of Control Engineering and Information Technology, Budapest, Hungary
| |
Collapse
|
4
|
Zhang B, Li Z, Hao Y, Wang L, Li X, Yao Y. A review of lightweight convolutional neural networks for ultrasound signal classification. Front Physiol 2025; 16:1536542. [PMID: 40342856 PMCID: PMC12058499 DOI: 10.3389/fphys.2025.1536542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 03/31/2025] [Indexed: 05/11/2025] Open
Abstract
Ultrasound signal processing plays an important role in medical image analysis. Embedded ultrasonography systems with low power consumption and high portability are suitable for disaster rescue, but due to the difficulty of ultrasonic signal recognition, operators need to have strong professional knowledge, and it is not easy to deploy ultrasonography systems in areas with relatively weak infrastructures. In recent years, with the continuous development in the field of deep learning and artificial intelligence, lightweight convolutional neural networks have brought new opportunities for ultrasound signal processing. This paper focuses on investigating lightweight convolutional neural networks applied to ultrasound signal classification. Combined with the characteristics of ultrasound signals, this paper provides a detailed review of lightweight algorithms from two perspectives: model compression and operational optimization. Among them, model compression deals with the overall framework to reduce network redundancy, and the latter aims at the lightweight design of the basic operational module "convolution" in the network. The experimental results of some classical models and algorithms on the ImageNet dataset are summarized. Through the comprehensive analysis, we present some problems and provide an outlook on the future development of lightweight techniques for ultrasound signal classification.
Collapse
Affiliation(s)
- Bokun Zhang
- School of Information Science and Technology, North China University of Technology, Beijing, China
| | - Zhengping Li
- School of Information Science and Technology, North China University of Technology, Beijing, China
| | - Yuwen Hao
- Disaster Medicine Research Center, Medical Innovation Research Division of the Chinese PLA General Hospital Beijing, China Beijing Key Laboratory of Disaster Medicine, Beijing, China
| | - Lijun Wang
- Hangzhou Institute of Technology, Xidian University, Xi’an, China
| | - Xiaoxue Li
- Hangzhou Institute of Technology, Xidian University, Xi’an, China
| | - Yuan Yao
- Emergency Department, 903rd Hospital of PLA Joint Logistic Support Force, Hangzhou, China
| |
Collapse
|
5
|
Han H, Wen Z, Yang M, Wang C, Ma Y, Chen Q, Jiang D, Xu Y, Fazal A, Jie W, Lv X, Yin T, Lin H, Lu G, Qi J, Yang Y, Xu G. Shikonin Derivative Suppresses Colorectal Cancer Cells Growth via Reactive Oxygen Species-Mediated Mitochondrial Apoptosis and PI3K/AKT Pathway. Chem Biodivers 2025; 22:e202403291. [PMID: 40022742 DOI: 10.1002/cbdv.202403291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 03/04/2025]
Abstract
Colorectal cancer (CRC) is one of the deadliest cancers globally, ranking as the third most prevalent and second most lethal malignancy worldwide. The standard treatment for CRC typically involves a combination of surgery, radiotherapy, and chemotherapy. Despite advancements in CRC treatment, the prognosis remains unsatisfactory, primarily due to unclear mechanisms underlying tumorigenesis and the aggression of CRC. The aberrant activation of the PI3K/AKT pathway is frequently implicated in the initiation, progression, and metastasis of CRC. Studies have demonstrated that shikonin (SK) exerts anti-cancer effects. In this study, we evaluated the anti-tumor activities of a series of semi-synthesized SK derivatives against CRC cells. Our findings revealed that the SK derivative (M12) significantly inhibited the proliferation and colony formation of CRC cells, reduced cell migration, and induced apoptosis. Mechanistically, M12 enhanced the production of reactive oxygen species and downregulated the mitochondrial membrane potential, ultimately leading to mitochondrial apoptosis. Furthermore, M12 exhibited anti-CRC effects by modulating the PI3K/AKT signaling pathway and significantly suppressed tumorigenicity without causing notable adverse effects in mice. Therefore, targeting the PI3K/AKT pathway could be a promising treatment for CRC. M12 appears to be a promising candidate for the effective and safe treatment of CRC.
Collapse
Affiliation(s)
- Hongwei Han
- School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Zhongling Wen
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Minkai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Changyi Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yudi Ma
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Qingqing Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Dexing Jiang
- School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing, China
| | - Ye Xu
- School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing, China
| | - Aliya Fazal
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Wencai Jie
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Xiaoran Lv
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Tongming Yin
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Hongyan Lin
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- School of Pharmacy, Changzhou University, Changzhou, China
| | - Guihua Lu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, China
| | - Jinliang Qi
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yonghua Yang
- School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Guohua Xu
- School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
6
|
Jiang D, Chen Z, Du H. Cyclic peptide membrane permeability prediction using deep learning model based on molecular attention transformer. FRONTIERS IN BIOINFORMATICS 2025; 5:1566174. [PMID: 40134508 PMCID: PMC11933047 DOI: 10.3389/fbinf.2025.1566174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 02/25/2025] [Indexed: 03/27/2025] Open
Abstract
Membrane permeability is a critical bottleneck in the development of cyclic peptide drugs. Experimental membrane permeability testing is costly, and precise in silico prediction tools are scarce. In this study, we developed CPMP (https://github.com/panda1103/CPMP), a cyclic peptide membrane permeability prediction model based on the Molecular Attention Transformer (MAT) frame. The model demonstrated robust predictive performance, achieving determination coefficients (R 2 ) of 0.67 for PAMPA permeability prediction, and R 2 values of 0.75, 0.62, and 0.73 for Caco-2, RRCK, and MDCK cell permeability predictions, respectively. Its performance outperforms traditional machine learning methods and graph-based neural network models. In ablation experiments, we validated the effectiveness of each component in the MAT architecture. Additionally, we analyzed the impact of data pre-training and cyclic peptide conformation optimization on model performance.
Collapse
Affiliation(s)
- Dawei Jiang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Zixi Chen
- Department of Gerontology, ShenZhen Longhua District Central Hospital, Shenzhen, China
- School of Safety Science and Engineering, Anhui University of Science and Technology, Huainan, China
| | - Hongli Du
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
7
|
Upadhyay C, Bhattacharya S, Kumar S, Vashisht K, Zhang X, Gagnon D, Singh P, Zhan P, Richard D, Rathi B, Prasad Singh A, Singh P. Synthesis and Evaluation of Fluorinated Piperazine-Hydroxyethylamine Analogues as Potential Antiplasmodial Candidates. ChemMedChem 2025; 20:e202400616. [PMID: 39520091 DOI: 10.1002/cmdc.202400616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/18/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
In this manuscript, twenty-one novel fluorinated piperazine-hydroxyethylamine analogues were synthesized and tested against Plasmodium falciparum (Pf). Among tested compounds, two 13 g and 14 g exhibited promising inhibitory activity on Pf3D7 with IC50 values of 0.28 and 0.09 μM, respectively. Neither of the hits exhibited cytotoxicity on HepG2 cells up to 150 μM and Vero cells up to 20 μM. Compounds 13 g and 14 g were also evaluated against chloroquine-resistant PfDd2 and displayed IC50 values of 0.11 and 0.10 μM, respectively. Next, 13 g and 14 g were administered to the Plasmodium berghei mice model at 30 mg/kg intraperitoneally for four consecutive doses, which showed 25 % and 50 % reduction in the parasitemia load, respectively. The efficacy of hits 13 g and 14 g was improved along with mean survival time when administered in combination with artesunate. On liver-stage parasites, compounds 13 g and 14 g showed >80 % inhibition at 1 μM. Compound 14 g was also tested for toxicity in mice at 100 mg/kg dose, which revealed no abnormality in mice organs. Preliminary pharmacokinetic studies of compound 14 g exhibited absorption and maintained a presence in the body for more than six hours.
Collapse
Affiliation(s)
- Charu Upadhyay
- Department of Chemistry, Miranda House, University of Delhi, Delhi, 110007
| | - Shreya Bhattacharya
- Infectious Diseases Laboratory, National Institute of Immunology, New Delhi, 110067
| | - Sumit Kumar
- Department of Chemistry, Miranda House, University of Delhi, Delhi, 110007
| | - Kapil Vashisht
- HeteroChem InnoTech, Hansraj College Campus, University of Delhi, Malka Ganj, Delhi, 110007
| | - Xujie Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Chelloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Dominic Gagnon
- Centre de Recherche du CHU de Québec-Université Laval, Département de Microbiologie-Infectiologie et d'Immunologie, Université Laval, Quebec, G1 V 0 A6, Canada
| | - Pooja Singh
- Infectious Diseases Laboratory, National Institute of Immunology, New Delhi, 110067
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Chelloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Dave Richard
- Centre de Recherche du CHU de Québec-Université Laval, Département de Microbiologie-Infectiologie et d'Immunologie, Université Laval, Quebec, G1 V 0 A6, Canada
| | - Brijesh Rathi
- HeteroChem InnoTech, Hansraj College Campus, University of Delhi, Malka Ganj, Delhi, 110007
- H.G. Khorana Centre For Chemical Biology, Department of Chemistry, Hansraj College, University of Delhi, Delhi, 110007, India
| | - Agam Prasad Singh
- Infectious Diseases Laboratory, National Institute of Immunology, New Delhi, 110067
| | - Priyamvada Singh
- Department of Chemistry, Miranda House, University of Delhi, Delhi, 110007
| |
Collapse
|
8
|
Shehu K, Schneider M, Kraegeloh A. Menadione as Antibiotic Adjuvant Against P. aeruginosa: Mechanism of Action, Efficacy and Safety. Antibiotics (Basel) 2025; 14:163. [PMID: 40001407 PMCID: PMC11851977 DOI: 10.3390/antibiotics14020163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 01/29/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Antibiotic resistance in chronic lung infections caused by Pseudomonas aeruginosa requires alternative approaches to improve antibiotic efficacy. One promising approach is the use of adjuvant compounds that complement antibiotic therapy. This study explores the potential of menadione as an adjuvant to azithromycin against planktonic cells and biofilms of P. aeruginosa, focusing on its mechanisms of action and cytotoxicity in pulmonary cell models. Methods: The effect of menadione in improving the antibacterial and antibiofilm potency of azithromycin was tested against P. aeruginosa. Mechanistic studies in P. aeruginosa and AZMr-E. coli DH5α were performed to probe reactive oxygen species (ROS) production and bacterial membrane disruption. Cytotoxicity of antibacterial concentrations of menadione was assessed by measuring ROS levels and membrane integrity in Calu-3 and A549 lung epithelial cells. Results: Adding 0.5 µg/mL menadione to azithromycin reduced the minimum inhibitory concentration (MIC) by four-fold and the minimum biofilm eradication concentration (MBEC) by two-fold against P. aeruginosa. Adjuvant mechanisms of menadione involved ROS production and disruption of bacterial membranes. Cytotoxicity tests revealed that antibacterial concentrations of menadione (≤64 µg/mL) did not affect ROS levels or membrane integrity in lung cell lines. Conclusions: Menadione enhanced the efficacy of azithromycin against P. aeruginosa while exhibiting a favorable safety profile in lung epithelial cells at antibacterial concentrations. These findings suggest that menadione is a promising antibiotic adjuvant. However, as relevant data on the toxicity of menadione is sparse, further toxicity studies are required to ensure its safe use in complementing antibiotic therapy.
Collapse
Affiliation(s)
- Kristela Shehu
- Department of Pharmacy, Biopharmaceutics & Pharmaceutical Technology, Saarland University, 66123 Saarbrücken, Germany;
- INM—Leibniz Institute for New Materials, 66123 Saarbrücken, Germany
| | - Marc Schneider
- Department of Pharmacy, Biopharmaceutics & Pharmaceutical Technology, Saarland University, 66123 Saarbrücken, Germany;
| | | |
Collapse
|
9
|
Hatami A, Paeizi M, Sadeghi MMM. Phytochemical Profiling and Anti-VanA Activity of Pulegone Extracted from Ziziphora tenuior Flower Against Vancomycin-Resistant Enterococci: An In Silico Approach. Chem Biodivers 2025; 22:e202401536. [PMID: 39497422 DOI: 10.1002/cbdv.202401536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/25/2024] [Indexed: 04/02/2025]
Abstract
Ziziphora tenuior is a herb known for its potent pharmaceutical activities. However, the specific compounds of the flowers of this herb have not been fully studied yet. This study used GC-MS to conduct a chemical analysis of the methanol and dichloromethane extracts of Z. tenuior flowers. Additionally, it sought to assess the potential antibacterial activity of the extracts against vancomycin-resistant enterococci (VRE) bacteria by predicting the interactions between one of the most prevalent compounds in the extracts and the D-alanyl-D-lactate ligase (VanA) protein, which is responsible for enterococci resistant to vancomycin. The results revealed a total of 15 compounds in the methanolic extract and 12 compounds in the dichloromethane extract. Among these, 5-methyl-2-(1-methylethylidene)-cyclohexanone, also known as pulegone, constituting 52.6 % of the methanolic extract and 34.6 % of the dichloromethane extract, was the most abundant compound in the extracts. Furthermore, the in-silico analysis demonstrated that pulegone exhibited significant interactions with VanA, as indicated by docking energy values of -7 kcal/mol and the formation of one hydrogen bond. The study suggests that pulegone shows promise as an antibacterial agent against VRE by potentially interacting with VanA protein and serving as a key inhibitor in fighting vancomycin resistance.
Collapse
Affiliation(s)
- Asma Hatami
- Department of Chemistry, University of Isfahan, Isfahan, Iran
| | - Marzieh Paeizi
- Department of Chemistry, University of Isfahan, Isfahan, Iran
| | | |
Collapse
|
10
|
Ravichandiran P, Martyna A, Kochanowicz E, Maroli N, Kubiński K, Masłyk M, Boguszewska-Czubara A, Ramesh T. In Vitro and In Vivo Biological Evaluation of Novel 1,4-Naphthoquinone Derivatives as Potential Anticancer Agents. ChemMedChem 2024; 19:e202400495. [PMID: 39136593 DOI: 10.1002/cmdc.202400495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/13/2024] [Indexed: 10/16/2024]
Abstract
A novel library of naphthoquinone derivatives (3-5 aa) was synthesized and evaluated for their anticancer properties. Specifically, compounds 5 i, 5 l, 5 o, 5 q, 5 r, 5 s, 5 t, and 5 v demonstrated superior cytotoxic activity against the cancer cell lines that were studied. All the studied compounds exhibited a higher selectivity index (SI) and a favourable safety profile than the standard drug doxorubicin. Notably, compound 5 v displayed a greater cytotoxic effect on MCF-7 cells (IC50=1.2 μM, and 0.9 μM at 24 h and 48 h, respectively) compared to the standard drug doxorubicin (IC50=2.4 μM, and 2.1 μM at 24 h and 48 h, respectively). To further investigate the mechanism of cytotoxic effect, additional anticancer studies were conducted with 5 v in MCF-7 cells. The studies are including morphological changes, AO/EB (acridine orange/ethidium bromide) double staining, apoptosis analysis, cell colony assay, SDS-PAGE and Western blotting, cell cycle analysis, and detecting reactive oxygen species (ROS) assay. The findings showed that 5 v triggered cytotoxic effects in MCF-7 cells through the initiation of cell cycle arrest at the G1/S phase and necrosis. In vivo ecotoxicity studies indicated that 5 v had lower toxicity towards zebrafish larvae (LC50=50.15 μM) and had an insignificant impact on cardiac functions. In vivo xenotransplantation of MCF-7 cells in zebrafish larvae demonstrated a significant reduction in tumour volume in the xenograft. Approximately 95 % of the zebrafish larvae with 5 v xenografts survived after 10 days of the treatment. Finally, a computational modelling study was conducted on four protein receptors, namely ER, EFGR, BRCA1, and VEFGR2. The findings highlight the importance of the aminonaphthoquinone moiety, amide linkage, and propyl thio moiety in enhancing the anticancer properties. 5 v exhibited superior drug-likeness features and docking scores (-9.1, -7.1, -8.9, and -10.9 kcal/mol) compared to doxorubicin (-7.2, -6.1, -6.9, and -7.3 kcal/mol) against ER, EFGR, BRCA1, and VEGFR2 receptors, respectively. Therefore, the notable antitumor effects of naphthoquinone derivatives (3-5 aa) suggest that these molecular frameworks may play a role in the development of promising anticancer agents for cancer treatment.
Collapse
Affiliation(s)
- Palanisamy Ravichandiran
- R&D Education Center for Whole Life Cycle R&D of Fuel Cell Systems, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
- Department of Life Science, Department of Energy Storage/Conversion Engineering of Graduate School, Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
- Present Address: Analytical, HP Green R & D Centre, Hindustan Petroleum Corporation Limited, KIADB Industrial Area, Devangundi, Hoskote, Bengaluru, Karnataka, 562114, India
| | - Aleksandra Martyna
- Department of Molecular Biology, Institute of Biological Sciences, The John Paul II Catholic University of Lublin, ul. Konstantynów 1i, 20-708, Lublin, Poland
| | - Elżbieta Kochanowicz
- Department of Molecular Biology, Institute of Biological Sciences, The John Paul II Catholic University of Lublin, ul. Konstantynów 1i, 20-708, Lublin, Poland
| | - Nikhil Maroli
- Department of Physics and Astronomy, University of Delaware, Newark, DE, 19716, USA
| | - Konrad Kubiński
- Department of Molecular Biology, Institute of Biological Sciences, The John Paul II Catholic University of Lublin, ul. Konstantynów 1i, 20-708, Lublin, Poland
| | - Maciej Masłyk
- Department of Molecular Biology, Institute of Biological Sciences, The John Paul II Catholic University of Lublin, ul. Konstantynów 1i, 20-708, Lublin, Poland
| | - Anna Boguszewska-Czubara
- Department of Medical Chemistry, Medical University of Lublin, Ul. Chodźki 4 A, 20-093, Lublin, Poland
| | - Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| |
Collapse
|
11
|
Singh AV, Bhardwaj P, Laux P, Pradeep P, Busse M, Luch A, Hirose A, Osgood CJ, Stacey MW. AI and ML-based risk assessment of chemicals: predicting carcinogenic risk from chemical-induced genomic instability. FRONTIERS IN TOXICOLOGY 2024; 6:1461587. [PMID: 39659701 PMCID: PMC11628524 DOI: 10.3389/ftox.2024.1461587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
Chemical risk assessment plays a pivotal role in safeguarding public health and environmental safety by evaluating the potential hazards and risks associated with chemical exposures. In recent years, the convergence of artificial intelligence (AI), machine learning (ML), and omics technologies has revolutionized the field of chemical risk assessment, offering new insights into toxicity mechanisms, predictive modeling, and risk management strategies. This perspective review explores the synergistic potential of AI/ML and omics in deciphering clastogen-induced genomic instability for carcinogenic risk prediction. We provide an overview of key findings, challenges, and opportunities in integrating AI/ML and omics technologies for chemical risk assessment, highlighting successful applications and case studies across diverse sectors. From predicting genotoxicity and mutagenicity to elucidating molecular pathways underlying carcinogenesis, integrative approaches offer a comprehensive framework for understanding chemical exposures and mitigating associated health risks. Future perspectives for advancing chemical risk assessment and cancer prevention through data integration, advanced machine learning techniques, translational research, and policy implementation are discussed. By implementing the predictive capabilities of AI/ML and omics technologies, researchers and policymakers can enhance public health protection, inform regulatory decisions, and promote sustainable development for a healthier future.
Collapse
Affiliation(s)
- Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Preeti Bhardwaj
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Peter Laux
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Prachi Pradeep
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Madleen Busse
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Akihiko Hirose
- Chemicals Evaluation and Research Institute, Tokyo, Japan
| | - Christopher J. Osgood
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, United States
| | - Michael W. Stacey
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, United States
| |
Collapse
|
12
|
Chan YL, Tang SN, Osman CP, Chee CF, Tay ST. Exploring naphthoquinone and anthraquinone derivatives as antibiotic adjuvants against Staphylococcus aureus biofilms: Synergistic effects of menadione. Microb Pathog 2024; 195:106886. [PMID: 39182855 DOI: 10.1016/j.micpath.2024.106886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/11/2024] [Accepted: 08/23/2024] [Indexed: 08/27/2024]
Abstract
Given the ability of Staphylococcus aureus to form biofilms and produce persister cells, making infections difficult to treat with antibiotics alone, there is a pressing need for an effective antibiotic adjuvant to address this public health threat. In this study, a series of quinone derivatives were evaluated for their antimicrobial and antibiofilm activities against methicillin-susceptible and methicillin-resistant S. aureus reference strains. Following analyses using broth microdilution, growth curve analysis, checkerboard assay, time-kill experiments, and confocal laser scanning microscopy, menadione was identified as a hit compound. Menadione exhibited a notable antibacterial profile (minimum inhibitory concentration, MIC = 4-16 μg/ml; minimum bactericidal concentration, MBC = 256 μg/ml) against planktonic S. aureus and its biofilms (minimum biofilm inhibitory concentration, MBIC50 = 0.0625-0.25 μg/ml). When combined with oxacillin, erythromycin, and vancomycin, menadione exhibited a synergistic or additive effect against planktonic cells and biofilms of two S. aureus reference strains and six clinical isolates, highlighting its potential as a suitable adjuvant for further development against S. aureus biofilm-associated infections.
Collapse
Affiliation(s)
- Yun Li Chan
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Soo Nee Tang
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Che Puteh Osman
- School of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450, Shah Alam, Selangor Darul Ehsan, Malaysia
| | - Chin Fei Chee
- Nanotechnology and Catalysis Research Centre, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Sun Tee Tay
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
13
|
Zhang X, Wu Y, Gong H, Xiong Y, Chen Y, Li L, Zhi B, Lv S, Peng T, Zhang H. A Multifunctional Herb-Derived Glycopeptide Hydrogel for Chronic Wound Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400516. [PMID: 38686688 DOI: 10.1002/smll.202400516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/12/2024] [Indexed: 05/02/2024]
Abstract
Chronic wounds constitute an increasingly prevalent global healthcare issue, characterized by recurring bacterial infections, pronounced oxidative stress, compromised functionality of immune cells, unrelenting inflammatory reactions, and deficits in angiogenesis. In response to these multifaceted challenges, the study introduced a stimulus-responsive glycopeptide hydrogel constructed by oxidized Bletilla striata polysaccharide (OBSP), gallic acid-grafted ε-Polylysine (PLY-GA), and paeoniflorin-loaded micelles (MIC@Pae), called OBPG&MP. The hydrogel emulates the structure of glycoprotein fibers of the extracellular matrix (ECM), exhibiting exceptional injectability, self-healing, and biocompatibility. It adapts responsively to the inflammatory microenvironment of chronic wounds, sequentially releasing therapeutic agents to eradicate bacterial infection, neutralize reactive oxygen species (ROS), modulate macrophage polarization, suppress inflammation, and encourage vascular regeneration and ECM remodeling, playing a critical role across the inflammatory, proliferative, and remodeling phases of wound healing. Both in vitro and in vivo studies confirmed the efficacy of OBPG&MP hydrogel in regulating the wound microenvironment and enhancing the regeneration and remodeling of chronic wound skin tissue. This research supports the vast potential for herb-derived multifunctional hydrogels in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Xinyi Zhang
- Department of Radiology, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, 610081, China
| | - Ye Wu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Heng Gong
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yan Xiong
- Department of Radiology, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, 610081, China
| | - Yu Chen
- Department of Radiology, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, 610081, China
| | - Lin Li
- Department of Radiology, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, 610081, China
| | - Biao Zhi
- Department of Radiology, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, 610081, China
| | - Saiqun Lv
- Department of Radiology, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, 610081, China
| | - Tao Peng
- Department of Radiology, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, 610081, China
| | - Hui Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Med-X Center for Manufacturing, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
14
|
Benali Y, Predoi D, Rokosz K, Ciobanu CS, Iconaru SL, Raaen S, Negrila CC, Cimpeanu C, Trusca R, Ghegoiu L, Bleotu C, Marinas IC, Stan M, Boughzala K. Physico-Chemical Properties of Copper-Doped Hydroxyapatite Coatings Obtained by Vacuum Deposition Technique. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3681. [PMID: 39124344 PMCID: PMC11313284 DOI: 10.3390/ma17153681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/10/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024]
Abstract
The hydroxyapatite and copper-doped hydroxyapatite coatings (Ca10-xCux(PO4)6(OH)2; xCu = 0, 0.03; HAp and 3CuHAp) were obtained by the vacuum deposition technique. Then, both coatings were analyzed by the X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and water contact angle techniques. Information regarding the in vitro antibacterial activity and biological evaluation were obtained. The XRD studies confirmed that the obtained thin films consist of a single phase associated with hydroxyapatite (HAp). The obtained 2D and 3D SEM images did not show cracks or other types of surface defects. The FTIR studies' results proved the presence of vibrational bands characteristic of the hydroxyapatite structure in the studied coating. Moreover, information regarding the HAp and 3CuHAp surface wettability was obtained by water contact angle measurements. The biocompatibility of the HAp and 3CuHAp coatings was evaluated using the HeLa and MG63 cell lines. The cytotoxicity evaluation of the coatings was performed by assessing the cell viability through the MTT assay after incubation with the HAp and 3CuHAp coatings for 24, 48, and 72 h. The results proved that the 3CuHAp coatings exhibited good biocompatible activity for all the tested intervals. The ability of Pseudomonas aeruginosa 27853 ATCC (P. aeruginosa) cells to adhere to and develop on the surface of the HAp and 3CuHAp coatings was investigated using AFM studies. The AFM studies revealed that the 3CuHAp coatings inhibited the formation of P. aeruginosa biofilms. The AFM data indicated that P. aeruginosa's attachment and development on the 3CuHAp coatings were significantly inhibited within the first 24 h. Both the 2D and 3D topographies showed a rapid decrease in attached bacterial cells over time, with a significant reduction observed after 72 h of exposure. Our studies suggest that 3CuHAp coatings could be suitable candidates for biomedical uses such as the development of new antimicrobial agents.
Collapse
Affiliation(s)
- Yassine Benali
- Faculty of Sciences, University de Gafsa, Route de Tozeur, Gafsa 2112, Tunisia;
| | - Daniela Predoi
- National Institute of Materials Physics, Atomistilor Street, No. 405A, 077125 Magurele, Romania; (C.S.C.); (S.L.I.); (C.C.N.); (L.G.)
| | - Krzysztof Rokosz
- Faculty of Electronics and Computer Science, Koszalin University of Technology, Śniadeckich 2, PL 75-453 Koszalin, Poland
| | - Carmen Steluta Ciobanu
- National Institute of Materials Physics, Atomistilor Street, No. 405A, 077125 Magurele, Romania; (C.S.C.); (S.L.I.); (C.C.N.); (L.G.)
| | - Simona Liliana Iconaru
- National Institute of Materials Physics, Atomistilor Street, No. 405A, 077125 Magurele, Romania; (C.S.C.); (S.L.I.); (C.C.N.); (L.G.)
| | - Steinar Raaen
- Department of Physics, Norwegian University of Science and Technology (NTNU), Realfagbygget E3-124 Høgskoleringen 5, NO 7491 Trondheim, Norway;
| | - Catalin Constantin Negrila
- National Institute of Materials Physics, Atomistilor Street, No. 405A, 077125 Magurele, Romania; (C.S.C.); (S.L.I.); (C.C.N.); (L.G.)
| | - Carmen Cimpeanu
- Faculty of Land Reclamation and Environmental Engineering, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd, 011464 Bucharest, Romania;
| | - Roxana Trusca
- National Centre for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania;
| | - Liliana Ghegoiu
- National Institute of Materials Physics, Atomistilor Street, No. 405A, 077125 Magurele, Romania; (C.S.C.); (S.L.I.); (C.C.N.); (L.G.)
| | - Coralia Bleotu
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania;
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 060023 Bucharest, Romania;
- The Academy of Romanian Scientist, 050711 Bucharest, Romania
| | - Ioana Cristina Marinas
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 060023 Bucharest, Romania;
- Department of Microbiology, Faculty of Biology, University of Bucharest, 1-3 Aleea Portocalelor Str., District 5, 060101 Bucharest, Romania
| | - Miruna Stan
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania;
| | - Khaled Boughzala
- Higher Institute of Technological Studies of Ksar Hellal, Ksar-Hellal 5070, Tunisia;
| |
Collapse
|
15
|
Abbas MKG, Rassam A, Karamshahi F, Abunora R, Abouseada M. The Role of AI in Drug Discovery. Chembiochem 2024; 25:e202300816. [PMID: 38735845 DOI: 10.1002/cbic.202300816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/14/2024]
Abstract
The emergence of Artificial Intelligence (AI) in drug discovery marks a pivotal shift in pharmaceutical research, blending sophisticated computational techniques with conventional scientific exploration to break through enduring obstacles. This review paper elucidates the multifaceted applications of AI across various stages of drug development, highlighting significant advancements and methodologies. It delves into AI's instrumental role in drug design, polypharmacology, chemical synthesis, drug repurposing, and the prediction of drug properties such as toxicity, bioactivity, and physicochemical characteristics. Despite AI's promising advancements, the paper also addresses the challenges and limitations encountered in the field, including data quality, generalizability, computational demands, and ethical considerations. By offering a comprehensive overview of AI's role in drug discovery, this paper underscores the technology's potential to significantly enhance drug development, while also acknowledging the hurdles that must be overcome to fully realize its benefits.
Collapse
Affiliation(s)
- M K G Abbas
- Center for Advanced Materials, Qatar University, P.O. Box, 2713, Doha, Qatar
| | - Abrar Rassam
- Secondary Education, Educational Sciences, Qatar University, P.O. Box, 2713, Doha, Qatar
| | - Fatima Karamshahi
- Department of Chemistry and Earth Sciences, Qatar University, P.O. Box, 2713, Doha, Qatar
| | - Rehab Abunora
- Faculty of Medicine, General Medicine and Surgery, Helwan University, Cairo, Egypt
| | - Maha Abouseada
- Department of Chemistry and Earth Sciences, Qatar University, P.O. Box, 2713, Doha, Qatar
| |
Collapse
|
16
|
Sadler RA, Shoveller AK, Shandilya UK, Charchoglyan A, Wagter-Lesperance L, Bridle BW, Mallard BA, Karrow NA. Beyond the Coagulation Cascade: Vitamin K and Its Multifaceted Impact on Human and Domesticated Animal Health. Curr Issues Mol Biol 2024; 46:7001-7031. [PMID: 39057059 PMCID: PMC11276079 DOI: 10.3390/cimb46070418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
Vitamin K (VK) is an essential micronutrient impacting many systems in the body. This lipid-soluble vitamin is found in various plant and animal products and is absorbed via the lymphatic system. This biomolecule's importance to human health includes but is not limited to its promotion of brain, cardiovascular, bone, and immune functions. These biological properties are also necessary for maintaining domesticated animal health. The synergistic impact of both VK and vitamin D (VD) maximizes these health benefits, specifically for the circulatory and skeletal systems. This manuscript reviews VK's properties, molecular structures, nutrikinetics, mechanisms of action, daily requirements, safety in supplemental form, biomarkers used for its detection, and impacts on various organs. The purpose of synthesizing this information is to evaluate the potential uses of VK for the treatment or prevention of diseases.
Collapse
Affiliation(s)
- Rebecka A. Sadler
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.A.S.); (A.K.S.); (U.K.S.)
| | - Anna K. Shoveller
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.A.S.); (A.K.S.); (U.K.S.)
| | - Umesh K. Shandilya
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.A.S.); (A.K.S.); (U.K.S.)
| | - Armen Charchoglyan
- ImmunoCeutica Inc., Cambridge, ON N1T 1N6, Canada; (A.C.); (L.W.-L.); (B.W.B.); (B.A.M.)
- Advanced Analysis Centre, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Lauraine Wagter-Lesperance
- ImmunoCeutica Inc., Cambridge, ON N1T 1N6, Canada; (A.C.); (L.W.-L.); (B.W.B.); (B.A.M.)
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Byram W. Bridle
- ImmunoCeutica Inc., Cambridge, ON N1T 1N6, Canada; (A.C.); (L.W.-L.); (B.W.B.); (B.A.M.)
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Bonnie A. Mallard
- ImmunoCeutica Inc., Cambridge, ON N1T 1N6, Canada; (A.C.); (L.W.-L.); (B.W.B.); (B.A.M.)
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Niel A. Karrow
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.A.S.); (A.K.S.); (U.K.S.)
- ImmunoCeutica Inc., Cambridge, ON N1T 1N6, Canada; (A.C.); (L.W.-L.); (B.W.B.); (B.A.M.)
| |
Collapse
|
17
|
Aouadi A, Hamada Saud D, Rebiai A, Achouri A, Benabdesselam S, Mohamed Abd El-Mordy F, Pohl P, Ahmad SF, Attia SM, Abulkhair HS, Ararem A, Messaoudi M. Introducing the antibacterial and photocatalytic degradation potentials of biosynthesized chitosan, chitosan-ZnO, and chitosan-ZnO/PVP nanoparticles. Sci Rep 2024; 14:14753. [PMID: 38926522 PMCID: PMC11208610 DOI: 10.1038/s41598-024-65579-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024] Open
Abstract
The development of nanomaterials has been speedily established in recent years, yet nanoparticles synthesized by traditional methods suffer unacceptable toxicity and the sustainability of the procedure for synthesizing such nanoparticles is inadequate. Consequently, green biosynthesis, which employs biopolymers, is gaining attraction as an environmentally sound alternative to less sustainable approaches. Chitosan-encapsulated nanoparticles exhibit exceptional antibacterial properties, offering a wide range of uses. Chitosan, obtained from shrimp shells, aided in the environmentally friendly synthesis of high-purity zinc oxide nanoparticles (ZnO NPs) with desirable features such as the extraction yield (41%), the deacetylation (88%), and the crystallinity index (74.54%). The particle size of ZnO NPs was 12 nm, while that of chitosan-ZnO NPs was 21 nm, and the bandgap energies of these nanomaterials were 3.98 and 3.48, respectively. The strong antibacterial action was demonstrated by ZnO NPs, chitosan-ZnO NPs, and chitosan-ZnO/PVP, particularly against Gram-positive bacteria, making them appropriate for therapeutic use. The photocatalytic degradation abilities were also assessed for all nanoparticles. At a concentration of 6 × 10-5 M, chitosan removed 90.5% of the methylene blue (MB) dye, ZnO NPs removed 97.4%, chitosan-coated ZnO NPs removed 99.6%, while chitosan-ZnO/PVP removed 100%. In the case of toluidine blue (TB), at a concentration of 4 × 10-3 M, the respective efficiencies were 96.8%, 96.8%, 99.5%, and 100%, respectively. Evaluation of radical scavenger activity revealed increased scavenging of ABTS and DPPH radicals by chitosan-ZnO/PVP compared to individual zinc oxide or chitosan-ZnO, where the IC50 results were 0.059, 0.092, 0.079 mg/mL, respectively, in the ABTS test, and 0.095, 0.083, 0.061, and 0.064 mg/mL in the DPPH test, respectively. Moreover, in silico toxicity studies were conducted to predict the organ-specific toxicity through ProTox II software. The obtained results suggest the probable safety and the absence of organ-specific toxicity with all the tested samples.
Collapse
Affiliation(s)
- Abdelatif Aouadi
- Process Engineering Laboratory, Applied Sciences Faculty, Kasdi Merbah University, 30000, Ouargla, Algeria
- Laboratory of Applied Chemistry and Environment, Faculty of Exact Sciences, University of Hamma Lakhdar El-Oued, B.P.789, 39000, El-Oued, Algeria
| | - Djamila Hamada Saud
- Process Engineering Laboratory, Applied Sciences Faculty, Kasdi Merbah University, 30000, Ouargla, Algeria
| | - Abdelkrim Rebiai
- Laboratory of Applied Chemistry and Environment, Faculty of Exact Sciences, University of Hamma Lakhdar El-Oued, B.P.789, 39000, El-Oued, Algeria
| | - Abdelhak Achouri
- Laboratory of Applied Chemistry and Environment, Faculty of Exact Sciences, University of Hamma Lakhdar El-Oued, B.P.789, 39000, El-Oued, Algeria
- Water, Environment and Sustainable Development Laboratory (2E2D), Faculty of Technology, University of Blida 1, Route Soumâa, BP 270, Blida, Algeria
| | - Soulef Benabdesselam
- Laboratory of Water and Environmental Engineering in the Saharan Environment, Process Engineering Department, Faculty of Applied Sciences, Kasdi Merbah-Ouargla University, Ouargla, Algeria
| | - Fatma Mohamed Abd El-Mordy
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, 11754, Egypt
| | - Pawel Pohl
- Department of Analytical Chemistry and Chemical Metallurgy, Faculty of Chemistry, University of Science and Technology, Wyspianskiego 27, 50-370, Wrocław, Poland
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Hamada S Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University-Egypt, International Coastal Road, New Damietta, 34518, Egypt
| | - Abderrahmane Ararem
- Nuclear Research Centre of Birine, P.O. Box 180, 17200, Ain Oussera, Djelfa, Algeria
| | - Mohammed Messaoudi
- Nuclear Research Centre of Birine, P.O. Box 180, 17200, Ain Oussera, Djelfa, Algeria.
| |
Collapse
|
18
|
Bilski K, Żeber-Lubecka N, Kulecka M, Dąbrowska M, Bałabas A, Ostrowski J, Dobruch A, Dobruch J. Microbiome Sex-Related Diversity in Non-Muscle-Invasive Urothelial Bladder Cancer. Curr Issues Mol Biol 2024; 46:3595-3609. [PMID: 38666955 PMCID: PMC11048804 DOI: 10.3390/cimb46040225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Sex-specific discrepancies in bladder cancer (BCa) are reported, and new studies imply that microbiome may partially explain the diversity. We aim to provide characterization of the bladder microbiome in both sexes diagnosed with non-muscle-invasive BCa with specific insight into cancer grade. In our study, 16S rRNA next-generation sequencing was performed on midstream urine, bladder tumor sample, and healthy-appearing bladder mucosa. Bacterial DNA was isolated using QIAamp Viral RNA Mini Kit. Metagenomic analysis was performed using hypervariable fragments of the 16S rRNA gene on Ion Torrent Personal Genome Machine platform. Of 41 sample triplets, 2153 taxa were discovered: 1739 in tumor samples, 1801 in healthy-appearing bladder mucosa and 1370 in midstream urine. Women were found to have smaller taxa richness in Chao1 index than men (p = 0.03). In comparison to low-grade tumors, patients with high-grade lesions had lower bacterial diversity and richness in urine. Significant differences between sexes in relative abundance of communities at family level were only observed in high-grade tumors.
Collapse
Affiliation(s)
- Konrad Bilski
- Department of Urology, Centre of Postgraduate Medical Education, Independent Public Hospital of Prof. W. Orlowski, 00-416 Warsaw, Poland;
| | - Natalia Żeber-Lubecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre for Postgraduate Medical Education, 02-781 Warsaw, Poland; (N.Ż.-L.); (M.K.); (J.O.)
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (M.D.); (A.B.)
| | - Maria Kulecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre for Postgraduate Medical Education, 02-781 Warsaw, Poland; (N.Ż.-L.); (M.K.); (J.O.)
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (M.D.); (A.B.)
| | - Michalina Dąbrowska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (M.D.); (A.B.)
| | - Aneta Bałabas
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (M.D.); (A.B.)
| | - Jerzy Ostrowski
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre for Postgraduate Medical Education, 02-781 Warsaw, Poland; (N.Ż.-L.); (M.K.); (J.O.)
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (M.D.); (A.B.)
| | | | - Jakub Dobruch
- Department of Urology, Centre of Postgraduate Medical Education, Independent Public Hospital of Prof. W. Orlowski, 00-416 Warsaw, Poland;
| |
Collapse
|
19
|
Singh AV, Shelar A, Rai M, Laux P, Thakur M, Dosnkyi I, Santomauro G, Singh AK, Luch A, Patil R, Bill J. Harmonization Risks and Rewards: Nano-QSAR for Agricultural Nanomaterials. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2835-2852. [PMID: 38315814 DOI: 10.1021/acs.jafc.3c06466] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
This comprehensive review explores the emerging landscape of Nano-QSAR (quantitative structure-activity relationship) for assessing the risk and potency of nanomaterials in agricultural settings. The paper begins with an introduction to Nano-QSAR, providing background and rationale, and explicitly states the hypotheses guiding the review. The study navigates through various dimensions of nanomaterial applications in agriculture, encompassing their diverse properties, types, and associated challenges. Delving into the principles of QSAR in nanotoxicology, this article elucidates its application in evaluating the safety of nanomaterials, while addressing the unique limitations posed by these materials. The narrative then transitions to the progression of Nano-QSAR in the context of agricultural nanomaterials, exemplified by insightful case studies that highlight both the strengths and the limitations inherent in this methodology. Emerging prospects and hurdles tied to Nano-QSAR in agriculture are rigorously examined, casting light on important pathways forward, existing constraints, and avenues for research enhancement. Culminating in a synthesis of key insights, the review underscores the significance of Nano-QSAR in shaping the future of nanoenabled agriculture. It provides strategic guidance to steer forthcoming research endeavors in this dynamic field.
Collapse
Affiliation(s)
- Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute of Risk Assessment (BfR), Maxdohrnstrasse 8-10, 10589 Berlin, Germany
| | - Amruta Shelar
- Department of Technology, Savitribai Phule Pune University, Pune 411007, India
| | - Mansi Rai
- Department of Microbiology, Central University of Rajasthan NH-8, Bandar Sindri, Dist-Ajmer-305817, Rajasthan, India
| | - Peter Laux
- Department of Chemical and Product Safety, German Federal Institute of Risk Assessment (BfR), Maxdohrnstrasse 8-10, 10589 Berlin, Germany
| | - Manali Thakur
- Uniklinik Köln, Kerpener Strasse 62, 50937 Köln Germany
| | - Ievgen Dosnkyi
- Institute of Chemistry and Biochemistry Department of Organic ChemistryFreie Universität Berlin Takustr. 3 14195 Berlin, Germany
| | - Giulia Santomauro
- Institute for Materials Science, Department of Bioinspired Materials, University of Stuttgart, 70569, Stuttgart, Germany
| | - Alok Kumar Singh
- Department of Plant Molecular Biology & Genetic Engineering, ANDUA&T, Ayodhya 224229, Uttar Pradesh, India
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute of Risk Assessment (BfR), Maxdohrnstrasse 8-10, 10589 Berlin, Germany
| | - Rajendra Patil
- Department of Technology, Savitribai Phule Pune University, Pune 411007, India
| | - Joachim Bill
- Institute for Materials Science, Department of Bioinspired Materials, University of Stuttgart, 70569, Stuttgart, Germany
| |
Collapse
|
20
|
Abou Hajal A, Al Meslamani AZ. Insights into artificial intelligence utilisation in drug discovery. J Med Econ 2024; 27:304-308. [PMID: 38385328 DOI: 10.1080/13696998.2024.2315864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 02/05/2024] [Indexed: 02/23/2024]
Affiliation(s)
- Abdallah Abou Hajal
- College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Ahmad Z Al Meslamani
- College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, United Arab Emirates
| |
Collapse
|