1
|
Kunte N, Westerfield M, McGraw E, Choi J, Akinsipe T, Whitaker SK, Brannen A, Panizzi P, Tomich JM, Avila LA. Evaluation of transfection efficacy, biodistribution, and toxicity of branched amphiphilic peptide capsules (BAPCs) associated with mRNA. Biomater Sci 2022; 10:6980-6991. [PMID: 36254388 DOI: 10.1039/d2bm01314b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nanoparticles (NPs) have been shown to be a suitable mRNA delivery platform by conferring protection against ribonucleases and facilitating cellular uptake. Several NPs have succeeded in delivering mRNA intranasally, intratracheally, and intramuscularly in preclinical settings. However, intravenous mRNA delivery has been less explored. Only a few NPs have been tested for systemic delivery of mRNA, many of which are formulated with polyethylene glycol (PEG). The incorporation of PEG presents some tradeoffs that must be carefully considered when designing a systemic delivery model. For example, while the addition of PEG may prolong circulation time by preventing early clearance by the mononuclear phagocytic system (MPS), it has also been reported that treating patients with PEGylated drugs can result in hypersensitivity reactions due to anti-PEG antibodies. Thus, it is desirable to have alternative PEG-free delivery methods for mRNA to avoid these adverse effects while preserving the beneficial effects. Our research group developed BAPCs (branched amphiphilic peptide capsules), a peptide-based nanoparticle that resists disruption by chaotropes, proteases, and elevated temperature, thus displaying significant stability and shelf-life. In this study, we demonstrated that similarly to PEG, mRNA shields the BAPC cationic surface to avoid early clearance by the MPS. Multispectral optoacoustic tomography (MSOT) and fluorescence reflectance imaging were imaging techniques used to analyze biodistribution within major MPS organs. Analysis of pro-inflammatory cytokine expression showed that BAPC-mRNA complexes do not cause chronic inflammation. Additionally, BAPCs enhance intracellular delivery of mRNA with negligible cytotoxicity or oxidative stress. These results might pave the way for future therapeutic applications of BAPCs as a delivery platform for systemic mRNA delivery.
Collapse
Affiliation(s)
- Nitish Kunte
- Department of Biological Sciences, Auburn University, Auburn, AL- 36849, USA.
| | - Matthew Westerfield
- Department of Biological Sciences, Auburn University, Auburn, AL- 36849, USA.
| | - Erin McGraw
- Department of Biological Sciences, Auburn University, Auburn, AL- 36849, USA.
| | - Jiyeong Choi
- School of Integrative Plant Science, Cornell University, NY- 14853, USA
| | - Tosin Akinsipe
- Department of Biological Sciences, Auburn University, Auburn, AL- 36849, USA.
| | - Susan K Whitaker
- Department of Biochemistry and Molecular Biophysics, 141 Chalmers Hall, Kansas State University, Manhattan, Kansas- 66506, USA
| | | | - Peter Panizzi
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - John M Tomich
- School of Integrative Plant Science, Cornell University, NY- 14853, USA
| | - L Adriana Avila
- Department of Biological Sciences, Auburn University, Auburn, AL- 36849, USA.
| |
Collapse
|
2
|
Design and Evaluation of Autophagy-Inducing Particles for the Treatment of Abnormal Lipid Accumulation. Pharmaceutics 2022; 14:pharmaceutics14071379. [PMID: 35890275 PMCID: PMC9318411 DOI: 10.3390/pharmaceutics14071379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 12/10/2022] Open
Abstract
Autophagy is a fundamental housekeeping process by which cells degrade their components to maintain homeostasis. Defects in autophagy have been associated with aging, neurodegeneration and metabolic diseases. Non-alcoholic fatty liver diseases (NAFLDs) are characterized by hepatic fat accumulation with or without inflammation. No treatment for NAFLDs is currently available, but autophagy induction has been proposed as a promising therapeutic strategy. Here, we aimed to design autophagy-inducing particles, using the autophagy-inducing peptide (Tat-Beclin), and achieve liver targeting in vivo, taking NAFLD as a model disease. Polylactic acid (PLA) particles were prepared by nanoprecipitation without any surfactant, followed by surface peptide adsorption. The ability of Tat-Beclin nanoparticles (NP T-B) to modulate autophagy and to decrease intracellular lipid was evaluated in vitro by LC3 immunoblot and using a cellular model of steatosis, respectively. The intracellular localization of particles was evaluated by transmission electron microscopy (TEM). Finally, biodistribution of fluorescent NP T-B was evaluated in vivo using tomography in normal and obese mice. The results showed that NP T-B induce autophagy with a long-lasting and enhanced effect compared to the soluble peptide, and at a ten times lower dose. Intracellular lipid also decreased in a cellular model of NAFLD after treatment with T-B and NP T-B under the same dose conditions. Ultrastructural studies revealed that NP T-B are internalized and located in endosomal, endolysosomal and autolysosomal compartments, while in healthy and obese mice, NP T-B could accumulate for several days in the liver. Given the beneficial effects of autophagy-inducing particles in vitro, and their capacity to target the liver of normal and obese mice, NP T-B could be a promising therapeutic tool for NAFLDs, warranting further in vivo investigation.
Collapse
|
3
|
Quantitative, real-time in vivo tracking of magnetic nanoparticles using multispectral optoacoustic tomography (MSOT) imaging. J Pharm Biomed Anal 2019; 178:112951. [PMID: 31718983 DOI: 10.1016/j.jpba.2019.112951] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 01/10/2023]
Abstract
The goal of this work was to demonstrate real-time tracking of in vivo nanoparticle concentrations utilizing multispectral optoacoustic tomography (MSOT). Combining the high contrast of optical imaging with the high resolution of ultrasound imaging, MSOT was utilized for non-invasive, real-time tomographic imaging of particles in mice and the results calibrated against analysis of tissue samples with electron paramagnetic resonance (EPR) spectroscopy. In a longitudinal study, the pharmacokinetics (pK) and biodistribution of Cyanine-7 (Cy7) conjugated superparamagnetic iron oxide nanoparticles (Cy7-SPIONs) were monitored after intravenous administration into the tail vein of healthy B6-albino mice. Concentrations of Cy7-SPIONs determined by MSOT image analysis of the liver, spleen, and kidneys showed excellent agreement with EPR data obtained on tissue samples ‒ validating MSOT's ability to quantify SPION concentrations with high spatial resolution. Both methods of analysis indicated highest accumulation of Cy7-SPIONs in the liver followed by the spleen, and negligible accumulation in the kidneys; SPION accumulation in organs with high concentrations of mononuclear phagocytic system macrophages is typical. Additionally, our study observed that particles modified with a 2 kDa polyethylene glycol (PEG) demonstrated significantly prolonged half-life in circulation compared to particles with 5 kDa PEG. The study demonstrates the potential of Cy7-SPIONs and MSOT for quantitative localization of magnetic nanoparticles in vivo, which can potentially be used to study their toxicity, quantify the efficacy of targeted drug delivery (e.g. within tumors), and their use as a multi-modal diagnostic agent to monitor disease progression.
Collapse
|
4
|
Abstract
The fields of biomedical nanotechnology and theranostics have enjoyed exponential growth in recent years. The "Molecular Imaging in Nanotechnology and Theranostics" (MINT) Interest Group of the World Molecular Imaging Society (WMIS) was created in order to provide a more organized and focused forum on these topics within the WMIS and at the World Molecular Imaging Conference (WMIC). The interest group was founded in 2015 and was officially inaugurated during the 2016 WMIC. The overarching goal of MINT is to bring together the many scientists who work on molecular imaging approaches using nanotechnology and those that work on theranostic agents. MINT therefore represents scientists, labs, and institutes that are very diverse in their scientific backgrounds and areas of expertise, reflecting the wide array of materials and approaches that drive these fields. In this short review, we attempt to provide a condensed overview over some of the key areas covered by MINT. Given the breadth of the fields and the given space constraints, we have limited the coverage to the realm of nanoconstructs, although theranostics is certainly not limited to this domain. We will also focus only on the most recent developments of the last 3-5 years, in order to provide the reader with an intuition of what is "in the pipeline" and has potential for clinical translation in the near future.
Collapse
Affiliation(s)
- Chrysafis Andreou
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Suchetan Pal
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Lara Rotter
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Jiang Yang
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Moritz F Kircher
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Center for Molecular Imaging and Nanotechnology (CMINT), Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Department of Radiology, Weill Cornell Medical College, New York, NY, 10065, USA.
| |
Collapse
|
5
|
Deán-Ben XL, Gottschalk S, Mc Larney B, Shoham S, Razansky D. Advanced optoacoustic methods for multiscale imaging of in vivo dynamics. Chem Soc Rev 2017; 46:2158-2198. [PMID: 28276544 PMCID: PMC5460636 DOI: 10.1039/c6cs00765a] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Visualization of dynamic functional and molecular events in an unperturbed in vivo environment is essential for understanding the complex biology of living organisms and of disease state and progression. To this end, optoacoustic (photoacoustic) sensing and imaging have demonstrated the exclusive capacity to maintain excellent optical contrast and high resolution in deep-tissue observations, far beyond the penetration limits of modern microscopy. Yet, the time domain is paramount for the observation and study of complex biological interactions that may be invisible in single snapshots of living systems. This review focuses on the recent advances in optoacoustic imaging assisted by smart molecular labeling and dynamic contrast enhancement approaches that enable new types of multiscale dynamic observations not attainable with other bio-imaging modalities. A wealth of investigated new research topics and clinical applications is further discussed, including imaging of large-scale brain activity patterns, volumetric visualization of moving organs and contrast agent kinetics, molecular imaging using targeted and genetically expressed labels, as well as three-dimensional handheld diagnostics of human subjects.
Collapse
Affiliation(s)
- X L Deán-Ben
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Center Munich, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.
| | - S Gottschalk
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Center Munich, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.
| | - B Mc Larney
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Center Munich, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany. and Faculty of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - S Shoham
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | - D Razansky
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Center Munich, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany. and Faculty of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| |
Collapse
|
6
|
Anani T, Panizzi P, David AE. Nanoparticle-based probes to enable noninvasive imaging of proteolytic activity for cancer diagnosis. Nanomedicine (Lond) 2016; 11:2007-22. [PMID: 27465386 PMCID: PMC5941711 DOI: 10.2217/nnm-2016-0027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/23/2016] [Indexed: 12/20/2022] Open
Abstract
Proteases play a key role in tumor biology, with high expression levels often correlating with poor prognosis for cancer patients - making them excellent disease markers for tumor diagnosis. Despite their significance, quantifying proteolytic activity in vivo remains a challenge. Nanoparticles, with their ability to serve as scaffolds having unique chemical, optical and magnetic properties, offer the promise of merging diagnostic medicine with material engineering. Such nanoparticles can interact preferentially with proteases enriched in tumors, providing the ability to assess disease state in a noninvasive and spatiotemporal manner. We review recent advances in the development of nanoparticles for imaging and quantification of proteolytic activity in tumor models, and prognosticate future advancements.
Collapse
Affiliation(s)
- Tareq Anani
- Department of Chemical Engineering, Samuel Ginn College of Engineering, 212 Ross Hall, Auburn University, Auburn, AL 36849, USA
| | - Peter Panizzi
- Department of Drug Discovery & Development, Harrison School of Pharmacy, 4306 Walker Building, Auburn University, Auburn, AL 36849, USA
| | - Allan E. David
- Department of Chemical Engineering, Samuel Ginn College of Engineering, 212 Ross Hall, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
7
|
Gartziandia O, Egusquiaguirre SP, Bianco J, Pedraz JL, Igartua M, Hernandez RM, Préat V, Beloqui A. Nanoparticle transport across in vitro olfactory cell monolayers. Int J Pharm 2015; 499:81-89. [PMID: 26721725 DOI: 10.1016/j.ijpharm.2015.12.046] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 12/16/2015] [Accepted: 12/16/2015] [Indexed: 11/29/2022]
Abstract
Drug access to the CNS is hindered by the presence of the blood-brain barrier (BBB), and the intranasal route has risen as a non-invasive route to transport drugs directly from nose-to-brain avoiding the BBB. In addition, nanoparticles (NPs) have been described as efficient shuttles for direct nose-to-brain delivery of drugs. Nevertheless, there are few studies describing NP nose-to-brain transport. Thus, the aim of this work was (i) to develop, characterize and validate in vitro olfactory cell monolayers and (ii) to study the transport of polymeric- and lipid-based NPs across these monolayers in order to estimate NP access into the brain using cell penetrating peptide (CPPs) moieties: Tat and Penetratin (Pen). All tested poly(d,l-lactide-co-glycolide) (PLGA) and nanostructured lipid carrier (NLC) formulations were stable in transport buffer and biocompatible with the olfactory mucosa cells. Nevertheless, 0.7% of PLGA NPs was able to cross the olfactory cell monolayers, whereas 8% and 22% of NLC and chitosan-coated NLC (CS-NLC) were transported across them, respectively. Moreover, the incorporation of CPPs to NLC surface significantly increased their transport, reaching 46% of transported NPs. We conclude that CPP-CS-NLC represent a promising brain shuttle via nose-to-brain for drug delivery.
Collapse
Affiliation(s)
- Oihane Gartziandia
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz 01006, Spain; Université Catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Brussels, Belgium
| | - Susana Patricia Egusquiaguirre
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz 01006, Spain
| | - John Bianco
- Université Catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Brussels, Belgium; Integrated Center for Cell Therapy and Regenerative Medicine, International Clinical Research Center (FNUSA-ICRC), St. Anne's University Hospital Brno, Pekařská 53, Brno 656 91, Czech Republic
| | - José Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz 01006, Spain
| | - Manoli Igartua
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz 01006, Spain
| | - Rosa Maria Hernandez
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz 01006, Spain
| | - Véronique Préat
- Université Catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Brussels, Belgium.
| | - Ana Beloqui
- Université Catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Brussels, Belgium.
| |
Collapse
|