1
|
Stankovic I, Notaras M, Wolujewicz P, Lu T, Lis R, Ross ME, Colak D. Schizophrenia endothelial cells exhibit higher permeability and altered angiogenesis patterns in patient-derived organoids. Transl Psychiatry 2024; 14:53. [PMID: 38263175 PMCID: PMC10806043 DOI: 10.1038/s41398-024-02740-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/29/2023] [Accepted: 01/05/2024] [Indexed: 01/25/2024] Open
Abstract
Schizophrenia (SCZ) is a complex neurodevelopmental disorder characterized by the manifestation of psychiatric symptoms in early adulthood. While many research avenues into the origins of SCZ during brain development have been explored, the contribution of endothelial/vascular dysfunction to the disease remains largely elusive. To model the neuropathology of SCZ during early critical periods of brain development, we utilized patient-derived induced pluripotent stem cells (iPSCs) to generate 3D cerebral organoids and define cell-specific signatures of disease. Single-cell RNA sequencing revealed that while SCZ organoids were similar in their macromolecular diversity to organoids generated from healthy controls (CTRL), SCZ organoids exhibited a higher percentage of endothelial cells when normalized to total cell numbers. Additionally, when compared to CTRL, differential gene expression analysis revealed a significant enrichment in genes that function in vessel formation, vascular regulation, and inflammatory response in SCZ endothelial cells. In line with these findings, data from 23 donors demonstrated that PECAM1+ microvascular vessel-like structures were increased in length and number in SCZ organoids in comparison to CTRL organoids. Furthermore, we report that patient-derived endothelial cells displayed higher paracellular permeability, implicating elevated vascular activity. Collectively, our data identified altered gene expression patterns, vessel-like structural changes, and enhanced permeability of endothelial cells in patient-derived models of SCZ. Hence, brain microvascular cells could play a role in the etiology of SCZ by modulating the permeability of the developing blood brain barrier (BBB).
Collapse
Affiliation(s)
- Isidora Stankovic
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Michael Notaras
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Paul Wolujewicz
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Tyler Lu
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Raphael Lis
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY, USA
| | - M Elizabeth Ross
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Dilek Colak
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Gale and Ira Drukier Institute for Children's Health, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
2
|
Shiau C, Su J, Guo JA, Hong TS, Wo JY, Jagadeesh KA, Hwang WL. Treatment-associated remodeling of the pancreatic cancer endothelium at single-cell resolution. Front Oncol 2022; 12:929950. [PMID: 36185212 PMCID: PMC9524152 DOI: 10.3389/fonc.2022.929950] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/19/2022] [Indexed: 11/14/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most treatment refractory and lethal malignancies. The diversity of endothelial cell (EC) lineages in the tumor microenvironment (TME) impacts the efficacy of antineoplastic therapies, which in turn remodel EC states and distributions. Here, we present a single-cell resolution framework of diverse EC lineages in the PDAC TME in the context of neoadjuvant chemotherapy, radiotherapy, and losartan. We analyzed a custom single-nucleus RNA-seq dataset derived from 37 primary PDAC specimens (18 untreated, 14 neoadjuvant FOLFIRINOX + chemoradiotherapy, 5 neoadjuvant FOLFIRINOX + chemoradiotherapy + losartan). A single-nucleus transcriptome analysis of 15,185 EC profiles revealed two state programs (ribosomal, cycling), four lineage programs (capillary, arterial, venous, lymphatic), and one program that did not overlap significantly with prior signatures but was enriched in pathways involved in vasculogenesis, stem-like state, response to wounding and hypoxia, and endothelial-to-mesenchymal transition (reactive EndMT). A bulk transcriptome analysis of two independent cohorts (n = 269 patients) revealed that the lymphatic and reactive EndMT lineage programs were significantly associated with poor clinical outcomes. While losartan and proton therapy were associated with reduced lymphatic ECs, these therapies also correlated with an increase in reactive EndMT. Thus, the development and inclusion of EndMT-inhibiting drugs (e.g., nintedanib) to a neoadjuvant chemoradiotherapy regimen featuring losartan and/or proton therapy may be most effective in depleting both lymphatic and reactive EndMT populations and potentially improving patient outcomes.
Collapse
Affiliation(s)
- Carina Shiau
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Jennifer Su
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Jimmy A. Guo
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
- Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA, United States
| | - Theodore S. Hong
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Jennifer Y. Wo
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Karthik A. Jagadeesh
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
- *Correspondence: William L. Hwang, ; Karthik A. Jagadeesh,
| | - William L. Hwang
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
- *Correspondence: William L. Hwang, ; Karthik A. Jagadeesh,
| |
Collapse
|
3
|
Nagaraja TN, Elmghirbi R, Brown SL, Rey JA, Schultz L, Mukherjee A, Cabral G, Panda S, Lee IY, Sarntinoranont M, Keenan KA, Knight RA, Ewing JR. Imaging acute effects of bevacizumab on tumor vascular kinetics in a preclinical orthotopic model of U251 glioma. NMR IN BIOMEDICINE 2021; 34:e4516. [PMID: 33817893 PMCID: PMC8978145 DOI: 10.1002/nbm.4516] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 05/05/2023]
Abstract
The effect of a human vascular endothelial growth factor antibody on the vasculature of human tumor grown in rat brain was studied. Using dynamic contrast-enhanced magnetic resonance imaging, the effects of intravenous bevacizumab (Avastin; 10 mg/kg) were examined before and at postadministration times of 1, 2, 4, 8, 12 and 24 h (N = 26; 4-5 per time point) in a rat model of orthotopic, U251 glioblastoma (GBM). The commonly estimated vascular parameters for an MR contrast agent were: (i) plasma distribution volume (vp ), (ii) forward volumetric transfer constant (Ktrans ) and (iii) reverse transfer constant (kep ). In addition, extracellular distribution volume (VD ) was estimated in the tumor (VD-tumor ), tumor edge (VD-edge ) and the mostly normal tumor periphery (VD-peri ), along with tumor blood flow (TBF), peri-tumoral hydraulic conductivity (K) and interstitial flow (Flux) and tumor interstitial fluid pressure (TIFP). Studied as % changes from baseline, the 2-h post-treatment time point began showing significant decreases in vp , VD-tumor, VD-edge and VD-peri , as well as K, with these changes persisting at 4 and 8 h in vp , K, VD-tumor, -edge and -peri (t-tests; p < 0.05-0.01). Decreases in Ktrans were observed at the 2- and 4-h time points (p < 0.05), while interstitial volume fraction (ve ; = Ktrans /kep ) showed a significant decrease only at the 2-h time point (p < 0.05). Sustained decreases in Flux were observed from 2 to 24 h (p < 0.01) while TBF and TIFP showed delayed responses, increases in the former at 12 and 24 h and a decrease in the latter only at 12 h. These imaging biomarkers of tumor vascular kinetics describe the short-term temporal changes in physical spaces and fluid flows in a model of GBM after Avastin administration.
Collapse
Affiliation(s)
| | - Rasha Elmghirbi
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
- Department of Physics, Oakland University, Rochester, Michigan, USA
| | - Stephen L. Brown
- Department of Radiation Oncology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Julian A. Rey
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida, USA
| | - Lonni Schultz
- Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan, USA
| | - Abir Mukherjee
- Department of Pathology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Glauber Cabral
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Swayamprava Panda
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Ian Y. Lee
- Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan, USA
| | - Malisa Sarntinoranont
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida, USA
| | - Kelly A. Keenan
- Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan, USA
| | - Robert A. Knight
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
- Department of Physics, Oakland University, Rochester, Michigan, USA
| | - James R. Ewing
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
- Department of Physics, Oakland University, Rochester, Michigan, USA
- Department of Neurology, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
4
|
Grazziotin-Soares D, Lotz JP. Un lien entre normalisation de l’angiogenèse et stimulation de l’immunité antitumorale. ONCOLOGIE 2017. [DOI: 10.1007/s10269-017-2732-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Malik P, Phipps C, Edginton A, Blay J. Pharmacokinetic Considerations for Antibody-Drug Conjugates against Cancer. Pharm Res 2017; 34:2579-2595. [PMID: 28924691 DOI: 10.1007/s11095-017-2259-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/09/2017] [Indexed: 12/26/2022]
Abstract
Antibody-drug conjugates (ADCs) are ushering in the next era of targeted therapy against cancer. An ADC for cancer therapy consists of a potent cytotoxic payload that is attached to a tumour-targeted antibody by a chemical linker, usually with an average drug-to-antibody ratio (DAR) of 3.5-4. The theory is to deliver potent cytotoxic payloads directly to tumour cells while sparing healthy cells. However, practical application has proven to be more difficult. At present there are only two ADCs approved for clinical use. Nevertheless, in the last decade there has been an explosion of options for ADC engineering to optimize target selection, Fc receptor interactions, linker, payload and more. Evaluation of these strategies requires an understanding of the mechanistic underpinnings of ADC pharmacokinetics. Development of ADCs for use in cancer further requires an understanding of tumour properties and kinetics within the tumour environment, and how the presence of cancer as a disease will impact distribution and elimination. Key pharmacokinetic considerations for the successful design and clinical application of ADCs in oncology are explored in this review, with a focus on the mechanistic determinants of distribution and elimination.
Collapse
Affiliation(s)
- Paul Malik
- School of Pharmacy, University of Waterloo, 10A Victoria St South, Kitchener, Ontario, N2G 1C5, Canada
| | - Colin Phipps
- School of Pharmacy, University of Waterloo, 10A Victoria St South, Kitchener, Ontario, N2G 1C5, Canada.,DMPK & Translational Modeling, Abbvie Inc., North Chicago, Illinois, 60064, USA
| | - Andrea Edginton
- School of Pharmacy, University of Waterloo, 10A Victoria St South, Kitchener, Ontario, N2G 1C5, Canada.
| | - Jonathan Blay
- School of Pharmacy, University of Waterloo, 10A Victoria St South, Kitchener, Ontario, N2G 1C5, Canada
| |
Collapse
|
6
|
Multispectral fluorescence ultramicroscopy: three-dimensional visualization and automatic quantification of tumor morphology, drug penetration, and antiangiogenic treatment response. Neoplasia 2014; 16:1-13. [PMID: 24563615 DOI: 10.1593/neo.131848] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/02/2013] [Accepted: 12/19/2013] [Indexed: 01/14/2023] Open
Abstract
Classic histology still represents the gold standard in tumor tissue analytics. However, two-dimensional analysis of single tissue slides does not provide a representative overview of the inhomogeneous tumor physiology, and a detailed analysis of complex three-dimensional structures is not feasible with this technique. To overcome this problem, we applied multispectral fluorescence ultramicroscopy (UM) to the field of tumor analysis. Optical sectioning of cleared tumor specimen provides the possibility to three-dimensionally acquire relevant tumor parameters on a cellular resolution. To analyze the virtual UM tumor data sets, we created a novel set of algorithms enabling the fully automatic segmentation and quantification of multiple tumor parameters. This new postmortem imaging technique was applied to determine the therapeutic treatment effect of bevacizumab on the vessel architecture of orthotopic KPL-4 breast cancer xenografts at different time points. A significant reduction of the vessel volume, number of vessel segments, and branching points in the tumor periphery was already detectable 1 day after initiation of treatment. These parameters remained virtually unchanged in the center of the tumor. Furthermore, bevacizumab-induced vessel normalization and reduction in vascular permeability diminished the penetration behavior of trastuzumab-Alexa 750 into tumor tissue. Our results demonstrated that this newimaging method enables the three-dimensional visualization and fully automatic quantification of multiple tumor parameters and drug penetration on a cellular level. Therefore,UM is a valuable tool for cancer research and drug development. It bridges the gap between common macroscopic and microscopic imaging modalities and opens up new three-dimensional (3D) insights in tumor biology.
Collapse
|
7
|
Recondo GJ, Díaz-Cantón E, de la Vega M, Greco M, Recondo GS, Valsecchi ME. Advances and new perspectives in the treatment of metastatic colon cancer. World J Gastrointest Oncol 2014; 6:211-24. [PMID: 25024813 PMCID: PMC4092338 DOI: 10.4251/wjgo.v6.i7.211] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 03/04/2014] [Accepted: 05/29/2014] [Indexed: 02/05/2023] Open
Abstract
During the last decade we have witnessed an unprecedented outburst of new treatment approaches for the management of metastatic colon cancer. Anti-angiogenic drugs, epidermal growth factor receptor blockers and multi-kinase inhibitors have all resulted in small but consistent improvement in clinical outcomes. However, this progress has paradoxically leaded us into new challenges. In many cases the clinical development was done in parallel and the lack of head-to-head comparison evolved into circumstances where several valid new "standards of care" are available. Even though desirable in essence, the availability of many options as well as different possible combinations frequently leaves the busy clinician in the difficult situation of having to choose between one or the other, sometimes without solid evidence to support each decision. In addition, progress never stops and new agents are continuously tested. For these reason this review will try to summarize all the clinical trials that constitute the theoretical framework that support our daily practice but will also procure the reader with rational answers to common clinical dilemmas by critically appraising the current literature. Lastly, we will provide with a compilation of promising new agents that may soon become our next line of defense against this deadly disease.
Collapse
|
8
|
Lee JA, Biel NM, Kozikowski RT, Siemann DW, Sorg BS. In vivo spectral and fluorescence microscopy comparison of microvascular function after treatment with OXi4503, Sunitinib and their combination in Caki-2 tumors. BIOMEDICAL OPTICS EXPRESS 2014; 5:1965-79. [PMID: 24940553 PMCID: PMC4052922 DOI: 10.1364/boe.5.001965] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 05/16/2014] [Accepted: 05/16/2014] [Indexed: 05/16/2023]
Abstract
Vascular targeting agents on their own have been shown to be insufficient for complete treatment of solid tumors, emphasizing the importance of studying the vascular effects of these drugs for their use with conventional therapies in the clinic. First-pass fluorescence imaging combined with hyperspectral imaging of hemoglobin saturation of microvessels in the murine dorsal window chamber model provides an easily implementable, low cost method to analyze tumor vascular response to these agents in real-time. In this study, the authors utilized these methods to spectroscopically demonstrate distinct vessel structure, blood flow and oxygenation changes in human Caki-2 renal cell carcinoma following treatment with OXi4503 alone, Sunitinib alone and both drugs together. We showed that treatment with OXi4503 plus Sunitinib destroyed existing tumor microvessels, inhibited blood vessel recovery and impaired Caki-2 tumor growth significantly more than either treatment alone.
Collapse
Affiliation(s)
- Jennifer A. Lee
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Biomedical Sciences Building, Gainesville, FL 32610, USA
| | - Nikolett M. Biel
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Cancer and Genetics Research Complex, Gainesville, FL 32610, USA
| | | | - Dietmar W. Siemann
- Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Brian S. Sorg
- Cancer Diagnosis Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD 20852, USA
| |
Collapse
|
9
|
Melichar B, Procházková-Študentová H, Vitásková D. Bevacizumab in combination with IFN-α in metastatic renal cell carcinoma: the AVOREN trial. Expert Rev Anticancer Ther 2012; 12:1253-61. [PMID: 23136836 DOI: 10.1586/era.12.103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Metastatic renal cell carcinoma (mRCC) is tumor resistant to all cytotoxic agents. During the last decade, effective targeted therapies emerged including sunitinib, pazopanib and the combination of bevacizumab with IFN-α. The use of bevacizumab plus IFN-α combination in mRCC is supported by the AVOREN trial. Although the primary end point of the AVOREN trial was overall survival, progression-free survival was used to evaluate efficacy and served as the basis of regulatory submission owing to the advent of targeted agents that probably resulted in the prolongation of overall survival in both experimental and control arms. The doubling of median progression-free survival in the AVOREN trials (from 5.4 to 10.2 months) is remarkably similar compared with the results of Phase III trials with sunitinib and pazopanib. Bevacizumab plus IFN-α is the only combined regimen currently used in mRCC and serves as a comparator in the trials combining bevacizumab with other agents.
Collapse
Affiliation(s)
- Bohuslav Melichar
- Department of Oncology, Palacký University Medical School and Teaching Hospital, I.P. Pavlova 6, 775 20 Olomouc, Czech Republic.
| | | | | |
Collapse
|
10
|
Zhou F, Hu J, Shao JH, Zou SB, Shen SL, Luo ZQ. Metronomic chemotherapy in combination with antiangiogenic treatment induces mosaic vascular reduction and tumor growth inhibition in hepatocellular carcinoma xenografts. J Cancer Res Clin Oncol 2012; 138:1879-90. [PMID: 22736027 DOI: 10.1007/s00432-012-1270-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 06/13/2012] [Indexed: 12/11/2022]
Abstract
BACKGROUND In addition to sprouting angiogenesis, other mechanisms, such as mosaic tumor vessel formation, have been recognized to contribute to tumor vascularization. We sought to examine vascular alteration as well as tumor growth inhibition after treatment with antiangiogenic therapy, chemotherapy alone or in combination. METHODS Hepatocellular carcinoma cells (Hep3B) expressed green fluorescent protein were utilized to establish orthotopic xenograft model in nude mice. The formation and distribution of mosaic vessels was analyzed quantitatively by immunolabeling. Next, changes in tumor microcirculation and therapeutic effects on tumor growth were evaluated in several different treatment groups: control, conventional doxorubicin, metronomic doxorubicin, bevacizumab, bevacizumab plus conventional doxorubicin, and bevacizumab plus metronomic doxorubicin. In addition, we examined the effects of combined regimens on lung metastasis using a highly metastatic human hepatocellular carcinoma (HCCLM3) mouse model. RESULTS Approximately 62 % of the vessels were present in the central part or near the midsection of the tumor and were mosaic. Only the combined antiangiogenic treatment and chemotherapy (metronomic schedule, P = 0.00; conventional schedule, P = 0.02) had a significant effect on the degree of mosaic vasculature. Metronomic doxorubicin in combination with bevacizumab had an even more profound effect than bevacizumab plus conventional doxorubicin (P < 0.05) on tumor growth inhibition and survival. However, bevacizumab plus metronomic doxorubicin failed to inhibit lung metastasis compared with antiangiogenic monotherapy. CONCLUSIONS Metronomic chemotherapy in combination with antiangiogenic treatment results in the reduction of mosaic tumor vasculature, inhibition of tumor growth, and enhanced survival of mice. Further investigation of drug scheduling is required to optimize antitumor activity.
Collapse
MESH Headings
- Administration, Metronomic
- Angiogenesis Inhibitors/administration & dosage
- Animals
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Bevacizumab
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Doxorubicin/administration & dosage
- Drug Administration Schedule
- Humans
- Injections, Intravenous
- Liver Neoplasms/drug therapy
- Liver Neoplasms/pathology
- Lung Neoplasms/prevention & control
- Lung Neoplasms/secondary
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Neovascularization, Pathologic/pathology
- Neovascularization, Pathologic/prevention & control
- Survival Analysis
- Treatment Outcome
- Tumor Burden/drug effects
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Fan Zhou
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Nanchang University, 1 Mingde Road, Nanchang 330006, China.
| | | | | | | | | | | |
Collapse
|
11
|
Monitoring the longitudinal intra-tumor physiological impulse response to VEGFR2 blockade in breast tumors using DCE-CT. Mol Imaging Biol 2012; 13:1183-95. [PMID: 20957443 DOI: 10.1007/s11307-010-0441-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE The purpose of this study was to quantify and model the longitudinal intra-tumor physiological response to a single dose of a monoclonal antibody specific to the VEGFR2 using dynamic contrast-enhanced CT. MATERIAL AND METHODS Dynamic contrast-enhanced CT imaging was performed on athymic nude mice bearing xenograft VEGF-transfected MCF-7 tumors (MCF7(VEGF)) to quantify intra-tumor physiology pre- and post-injection (days 2, 7, and 14) of a nonspecific (IgG1, controls) and specific (DC101, treated) monoclonal antibody targeting VEGFR2. Parametrical maps of tumor physiology-perfusion (F), permeability surface area (PS), fractional plasma (f(p)), and interstitial space (f (is))-were obtained at four time points over a 2-week period. RESULTS A temporal multistage recovery process whereby a decoupling of the fractional change in physiological parameters (f (p), F) was observed when comparing treated to control tumors: f (p) and perfusion decreased by a combined 27% (P < 0.01) and 65% (P < 0.01) on day 2, while only perfusion remained reduced by 46% (P < 0.01) on day 7. Intra-tumor heterogeneity defined by the change in variance of perfusion decreased on days 2 and 7; no change in the variance of f(p) was observed. Analysis based on a mathematical model linking perfusion and vascular morphology indicates that a decrease in f(p) and perfusion was consistent with a reduction in blood vessel radius, followed by an increase in the vascular radius and tortuosity resulting in the decoupling of f(p) and perfusion before returning to control levels. CONCLUSION Inhibiting VEGFR2 activity results in a temporal decoupling of physiological parameters, which can be explained by a combination of morphological changes influencing perfusion. Such a decoupling has the potential to significantly impact the delivery of pharmaceuticals and oxygen within solid tumors, critical factors in combined anti-angiogenic and radio- and chemotherapies.
Collapse
|
12
|
Pastuskovas CV, Mundo EE, Williams SP, Nayak TK, Ho J, Ulufatu S, Clark S, Ross S, Cheng E, Parsons-Reponte K, Cain G, Van Hoy M, Majidy N, Bheddah S, dela Cruz Chuh J, Kozak KR, Lewin-Koh N, Nauka P, Bumbaca D, Sliwkowski M, Tibbitts J, Theil FP, Fielder PJ, Khawli LA, Boswell CA. Effects of anti-VEGF on pharmacokinetics, biodistribution, and tumor penetration of trastuzumab in a preclinical breast cancer model. Mol Cancer Ther 2012; 11:752-62. [PMID: 22222630 DOI: 10.1158/1535-7163.mct-11-0742-t] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Both human epidermal growth factor receptor 2 (HER-2/neu) and VEGF overexpression correlate with aggressive phenotypes and decreased survival among breast cancer patients. Concordantly, the combination of trastuzumab (anti-HER2) with bevacizumab (anti-VEGF) has shown promising results in preclinical xenograft studies and in clinical trials. However, despite the known antiangiogenic mechanism of anti-VEGF antibodies, relatively little is known about their effects on the pharmacokinetics and tissue distribution of other antibodies. This study aimed to measure the disposition properties, with a particular emphasis on tumor uptake, of trastuzumab in the presence or absence of anti-VEGF. Radiolabeled trastuzumab was administered alone or in combination with an anti-VEGF antibody to mice bearing HER2-expressing KPL-4 breast cancer xenografts. Biodistribution, autoradiography, and single-photon emission computed tomography-X-ray computed tomography imaging all showed that anti-VEGF administration reduced accumulation of trastuzumab in tumors despite comparable blood exposures and similar distributions in most other tissues. A similar trend was also observed for an isotype-matched IgG with no affinity for HER2, showing reduced vascular permeability to macromolecules. Reduced tumor blood flow (P < 0.05) was observed following anti-VEGF treatment, with no significant differences in the other physiologic parameters measured despite immunohistochemical evidence of reduced vascular density. In conclusion, anti-VEGF preadministration decreased tumor uptake of trastuzumab, and this phenomenon was mechanistically attributed to reduced vascular permeability and blood perfusion. These findings may ultimately help inform dosing strategies to achieve improved clinical outcomes.
Collapse
|
13
|
Marcucci F, Corti A. How to improve exposure of tumor cells to drugs: promoter drugs increase tumor uptake and penetration of effector drugs. Adv Drug Deliv Rev 2012; 64:53-68. [PMID: 21983328 DOI: 10.1016/j.addr.2011.09.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 08/13/2011] [Accepted: 09/20/2011] [Indexed: 12/11/2022]
Abstract
Solid tumors are characterized by an abnormal architecture and composition that limit the uptake and distribution of antitumor drugs. Over the last two decades, drugs have been identified that improve the tumor uptake and distribution of drugs that have direct antitumor effects. We propose to refer to these drugs as promoter drugs, and as effector drugs to drugs that have direct antitumor effects. Some promoter drugs have received regulatory approval, while others are in active clinical development. This review gives an overview of promoter drugs, by classifying them according to their mechanism of action: promoter drugs that modulate tumor blood flow, modify the barrier function of tumor vessels, induce tumor cell killing, and overcome stromal barriers. Eventually, we discuss those that we feel are the main conclusions to be drawn from promoter drug research that has been performed so far, and suggest areas of future investigation to improve the efficacy of promoter drugs in cancer therapy.
Collapse
Affiliation(s)
- Fabrizio Marcucci
- Centro Nazionale di Epidemiologia, Sorveglianza e Promozione della Salute (CNESPS), Istituto Superiore di Sanita' (ISS), Rome, Italy.
| | | |
Collapse
|
14
|
Emami-Shahri N, Hagemann T. Resistance--the true face of biological defiance. Rheumatology (Oxford) 2011; 51:413-22. [PMID: 22109797 DOI: 10.1093/rheumatology/ker326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Biological therapeutics are widely used in chronic inflammatory and malignant disease. The underlying mechanisms of treatment failure for these drugs are poorly understood. Resistance to these biological agents and the further subdivision into intrinsic and acquired resistance are not clearly defined. In this review, we explore the current understanding of the mechanisms of action of several biological agents as well as the complex biological processes that underlie resistance. A better understanding of why biologicals fail might help to improve their single or combinational use and will ultimately help to alleviate disease burden more efficiently.
Collapse
Affiliation(s)
- Nia Emami-Shahri
- Barts Cancer Institute, John Vane Science Centre, London EC1M 6BQ, UK
| | | |
Collapse
|
15
|
Martini D, Monte MD, Ristori C, Cupisti E, Mei S, Fiorini P, Filippi L, Bagnoli P. Antiangiogenic effects of β2 -adrenergic receptor blockade in a mouse model of oxygen-induced retinopathy. J Neurochem 2011; 119:1317-29. [PMID: 21988318 DOI: 10.1111/j.1471-4159.2011.07530.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Oxygen-induced retinopathy (OIR) is a model for human retinopathy of prematurity. In mice with OIR, beta-adrenergic receptor (β-AR) blockade with propranolol has been shown to ameliorate different aspects of retinal dysfunction in response to hypoxia. In the present study, we used the OIR model to investigate the role of distinct β-ARs on retinal proangiogenic factors, pathogenic neovascularization and electroretinographic responses. Our results demonstrate that β(2) -AR blockade with ICI 118,551 decreases retinal levels of proangiogenic factors and reduces pathogenic neovascularization, whereas β(1) - and β(3) -AR antagonists do not. Determination of retinal protein kinase A activity is indicative of the fact that β-AR blockers are indeed effective at the receptor level. In addition, the specificity of ICI 118,551 on retinal angiogenesis has been demonstrated by the finding that in mouse retinal explants, β(2) -AR silencing prevents ICI 118,551 effects on hypoxia-induced vascular endothelial growth factor accumulation. In OIR mice, ICI 118,551 is effective in increasing electroretinographic responses suggesting that activation of β(2) -ARs constitutes an important part of the retinal response to hypoxia. Lastly, immunohistochemical studies demonstrate that β(2) -ARs are localized to several retinal cells, particularly to Müller cells suggesting the possibility that β(2) -ARs play a role in regulating vascular endothelial growth factor production by these cells. The present results suggest that pathogenic angiogenesis, a key change in many hypoxic/ischemic vision-threatening retinal diseases, depends at least in part on β(2) -AR activity and indicate that β(2) -AR blockade can be effective against retinal angiogenesis.
Collapse
Affiliation(s)
- Davide Martini
- Department of Biology, University of Pisa, Via San Zeno, Pisa, Italy
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Differential distribution of blood-derived proteins in xenografted human adenocarcinoma tissues by in vivo cryotechnique and cryobiopsy. Med Mol Morphol 2011; 44:93-102. [PMID: 21717312 DOI: 10.1007/s00795-010-0512-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 04/27/2010] [Indexed: 12/11/2022]
Abstract
Tumor behavior depends on the complex tumor interstitium and microenvironment, which influence transport of fluid and soluble molecules from blood vessels. The purpose of this study was to reveal how complex tumor tissues affect the immunodistribution of serum proteins and time-dependent translocation of bovine serum albumin (BSA) from blood vessels, using relatively differentiated human adenocarcinoma produced by the xenografted A549 cell line. Histological architecture and immunodistribution of the serum proteins in adenocarcinomatous tissues were clearly detected by the in vivo cryotechnique and cryobiopsy. Both albumin and IgG1 were detected in blood vessels, connective tissues around the tumor mass, and the interstitium among tumor cell nests. IgM was mainly detected in blood vessels and connective tissues around the tumor mass but was not detected in the interstitium among the tumor cell nests. At 10 or 30 min after BSA injection, BSA was observed only in blood vessels, but 1 h after the injection, it was also detected in the interstitium and surrounding connective tissues of the tumor mass. The present findings showed topographic variation of molecular permeation in the adenocarcinomatous tumor mass. The interstitial tissues with augmented permeability of serum proteins would increase accessibility of tumor cells to blood-derived molecules.
Collapse
|
17
|
Chawla S, Kim S, Loevner LA, Hwang WT, Weinstein G, Chalian A, Quon H, Poptani H. Prediction of disease-free survival in patients with squamous cell carcinomas of the head and neck using dynamic contrast-enhanced MR imaging. AJNR Am J Neuroradiol 2011; 32:778-84. [PMID: 21349969 DOI: 10.3174/ajnr.a2376] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Patients with HNSCC have a poor prognosis and development of imaging biomarkers that predict long-term outcome might aid in planning optimal treatment strategies. Therefore, the purpose of the present study was to predict disease-free survival in patients with HNSCC by using pretreatment K(trans) measured from dynamic contrast-enhanced MR imaging. MATERIALS AND METHODS Sixty-six patients with HNSCC were recruited from January 2005 to October 2008. Three patients were excluded because they underwent upfront neck dissection, and 6 patients were excluded due to suboptimal MR imaging data or being lost to follow-up. Disease-free survival was measured in the remaining 57 patients from the end date of chemoradiation therapy. In patients who died, the end point was the date of death, while in surviving patients the date of last clinical follow-up was used as the end point. Pretreatment K(trans) and nodal volume were computed from the largest metastatic node, and median pretreatment K(trans) and volume were used to divide patients into 2 groups (at or above the threshold value [group I] and below the threshold value [group II]. Disease-free survival was analyzed by the Kaplan-Meier method, and the results were compared by using a logrank test with K(trans) and nodal volume as predictors. A P value <.05 was considered significant. RESULTS Thirteen of 57 patients had died of HNSCC by the last follow-up period (March 31, 2009). Patients with higher pretreatment K(trans) values had prolonged disease-free survival compared with patients with lower K(trans) values (P=.029). However, there was no significant difference in disease-free survival when nodal volume was used as a predictor (P=.599). CONCLUSIONS Pretreatment K(trans) may be a useful prognostic marker in HNSCC.
Collapse
Affiliation(s)
- S Chawla
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Ortholan C, Durivault J, Hannoun-Levi JM, Guyot M, Bourcier C, Ambrosetti D, Safe S, Pagès G. Bevacizumab/docetaxel association is more efficient than docetaxel alone in reducing breast and prostate cancer cell growth: a new paradigm for understanding the therapeutic effect of combined treatment. Eur J Cancer 2010; 46:3022-3036. [PMID: 20729074 DOI: 10.1016/j.ejca.2010.07.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 07/15/2010] [Indexed: 11/28/2022]
Abstract
Bevacizumab (Bvz), a Vascular Endothelial Growth Factor (VEGF)-targeted humanised monoclonal antibody, provides clinical benefit in combination with docetaxel (DXL), a microtubule-stabilising agent, in the treatment of metastatic breast and prostate cancers. Since VEGF and their receptors are expressed by tumour cells, we hypothesised that Bvz, in addition to its impact on neo-vascularisation, could have an impact on tumour cells and enhance the DXL activity. Hence, we studied the effect of DXL and Bvz on metastatic breast (MDA MB-231) and prostate (PC3) cancer cells lines. Bvz alone did not decrease cell proliferation but in combination with DXL, Bvz enhanced the anti-proliferative activity of DXL. Other anti-angiogenic factors Sunitinib, Sorafenib and Gefitinib enhanced the anti-proliferative effect of DXL. qPCR experiments showed that DXL significantly increased the VEGF and VEGF receptor 2 (VEGF-R2) mRNA levels. Activation of VEGF and VEGF-R2 promoters demonstrated that enhanced mRNA levels are partly due to transcriptional activation. ELISA assays showed that DXL induced accumulation of cytoplasmic VEGF but decreased extracellular levels by 39% (MDA) and 48% (PC3). Cell surface localisation of VEGF-R2 was increased by DXL alone, but decreased after combined treatment of DXL plus Bvz. Abnormal expression of VEGF-R2 was also shown on breast and prostate tumour samples reinforcing the results obtained on cellular models. In conclusion, DXL and Bvz in combination decreased extracellular VEGF and VEGF-R2 levels at the plasma membrane thereby blocking an important growth/survival loop. Thus, the combined therapeutic impact of Bvz and DXL observed in clinical trials is associated with enhanced anti-proliferative activity and inhibition of the vascular network.
Collapse
Affiliation(s)
- Cécile Ortholan
- University of Nice Sophia Antipolis, UMR CNRS 6543, Institute of Signalling, Developmental Biology and Cancer Research UMR CNRS 6543, France.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Niu G, Chen X. Vascular endothelial growth factor as an anti-angiogenic target for cancer therapy. Curr Drug Targets 2010; 11:1000-17. [PMID: 20426765 PMCID: PMC3617502 DOI: 10.2174/138945010791591395] [Citation(s) in RCA: 289] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2009] [Accepted: 04/14/2010] [Indexed: 12/12/2022]
Abstract
New blood vessel formation (angiogenesis) is fundamental to tumor growth, invasion, and metastatic dissemination. The vascular endothelial growth factor (VEGF) signaling pathway plays pivotal roles in regulating tumor angiogenesis. VEGF as a therapeutic target has been validated in various types of human cancers. Different agents including antibodies, aptamers, peptides, and small molecules have been extensively investigated to block VEGF and its pro-angiogenic functions. Some of these agents have been approved by FDA and some are currently in clinical trials. Combination therapies are also being pursued for better tumor control. By providing comprehensive real-time information, molecular imaging of VEGF pathway may accelerate the drug development process. Moreover, the imaging will be of great help for patient stratification and therapeutic effect monitoring, which will promote effective personalized molecular cancer therapy. This review summarizes the current status of tumor therapeutic agents targeting to VEGF and the applications of VEGF related molecular imaging.
Collapse
Affiliation(s)
- Gang Niu
- Imaging Sciences Training Program, Radiology and Imaging Sciences, Clinical Center and National Institute Biomedical Imaging and Bioengineering, NIH
- National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institute of Health (NIH), Bethesda, MD
| | - Xiaoyuan Chen
- National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institute of Health (NIH), Bethesda, MD
| |
Collapse
|
20
|
Czabanka M, Vinci M, Heppner F, Ullrich A, Vajkoczy P. Effects of sunitinib on tumor hemodynamics and delivery of chemotherapy. Int J Cancer 2009; 124:1293-300. [DOI: 10.1002/ijc.24019] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Abstract
The definition of targets in the metastatic process has been a major step. Targeted therapy is composed of molecules which block these targets including ligand-binding antibody or receptor-inhibitors. Their mechanisms of action are not limited to angiogenesis but also concern apoptosis, bone marrow progenitor stem cells, vascularisation and immune response. An important number of drugs is still approved. However the metastatic disease is not yet curable. A better understanding will lead to develop others new targeted molecules or more efficient combination therapy.
Collapse
Affiliation(s)
- A Méjean
- Service d'Urologie, Université Paris Descartes, France.
| | | |
Collapse
|
22
|
Abstract
Regional chemotherapy was developed in the 1950s and continues to play an integral part in the development of newer therapies for advanced solid malignancies. Regional therapies have evolved in complexity but are still based on the pharmacokinetics of drug delivery to solid malignancies. Newer techniques demonstrate that the combination of regional therapies, hyperthermia, and surgery is essential in promoting improved patient outcomes.
Collapse
|
23
|
Abstract
Several vascular endothelial growth factor (VEGF)-targeted agents, administered either as single agents or in combination with chemotherapy, have been shown to benefit patients with advanced-stage malignancies. VEGF-targeted therapies were initially developed with the notion that they would inhibit new blood vessel growth and thus starve tumours of necessary oxygen and nutrients. It has become increasingly apparent, however, that the therapeutic benefit associated with VEGF-targeted therapy is complex, and probably involves multiple mechanisms. A better understanding of these mechanisms will lead to future advances in the use of these agents in the clinic.
Collapse
Affiliation(s)
- Lee M Ellis
- Department of Surgical Oncology, Unit 444, University of Texas M.D. Anderson Cancer Center, PO Box 301402, Houston, Texas 77230-1402, USA.
| | | |
Collapse
|
24
|
Stollman TH, Scheer MGW, Leenders WPJ, Verrijp KCN, Soede AC, Oyen WJG, Ruers TJM, Boerman OC. Specific imaging of VEGF-A expression with radiolabeled anti-VEGF monoclonal antibody. Int J Cancer 2008; 122:2310-4. [PMID: 18240146 DOI: 10.1002/ijc.23404] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Vascular endothelial growth factor-A (VEGF-A) is one of the most important angiogenic factors. Here, we studied in a nude mouse model whether the expression of VEGF-A in a tumor could be imaged with a radiolabeled anti-VEGF antibody. The humanized anti-VEGF-A antibody A.4.6.1. (bevacizumab), which is reactive with all VEGF-A isoforms, was radiolabeled with In-111 or with I-125. The accumulation of the radiolabeled antibodies in VEGF-A expressing tumors (LS174T) in nude mice was examined in biodistribution studies and by gamma camera imaging. The uptake of the In-111-bevacizumab in the tumor at 3 days p.i. was significantly higher than that of I-125-bevacizumab (19.4 +/- 7.0 %ID/g vs. 9.6 +/- 3.3 %ID/g, p = 0.04). Coinjection of an excess unlabeled antibody resulted in a significant decrease in radioactivity concentration in the tumor (<2.9 +/- 1.9 %ID/g, p < 0.005), indicating VEGF-mediated antibody uptake. Highest uptake in the tumor was observed at relatively low antibody protein doses (<3 microg) (20-25 %ID/g). VEGF-A-expressing tumors could be clearly visualized on planar scintigraphic images from 24-hr post injection onwards. In conclusion, VEGF-A expression in tumors can be visualized specifically with radiolabeled anti-VEGF-A-mAb.
Collapse
Affiliation(s)
- Thamar H Stollman
- Department of Surgery, Radboud University Nijmegen Medical Center, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Affiliation(s)
- Alexander Meining
- Department of Medicine II, Technical University of Munich, Munich, Germany
| | | |
Collapse
|
26
|
Dickson PV, Hamner JB, Sims TL, Fraga CH, Ng CYC, Rajasekeran S, Hagedorn NL, McCarville MB, Stewart CF, Davidoff AM. Bevacizumab-induced transient remodeling of the vasculature in neuroblastoma xenografts results in improved delivery and efficacy of systemically administered chemotherapy. Clin Cancer Res 2007; 13:3942-50. [PMID: 17606728 DOI: 10.1158/1078-0432.ccr-07-0278] [Citation(s) in RCA: 343] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Dysfunctional tumor vessels can be a significant barrier to effective cancer therapy. However, increasing evidence suggests that vascular endothelial growth factor (VEGF) inhibition can effect transient "normalization" of the tumor vasculature, thereby improving tumor perfusion and, consequently, delivery of systemic chemotherapy. We sought to examine temporal changes in tumor vascular function in response to the anti-VEGF antibody, bevacizumab. EXPERIMENTAL DESIGN Established orthotopic neuroblastoma xenografts treated with bevacizumab were evaluated at serial time points for treatment-associated changes in intratumoral vascular physiology, penetration of systemically administered chemotherapy, and efficacy of combination therapy. RESULTS After a single bevacizumab dose, a progressive decrease in tumor microvessel density to <30% of control was observed within 7 days. Assessment of the tumor microenvironment revealed a rapid, sustained decrease in both tumor vessel permeability and tumor interstitial fluid pressure, whereas intratumoral perfusion, as assessed by contrast-enhanced ultrasonography, was improved, although this latter change abated by 1 week. Intratumoral drug delivery mirrored these changes; penetration of chemotherapy was improved by as much as 81% when given 1 to 3 days after bevacizumab, compared with when both drugs were given concomitantly, or 7 days apart. Finally, administering topotecan to tumor-bearing mice 3 days after bevacizumab resulted in greater tumor growth inhibition (36% of control size) than with monotherapy (88% bevacizumab, 54% topotecan) or concomitant administration of the two drugs (44%). CONCLUSIONS Bevacizumab-mediated VEGF blockade effects alterations in tumor vessel physiology that allow improved delivery and efficacy of chemotherapy, although careful consideration of drug scheduling is required to optimize antitumor activity.
Collapse
Affiliation(s)
- Paxton V Dickson
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
There is currently great interest in molecular therapies to treat various diseases, and this has prompted extensive efforts to achieve target-specific and controlled delivery of bioactive macromolecules (for example, proteins, antibodies, DNA and small interfering RNA) through the design of smart drug carriers. By contrast, the influence of the microenvironment in which the target cell resides and the effect it might have on the success of biomacromolecular therapies has been under-appreciated. The extracellular matrix (ECM) component of the cellular niche may be particularly important, as many diseases and injury disrupt the normal ECM architecture, the cell adhesion to ECM, and the subsequent cellular activities. This Review will discuss the importance of the ECM and the ECM-cell interactions on the cell response to bioactive macromolecules, and suggest how this information could lead to new criteria for the design of novel drug delivery systems.
Collapse
Affiliation(s)
- Hyun Joon Kong
- Division of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
28
|
Abstract
Tumor angiogenesis is a complex process that requires the coordinated activities of various effector molecules and cell types. While tumor vasculature can nourish the tumor, it is structurally and functionally abnormal, leading to elevated interstitial pressure and non-uniform tumor perfusion. The resultant hypoxia leads to the selection of more aggressive tumor cells, owing in part to an increase in the levels of the transcription factor hypoxia-inducible factor-1, which in turn leads to an increase in the expression of vascular endothelial growth factor (VEGF). The expression of VEGF is upregulated in many tumors, and the levels of this factor correlate not only with the extent of tumor angiogenesis but also with clinical prognosis. VEGF-targeted therapies, such as bevacizumab, exert their effects through a number of potential mechanisms, including (1) inhibition of new vessel growth, (2) regression of newly formed tumor vasculature, (3) alteration of vascular function and tumor blood flow ("normalization"), and (4) direct effects on tumor cells. Because of the presumed cytostatic mechanism of action of antiangiogenic agents, the efficacy of bevacizumab is most appropriately assessed through survival end points rather than the objective-response end points that have traditionally been used with cytotoxic agents. However, bevacizumab has been shown to increase the response rates with chemotherapy in almost all tumor types studied in phase III trials.
Collapse
Affiliation(s)
- Lee M Ellis
- Department of Surgical Oncology, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77230, USA.
| |
Collapse
|
29
|
Reinmuth N, Piegelbrock E, Raedel M, Fehrmann N, Hintelmann H, Wagner R, Berdel WE, Thomas M, Freitag L, Mesters RM. Prognostic significance of vessel architecture and vascular stability in non-small cell lung cancer. Lung Cancer 2006; 55:53-60. [PMID: 17067717 DOI: 10.1016/j.lungcan.2006.09.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Revised: 07/12/2006] [Accepted: 09/20/2006] [Indexed: 11/16/2022]
Abstract
To evaluate characteristics and prognostic impact of different structure types of intratumoural blood vessels, tissue samples of 72 patients with primary stages I and II non-small cell lung cancer (NSCLC) were analysed. Performing immunohistochemistry, 45 of 56 analysed tumours (80%) demonstrated an obvious alveolar vascular pattern with tight coverage with perivascular cells in at least parts of the sample. After an overall median follow-up of 139 months for surviving patients, tumours with an alveolar vascular pattern showed a significantly better overall survival (OS) compared to those with an entirely angiogenic vascular pattern (108 months versus 63 months; p<0.05). Furthermore, high expression of angiopoietin-1 (Ang-1) correlated with OS (p<0.05). In contrast, expression of Ang-2 or vascular endothelial growth factor was not significantly associated with survival. Collectively, alveolar vessel architecture and angiopoietin expression appear to be common phenomenons in early stage NSCLC and may serve as prognostic factors.
Collapse
Affiliation(s)
- Niels Reinmuth
- Department of Medicine/Hematology and Oncology, University of Muenster, Muenster, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Van Buren G, Camp ER, Yang AD, Gray MJ, Fan F, Somcio R, Ellis LM. The role of nitric oxide in mediating tumour blood flow. Expert Opin Ther Targets 2006; 10:689-701. [PMID: 16981826 DOI: 10.1517/14728222.10.5.689] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Nitric oxide (NO) is a ubiquitous molecule with a myriad of physiological and pathophysiological roles. It has numerous direct and indirect effects on tumour vasculature as both a regulatory and effector molecule. NO affects tumour blood flow through its effects on tumour angiogenesis, vascular tone and vascular permeability, partly via its interaction with vascular endothelial growth factor. In this review, the authors examine the basic tenants of NO biology, the association of NO with tumour progression, and the role NO plays in mediating alterations in vascular functions in tumours.
Collapse
Affiliation(s)
- George Van Buren
- University of Texas, MD Anderson Cancer Center, Department of Surgical Oncology, Houston, TX 77230, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Reinmuth N, Meister M, Muley T, Steins M, Kreuter M, Herth FJF, Hoffmann H, Dienemann H, Thomas M. Molecular determinants of response to RTK-targeting agents in nonsmall cell lung cancer. Int J Cancer 2006; 119:727-34. [PMID: 16557579 DOI: 10.1002/ijc.21750] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Receptor tyrosine kinases (RTKs) are essential components of the cellular signaling apparatus and are often mutated or otherwise deregulated in nonsmall cell lung cancer (NSCLC). These receptors are not solely expressed by cancer cells but also by multiple other cell types, including stromal cells that, in turn, may modulate cancer cell functions by various direct and indirect interactions. Recently, clinical studies have successfully evaluated the inhibition of RTKs by specific RTK-targeting agents, including tyrosine kinase inhibitors (TKIs). Although the response was impressive in some studies, only a limited proportion of patients benefit from these new drugs. Therefore, an intensive search for markers has started to determine which patients and tumor types are most likely to respond favorably to this new kind of treatment. Considerable attention has been focused onto molecular changes in cancer cells such as receptor expression, gene amplification, changes in intracellular signaling and receptor mutations. In this article, we explore the current data regarding molecular alterations as surrogate markers of response to specific RTK-targeting agents in NSCLC. Defined alterations may serve as key markers helping to preselect NSCLC patients for an individualized therapeutic approach in the future.
Collapse
Affiliation(s)
- Niels Reinmuth
- Clinic for Thoracic Diseases, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Jones-Bolin S, Zhao H, Hunter K, Klein-Szanto A, Ruggeri B. The effects of the oral, pan-VEGF-R kinase inhibitor CEP-7055 and chemotherapy in orthotopic models of glioblastoma and colon carcinoma in mice. Mol Cancer Ther 2006; 5:1744-53. [PMID: 16891460 DOI: 10.1158/1535-7163.mct-05-0327] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
CEP-7055, a fully synthetic, orally active N,N-dimethylglycine ester of CEP-5214, a C3-(isopropylmethoxy)-fused pyrrolocarbazole with potent pan-vascular endothelial growth factor receptor (VEGFR) kinase inhibitory activity, has recently completed phase I clinical trials in cancer patients. These studies evaluated the antitumor efficacy of CEP-7055 using orthotopic models of glioblastoma and colon carcinoma in combination with temozolomide, and irinotecan and oxaliplatin, respectively, for their effects on primary and metastatic tumor burden and median survival. Chronic administration of CEP-7055 (23.8 mg/kg/dose) and temozolomide resulted in improvement of median survival of nude mice bearing orthotopic human glioblastoma xenografts compared with temozolomide alone (261 versus 192 days, respectively; P < or = 0.02). Reductions in neurologic dysfunction, brain edema, hemorrhage, and intratumoral microvessel density (CD34 staining) were observed in glioma-bearing mice receiving CEP-7055 alone, temozolomide alone, and the combination of CEP-7055 and temozolomide relative to vehicle and to temozolomide monotherapy. The administration of CEP-7055 in combination with irinotecan (20 mg/kg/dose i.p. x 5 days), and to a lesser degree with oxaliplatin (10 mg/kg/dose i.v.), showed reductions on primary colon carcinoma and hepatic metastatic burden in the CT-26 tumor model relative to that achieved by irinotecan and oxaliplatin monotherapy. These data show the significant efficacy and tolerability of optimal efficacious doses of CEP-7055 when given in combination with temozolomide and irinotecan relative to monotherapy with these cytotoxic agents in preclinical orthotopic glioma and colon carcinoma models and lend support for the use of these treatment regimens in a clinical setting in patients with glioblastoma and colon carcinoma.
Collapse
Affiliation(s)
- Susan Jones-Bolin
- Oncology Research, Cephalon, Inc., 145 Brandywine Parkway, West Chester, PA 19380, USA
| | | | | | | | | |
Collapse
|
33
|
Gille J. Antiangiogenic cancer therapies get their act together: current developments and future prospects of growth factor- and growth factor receptor-targeted approaches. Exp Dermatol 2006; 15:175-86. [PMID: 16480425 DOI: 10.1111/j.1600-0625.2006.00400.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Targeting the vascular endothelial growth factor (VEGF) in combination with standard chemotherapy has recently proved successful in the treatment of different types of advanced cancer. The achievements of combinatorial anti-VEGF monoclonal antibody bevacizumab (BEV) renewed the confidence in targeted antiangiogenic approaches to constitute a complementary therapeutic modality in addition to surgery, radiotherapy and chemotherapy. While several second-generation multitargeted tyrosine kinase inhibitors show promise in defined tumor entities, these novel antiangiogenic compounds have yet to meet or exceed the efficacy of combinatorial BEV therapy in ongoing clinical trials. Current developments of targeted antiangiogenic agents include their use in the adjuvant setting and the combination of different antiangiogenesis inhibitors to take a more comprehensive approach in blocking tumor angiogenesis. The identification of surrogate markers that can monitor the activity and efficacy of antiangiogenic drugs in patients belongs to the most critical challenges to exploit the full potential of antiangiogenic therapies. The opportunities and obstacles in further development of growth factor- and growth factor receptor-targeted antiangiogenic approaches for advanced cancer, including malignant melanoma, will be discussed herein with particular reference to selected ongoing clinical trials.
Collapse
Affiliation(s)
- Jens Gille
- Department of Dermatology, Dermato-Oncology Unit, Johann Wolfgang Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany.
| |
Collapse
|
34
|
Dickson PV, Nathwani AC, Davidoff AM. Delivery of antiangiogenic agents for cancer gene therapy. Technol Cancer Res Treat 2005; 4:331-41. [PMID: 16029054 DOI: 10.1177/153303460500400403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The understanding that tumor growth and metastasis are angiogenesis dependent processes has led to interest in targeting tumor vasculature in anticancer therapy. Furthermore, recent insights into the molecular interactions that orchestrate physiologic and pathologic angiogenesis have resulted in a variety of antiangiogenic strategies. A gene therapy-mediated approach for the delivery of antiangiogenic agents has several advantages, including the potential for sustained expression. However, the choice of angiogenesis inhibitor, method of gene delivery, and target/site for transgene expression are important variables to be considered when designing this approach. Here we review the major alternatives within each of these categories and provide illustrative examples of their use in preclinical models.
Collapse
Affiliation(s)
- Paxton V Dickson
- Department of Surgery, St. Jude Children's Research Hospital, and the Department of Surgery, The University of Tennessee-Memphis, Health Science Center, TN 38163, USA
| | | | | |
Collapse
|