1
|
Pazdro-Zastawny K, Krajewska J, Zastawny M, Dorobisz K. Carbon Ion Radiotherapy in the Head and Neck Cancers Treatment and its Potential Role in Personalized Treatment Approach- A Review of the Current Knowledge. Curr Oncol Rep 2025:10.1007/s11912-025-01673-3. [PMID: 40220260 DOI: 10.1007/s11912-025-01673-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2025] [Indexed: 04/14/2025]
Abstract
PURPOSE OF REVIEW Head and neck cancer (HNC) is a complex, heterogeneous group of malignancies. In treatment a combined modality therapy with surgery, radiotherapy and chemotherapy is usually advised. The use of charged particles was a breakthrough in radiation oncology and allowed the initiation of cancer treatment with high-precision. The purpose of the work is to discuss the role of carbon ion radiotherapy in the treatment of head and neck cancers. RECENT FINDINGS Heavy ions such as carbon have more favorable physical and radiobiological properties than photons. The unique properties of carbon ions enable radiotherapy with dose escalation to tumors, while reducing both, radiation dose to adjacent normal tissues and radiation area. Considering its exceptional features, carbon ion radiotherapy offers promising results with acceptable toxicity regarding treatment of uncommon and rare malignancies, especially treated for a recurrent disease. HNC patients with adenoid cystic carcinoma and mucosal melanoma of the head and neck, which are considered to be radiation resistant, should benefit more from carbon ion radiotherapy than proton beam therapy or conventional photon radiotherapy. Also selected patients with other head and neck malignancies can benefit form carbon ion radiotherapy including advanced salivary gland cancer and nasopharyngeal cancer patients. Carbon ion radiotherapy offers better dose distributions, higher tumor doses, and an increased odds of local control and prolonged survival. Carbon ion radiotherapy represents a promising alternative to conventional photon RT or even proton beam therapy especially in treatment of radioresistant tumors situated close to critical organs.
Collapse
Affiliation(s)
- Katarzyna Pazdro-Zastawny
- Department of Otolaryngology, Head and Neck Surgery, Wroclaw Medical University, Borowska 213 Street, Wroclaw, 50-367, Poland.
| | - Joanna Krajewska
- Department of Otolaryngology, Head and Neck Surgery, Wroclaw Medical University, Borowska 213 Street, Wroclaw, 50-367, Poland
| | - Marta Zastawny
- Department of Otolaryngology, Head and Neck Surgery, Wroclaw Medical University, Borowska 213 Street, Wroclaw, 50-367, Poland
| | - Karolina Dorobisz
- Department of Otolaryngology, Head and Neck Surgery, Wroclaw Medical University, Borowska 213 Street, Wroclaw, 50-367, Poland
| |
Collapse
|
2
|
Yun WG, Chae YS, Han Y, Jung HS, Cho YJ, Kang HC, Kwon W, Park JS, Chie EK, Jang JY. Efficacy of Neoadjuvant Radiotherapy After Chemotherapy and the Optimal Interval from Radiotherapy to Surgery for Borderline Resectable and Resectable Pancreatic Cancer. Ann Surg Oncol 2025; 32:2819-2829. [PMID: 39808212 PMCID: PMC11882644 DOI: 10.1245/s10434-024-16743-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND Benefits of neoadjuvant treatment for pancreatic cancer with major vessel invasion has been demonstrated through randomized controlled trials; however, the optimal neoadjuvant treatment strategy remains controversial, especially for radiotherapy. Therefore, we aimed to evaluate the efficacy and safety of neoadjuvant radiotherapy followed by chemotherapy and the optimal time interval to undergo surgery after radiotherapy in (borderline) resectable pancreatic cancer. METHODS Between 2013 and 2022, patients with (borderline) resectable pancreatic cancer with vessel contact who received 5-fluorouracil with leucovorin, oxaliplatin, and irinotecan or gemcitabine and nanoparticle albumin-bound paclitaxel as initial treatment following surgery were included. Patients who received radiotherapy after chemotherapy and those who did not were matched using 1:1 nearest-neighbor propensity scores. Propensity scores were measured using the tumor size at initial image, duration of neoadjuvant chemotherapy, and responsiveness to neoadjuvant chemotherapy. RESULTS Of 212 patients, 166 patients were retrieved for the matched cohort. Patients who received radiotherapy had significantly better postoperative survival, local control, and R0 resection rates than those who did not. Furthermore, patients who underwent surgery within 4 weeks after completing radiotherapy had lower intraoperative blood loss and a clinically relevant postoperative pancreatic fistula rate than those who underwent surgery after more than 4 weeks. CONCLUSIONS In patients with (borderline) resectable pancreatic cancer with vessel contact who were scheduled for curative-intent surgery after neoadjuvant chemotherapy, additional radiotherapy was associated with better postoperative survival and local control. Furthermore, our findings suggested that scheduling surgery within 4 weeks following radiation therapy might enhance the perioperative outcomes.
Collapse
Affiliation(s)
- Won-Gun Yun
- Department of Surgery, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yoon Soo Chae
- Department of Surgery, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Youngmin Han
- Department of Surgery, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hye-Sol Jung
- Department of Surgery, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Young Jae Cho
- Department of Surgery, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyun-Cheol Kang
- Department of Radiation Oncology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Institute of Radiation Medicine, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Wooil Kwon
- Department of Surgery, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Joon Seong Park
- Department of Surgery, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eui Kyu Chie
- Department of Radiation Oncology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
- Institute of Radiation Medicine, Medical Research Center, Seoul National University, Seoul, Republic of Korea.
| | - Jin-Young Jang
- Department of Surgery, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Barcellini A, Molinelli S, Vanoli A, Vitolo V, Fossati P, Vai A, Pagani A, Inzani F, Pecorilla M, Butturini G, Klersy C, Preda L, Facoetti A, Valvo F, Orlandi E. Preoperative chemo-CIRT in Re/BRe pancreatic cancer: Insights from a multicenter prospective phase II clinical study (NCT03822936). TUMORI JOURNAL 2024; 110:470-474. [PMID: 39462835 DOI: 10.1177/03008916241291341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
PURPOSE There is debate about the optimal management of borderline resectable (bRe) and resectable (Re) pancreatic ductal adenocarcinoma (PDAC). Both preclinical and clinical evidence showed that carbon ion radiotherapy (CIRT) produces superior control on radioresistant histologies compared to conventional photon beam radiotherapy (RT). However, so far there is a lack of data concerning the integration of CIRT in a multimodal approach with chemotherapy and surgery for bRe/Re. METHODS We recently presented the first analysis of a multicenter prospective phase II clinical study aimed at assessing the feasibility and effectiveness of a neoadjuvant chemotherapy + short course of CIRT followed by surgery and adjuvant chemotherapy in the management of bRe/Re PDAC. The study was terminated early due to low patient enrollment.Herein, we reported a post-hoc analysis focusing on toxicity, dosimetry and translational assessment. RESULTS In our experience, CIRT can be integrated into a multimodal treatment strategy for bRe/Re PDAC, alongside chemotherapy and surgery. A case of fatal liver failure occurring three months post-surgery has been documented, likely related to the combination approach. Although the treatment plans were satisfactory according to the Local Effect Model (LEM) model, recalculations using the modified Microdosimetric Kinetic Model (mMKM) revealed suboptimal target coverage. Additionally, we observed an increased expression of PD-L1 following CIRT. CONCLUSIONS This multimodal approach was well tolerated; however, clinicians should carefully monitor for vascular disorders during follow-up and further investigate surgical techniques after CIRT. The increased PD-L1 expression supports the immunogenic effects of particle therapy and lays the groundwork for future studies. To enhance the therapeutic ratio of CIRT treatments, integrating LET-d based objectives into the plan optimization process should be considered. TRIAL REGISTRATION NUMBER ClinicalTrials.gov Identifier: NCT03822936.
Collapse
Affiliation(s)
- Amelia Barcellini
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Silvia Molinelli
- Medical Physics Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy
| | - Alessandro Vanoli
- Department of Molecular Medicine, Unit of Anatomic Pathology, University of Pavia, Pavia, Italy
- Unit of Anatomic Pathology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Viviana Vitolo
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy
| | - Piero Fossati
- Department of Radiation Oncology, MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Department for Basic and Translational Oncology and Haematology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Alessandro Vai
- Medical Physics Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy
| | - Anna Pagani
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Frediano Inzani
- Department of Molecular Medicine, Unit of Anatomic Pathology, University of Pavia, Pavia, Italy
- Unit of Anatomic Pathology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Mattia Pecorilla
- Radiology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy
| | - Giovanni Butturini
- Division of Hepato-Bilio-Pancreatic Surgery, P. Pederzoli Hospital, Peschiera del Garda, Italy
| | - Catherine Klersy
- Biostatistics & Clinical Trial Center, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Lorenzo Preda
- Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, Italy
- Radiology Institute, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Angelica Facoetti
- Radiobiology Unit, Research and Development Department, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy
| | - Francesca Valvo
- Scientific Directorate, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy
| | - Ester Orlandi
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy
- Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
4
|
Han MC, Choi SH, Hong CS, Kim YB, Koom WS, Kim JS, Cho J, Wee CW, Kim C, Park JW, Han S, Lee H, Yoon HI, Lee IJ, Keum KC. The first Korean carbon-ion radiation therapy facility: current status of the Heavy-ion Therapy Center at the Yonsei Cancer Center. Radiat Oncol J 2024; 42:295-307. [PMID: 39748530 DOI: 10.3857/roj.2024.00206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/27/2024] [Indexed: 01/04/2025] Open
Abstract
PURPOSE This report offers a detailed examination of the inception and current state of the Heavy-ion Therapy Center (HITC) at the Yonsei Cancer Center (YCC), setting it apart as the world's first center equipped with a fixed beam and two superconducting gantries for carbon-ion radiation therapy (CIRT). MATERIALS AND METHODS Preparations for CIRT at YCC began in 2013; accordingly, this center has completed a decade of meticulous planning and culminating since the operational commencement of the HITC in April 2023. RESULTS This report elaborates on the clinical preparation for adopting CIRT in Korea. It includes an extensive description of HITC's facility layout at YCC, which comprises the accelerator and treatment rooms. Furthermore, this report delineates the clinical workflow, criteria for CIRT application, and the rigorous quality assurance processes implemented at YCC. It highlights YCC's sophisticated radiation therapy infrastructure, collaborative initiatives, and the efficacious treatment of >200 prostate cancer cases utilizing CIRT. CONCLUSION This manuscript concludes by discussing the prospective influence of CIRT on the medical domain within Korea, spotlighting YCC's pioneering contribution and forecasting the widespread integration of this groundbreaking technology.
Collapse
Affiliation(s)
- Min Cheol Han
- Department of Radiation Oncology, Heavy Ion Therapy Research Institute, Yonsei Cancer Center, Yonsei University Health System, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seo Hee Choi
- Department of Radiation Oncology, Heavy Ion Therapy Research Institute, Yonsei Cancer Center, Yonsei University Health System, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chae-Seon Hong
- Department of Radiation Oncology, Heavy Ion Therapy Research Institute, Yonsei Cancer Center, Yonsei University Health System, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong Bae Kim
- Department of Radiation Oncology, Heavy Ion Therapy Research Institute, Yonsei Cancer Center, Yonsei University Health System, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Woong Sub Koom
- Department of Radiation Oncology, Heavy Ion Therapy Research Institute, Yonsei Cancer Center, Yonsei University Health System, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin Sung Kim
- Department of Radiation Oncology, Heavy Ion Therapy Research Institute, Yonsei Cancer Center, Yonsei University Health System, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jaeho Cho
- Department of Radiation Oncology, Heavy Ion Therapy Research Institute, Yonsei Cancer Center, Yonsei University Health System, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chan Woo Wee
- Department of Radiation Oncology, Heavy Ion Therapy Research Institute, Yonsei Cancer Center, Yonsei University Health System, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Changhwan Kim
- Department of Radiation Oncology, Heavy Ion Therapy Research Institute, Yonsei Cancer Center, Yonsei University Health System, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jong Won Park
- Department of Radiation Oncology, Heavy Ion Therapy Research Institute, Yonsei Cancer Center, Yonsei University Health System, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Soorim Han
- Department of Radiation Oncology, Heavy Ion Therapy Research Institute, Yonsei Cancer Center, Yonsei University Health System, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Heejeong Lee
- Department of Radiation Oncology, Heavy Ion Therapy Research Institute, Yonsei Cancer Center, Yonsei University Health System, Seoul, Republic of Korea
| | - Hong In Yoon
- Department of Radiation Oncology, Heavy Ion Therapy Research Institute, Yonsei Cancer Center, Yonsei University Health System, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ik Jae Lee
- Department of Radiation Oncology, Heavy Ion Therapy Research Institute, Yonsei Cancer Center, Yonsei University Health System, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ki Chang Keum
- Department of Radiation Oncology, Heavy Ion Therapy Research Institute, Yonsei Cancer Center, Yonsei University Health System, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
5
|
Charalampopoulou A, Barcellini A, Peloso A, Vanoli A, Cesari S, Icaro Cornaglia A, Bistika M, Croce S, Cobianchi L, Ivaldi GB, Locati LD, Magro G, Tabarelli de Fatis P, Pullia MG, Orlandi E, Facoetti A. Unlocking the Potential Role of Decellularized Biological Scaffolds as a 3D Radiobiological Model for Low- and High-LET Irradiation. Cancers (Basel) 2024; 16:2582. [PMID: 39061220 PMCID: PMC11274431 DOI: 10.3390/cancers16142582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
INTRODUCTION Decellularized extracellular matrix (ECM) bioscaffolds have emerged as a promising three-dimensional (3D) model, but so far there are no data concerning their use in radiobiological studies. MATERIAL AND METHODS We seeded two well-known radioresistant cell lines (HMV-II and PANC-1) in decellularized porcine liver-derived scaffolds and irradiated them with both high- (Carbon Ions) and low- (Photons) Linear Energy Transfer (LET) radiation in order to test whether a natural 3D-bioscaffold might be a useful tool for radiobiological research and to achieve an evaluation that could be as near as possible to what happens in vivo. RESULTS Biological scaffolds provided a favorable 3D environment for cell proliferation and expansion. Cells did not show signs of dedifferentiation and retained their distinct phenotype coherently with their anatomopathological and clinical behaviors. The radiobiological response to high LET was higher for HMV-II and PANC-1 compared to the low LET. In particular, Carbon Ions reduced the melanogenesis in HMV-II and induced more cytopathic effects and the substantial cell deterioration of both cell lines compared to photons. CONCLUSIONS In addition to offering a suitable 3D model for radiobiological research and an appropriate setting for preclinical oncological analysis, we can attest that bioscaffolds seemed cost-effective due to their ease of use, low maintenance requirements, and lack of complex technology.
Collapse
Affiliation(s)
- Alexandra Charalampopoulou
- CNAO National Center for Oncological Hadrontherapy, Radiobiology Unit, Research and Development Department, 27100 Pavia, Italy;
- Hadron Academy PhD Course, School for Advanced Studies (IUSS), 27100 Pavia, Italy
| | - Amelia Barcellini
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy;
- CNAO National Center for Oncological Hadrontherapy, Radiation Oncology Unit, Clinical Department, 27100 Pavia, Italy;
| | - Andrea Peloso
- Division of Visceral Surgery, Department of Surgery, Geneva University Hospitals, 1205 Geneva, Switzerland;
| | - Alessandro Vanoli
- Unit of Anatomic Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (A.V.); (S.C.)
- Unit of Anatomic Pathology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Stefania Cesari
- Unit of Anatomic Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (A.V.); (S.C.)
- Unit of Anatomic Pathology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Antonia Icaro Cornaglia
- Unit of Histology and Embryology, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy;
| | - Margarita Bistika
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy;
| | - Stefania Croce
- Cell Factory, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Lorenzo Cobianchi
- Department of General Surgery, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
- Collegium Medicum, University of Social Sciences, 90-419 Łodz, Poland
| | | | - Laura Deborah Locati
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy;
- Medical Oncology Unit, Istituti Clinici Scientific Maugeri IRCCS, 27100 Pavia, Italy
| | - Giuseppe Magro
- CNAO National Center for Oncological Hadrontherapy, Medical Physics Unit, Clinical Department, 27100 Pavia, Italy;
| | | | - Marco Giuseppe Pullia
- Research and Development Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy;
| | - Ester Orlandi
- CNAO National Center for Oncological Hadrontherapy, Radiation Oncology Unit, Clinical Department, 27100 Pavia, Italy;
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Angelica Facoetti
- CNAO National Center for Oncological Hadrontherapy, Radiobiology Unit, Research and Development Department, 27100 Pavia, Italy;
| |
Collapse
|
6
|
Kobayashi N, Oike T, Ando K, Murata K, Tamaki T, Noda SE, Kogure K, Nobusawa S, Oyama T, Ohno T. Carbon ion radiotherapy for mesonephric adenocarcinoma of the uterine cervix: a case report. J Med Case Rep 2024; 18:228. [PMID: 38720351 PMCID: PMC11080269 DOI: 10.1186/s13256-024-04548-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 04/06/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Mesonephric adenocarcinoma is an extremely rare subtype of uterine cervical cancer that is associated with a poor prognosis and for which a standardized treatment protocol has not been established. Carbon ion radiotherapy (CIRT) is an emerging radiotherapy modality that has been shown to have a favorable anti-tumor effect, even for tumors resistant to conventional photon radiotherapy or chemotherapy. However, there is no report on CIRT outcomes for mesonephric adenocarcinoma of the uterine cervix. CASE PRESENTATION We treated a 47-year-old Japanese woman with mesonephric adenocarcinoma of the uterine cervix (T2bN0M0 and stage IIB according to the 7th edition of the Union for International Cancer Control and International Federation of Gynecology and Obstetrics, respectively) with CIRT combined with brachytherapy and concurrent chemotherapy. CIRT consisted of whole pelvic irradiation and boost irradiation to the gross tumor; 36.0 Gy (relative biological effectiveness [RBE]) in 12 fractions and 19.2 Gy (RBE) in 4 fractions, respectively, performed once a day, four times per week. Computed tomography-based image-guided adaptive brachytherapy was performed after completion of CIRT, for which the D90 (i.e., the dose prescribed to 90% of the target volume) for the high-risk clinical target volume was 20.4 Gy in a total of 3 sessions in 2 weeks. A weekly cisplatin (40 mg/m2) dose was administered concomitantly with the radiotherapy for a total of five courses. From 4 months post-CIRT, the patient developed metastasis of the lung, with a total of 10 lung metastases over 70 months; these lesions were treated on each occasion by photon stereotactic body radiotherapy and/or systemic therapy. At 8 years from initial treatment (i.e., 2 years after the last treatment), the patient is alive without any evidence of recurrence and maintains a high quality of life. CONCLUSIONS This is the first report of CIRT for treatment of mesonephric adenocarcinoma of the uterine cervix. The present case indicates the potential efficacy of CIRT in combination with brachytherapy for treatment of this disease.
Collapse
Affiliation(s)
- Nao Kobayashi
- Department of Radiation Oncology, Kyorin University, 6-20-2 Shinkawa, Mitaka-Shi, Tokyo, 181-8611, Japan.
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi-Shi, Gunma, 371-8511, Japan.
| | - Takahiro Oike
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi-Shi, Gunma, 371-8511, Japan
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-Machi, Maebashi-Shi, Gunma, 371-8511, Japan
| | - Ken Ando
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi-Shi, Gunma, 371-8511, Japan
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-Machi, Maebashi-Shi, Gunma, 371-8511, Japan
| | - Kazutoshi Murata
- QST Hospital, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-Ku, Chiba-Shi, Chiba, 263-8555, Japan
| | - Tomoaki Tamaki
- Department of Radiation Oncology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima-Shi, Fukushima, 960-1295, Japan
- Department of Health Risk Communication, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima-Shi, Fukushima, 960-1295, Japan
| | - Shin-Ei Noda
- Department of Radiation Oncology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka-Shi, Saitama, 350-1298, Japan
| | - Kayoko Kogure
- Department of Obstetrics and Gynecology, Isesaki Municipal Hospital, 12-1 Tsunatorihonmachi, Isesaki-Shi, Gunma, 372-0817, Japan
| | - Sumihito Nobusawa
- Department of Human Pathology, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi-Shi, Gunma, 371-8511, Japan
| | - Tetsunari Oyama
- Department of Diagnostic Pathology, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi-Shi, Gunma, 371-8511, Japan
| | - Tatsuya Ohno
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi-Shi, Gunma, 371-8511, Japan
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-Machi, Maebashi-Shi, Gunma, 371-8511, Japan
| |
Collapse
|
7
|
Jethwa KR, Kim E, Berlin J, Anker CJ, Tchelebi L, Abood G, Hallemeier CL, Jabbour S, Kennedy T, Kumar R, Lee P, Sharma N, Small W, Williams V, Russo S. Executive Summary of the American Radium Society Appropriate Use Criteria for Neoadjuvant Therapy for Nonmetastatic Pancreatic Adenocarcinoma: Systematic Review and Guidelines. Am J Clin Oncol 2024; 47:185-199. [PMID: 38131628 DOI: 10.1097/coc.0000000000001076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
For patients with locoregionally confined pancreatic ductal adenocarcinoma (PDAC), margin-negative surgical resection is the only known curative treatment; however, the majority of patients are not operable candidates at initial diagnosis. Among patients with resectable disease who undergo surgery alone, the 5-year survival remains poor. Adjuvant therapies, including systemic therapy or chemoradiation, are utilized as they improve locoregional control and overall survival. There has been increasing interest in the use of neoadjuvant therapy to obtain early control of occult metastatic disease, allow local tumor response to facilitate margin-negative resection, and provide a test of time and biology to assist with the selection of candidates most likely to benefit from radical surgical resection. However, limited guidance exists regarding the relative effectiveness of treatment options. In this systematic review, the American Radium Society multidisciplinary gastrointestinal expert panel convened to develop Appropriate Use Criteria evaluating the evidence regarding neoadjuvant treatment for patients with PDAC, including surgery, systemic therapy, and radiotherapy, in terms of oncologic outcomes and quality of life. The evidence was assessed using the Population, Intervention, Comparator, Outcome, and Study (PICOS) design framework and "Preferred Reporting Items for Systematic Reviews and Meta-analyses" 2020 methodology. Eligible studies included phases 2 to 3 trials, meta-analyses, and retrospective analyses published between January 1, 2012 and December 30, 2022 in the Ovid Medline database. A summary of recommendations based on the available literature is outlined to guide practitioners in the management of patients with PDAC.
Collapse
Affiliation(s)
- Krishan R Jethwa
- Department of Radiation Oncology, Mayo Clinic College of Medicine, Rochester, MN
| | - Ed Kim
- Department of Radiation Oncology, University of Washington, Seattle, WA
| | - Jordan Berlin
- Department of Medicine, Division of Hematology-Oncology, Vanderbilt-Ingram Cancer Center, Nashville, TN
| | - Christopher J Anker
- Department of Radiation Oncology, University of Vermont Larner College of Medicine, Burlington, VT
| | - Leila Tchelebi
- Department of Radiation Oncology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead
| | | | | | | | - Timothy Kennedy
- Department of Surgery, Rutgers Cancer Institute, New Brunswick, NJ
| | - Rachit Kumar
- Department of Radiation Oncology, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Sibley Memorial Hospital, Washington DC
| | - Percy Lee
- Department of Radiation Oncology, City of Hope National Medical Center, Los Angeles, CA
| | - Navesh Sharma
- Department of Radiation Oncology, WellSpan Cancer Center, York, PA
| | - William Small
- Department of Radiation Oncology, Loyola University Stritch School of Medicine, Maywood, IL
| | - Vonetta Williams
- Department of Radiation Oncology, Memorial Sloan Kettering, New York, NY
| | - Suzanne Russo
- Department of Radiation Oncology, University Hospitals Cleveland, Case Western Reserve University School of Medicine, Cleveland, OH
| |
Collapse
|
8
|
Watanabe Y, Tatsuguchi T, Date K, Shinkawa T, Kuga H, Tamiya S, Nishihara K, Nakano T. Conversion surgery for initially unresectable locally advanced pancreatic ductal adenocarcinoma after chemotherapy followed by carbon-ion radiotherapy: a case report. J Med Case Rep 2024; 18:13. [PMID: 38200536 PMCID: PMC10782725 DOI: 10.1186/s13256-023-04311-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 12/07/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Recent advances in chemotherapy and chemoradiotherapy have enabled conversion surgery (CS) to be performed for selected patients with initially unresectable locally advanced (LA) pancreatic ductal adenocarcinoma (PDAC). Many studies indicate CS might extend the survival of patients with initially unresectable LA PDAC. However, several clinical questions concerning CS remain, such as the optimal preoperative treatment. Carbon-ion radiotherapy (CIRT) is a unique radiotherapy that offers higher biological effectiveness than conventional radiotherapy. Here, we report a long-term survival case with initially unresectable LA PDAC who underwent CS after chemotherapy followed by CIRT. CASE PRESENTATION The patient was a 72-year-old Japanese woman with unresectable LA pancreatic head cancer with tumor contact to the superior mesenteric artery (SMA). She underwent four courses of chemotherapy (gemcitabine plus nanoparticle albumin-bound paclitaxel). However, the lesion did not shrink and tumor contact with the SMA did not improve after chemotherapy. Because the probability of achieving curative resection was judged to be low, she underwent radical dose CIRT, and chemotherapy was continued. She complained of vomiting 2 months after CIRT. Although imaging studies showed no tumor growth or metastasis, a duodenal obstruction which was speculated to be an adverse effect of CIRT was observed. She could not eat solid food and a trans-nasal feeding tube was inserted. Therapeutic intervention was required to enable enteral nutrition. We proposed several treatment options. She chose resection with the expectation of an anti-tumor effect of chemotherapy and CIRT rather than course observation with tube feeding or bypass surgery. Therefore, subtotal-stomach-preserving pancreatoduodenectomy with portal vein resection was performed as CS. Pathological examination of the resected specimen revealed an R0 resection with a histological response of Evans grade IIA. Postoperatively, she recovered uneventfully. Adjuvant chemotherapy with tegafur/gimeracil/oteracil (S1) was administrated. At the time of this report, 5 years have passed since the initial consultation and she has experienced no tumor recurrence. CONCLUSIONS The present case suggests that multidisciplinary treatment consisting of a combination of recent chemotherapy and CIRT may be beneficial for unresectable LA PDAC. However, further studies are required to assess the true efficacy of this treatment strategy.
Collapse
Affiliation(s)
- Yusuke Watanabe
- Department of Surgery, Kitakyushu Municipal Medical Center, 2-1-1 Bashaku, Kokurakita-Ku, Kitakyushu, 802-0077, Japan.
- Department of Surgery, Hamanomachi Hospital, 3-3-1 Nagahama, Chuo-Ku, Fukuoka, 810-8539, Japan.
| | - Takaaki Tatsuguchi
- Department of Surgery, Kitakyushu Municipal Medical Center, 2-1-1 Bashaku, Kokurakita-Ku, Kitakyushu, 802-0077, Japan
| | - Kenjiro Date
- Department of Surgery, Kitakyushu Municipal Medical Center, 2-1-1 Bashaku, Kokurakita-Ku, Kitakyushu, 802-0077, Japan
| | - Tomohiko Shinkawa
- Department of Surgery, Kitakyushu Municipal Medical Center, 2-1-1 Bashaku, Kokurakita-Ku, Kitakyushu, 802-0077, Japan
| | - Hirotaka Kuga
- Department of Surgery, Kitakyushu Municipal Medical Center, 2-1-1 Bashaku, Kokurakita-Ku, Kitakyushu, 802-0077, Japan
| | - Sadafumi Tamiya
- Department of Pathology, Kitakyushu Municipal Medical Center, 2-1-1 Bashaku, Kokurakita-Ku, Kitakyushu, 802-0077, Japan
| | - Kazuyoshi Nishihara
- Department of Surgery, Kitakyushu Municipal Medical Center, 2-1-1 Bashaku, Kokurakita-Ku, Kitakyushu, 802-0077, Japan
| | - Toru Nakano
- Department of Surgery, Kitakyushu Municipal Medical Center, 2-1-1 Bashaku, Kokurakita-Ku, Kitakyushu, 802-0077, Japan
| |
Collapse
|
9
|
Chen G, Yu Z, Zhang Y, Liu S, Chen C, Zhang S. Radiation-induced gastric injury during radiotherapy: molecular mechanisms and clinical treatment. JOURNAL OF RADIATION RESEARCH 2023; 64:870-879. [PMID: 37788485 PMCID: PMC10665304 DOI: 10.1093/jrr/rrad071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/08/2023] [Indexed: 10/05/2023]
Abstract
Radiotherapy (RT) has been the standard of care for treating a multitude of cancer types. Radiation-induced gastric injury (RIGI) is a common complication of RT for thoracic and abdominal tumors. It manifests acutely as radiation gastritis or gastric ulcers, and chronically as chronic atrophic gastritis or intestinal metaplasia. In recent years, studies have shown that intracellular signals such as oxidative stress response, p38/MAPK pathway and transforming growth factor-β signaling pathway are involved in the progression of RIGI. This review also summarized the risk factors, diagnosis and treatment of this disease. However, the root of therapeutic challenges lies in the incomplete understanding of the mechanisms. Here, we also highlight the potential mechanistic, diagnostic and therapeutic directions of RIGI.
Collapse
Affiliation(s)
- Guangxia Chen
- Department of Gastroenterology, The First People’s Hospital of Xuzhou, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou 221200, China
| | - Zuxiang Yu
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Yuehua Zhang
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Shiyu Liu
- Department of Gastroenterology, The First People’s Hospital of Xuzhou, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou 221200, China
| | - Chong Chen
- Department of Gastroenterology, The First People’s Hospital of Xuzhou, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou 221200, China
| | - Shuyu Zhang
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital , Chengdu 610051, China
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang 621099, China
| |
Collapse
|
10
|
Orlandi E, Barcellini A, Vischioni B, Fiore MR, Vitolo V, Iannalfi A, Bonora M, Chalaszczyk A, Ingargiola R, Riva G, Ronchi S, Valvo F, Fossati P, Ciocca M, Mirandola A, Molinelli S, Pella A, Baroni G, Pullia MG, Facoetti A, Orecchia R, Licitra L, Vago G, Rossi S. The Role of Carbon Ion Therapy in the Changing Oncology Landscape-A Narrative Review of the Literature and the Decade of Carbon Ion Experience at the Italian National Center for Oncological Hadrontherapy. Cancers (Basel) 2023; 15:5068. [PMID: 37894434 PMCID: PMC10605728 DOI: 10.3390/cancers15205068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/03/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Currently, 13 Asian and European facilities deliver carbon ion radiotherapy (CIRT) for preclinical and clinical activity, and, to date, 55 clinical studies including CIRT for adult and paediatric solid neoplasms have been registered. The National Center for Oncological Hadrontherapy (CNAO) is the only Italian facility able to accelerate both protons and carbon ions for oncological treatment and research. METHODS To summarise and critically evaluate state-of-the-art knowledge on the application of carbon ion radiotherapy in oncological settings, the authors conducted a literature search till December 2022 in the following electronic databases: PubMed, Web of Science, MEDLINE, Google Scholar, and Cochrane. The results of 68 studies are reported using a narrative approach, highlighting CNAO's clinical activity over the last 10 years of CIRT. RESULTS The ballistic and radiobiological hallmarks of CIRT make it an effective option in several rare, radioresistant, and difficult-to-treat tumours. CNAO has made a significant contribution to the advancement of knowledge on CIRT delivery in selected tumour types. CONCLUSIONS After an initial ramp-up period, CNAO has progressively honed its clinical, technical, and dosimetric skills. Growing engagement with national and international networks and research groups for complex cancers has led to increasingly targeted patient selection for CIRT and lowered barriers to facility access.
Collapse
Affiliation(s)
- Ester Orlandi
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
| | - Amelia Barcellini
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
- Department of Internal Medicine and Medical Therapy, University of Pavia, 27100 Pavia, Italy
| | - Barbara Vischioni
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
| | - Maria Rosaria Fiore
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
| | - Viviana Vitolo
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
| | - Alberto Iannalfi
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
| | - Maria Bonora
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
| | - Agnieszka Chalaszczyk
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
| | - Rossana Ingargiola
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
| | - Giulia Riva
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
| | - Sara Ronchi
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
| | - Francesca Valvo
- Scientific Directorate, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
| | - Piero Fossati
- Department of Radiation Oncology, MedAustron Ion Therapy Center, 2700 Wiener Neustadt, Austria
- Department for Basic and Translational Oncology and Haematology, Karl Landsteiner University of Health Sciences, 3500 Krems, Austria
| | - Mario Ciocca
- Medical Physics Unit, National Center for Oncological Hadrontherapy (CNAO), 27100 Pavia, Italy
| | - Alfredo Mirandola
- Medical Physics Unit, National Center for Oncological Hadrontherapy (CNAO), 27100 Pavia, Italy
| | - Silvia Molinelli
- Medical Physics Unit, National Center for Oncological Hadrontherapy (CNAO), 27100 Pavia, Italy
| | - Andrea Pella
- Bioengineering Unit, National Center for Oncological Hadrontherapy (CNAO), 27100 Pavia, Italy
| | - Guido Baroni
- Bioengineering Unit, National Center for Oncological Hadrontherapy (CNAO), 27100 Pavia, Italy
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Marco Giuseppe Pullia
- Radiobiology Unit, Research and Development Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
| | - Angelica Facoetti
- Radiobiology Unit, Research and Development Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
| | - Roberto Orecchia
- Scientific Directorate, IEO-European Institute of Oncology, IRCCS, 20141 Milan, Italy
| | - Lisa Licitra
- Scientific Directorate, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
- Department of Head & Neck Medical Oncology 3, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
- Department of Oncology & Haemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Gianluca Vago
- Presidency, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
- School of Pathology, University of Milan, 20122 Milan, Italy
| | - Sandro Rossi
- General Directorate, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
| |
Collapse
|
11
|
Sokol O, Durante M. Carbon Ions for Hypoxic Tumors: Are We Making the Most of Them? Cancers (Basel) 2023; 15:4494. [PMID: 37760464 PMCID: PMC10526811 DOI: 10.3390/cancers15184494] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Hypoxia, which is associated with abnormal vessel growth, is a characteristic feature of many solid tumors that increases their metastatic potential and resistance to radiotherapy. Carbon-ion radiation therapy, either alone or in combination with other treatments, is one of the most promising treatments for hypoxic tumors because the oxygen enhancement ratio decreases with increasing particle LET. Nevertheless, current clinical practice does not yet fully benefit from the use of carbon ions to tackle hypoxia. Here, we provide an overview of the existing experimental and clinical evidence supporting the efficacy of C-ion radiotherapy in overcoming hypoxia-induced radioresistance, followed by a discussion of the strategies proposed to enhance it, including different approaches to maximize LET in the tumors.
Collapse
Affiliation(s)
- Olga Sokol
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforchung, Planckstraße 1, 64291 Darmstadt, Germany;
| | - Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforchung, Planckstraße 1, 64291 Darmstadt, Germany;
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany
| |
Collapse
|
12
|
Pompos A, Foote RL, Koong AC, Le QT, Mohan R, Paganetti H, Choy H. National Effort to Re-Establish Heavy Ion Cancer Therapy in the United States. Front Oncol 2022; 12:880712. [PMID: 35774126 PMCID: PMC9238353 DOI: 10.3389/fonc.2022.880712] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
In this review, we attempt to make a case for the establishment of a limited number of heavy ion cancer research and treatment facilities in the United States. Based on the basic physics and biology research, conducted largely in Japan and Germany, and early phase clinical trials involving a relatively small number of patients, we believe that heavy ions have a considerably greater potential to enhance the therapeutic ratio for many cancer types compared to conventional X-ray and proton radiotherapy. Moreover, with ongoing technological developments and with research in physical, biological, immunological, and clinical aspects, it is quite plausible that cost effectiveness of radiotherapy with heavier ions can be substantially improved.
Collapse
Affiliation(s)
- Arnold Pompos
- Department of Radiation Oncology, University of Texas (UT) Southwestern Medical Center, Dallas, TX, United States
| | - Robert L. Foote
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States
- *Correspondence: Robert L. Foote,
| | - Albert C. Koong
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Quynh Thu Le
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, United States
| | - Radhe Mohan
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Harald Paganetti
- Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Boston, MA, United States
| | - Hak Choy
- Department of Radiation Oncology, University of Texas (UT) Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
13
|
Kawashima M, Tashiro M, Varnava M, Shiba S, Matsui T, Okazaki S, Li Y, Komatsu S, Kawamura H, Okamoto M, Ohno T. An adaptive planning strategy in carbon ion therapy of pancreatic cancer involving beam angle selection. Phys Imaging Radiat Oncol 2022; 21:35-41. [PMID: 35198743 PMCID: PMC8850338 DOI: 10.1016/j.phro.2022.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 11/19/2022] Open
Affiliation(s)
- Motohiro Kawashima
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-Machi, Maebashi, Gunma, Japan
- Corresponding author at: 3-39-22, Showa-Machi, Maebashi, Gunma 371-8511, Japan.
| | - Mutsumi Tashiro
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-Machi, Maebashi, Gunma, Japan
| | - Maria Varnava
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-Machi, Maebashi, Gunma, Japan
| | - Shintaro Shiba
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi, Gunma, Japan
| | - Toshiaki Matsui
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi, Gunma, Japan
| | - Shohei Okazaki
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi, Gunma, Japan
| | - Yang Li
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-Machi, Maebashi, Gunma, Japan
| | - Shuichiro Komatsu
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi, Gunma, Japan
| | - Hidemasa Kawamura
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi, Gunma, Japan
| | - Masahiko Okamoto
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi, Gunma, Japan
| | - Tatsuya Ohno
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-Machi, Maebashi, Gunma, Japan
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi, Gunma, Japan
| |
Collapse
|
14
|
Eichkorn T, König L, Held T, Naumann P, Harrabi S, Ellerbrock M, Herfarth K, Haberer T, Debus J. Carbon Ion Radiation Therapy: One Decade of Research and Clinical Experience at Heidelberg Ion Beam Therapy Center. Int J Radiat Oncol Biol Phys 2021; 111:597-609. [PMID: 34560023 DOI: 10.1016/j.ijrobp.2021.05.131] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 12/26/2022]
Affiliation(s)
- Tanja Eichkorn
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; National Center for Radiation Oncology, Heidelberg Institute for Radiation Oncology, Heidelberg, Germany; National Center for Tumor Diseases, Heidelberg, Germany; Heidelberg Ion Beam Therapy Center, Heidelberg, Germany.
| | - Laila König
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; National Center for Radiation Oncology, Heidelberg Institute for Radiation Oncology, Heidelberg, Germany; National Center for Tumor Diseases, Heidelberg, Germany; Heidelberg Ion Beam Therapy Center, Heidelberg, Germany
| | - Thomas Held
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; National Center for Radiation Oncology, Heidelberg Institute for Radiation Oncology, Heidelberg, Germany; National Center for Tumor Diseases, Heidelberg, Germany; Heidelberg Ion Beam Therapy Center, Heidelberg, Germany
| | - Patrick Naumann
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; National Center for Radiation Oncology, Heidelberg Institute for Radiation Oncology, Heidelberg, Germany; National Center for Tumor Diseases, Heidelberg, Germany; Heidelberg Ion Beam Therapy Center, Heidelberg, Germany
| | - Semi Harrabi
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; National Center for Radiation Oncology, Heidelberg Institute for Radiation Oncology, Heidelberg, Germany; National Center for Tumor Diseases, Heidelberg, Germany; Heidelberg Ion Beam Therapy Center, Heidelberg, Germany
| | | | - Klaus Herfarth
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; National Center for Radiation Oncology, Heidelberg Institute for Radiation Oncology, Heidelberg, Germany; National Center for Tumor Diseases, Heidelberg, Germany; Heidelberg Ion Beam Therapy Center, Heidelberg, Germany
| | | | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; National Center for Radiation Oncology, Heidelberg Institute for Radiation Oncology, Heidelberg, Germany; National Center for Tumor Diseases, Heidelberg, Germany; Heidelberg Ion Beam Therapy Center, Heidelberg, Germany; Clinical Cooperation Unit, Radiation Oncology, German Cancer Research Center, Heidelberg, Germany; German Cancer Consortium, Partner Site Heidelberg, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
15
|
Noticewala SS, Das P. Carbon Ion Radiotherapy for Locally Recurrent Rectal Cancer. Ann Surg Oncol 2021; 29:11-12. [PMID: 34617163 DOI: 10.1245/s10434-021-10900-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 01/03/2023]
Affiliation(s)
- Sonal S Noticewala
- Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Prajnan Das
- Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
16
|
Carbon ion radiotherapy as definitive treatment in locally recurrent pancreatic cancer. Strahlenther Onkol 2021; 198:378-387. [PMID: 34351449 PMCID: PMC8940823 DOI: 10.1007/s00066-021-01827-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 07/05/2021] [Indexed: 11/22/2022]
Abstract
Purpose Data on management of locally recurrent pancreatic cancer (LRPC) after primary resection are limited. Recently, surprisingly high overall survival rates were reported after irradiation with carbon ions. Here, we report on our clinical experience using carbon ion radiotherapy as definitive treatment in LRPC at the Heidelberg Ion-Beam Therapy Center (HIT). Methods Between 2015 and 2019, we treated 13 patients with LRPC with carbon ions with a median total dose of 48 Gy (RBE) in 12 fractions using an active raster-scanning technique at a rotating gantry. No concomitant chemotherapy was administered. Overall survival, local control, and toxicity rates were evaluated 18 months after the last patient finished radiotherapy. Results With a median follow-up time of 9.5 months, one patient is still alive (8%). Median OS was 12.7 months. Ten patients (77%) developed distant metastases. Additionally, one local recurrence (8%) and two regional tumor recurrences (15%) were observed. The estimated 1‑year local control and locoregional control rates were 87.5% and 75%, respectively. During radiotherapy, we registered one gastrointestinal bleeding CTCAE grade III (8%) due to gastritis. The bleeding was sufficiently managed with conservative therapy. No further higher-grade acute or late toxicities were observed. Conclusion We demonstrate high local control rates in a rare cohort of LRPC patients treated with carbon ion radiotherapy. The observed median overall survival rate was not improved compared to historical in-house data using photon radiotherapy. This is likely due to a high rate of distant tumor progression, highlighting the necessity of additional chemotherapy.
Collapse
|
17
|
Wang X, Chen X, Li G, Han X, Gao T, Liu W, Tang X. Application of Carbon Ion and Its Sensitizing Agent in Cancer Therapy: A Systematic Review. Front Oncol 2021; 11:708724. [PMID: 34290989 PMCID: PMC8287631 DOI: 10.3389/fonc.2021.708724] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022] Open
Abstract
Carbon ion radiation therapy (CIRT) is the most advanced radiation therapy (RT) available and offers new opportunities to improve cancer treatment and research. CIRT has a unique physical and biological advantage that allow them to kill tumor cells more accurately and intensively. So far, CIRT has been used in almost all types of malignant tumors, and showed good feasibility, safety and acceptable toxicity, indicating that CIRT has a wide range of development and application prospects. In addition, in order to improve the biological effect of CIRT, scientists are also trying to investigate related sensitizing agents to enhance the killing ability of tumor cells, which has attracted extensive attention. In this review, we tried to systematically review the rationale, advantages and problems, the clinical applications and the sensitizing agents of the CIRT. At the same time, the prospects of the CIRT in were prospected. We hope that this review will help researchers interested in CIRT, sensitizing agents, and radiotherapy to understand their magic more systematically and faster, and provide data reference and support for bioanalysis, clinical medicine, radiotherapy, heavy ion therapy, and nanoparticle diagnostics.
Collapse
Affiliation(s)
- Xiaolin Wang
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
| | - Xiaojun Chen
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
| | - Guangfei Li
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
| | - Xiao Han
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
| | - Tianxin Gao
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
| | - Weifeng Liu
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
| | - Xiaoying Tang
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
18
|
Kim KS, Wu HG. Who Will Benefit from Charged-Particle Therapy? Cancer Res Treat 2021; 53:621-634. [PMID: 34176253 PMCID: PMC8291184 DOI: 10.4143/crt.2021.299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
Charged-particle therapy (CPT) such as proton beam therapy (PBT) and carbon-ion radiotherapy (CIRT) exhibit substantial physical and biological advantages compared to conventional photon radiotherapy. As it can reduce the amount of radiation irradiated in the normal organ, CPT has been mainly applied to pediatric cancer and radioresistent tumors in the eloquent area. Although there is a possibility of greater benefits, high set-up cost and dearth of high level of clinical evidence hinder wide applications of CPT. This review aims to present recent clinical results of PBT and CIRT in selected diseases focusing on possible indications of CPT. We also discussed how clinical studies are conducted to increase the number of patients who can benefit from CPT despite its high cost.
Collapse
Affiliation(s)
- Kyung Su Kim
- Department of Radiation Oncology, Ewha Womans University College of Medicine, Seoul,
Korea
| | - Hong-Gyun Wu
- Department of Radiation Oncology, Seoul National University Hospital, Seoul,
Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul,
Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul,
Korea
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul,
Korea
| |
Collapse
|
19
|
Ebner DK, Frank SJ, Inaniwa T, Yamada S, Shirai T. The Emerging Potential of Multi-Ion Radiotherapy. Front Oncol 2021; 11:624786. [PMID: 33692957 PMCID: PMC7937868 DOI: 10.3389/fonc.2021.624786] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/04/2021] [Indexed: 12/26/2022] Open
Abstract
Research into high linear energy transfer (LET) radiotherapy now spans over half a century, beginning with helium and deuteron treatment in 1952 and today ranging from fast neutrons to carbon-ions. Owing to pioneering work initially in the United States and thereafter in Germany and Japan, increasing focus is on the carbon-ion beam: 12 centers are in operation, with five under construction and three in planning. While the carbon-ion beam has demonstrated unique and promising suitability in laboratory and clinical trials toward the hypofractionated treatment of hypoxic and/or radioresistant cancer, substantial developmental potential remains. Perhaps most notable is the ability to paint LET in a tumor, theoretically better focusing damage delivery within the most resistant areas. However, the technique may be limited in practice by the physical properties of the beams themselves. A heavy-ion synchrotron may provide irradiation with multiple heavy-ions: carbon, helium, and oxygen are prime candidates. Each ion varies in LET distribution, and so a methodology combining the use of multiple ions into a uniform LET distribution within a tumor may allow for even greater treatment potential in radioresistant cancer.
Collapse
Affiliation(s)
- Daniel K Ebner
- National Institute of Radiological Science (NIRS), National Institutes of Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Steven J Frank
- Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Taku Inaniwa
- National Institute of Radiological Science (NIRS), National Institutes of Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Shigeru Yamada
- National Institute of Radiological Science (NIRS), National Institutes of Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Toshiyuki Shirai
- National Institute of Radiological Science (NIRS), National Institutes of Quantum and Radiological Science and Technology (QST), Chiba, Japan
| |
Collapse
|
20
|
Barcellini A, Peloso A, Pugliese L, Vitolo V, Cobianchi L. Locally Advanced Pancreatic Ductal Adenocarcinoma: Challenges and Progress. Onco Targets Ther 2020; 13:12705-12720. [PMID: 33335406 PMCID: PMC7737010 DOI: 10.2147/ott.s220971] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/30/2020] [Indexed: 12/24/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the major causes of death in the Western world, and it is estimated to become the second leading cause of tumour-related mortality in the next 10 years. Among pancreatic cancers, ductal adenocarcinomas are by far the most common, characterised by a challenging diagnosis due to the lack of initial and pathognomonic clinical signs. In this scenario, non-metastatic locally advanced pancreatic cancer (LAPC) accounts for a large proportion of all new pancreatic ductal adenocarcinoma diagnoses. There is no consensus on a common definition of LAPC. Still, it usually includes tumours that are not resectable due to vascular involvement. As of today, treatment is limited, and the prognosis is very unfavourable. Curative-intent surgery remains the gold-standard even if often jeopardized by vascular involvement. Continuing progress in our understanding of LAPC genetics and immunology will permit the development of different treatments, targeted or combined, including radiation therapy, hadrontherapy, targeted immunotherapies or new chemotherapies. A multidisciplinary approach combining various fields of expertise is essential in aiming to limit disease progression as well as patient outcome. Using a narrative literature review approach, the manuscript explores the most up-to-date knowledge concerning locally advanced pancreatic ductal adenocarcinoma management.
Collapse
Affiliation(s)
- Amelia Barcellini
- National Center of Oncological Hadrontherapy (Fondazione CNAO), Pavia, Italy
| | - Andrea Peloso
- Divisions of Transplantation and Visceral Surgery, Department of Surgery, University of Geneva, Geneva, Switzerland
| | - Luigi Pugliese
- General Surgery, Foundation IRCCS San Matteo Hospital, Pavia, Italy
| | - Viviana Vitolo
- National Center of Oncological Hadrontherapy (Fondazione CNAO), Pavia, Italy
| | - Lorenzo Cobianchi
- General Surgery, Foundation IRCCS San Matteo Hospital, Pavia, Italy.,Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, Foundation IRCCS San Matteo Hospital, University of Pavia, Pavia, Italy
| |
Collapse
|
21
|
Liermann J, Naumann P, Hommertgen A, Pohl M, Kieser M, Debus J, Herfarth K. Carbon ion radiotherapy as definitive treatment in non-metastasized pancreatic cancer: study protocol of the prospective phase II PACK-study. BMC Cancer 2020; 20:947. [PMID: 33004046 PMCID: PMC7528272 DOI: 10.1186/s12885-020-07434-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 09/17/2020] [Indexed: 12/24/2022] Open
Abstract
Background Radiotherapy is known to improve local tumor control in locally advanced pancreatic cancer (LAPC), although there is a lack of convincing data on a potential overall survival benefit of chemoradiotherapy over chemotherapy alone. To improve efficacy of radiotherapy, new approaches need to be evolved. Carbon ion radiotherapy is supposed to be more effective than photon radiotherapy due to a higher relative biological effectiveness (RBE) and due to a steep dose-gradient making dose delivery highly conformal. Methods The present Phase II PACK-study investigates carbon ion radiotherapy as definitive treatment in LAPC as well as in locally recurrent pancreatic cancer. A total irradiation dose of 48 Gy (RBE) will be delivered in twelve fractions. Concurrent chemotherapy is accepted, if indicated. The primary endpoint is the overall survival rate after 12 months. Secondary endpoints are progression free survival, safety, quality of life and impact on tumor markers CA 19–9 and CEA. A total of twenty-five patients are planned for recruitment over 2 years. Discussion Recently, Japanese researches could show promising results in a Phase I/II-study evaluating chemoradiotherapy of carbon ion radiotherapy and gemcitabine in LAPC. The present prospective PACK-study investigates the efficacy of carbon ion radiotherapy in pancreatic cancer at Heidelberg Ion Beam Therapy Center (HIT) in Germany. Trial registration The trial is registered at ClinicalTrials.gov: NCT04194268 (Retrospectively registered on December, 11th 2019).
Collapse
Affiliation(s)
- Jakob Liermann
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany. .,Heidelberg Institute of Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany. .,Heidelberg Ion-Beam Therapy Center (HIT), Im Neuenheimer Feld 450, 69120, Heidelberg, Germany.
| | - Patrick Naumann
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center (HIT), Im Neuenheimer Feld 450, 69120, Heidelberg, Germany
| | - Adriane Hommertgen
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, 69120, Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,German Cancer Consortium (DKTK), partner site Heidelberg, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Moritz Pohl
- Institute of Medical Biometry and Informatics, University of Heidelberg, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany
| | - Meinhard Kieser
- Institute of Medical Biometry and Informatics, University of Heidelberg, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany
| | - Juergen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center (HIT), Im Neuenheimer Feld 450, 69120, Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, 69120, Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,German Cancer Consortium (DKTK), partner site Heidelberg, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Klaus Herfarth
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center (HIT), Im Neuenheimer Feld 450, 69120, Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, 69120, Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,German Cancer Consortium (DKTK), partner site Heidelberg, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| |
Collapse
|
22
|
Laura A, Anna C, Cinquepalmi M, Giovanni M, Sole MM, Nava AK, Niccolò P, Giuseppe N, Stefano V, Paolo A, Francesco D, Giovanni R. Is Complete Pathologic Response in Pancreatic Cancer Overestimated? A Systematic Review of Prospective Studies. J Gastrointest Surg 2020; 24:2336-2348. [PMID: 32583324 DOI: 10.1007/s11605-020-04697-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 06/11/2020] [Indexed: 01/31/2023]
Abstract
BACKGROUND In literature, percentages of pathologic complete response (pCR) in patients presenting with resectable (RES), borderline resectable (BLR) or locally advanced (LA) pancreatic cancer (PaC) after neoadjuvant treatment (NADT) are variable, ranging 0-33%. Those data come mostly from retrospective reviews of single centres. The objective of this systematic review is to assess the incidence of pCR. METHODS Following the criteria of the PRISMA statement, a literature search was conducted looking for prospective papers focusing on neoadjuvant treatment in PaC. Retrospective papers, other than ductal carcinoma histologies and trials including metastatic patients, were excluded from the present review. Data extraction was carried out by 3 independent investigators. Meta-analysis was performed with ProMeta3 Software (Internovi, 2015). PROSPERO registry: CRD42018095641. RESULTS The literature search of Embase, Cochrane and Medline with the terms "neoadjuvant OR preoperative", "pancreatic OR pancreas" and "cancer OR adenocarcinoma OR tumor" led to the identification of 3128 papers. We restricted the search to humans, last 10 years and English language articles resulting in 1158 eligible articles to review. Extended paper revision led to the inclusion of 27 papers. Complete pathologic response ranged 0-11.11%, at the meta-analysis 4% (95% CI 3-5%), in prospective studies 0-9.09% and in prospective databases 1.63-11.11%. CONCLUSIONS Pathologic complete response in pancreatic cancer is actually infrequent: high-quality studies provide a more reliable picture of neoadjuvant effects, high rates of pCR are reported in selected retrospective studies but it is overestimated.
Collapse
Affiliation(s)
- Antolino Laura
- General Surgery Unit, Department of Medical and Surgical Sciences and Translational Medicine, St. Andrea University Hospital, Sapienza University of Rome, Via di Grottorassa 1035, 00168, Rome, Italy
| | - Crovetto Anna
- General Surgery Unit, Department of Medical and Surgical Sciences and Translational Medicine, St. Andrea University Hospital, Sapienza University of Rome, Via di Grottorassa 1035, 00168, Rome, Italy
| | - Matteo Cinquepalmi
- General Surgery Unit, Department of Medical and Surgical Sciences and Translational Medicine, St. Andrea University Hospital, Sapienza University of Rome, Via di Grottorassa 1035, 00168, Rome, Italy.
| | - Moschetta Giovanni
- General Surgery Unit, Department of Medical and Surgical Sciences and Translational Medicine, St. Andrea University Hospital, Sapienza University of Rome, Via di Grottorassa 1035, 00168, Rome, Italy
| | - Mattei Maria Sole
- General Surgery Unit, Department of Medical and Surgical Sciences and Translational Medicine, St. Andrea University Hospital, Sapienza University of Rome, Via di Grottorassa 1035, 00168, Rome, Italy
| | - Andrea Kazemi Nava
- Hepatopancreaticobiliary Group, Saint Vincent's University Hospital, Dublin, Ireland
| | - Petrucciani Niccolò
- General Surgery Unit, Department of Medical and Surgical Sciences and Translational Medicine, St. Andrea University Hospital, Sapienza University of Rome, Via di Grottorassa 1035, 00168, Rome, Italy
| | - Nigri Giuseppe
- General Surgery Unit, Department of Medical and Surgical Sciences and Translational Medicine, St. Andrea University Hospital, Sapienza University of Rome, Via di Grottorassa 1035, 00168, Rome, Italy
| | - Valabrega Stefano
- General Surgery Unit, Department of Medical and Surgical Sciences and Translational Medicine, St. Andrea University Hospital, Sapienza University of Rome, Via di Grottorassa 1035, 00168, Rome, Italy
| | - Aurello Paolo
- General Surgery Unit, Department of Medical and Surgical Sciences and Translational Medicine, St. Andrea University Hospital, Sapienza University of Rome, Via di Grottorassa 1035, 00168, Rome, Italy
| | - D'Angelo Francesco
- General Surgery Unit, Department of Medical and Surgical Sciences and Translational Medicine, St. Andrea University Hospital, Sapienza University of Rome, Via di Grottorassa 1035, 00168, Rome, Italy
| | - Ramacciato Giovanni
- General Surgery Unit, Department of Medical and Surgical Sciences and Translational Medicine, St. Andrea University Hospital, Sapienza University of Rome, Via di Grottorassa 1035, 00168, Rome, Italy
| |
Collapse
|
23
|
Bouchart C, Navez J, Closset J, Hendlisz A, Van Gestel D, Moretti L, Van Laethem JL. Novel strategies using modern radiotherapy to improve pancreatic cancer outcomes: toward a new standard? Ther Adv Med Oncol 2020; 12:1758835920936093. [PMID: 32684987 PMCID: PMC7343368 DOI: 10.1177/1758835920936093] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 05/22/2020] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the most aggressive solid tumours with an estimated 5-year overall survival rate of 7% for all stages combined. In this highly resistant disease that is located in the vicinity of many radiosensitive organs, the role of radiotherapy (RT) and indications for its use in this setting have been debated for a long time and are still under investigation. Although a survival benefit has yet to be clearly demonstrated for RT, it is the only technique, other than surgery, that has been demonstrated to lead to local control improvement. The adjuvant approach is now strongly challenged by neoadjuvant treatments that could spare patients with rapidly progressive systemic disease from unnecessary surgery and may increase free margin (R0) resection rates for those eligible for surgery. Recently developed dose-escalated RT treatments, designed either to maintain full-dose chemotherapy or to deliver a high biologically effective dose, particularly to areas of contact between the tumour and blood vessels, such as hypofractionated ablative RT (HFA-RT) or stereotactic body RT (SBRT), are progressively changing the treatment landscape. These modern strategies are currently being tested in prospective clinical trials with encouraging preliminary results, paving the way for more effective treatment combinations using novel targeted therapies. This review summarizes the current literature regarding the use of RT for the treatment of primary PDAC, describes the limitations of conventional RT, and discusses the emerging role of dose-escalated RT and heavy-particle RT.
Collapse
Affiliation(s)
- Christelle Bouchart
- Department of Radiation-Oncology, Institut Jules Bordet, Boulevard de Waterloo, 121, Brussels, 1000, Belgium
| | - Julie Navez
- Department of Hepato-Biliary-Pancreatic Surgery, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Jean Closset
- Department of Hepato-Biliary-Pancreatic Surgery, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Alain Hendlisz
- Department of Gastroenterology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Dirk Van Gestel
- Department of Radiation-Oncology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Luigi Moretti
- Department of Radiation-Oncology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Jean-Luc Van Laethem
- Department of Gastroenterology, Hepatology and Digestive Oncology, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
24
|
Abstract
Pancreatic cancer is the fourth most common cause of cancer-related morality worldwide, and the prognosis remains poor despite aggressive therapy. Carbon ion radiotherapy has favorable radiobiological and physical characteristics in the treatment, including a higher linear energy transfer and higher relative biological effectiveness, which increase the cell kill while potentially reducing toxicities to nearby normal tissues. Although small, early clinical studies have shown promise in both the resectable and unresectable settings to improve local control and overall survival while minimizing toxicities. Currently, there are several trials, including 2 sponsored by institutions in the United States, investigating the role of carbon ion radiotherapy for the treatment of locally advanced pancreatic cancer.
Collapse
|
25
|
Basics and Frontiers on Pancreatic Cancer for Radiation Oncology: Target Delineation, SBRT, SIB technique, MRgRT, Particle Therapy, Immunotherapy and Clinical Guidelines. Cancers (Basel) 2020; 12:cancers12071729. [PMID: 32610592 PMCID: PMC7407382 DOI: 10.3390/cancers12071729] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/11/2020] [Accepted: 06/17/2020] [Indexed: 12/17/2022] Open
Abstract
Pancreatic cancer represents a modern oncological urgency. Its management is aimed to both distal and local disease control. Resectability is the cornerstone of treatment aim. It influences the clinical presentation’s definitions as up-front resectable, borderline resectable and locally advanced (unresectable). The main treatment categories are neoadjuvant (preoperative), definitive and adjuvant (postoperative). This review will focus on (i) the current indications by the available national and international guidelines; (ii) the current standard indications for target volume delineation in radiotherapy (RT); (iii) the emerging modern technologies (including particle therapy and Magnetic Resonance [MR]-guided-RT); (iv) stereotactic body radiotherapy (SBRT), as the most promising technical delivery application of RT in this framework; (v) a particularly promising dose delivery technique called simultaneous integrated boost (SIB); and (vi) a multimodal integration opportunity: the combination of RT with immunotherapy.
Collapse
|
26
|
Liermann J, Shinoto M, Syed M, Debus J, Herfarth K, Naumann P. Carbon ion radiotherapy in pancreatic cancer: A review of clinical data. Radiother Oncol 2020; 147:145-150. [PMID: 32416281 DOI: 10.1016/j.radonc.2020.05.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/15/2020] [Accepted: 05/08/2020] [Indexed: 12/14/2022]
Abstract
Despite all efforts, pancreatic cancer remains a highly lethal disease. Only surgical resection offers a realistic chance of survival. But at diagnosis the majority of patients suffer from unresectable disease. Whereas guidelines clearly recommend systemic treatments in metastatic disease, data is limited to support a specific treatment option for locally advanced or borderline resectable pancreatic cancer. Therefore, there is an urgent need to improve treatment schemes addressing patients that suffer from unresectable pancreatic cancer. Chemotherapy, photon radiotherapy and combinations of both have shown improved local control rates but there is still a lack of evidence demonstrating an overall survival benefit of photon radiotherapy if no surgical resection is achieved. Impressive results of Japanese Phase I/II-trials investigating carbon ion radiotherapy in pancreatic cancer attracted global attention. Several studies have been initiated to validate and intensify this promising issue. This review gives an overview of the evidence and current use of carbon ion radiotherapy in pancreatic cancer.
Collapse
Affiliation(s)
- Jakob Liermann
- Heidelberg University Hospital, Department of Radiation Oncology, 69120 Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), 69120 Heidelberg, Germany.
| | - Makoto Shinoto
- Ion Beam Therapy Center, SAGA HIMAT Foundation, Saga, Japan.
| | - Mustafa Syed
- Heidelberg University Hospital, Department of Radiation Oncology, 69120 Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany.
| | - Jürgen Debus
- Heidelberg University Hospital, Department of Radiation Oncology, 69120 Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany; National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), Partner Site Heidelberg, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Klaus Herfarth
- Heidelberg University Hospital, Department of Radiation Oncology, 69120 Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany; National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), Partner Site Heidelberg, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Patrick Naumann
- Heidelberg University Hospital, Department of Radiation Oncology, 69120 Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), 69120 Heidelberg, Germany.
| |
Collapse
|
27
|
Ashida R, Nakamura M, Yoshimura M, Mizowaki T. Impact of interfractional anatomical variation and setup correction methods on interfractional dose variation in IMPT and VMAT plans for pancreatic cancer patients: A planning study. J Appl Clin Med Phys 2020; 21:49-59. [PMID: 32350969 PMCID: PMC7386168 DOI: 10.1002/acm2.12883] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 02/13/2020] [Accepted: 03/24/2020] [Indexed: 12/17/2022] Open
Abstract
Purpose To investigate the impact of interfractional anatomical changes and setup correction methods on dose distributions in pancreatic cancer patients under breath‐hold conditions. Methods Three intensity‐modulated proton therapy (IMPT) plans with different beam arrangements and one volumetric‐modulated arc therapy (VMAT) plan prescribing 54 Gy in 30 fractions were created for 10 patients who underwent three additional CT scans performed at an interval of 1–2 weeks. The additional CT sets were rigidly registered to the simulation CT set using both bone‐matching (BM) and organ‐matching (OM) methods in each patient. Recalculated dose distributions and dose–volume indices on the additional CT sets using either the BM or the OM method were compared with the simulation values. Results Differences in the gross tumor volume D98% value from the simulation sets ranged from −0.8 to −5.9% on average. In addition, the variations were larger with OM compared with BM for two IMPT plans. Meanwhile, differences in the D98% value in the region isotropically enlarged by 5 mm from the gross tumor volume were significantly improved with OM on two IMPT plans and the VMAT plan. Among the organs at risk, the dose–volume indices were significantly improved with OM only in the duodenum on all plans. Conclusion Organ‐matching may be a better setup correction technique than BM for both photon therapy and IMPT plans. However, in some beam arrangements of IMPT, the dose distribution may be somewhat worse using OM, due to interfractional anatomical variation. Therefore, it is important to choose beam angles that are less likely to be influenced by changes in the gastrointestinal gas volume, especially in IMPT plans.
Collapse
Affiliation(s)
- Ryo Ashida
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mitsuhiro Nakamura
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Division of Medical Physics, Department of Information Technology and Medical Engineering, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Michio Yoshimura
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Mizowaki
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
28
|
Malouff TD, Mahajan A, Krishnan S, Beltran C, Seneviratne DS, Trifiletti DM. Carbon Ion Therapy: A Modern Review of an Emerging Technology. Front Oncol 2020; 10:82. [PMID: 32117737 PMCID: PMC7010911 DOI: 10.3389/fonc.2020.00082] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/16/2020] [Indexed: 12/13/2022] Open
Abstract
Radiation therapy is one of the most widely used therapies for malignancies. The therapeutic use of heavy ions, such as carbon, has gained significant interest due to advantageous physical and radiobiologic properties compared to photon based therapy. By taking advantage of these unique properties, carbon ion radiotherapy may allow dose escalation to tumors while reducing radiation dose to adjacent normal tissues. There are currently 13 centers treating with carbon ion radiotherapy, with many of these centers publishing promising safety and efficacy data from the first cohorts of patients treated. To date, carbon ion radiotherapy has been studied for almost every type of malignancy, including intracranial malignancies, head and neck malignancies, primary and metastatic lung cancers, tumors of the gastrointestinal tract, prostate and genitourinary cancers, sarcomas, cutaneous malignancies, breast cancer, gynecologic malignancies, and pediatric cancers. Additionally, carbon ion radiotherapy has been studied extensively in the setting of recurrent disease. We aim to provide a comprehensive review of the studies of each of these disease sites, with a focus on the current trials using carbon ion radiotherapy.
Collapse
|
29
|
Isozaki Y, Takiyama H, Bhattacharyya T, Ebner D, Kasuya G, Makishima H, Tsuji H, Kamada T, Yamada S. Heavy charged particles for gastrointestinal cancers. J Gastrointest Oncol 2020; 11:203-211. [PMID: 32175123 DOI: 10.21037/jgo.2019.03.14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Carbon ion beams constitute the primary delivery method of heavy ion radiotherapy. It offers improved dose distribution, and enables concentration of dose within target volumes with minimal extraneous exposure of normal tissue, while delivering superior biological effect in comparison with photon and proton technologies. Here, we review the application of this technology to various gastrointestinal cancers.
Collapse
Affiliation(s)
- Yuka Isozaki
- Department of Radiation Oncology, Hospital of the National Institute of Radiological Science, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Hirotoshi Takiyama
- Department of Radiation Oncology, Hospital of the National Institute of Radiological Science, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Tapesh Bhattacharyya
- Department of Radiation Oncology, Hospital of the National Institute of Radiological Science, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Daniel Ebner
- Department of Radiation Oncology, Hospital of the National Institute of Radiological Science, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Goro Kasuya
- Department of Radiation Oncology, Hospital of the National Institute of Radiological Science, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Hirokazu Makishima
- Department of Radiation Oncology, Hospital of the National Institute of Radiological Science, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Hiroshi Tsuji
- Department of Radiation Oncology, Hospital of the National Institute of Radiological Science, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Tadashi Kamada
- Department of Radiation Oncology, Hospital of the National Institute of Radiological Science, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Shigeru Yamada
- Department of Radiation Oncology, Hospital of the National Institute of Radiological Science, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| |
Collapse
|
30
|
Barbour AP, Samra JS, Haghighi KS, Donoghoe MW, Burge M, Harris MT, Chua YJ, Mitchell J, O'Rourke N, Chan H, Gebski VJ, Gananadha S, Croagh DG, Kench JG, Goldstein D. The AGITG GAP Study: A Phase II Study of Perioperative Gemcitabine and Nab-Paclitaxel for Resectable Pancreas Cancer. Ann Surg Oncol 2020; 27:2506-2515. [PMID: 31997125 DOI: 10.1245/s10434-020-08205-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND While combination therapy with nab-paclitaxel/gemcitabine (nab-gem) is effective in pancreatic ductal adenocarcinoma (PDAC), its efficacy as perioperative chemotherapy is unknown. The primary objective of this multicenter, prospective, single-arm, phase II study was to determine whether neoadjuvant therapy with nab-gem was associated with higher complete resection rates (R0) in resectable PDAC, while the secondary objectives were to determine the utility of radiological assessment of response to preoperative chemotherapy and the safety and efficacy of nab-gem as perioperative therapy. METHODS Patients were recruited from eight Australian sites, and 42 patients with radiologically defined resectable PDAC and an Eastern Cooperative Oncology Group performance status of 0-2 were enrolled. Participants received two cycles of preoperative nab-paclitaxel 125 mg/m2 and gemcitabine 1000 mg/m2 on days 1, 8, and 15 (28-day cycle) presurgery, and four cycles postoperatively. Early response to chemotherapy was measured with fluorodeoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT) scans on day 15. RESULTS Preoperative nab-gem was completed by 93% of participants, but only 63% postoperatively. Thirty-six patients had surgery: 6 (17%) were unresectable, 15 (52%) had R0 (≥ 1 mm) resections, 14 (48%) had R1 (< 1 mm) resections, and 1 patient did not have PDAC. Median progression-free survival was 12.3 months and median overall survival (OS) was 23.5 months: R0 patients had an OS of 35 months versus 25.6 months for R1 patients after surgery. Seven patients had not progressed after 43 months. CONCLUSIONS The GAP trial demonstrated that perioperative nab-gem was tolerable. Although the primary endpoint of an 85% R0 rate was not met, the R0 rate was similar to trials using a > 1 mm R0 resection definition, and survival rates were comparable with recent adjuvant studies.
Collapse
Affiliation(s)
- Andrew P Barbour
- Princess Alexandra Hospital, Brisbane, QLD, Australia. .,The University of Queensland, Brisbane, QLD, Australia.
| | | | | | - Mark W Donoghoe
- National Health and Medical Research Council Clinical Trials Centre, Sydney, NSW, Australia.,Stats Central, University of NSW, Sydney, NSW, Australia
| | - Matthew Burge
- The University of Queensland, Brisbane, QLD, Australia.,Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | | | - Yu Jo Chua
- The Canberra Hospital, Woden, ACT, Australia
| | - Jenna Mitchell
- National Health and Medical Research Council Clinical Trials Centre, Sydney, NSW, Australia
| | - Nick O'Rourke
- Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | | | - Val J Gebski
- National Health and Medical Research Council Clinical Trials Centre, Sydney, NSW, Australia
| | - Sivakumar Gananadha
- The Canberra Hospital, Woden, ACT, Australia.,Australian National University, Canberra, ACT, Australia
| | - Daniel G Croagh
- Monash Medical Centre, Melbourne, VIC, Australia.,Monash University, Melbourne, VIC, Australia
| | - James G Kench
- Royal Prince Alfred Hospital, Sydney, NSW, Australia.,Central Clinical School, University of Sydney, Sydney, NSW, Australia
| | | | | |
Collapse
|
31
|
Dell’Oro M, Short M, Wilson P, Bezak E. Clinical Limitations of Photon, Proton and Carbon Ion Therapy for Pancreatic Cancer. Cancers (Basel) 2020; 12:cancers12010163. [PMID: 31936565 PMCID: PMC7017270 DOI: 10.3390/cancers12010163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/03/2020] [Accepted: 01/06/2020] [Indexed: 02/08/2023] Open
Abstract
Introduction: Despite improvements in radiation therapy, chemotherapy and surgical procedures over the last 30 years, pancreatic cancer 5-year survival rate remains at 9%. Reduced stroma permeability and heterogeneous blood supply to the tumour prevent chemoradiation from making a meaningful impact on overall survival. Hypoxia-activated prodrugs are the latest strategy to reintroduce oxygenation to radioresistant cells harbouring in pancreatic cancer. This paper reviews the current status of photon and particle radiation therapy for pancreatic cancer in combination with systemic therapies and hypoxia activators. Methods: The current effectiveness of management of pancreatic cancer was systematically evaluated from MEDLINE® database search in April 2019. Results: Limited published data suggest pancreatic cancer patients undergoing carbon ion therapy and proton therapy achieve a comparable median survival time (25.1 months and 25.6 months, respectively) and 1-year overall survival rate (84% and 77.8%). Inconsistencies in methodology, recording parameters and protocols have prevented the safety and technical aspects of particle therapy to be fully defined yet. Conclusion: There is an increasing requirement to tackle unmet clinical demands of pancreatic cancer, particularly the lack of synergistic therapies in the advancing space of radiation oncology.
Collapse
Affiliation(s)
- Mikaela Dell’Oro
- Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide SA 5001, Australia; (M.S.); (E.B.)
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide SA 5000, Australia;
- Correspondence: ; Tel.: +61-435214264
| | - Michala Short
- Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide SA 5001, Australia; (M.S.); (E.B.)
| | - Puthenparampil Wilson
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide SA 5000, Australia;
- School of Engineering, University of South Australia, Adelaide SA 5001, Australia
| | - Eva Bezak
- Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide SA 5001, Australia; (M.S.); (E.B.)
- Department of Physics, University of Adelaide, Adelaide SA 5005, Australia
| |
Collapse
|
32
|
Hagiwara Y, Bhattacharyya T, Matsufuji N, Isozaki Y, Takiyama H, Nemoto K, Tsuji H, Yamada S. Influence of dose-averaged linear energy transfer on tumour control after carbon-ion radiation therapy for pancreatic cancer. Clin Transl Radiat Oncol 2019; 21:19-24. [PMID: 31886424 PMCID: PMC6920502 DOI: 10.1016/j.ctro.2019.11.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 11/24/2019] [Indexed: 01/11/2023] Open
Abstract
High LET and high RBE of carbon ion made it a promising tool for treating pancreatic cancers. Dose averaged LET minimum within the GTV is significantly associated with local control. Outcome of CIRT in pancreatic cancers can be improved by modulating dose averaged LET within the GTV.
Background and purpose High linear energy transfer (LET) radiation carbon-ion radiotherapy (C-ion RT) is one of the most promising modalities for treating unresectable primary pancreatic cancers. However, how LET contributes to a therapeutic effect is not clear. To assess whether there is an enhanced effect of high LET radiation on tumour control, we aimed to determine the impact of dose-averaged LET on local control (LC) of primary pancreatic tumours. Materials and methods A retrospective analysis of 18 patients with primary pancreatic carcinomas treated with definitive C-ion RT with concurrent chemotherapy in 2013 was conducted. The dose of irradiation was 55.2 Gy (RBE). The relationship between dose-averaged LET and LC of primary tumours was evaluated. Results All patients had histologically confirmed adenocarcinoma. The median follow-up duration was 22 months. The actuarial LC and overall survival (OS) at 18 months were 62.5% and 70.1%, respectively. There were no cases of grade ≥3 late toxicities observed. Local recurrences developed in four patients (22%), all of which were infield central recurrences. Although there were no significant differences in gross tumour volume (GTV) dose coverage, patients with higher minimum dose-averaged LET (LETmin) values within the GTV had better LC (dose-averaged LETmin ≥44 keV/microm; 18-months LC 100.0% vs 34.3%; p = 0.0366). Conclusion Dose-averaged LETmin within the GTV was significantly associated with LC of primary pancreatic cancers. Our data suggest that outcomes for patients with unresectable primary pancreatic cancers receiving C-ion RT can be improved by modulating the dose-averaged LET within the GTV.
Collapse
Affiliation(s)
- Yasuhito Hagiwara
- Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Anagawa 4-9-1, Inage-ku, 263-8555 Chiba, Japan.,Department of Radiation Oncology, Faculty of Medicine, Yamagata University, Iida-nishi 2-2-2, Yamagata-shi, 990-9585 Yamagata, Japan
| | - Tapesh Bhattacharyya
- Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Anagawa 4-9-1, Inage-ku, 263-8555 Chiba, Japan
| | - Naruhiro Matsufuji
- Department of Accelerator and Medical Physics, Research Center for Particle Therapy, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage-ku, 263-8555 Chiba, Japan
| | - Yuka Isozaki
- Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Anagawa 4-9-1, Inage-ku, 263-8555 Chiba, Japan
| | - Hirotoshi Takiyama
- Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Anagawa 4-9-1, Inage-ku, 263-8555 Chiba, Japan
| | - Kenji Nemoto
- Department of Radiation Oncology, Faculty of Medicine, Yamagata University, Iida-nishi 2-2-2, Yamagata-shi, 990-9585 Yamagata, Japan
| | - Hiroshi Tsuji
- Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Anagawa 4-9-1, Inage-ku, 263-8555 Chiba, Japan
| | - Shigeru Yamada
- Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Anagawa 4-9-1, Inage-ku, 263-8555 Chiba, Japan.,Department of Charged Particle Therapy Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage-ku, 263-8555 Chiba, Japan
| |
Collapse
|
33
|
Vitolo V, Cobianchi L, Brugnatelli S, Barcellini A, Peloso A, Facoetti A, Vanoli A, Delfanti S, Preda L, Molinelli S, Klersy C, Fossati P, Orecchia R, Valvo F. Preoperative chemotherapy and carbon ions therapy for treatment of resectable and borderline resectable pancreatic adenocarcinoma: a prospective, phase II, multicentre, single-arm study. BMC Cancer 2019; 19:922. [PMID: 31521134 PMCID: PMC6744648 DOI: 10.1186/s12885-019-6108-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/29/2019] [Indexed: 12/17/2022] Open
Abstract
Background Pancreatic adenocarcinoma is a high-mortality neoplasm with a documented 5-years-overall survival around 5%. In the last decades, a real breakthrough in the treatment of the disease has not been achieved. Here we propose a prospective, phase II, multicentre, single-arm study aiming to assess the efficacy and the feasibility of a therapeutic protocol combining chemotherapy, carbon ion therapy and surgery for resectable and borderline resectable pancreatic adenocarcinoma. Method The purpose of this trial (PIOPPO Protocol) is to assess the efficacy and the feasibility of 3 cycles of FOLFIRINOX neoadjuvant chemotherapy followed by a short-course of carbon ion radiotherapy (CIRT) for resectable or borderline resectable pancreatic adenocarcinoma patients. Primary outcome of this study is the assessment of local progression free survival (L-PFS). The calculation of sample size is based on the analysis of the primary endpoint “progression free survival” according to Fleming’s Procedure. Discussion Very preliminary results provide initial evidence of the feasibility of the combined chemotherapy and CIRT in the neoadjuvant setting for resectable or borderline resectable pancreatic cancer. Completion of the accrual and long term results are awaited to see if this combination of treatment is advisable and will provide the expected benefits. Trial registration ClinicalTrials.gov Identifier: NCT03822936 registered on January 2019.
Collapse
Affiliation(s)
- Viviana Vitolo
- National Center of Oncological Hadrontherapy (Fondazione CNAO), Pavia, Italy
| | - Lorenzo Cobianchi
- General Surgery Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Silvia Brugnatelli
- Department of Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Amelia Barcellini
- National Center of Oncological Hadrontherapy (Fondazione CNAO), Pavia, Italy.
| | - Andrea Peloso
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Divisions of Abdominal and Transplantation Surgery, Department of Surgery, Geneva University Hospitals, Geneva, Switzerland
| | - Angelica Facoetti
- National Center of Oncological Hadrontherapy (Fondazione CNAO), Pavia, Italy
| | - Alessandro Vanoli
- Anatomic Pathology Unit, Department of Molecular Medicine, University of Pavia and Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Sara Delfanti
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Lorenzo Preda
- National Center of Oncological Hadrontherapy (Fondazione CNAO), Pavia, Italy.,Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Silvia Molinelli
- National Center of Oncological Hadrontherapy (Fondazione CNAO), Pavia, Italy
| | - Catherine Klersy
- Service of Clinical Epidemiology & Biometry, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Piero Fossati
- National Center of Oncological Hadrontherapy (Fondazione CNAO), Pavia, Italy.,MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Roberto Orecchia
- National Center of Oncological Hadrontherapy (Fondazione CNAO), Pavia, Italy.,European Institute of Oncology (IEO), Milan, Italy
| | - Francesca Valvo
- National Center of Oncological Hadrontherapy (Fondazione CNAO), Pavia, Italy
| |
Collapse
|
34
|
Dolde K, Naumann P, Dávid C, Kachelriess M, Lomax AJ, Weber DC, Saito N, Burigo LN, Pfaffenberger A, Zhang Y. Comparing the effectiveness and efficiency of various gating approaches for PBS proton therapy of pancreatic cancer using 4D-MRI datasets. Phys Med Biol 2019; 64:085011. [PMID: 30893660 DOI: 10.1088/1361-6560/ab1175] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Abdominal organ motion may lead to considerable uncertainties in pencil-beam scanning (PBS) proton therapy of pancreatic cancer. Beam gating, where irradiation only occurs in certain breathing phases in which the gating conditions are fulfilled, may be an option to reduce the interplay effect between tumor motion and the scanning beam. This study aims to, first, determine suitable gating windows with respect to effectiveness (low interplay effect) and efficiency (high duty cycles). Second, it investigates whether beam gating allows for a better mitigation of the interplay effect along the treatment course than free-breathing irradiations. Based on synthetic 4D-CTs, generated by warping 3D-CTs with vector fields extracted from time-resolved magnetic resonance imaging (4D-MRI) for 8 pancreatic cancer patients, 4D dose calculations (4DDC) were performed to analyze the duty cycle and homogeneity index HI = d5/d95 for four different gating scenarios. These were based on either fixed threshold values of CTV (clinical target volume) mean or maximum motion amplitudes (5 mm), relative CTV motion amplitudes (30%) or CTV overlap criteria (95%), respectively. 4DDC for 28-fractions treatment courses were performed with fixed and variable initial breathing phases to investigate the fractionation-induced mitigation of the interplay effect. Gating criteria, based on patient-specific relative 30% CTV motion amplitudes, showed the significantly best HI values with sufficient duty cycles, in contrast to inferior results by either fixed gating thresholds or overlap criteria. For gated treatments with 28 fractions, less fractionation-induced mitigation of the interplay effect was observed for gating criteria with gating windows ⩾30%, compared to free-breathing treatments. The gating effectiveness for multiple fractions was improved by allowing a variable initial breathing phase. Gating with relative amplitude thresholds are effective for proton therapy of pancreatic cancer. By combining beam gating with variable initial breathing phases, a pronounced mitigation of the interplay effect by fractionation can be achieved.
Collapse
Affiliation(s)
- Kai Dolde
- Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany. National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiooncology (HIRO), Heidelberg, Germany. Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany. Author to whom any correspondence should be addressed
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Dolde K, Zhang Y, Chaudhri N, Dávid C, Kachelrieß M, Lomax AJ, Naumann P, Saito N, Weber DC, Pfaffenberger A. 4DMRI-based investigation on the interplay effect for pencil beam scanning proton therapy of pancreatic cancer patients. Radiat Oncol 2019; 14:30. [PMID: 30732657 PMCID: PMC6367829 DOI: 10.1186/s13014-019-1231-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/24/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Time-resolved volumetric magnetic resonance imaging (4DMRI) offers the potential to analyze 3D motion with high soft-tissue contrast without additional imaging dose. We use 4DMRI to investigate the interplay effect for pencil beam scanning (PBS) proton therapy of pancreatic cancer and to quantify the dependency of residual interplay effects on the number of treatment fractions. METHODS Based on repeated 4DMRI datasets for nine pancreatic cancer patients, synthetic 4DCTs were generated by warping static 3DCTs with 4DMRI deformation vector fields. 4D dose calculations for scanned proton therapy were performed to quantify the interplay effect by CTV coverage (v95) and dose homogeneity (d5/d95) for incrementally up to 28 fractions. The interplay effect was further correlated to CTV motion characteristics. For quality assurance, volume and mass conservation were evaluated by Jacobian determinants and volume-density comparisons. RESULTS For the underlying patient cohort with CTV motion amplitudes < 15 mm, we observed significant correlations between CTV motion amplitudes and both the length of breathing cycles and the interplay effect. For individual fractions, tumor underdosage down to v95 = 70% was observed with pronounced dose heterogeneity (d5/d95 = 1.3). For full × 28 fractionated treatments, we observed a mitigation of the interplay effect with increasing fraction numbers. On average, after seven fractions, a CTV coverage with 95-107% of the prescribed dose was reached with sufficient dose homogeneity. For organs at risk, no significant differences were found between the static and accumulated dose plans for 28 fractions. CONCLUSION Intrafractional organ motion exhibits a large interplay effect for PBS proton therapy of pancreatic cancer. The interplay effect correlates with CTV motion, but can be mitigated efficiently by fractionation, mainly due to different breathing starting phases in fractionated treatments. For hypofractionated treatments, a further restriction of motion may be required. Repeated 4DMRI measurements are a viable tool for pre- and post-treatment evaluations of the interplay effect.
Collapse
Affiliation(s)
- Kai Dolde
- Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiooncology (HIRO), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Department of Physics and Astronomy, Heidelberg University, Im Neuenheimer Feld 226, 69120 Heidelberg, Germany
| | - Ye Zhang
- Center for Proton Therapy, Paul Scherrer Institute (PSI), 5232 Villigen-PSI, Switzerland
| | - Naved Chaudhri
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiooncology (HIRO), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Im Neuenheimer Feld 450, 69120 Heidelberg, Germany
| | - Christian Dávid
- Department of Physics and Astronomy, Heidelberg University, Im Neuenheimer Feld 226, 69120 Heidelberg, Germany
- X-Ray Imaging and Computed Tomography, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marc Kachelrieß
- X-Ray Imaging and Computed Tomography, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Antony John Lomax
- Center for Proton Therapy, Paul Scherrer Institute (PSI), 5232 Villigen-PSI, Switzerland
- Department of Physics, ETH Zurich, 8092 Zurich, Switzerland
| | - Patrick Naumann
- Department of Radiation Oncology, University Clinic Heidelberg, Im Neuenheimer Feld 672, 69120 Heidelberg, Germany
| | - Nami Saito
- Department of Radiation Oncology, University Clinic Heidelberg, Im Neuenheimer Feld 672, 69120 Heidelberg, Germany
| | - Damien Charles Weber
- Center for Proton Therapy, Paul Scherrer Institute (PSI), 5232 Villigen-PSI, Switzerland
| | - Asja Pfaffenberger
- Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiooncology (HIRO), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
36
|
Dolde K, Dávid C, Echner G, Floca R, Hentschke C, Maier F, Niebuhr N, Ohmstedt K, Saito N, Alimusaj M, Fluegel B, Naumann P, Dreher C, Freitag M, Pfaffenberger A. 4DMRI-based analysis of inter— and intrafractional pancreas motion and deformation with different immobilization devices. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/aaf9ae] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
37
|
Kawano M, Miura T, Fujita M, Koike S, Imadome K, Ishikawa A, Yasuda T, Imamura T, Imai T, Nakayama F. The FGF1/CPP-C chimera protein protects against intestinal adverse effects of C-ion radiotherapy without exacerbating pancreatic carcinoma. Clin Transl Radiat Oncol 2018; 14:8-16. [PMID: 30406211 PMCID: PMC6215021 DOI: 10.1016/j.ctro.2018.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/27/2018] [Accepted: 10/21/2018] [Indexed: 01/03/2023] Open
Abstract
C-ion radiotherapy is applied to pancreatic carcinoma in the abdominal cavity. The FGF1/CPP-C chimeric protein has an intracellular signaling mode. FGF1/CPP-C protects against C-ion-induced intestinal damage. FGF1/CPP-C inhibits the proliferation and metastasis of pancreatic carcinoma cells. FGF1/CPP-C may be useful for C-ion radiotherapy against pancreatic cancer.
Background and purpose Carbon ion (C-ion) beams are concentrated to irradiate pancreatic carcinoma in the upper abdomen; however, this radiotherapy potentially causes adverse reactions in the gastrointestinal tract. FGF1 is a candidate radioprotector for radiation-induced intestinal damage, but may promote the malignancy of pancreatic cancer. An FGF1/CPP-C chimeric protein was created to enhance the intracellular signaling mode of FGF1 instead of FGFR signaling. The present study investigated the effects of FGF1/CPP-C on the intestinal adverse reactions of C-ion radiotherapy as well as its influence on the malignancy of pancreatic cancer. Materials and methods FGF1/CPP-C was administered intraperitoneally to BALB/c mice without heparin 12 h before total body irradiation (TBI) with low-LET C-ion (17 keV/μm) at 6–8 Gy. Several radioprotective effects were examined in the jejunum. The invasion and migration of the human pancreatic carcinoma cell lines MIAPaCa-2 and PANC-1 were assessed using Boyden chambers after cultures with FGF1/CPP-C. Results The FGF1/CPP-C treatment promoted crypt survival after C-ion irradiation at 7–8 Gy significantly more than the FGF1 treatment. FGF1/CPP-C also inhibited C-ion radiotherapy-induced apoptosis and reduced γH2AX foci in crypt cells more than FGF1. However, FGF1/CPP-C inhibited the downstream signaling pathways of FGFRs and suppressed the activation of cell-cycle regulatory molecules in the intestine until 4 h after TBI. Furthermore, IEC6 cells were arrested in G2M after cultures with FGF1/CPP-C or FGF1, suggesting that DNA repair after irradiation is promoted by FGF1/CPP-C-induced G2M arrest. In contrast, FGF1/CPP-C appeared to be internalized into MIAPaCa-2 and PANC-1 cells more efficiently than FGF1. Therefore, FGF1/CPP-C reduced the in vitro proliferation, invasion, and migration of MIAPaCa-2 and PANC-1 cells significantly more than FGF1 through the cellular internalization of FGF1. Conclusion These results suggest that the intracellular signaling mode of FGF1/CPP-C attenuates the intestinal adverse effects of C-ion radiotherapy without enhancing the malignancy of pancreatic carcinoma.
Collapse
Affiliation(s)
- Mitsuko Kawano
- National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Taichi Miura
- National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Mayumi Fujita
- National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Sachiko Koike
- National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Kaori Imadome
- National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Atsuko Ishikawa
- National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Takeshi Yasuda
- National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Toru Imamura
- National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan.,School of Bioscience and Biotechnology, Tokyo University of Technology, Hachioji, Japan
| | - Takashi Imai
- National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Fumiaki Nakayama
- National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| |
Collapse
|
38
|
Fujishiro T, Mashiko T, Masuoka Y, Yamada M, Furukawa D, Yazawa N, Kawashima Y, Ogawa M, Hirabayashi K, Nakagohri T. Conversion surgery for an initially unresectable, locally advanced pancreatic cancer after induction chemotherapy and carbon-ion radiotherapy: a case report. Surg Case Rep 2018; 4:112. [PMID: 30203372 PMCID: PMC6134575 DOI: 10.1186/s40792-018-0522-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/03/2018] [Indexed: 01/05/2023] Open
Abstract
Background Pancreatic cancer has a very high mortality rate worldwide, and about 30–40% of all patients have extensive vascular involvement at initial diagnosis that precludes surgical intervention. Here, we describe our experience in a patient with locally advanced pancreatic cancer (LAPC) who underwent R0 conversion surgery after undergoing a combination of chemotherapy and carbon-ion radiotherapy (CIRT), which led to long-term relapse-free survival (23 months). Case presentation A 41-year-old woman presented a month ago with epigastralgia referred to our facility and was subsequently diagnosed with pancreatic cancer cStage III (Ph, TS2 (35 mm), cT4, cCH1, cDU1, cS1, cRP1, cPL1, cVsm0, cAsm1, cN0, cM0) that was also categorized as an unresectable LAPC. She immediately underwent 3 cycles of induction chemotherapy (gemcitabine + nanoparticle albumin-bound (nab-) paclitaxel) followed by CIRT with concurrent gemcitabine. Although significant shrinkage of the primary tumor occurred, frequent cholangitis due to duodenal stenosis of unknown etiology prevented continued chemotherapy, and 9 months after the first visit, she underwent a radical, subtotal, stomach-preserving, pancreaticoduodenectomy (SSPPD). Histopathologic examination of the resected tissue revealed a R0 resection with a histological response of Evans grade IIB. She was administered an almost full dose of S-1 as adjuvant chemotherapy for 6 months and has shown no signs of recurrence in 23 months. Conclusions We report a first case of successful conversion surgery for an initially unresectable LAPC after rapid induction GEM + nab-PTX chemotherapy followed by CIRT. Rapid induction GEM + nab-PTX chemotherapy followed by CIRT for LAPC might be a safe and effective treatment option.
Collapse
Affiliation(s)
- Takeshi Fujishiro
- Department of Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara-shi, Kanagawa, 259-1193, Japan.
| | - Taro Mashiko
- Department of Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara-shi, Kanagawa, 259-1193, Japan
| | - Yosihito Masuoka
- Department of Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara-shi, Kanagawa, 259-1193, Japan
| | - Misuzu Yamada
- Department of Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara-shi, Kanagawa, 259-1193, Japan
| | - Daisuke Furukawa
- Department of Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara-shi, Kanagawa, 259-1193, Japan
| | - Naoki Yazawa
- Department of Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara-shi, Kanagawa, 259-1193, Japan
| | - Yohei Kawashima
- Department of Gastroenterology, Tokai University School of Medicine, 143 Shimokasuya, Isehara-shi, Kanagawa, 259-1193, Japan
| | - Masami Ogawa
- Department of Gastroenterology, Tokai University School of Medicine, 143 Shimokasuya, Isehara-shi, Kanagawa, 259-1193, Japan
| | - Kenichi Hirabayashi
- Department of Pathology, Tokai University School of Medicine, 143 Shimokasuya, Isehara-shi, Kanagawa, 259-1193, Japan
| | - Toshio Nakagohri
- Department of Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara-shi, Kanagawa, 259-1193, Japan
| |
Collapse
|
39
|
Tsuboi K. Advantages and Limitations in the Use of Combination Therapies with Charged Particle Radiation Therapy. Int J Part Ther 2018; 5:122-132. [PMID: 31773024 DOI: 10.14338/ijpt-18-00019.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/21/2018] [Indexed: 12/15/2022] Open
Abstract
Purpose Studies are currently underway to help provide basic and clinical evidence for combination particle beam radiation therapy, on which there are few published reports. The purpose of this article is to summarize the current status in the use of particle beams combined with other modalities. Results Following from experiences in x-ray radiation therapy, combination therapy with proton beams (PBT) has been attempted, and several clinical studies have reported improved survival rates for patients with non-small cell lung cancer, pancreatic cancers, esophageal cancers, and glioblastomas. Recently, basic studies combining PBT with PARP inhibitors and histone deacetylase inhibitors have also reported promising results. In the area of carbon ion therapy (CIT), there are few clinical reports on combination therapy; however, the number of basic research reports exceeds that for PBT. So far, the combined use of cytotoxic drugs with CIT yields independent additive effects. In addition, it is notable that combination therapy with CIT is effective against radioresistant cancer stem-like cells. Recent evidence also suggests that local radiation therapy can induce an effective antitumor immune response. There has been an increased use of combination immune-modulating agents and cytokines with particle beams, especially CIT. The field of radiation therapy is evolving from a strong reliance on local-regional treatment to a growing reliance on systemic immunotherapy. Conclusions The combined use of anticancer agents with particle radiation therapy has a considerable potential effect. Future research in molecular targeting therapy and immunotherapy may help identify the most efficacious approach for combination therapy with protons and carbon ions.
Collapse
Affiliation(s)
- Koji Tsuboi
- Proton Medical Research Center, Faculty of Medicine, University of Tsukuba, Japan
| |
Collapse
|
40
|
Kawashiro S, Yamada S, Okamoto M, Ohno T, Nakano T, Shinoto M, Shioyama Y, Nemoto K, Isozaki Y, Tsuji H, Kamada T. Multi-institutional Study of Carbon-ion Radiotherapy for Locally Advanced Pancreatic Cancer: Japan Carbon-ion Radiation Oncology Study Group (J-CROS) Study 1403 Pancreas. Int J Radiat Oncol Biol Phys 2018; 101:1212-1221. [PMID: 29907490 DOI: 10.1016/j.ijrobp.2018.04.057] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 03/09/2018] [Accepted: 04/23/2018] [Indexed: 01/31/2023]
Abstract
PURPOSE The aim of this multi-institutional study was to evaluate the efficacy and safety of carbon-ion radiotherapy (C-ion RT) for locally advanced pancreatic cancer (LAPC). METHODS AND MATERIALS Patients with LAPC treated with C-ion RT from April 2012 to December 2014 at 3 institutions were retrospectively analyzed. Patients with pathologically-confirmed invasive ductal adenocarcinoma of the pancreas were eligible. The prescribed dose was 52.8 Gy (relative biological effectiveness weighted absorbed dose; RBE) or 55.2 Gy (RBE) in 12 fractions. Overall survival (OS), distant metastasis-free survival (DMFS), local recurrence (LR), and toxicity were evaluated. RESULTS In total, 72 patients were included in this study. Tumors in the head of the pancreas were seen in 30 patients (42%), while those in the body or tail of the pancreas were seen in 42 patients (58%). Fifty-six patients (78%) received concurrent chemotherapy. The OS rates were 73% (95% confidence interval [CI], 62%-84%) at 1 year, and 46% (95% CI, 31%-61%) at 2 years with a median OS of 21.5 months (95% CI, 11.8-31.2 months). The 1- and 2-year DMFS rates were 41% (95% CI, 29%-52%) and 28% (95% CI, 16%-40%), respectively. The 1- and 2-year cumulative incidences of LR were 16% (95% CI, 9%-26%) and 24% (95% CI, 14%-36%), respectively. Nineteen patients (26%) experienced acute grade 3 or 4 hematological toxicities. Two patients (3%) had grade 3 anorexia. Late gastrointestinal (GI) grade 3 toxicity was observed in 1 patient (1%). No patients developed late grade 4 or 5 toxicity. CONCLUSIONS The first multi-institutional analysis of C-ion RT for LAPC indicated relatively favorable outcomes with limited toxicities, especially for tumors not in close proximity to GI tract.
Collapse
Affiliation(s)
- Shohei Kawashiro
- Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan; Department of Radiation Oncology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Shigeru Yamada
- Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan.
| | | | - Tatsuya Ohno
- Gunma University Heavy Ion Medical Center, Maebashi, Japan
| | - Takashi Nakano
- Gunma University Heavy Ion Medical Center, Maebashi, Japan
| | - Makoto Shinoto
- Ion Beam Therapy Center, SAGA HIMAT Foundation, Tosu, Japan
| | | | - Kenji Nemoto
- Department of Radiation Oncology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Yuka Isozaki
- Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Hiroshi Tsuji
- Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Tadashi Kamada
- Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| |
Collapse
|
41
|
Mohamad O, Yamada S, Durante M. Clinical Indications for Carbon Ion Radiotherapy. Clin Oncol (R Coll Radiol) 2018; 30:317-329. [DOI: 10.1016/j.clon.2018.01.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 11/20/2017] [Indexed: 12/16/2022]
|
42
|
Toesca DAS, Koong AJ, Poultsides GA, Visser BC, Haraldsdottir S, Koong AC, Chang DT. Management of Borderline Resectable Pancreatic Cancer. Int J Radiat Oncol Biol Phys 2018; 100:1155-1174. [PMID: 29722658 DOI: 10.1016/j.ijrobp.2017.12.287] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/07/2017] [Accepted: 12/27/2017] [Indexed: 12/13/2022]
Abstract
With the rapid development of imaging modalities and surgical techniques, the clinical entity representing tumors that are intermediate between resectable and unresectable pancreatic adenocarcinoma has been identified has been termed "borderline resectable" (BR). These tumors are generally amenable for resection but portend an increased risk for positive margins after surgery and commonly necessitate vascular resection and reconstruction. Although there is a lack of consensus regarding the appropriate definition of what constitutes a BR pancreatic tumor, it has been demonstrated that this intermediate category carries a particular prognosis that is in between resectable and unresectable disease. In order to downstage the tumor and increase the probability of clear surgical margins, neoadjuvant therapy is being increasingly utilized and studied. There is a lack of high-level evidence to establish the optimal treatment regimen for BR tumors. When resection with negative margins is achieved after neoadjuvant therapy, the prognosis for BR tumors approaches and even exceeds that for resectable disease. This review presents the current definitions, different treatment approaches, and the clinical outcomes of BR pancreatic cancer.
Collapse
Affiliation(s)
- Diego A S Toesca
- Department of Radiation Oncology, Stanford Cancer Institute, Stanford, California
| | - Amanda J Koong
- Department of Radiation Oncology, Stanford Cancer Institute, Stanford, California
| | | | - Brendan C Visser
- Department of Surgery, Stanford Cancer Institute, Stanford, California
| | | | - Albert C Koong
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Daniel T Chang
- Department of Radiation Oncology, Stanford Cancer Institute, Stanford, California.
| |
Collapse
|
43
|
Ng SP, Herman JM. Stereotactic Radiotherapy and Particle Therapy for Pancreatic Cancer. Cancers (Basel) 2018; 10:cancers10030075. [PMID: 29547526 PMCID: PMC5876650 DOI: 10.3390/cancers10030075] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/10/2018] [Accepted: 03/14/2018] [Indexed: 01/19/2023] Open
Abstract
Pancreatic cancer is a devastating disease with poor survival outcomes. Recent studies have shown that the addition of radiotherapy to chemotherapy in the setting of locally advanced pancreatic cancer did not improve overall survival outcome. These studies commonly utilize conventional radiotherapy treatment fractionation and technique (typically 3-D conformal radiotherapy or intensity modulated radiotherapy). Although no clear benefit in overall survival was demonstrated in those studies, those who received radiotherapy did have a clear benefit in terms of local control. Therefore, there is increasing interest in exploring different techniques and/or modality of radiotherapy and dose/fractionation. Stereotactic radiotherapy, which employs a hypofractionated regimen, has the potential advantage of delivering a high dose of radiation to the tumor in a short period of time (typically over 5 days) with minimal dose to the surrounding normal structures. Particle therapy such as proton and carbon ion therapy are being explored as potential radiation modality that could cause greater biological damage to the tumor compared to photon treatment, with rapid dose falloff resulting in minimal to no dose to adjacent structures. This review will discuss the current literature and emerging roles of stereotactic radiotherapy and particle therapy in pancreatic cancer.
Collapse
Affiliation(s)
- Sweet Ping Ng
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA.
| | - Joseph M Herman
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA.
| |
Collapse
|
44
|
Mohamad O, Makishima H, Kamada T. Evolution of Carbon Ion Radiotherapy at the National Institute of Radiological Sciences in Japan. Cancers (Basel) 2018; 10:cancers10030066. [PMID: 29509684 PMCID: PMC5876641 DOI: 10.3390/cancers10030066] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 03/02/2018] [Accepted: 03/02/2018] [Indexed: 12/19/2022] Open
Abstract
Charged particles can achieve better dose distribution and higher biological effectiveness compared to photon radiotherapy. Carbon ions are considered an optimal candidate for cancer treatment using particles. The National Institute of Radiological Sciences (NIRS) in Chiba, Japan was the first radiotherapy hospital dedicated for carbon ion treatments in the world. Since its establishment in 1994, the NIRS has pioneered this therapy with more than 69 clinical trials so far, and hundreds of ancillary projects in physics and radiobiology. In this review, we will discuss the evolution of carbon ion radiotherapy at the NIRS and some of the current and future projects in the field.
Collapse
Affiliation(s)
- Osama Mohamad
- Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
- Department of Radiation Oncology, University of Texas-Southwestern Medical Center, 2280 Inwood Rd., Dallas, TX 75390, USA.
| | - Hirokazu Makishima
- Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| | - Tadashi Kamada
- Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| |
Collapse
|
45
|
Kawashiro S, Yamada S, Isozaki Y, Nemoto K, Tsuji H, Kamada T. Carbon-ion radiotherapy for locoregional recurrence after primary surgery for pancreatic cancer. Radiother Oncol 2018; 129:101-104. [PMID: 29463433 DOI: 10.1016/j.radonc.2018.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/27/2017] [Accepted: 02/02/2018] [Indexed: 01/04/2023]
Abstract
The efficacy and safety of carbon ion radiotherapy (C-ion RT) for locoregional recurrence after surgery for pancreatic cancer were retrospectively evaluated. The results for 30 patients showed that C-ion RT was performed safely with relatively long overall survival, good local control, and minimal toxicity.
Collapse
Affiliation(s)
- Shohei Kawashiro
- Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan; Department of Radiation Oncology, Yamagata University Faculty of Medicine, Japan.
| | - Shigeru Yamada
- Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Yuka Isozaki
- Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Kenji Nemoto
- Department of Radiation Oncology, Yamagata University Faculty of Medicine, Japan
| | - Hiroshi Tsuji
- Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Tadashi Kamada
- Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| |
Collapse
|
46
|
Dreher C, Habermehl D, Jäkel O, Combs SE. Effective radiotherapeutic treatment intensification in patients with pancreatic cancer: higher doses alone, higher RBE or both? Radiat Oncol 2017; 12:203. [PMID: 29282139 PMCID: PMC5745986 DOI: 10.1186/s13014-017-0945-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/14/2017] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer, especially in case of locally advanced stage has a poor prognosis. Radiotherapy in general can lead to tumor volume reduction, but further improvements, such as ion beam therapy have to be promoted in order to enable dose escalation, which in turn results in better local control rates and downsizing of the tumor itself. Ion beam therapy with its highly promising physical properties is also accompanied by distinct inter- and intrafractional challenges in case of robustness. First clinical results are promising, but further research in motion mitigation and biological treatment planning is necessary, in order to determine the best clinical rationales and conditions of ion beam therapy of pancreatic cancer. This review summarizes the current knowledge and studies on ion beam therapy of pancreatic cancer.
Collapse
Affiliation(s)
- Constantin Dreher
- Department of Radiation Oncology, University Hospital Rechts der Isar, Technical University Munich (TUM), Ismaninger Str. 22 Munich, Germany
| | - Daniel Habermehl
- Department of Radiation Oncology, University Hospital Rechts der Isar, Technical University Munich (TUM), Ismaninger Str. 22 Munich, Germany
- Department of Radiation Sciences (DRS), Institute of Innovative Radiotherapy (iRT), Helmholtz Zentrum München, Oberschleißheim, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site München, München, Germany
| | - Oliver Jäkel
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center, INF, 280 Heidelberg, Germany
- Heidelberg Ion Beam Therapy Center (HIT), INF 450, 69120 Heidelberg, Germany
| | - Stephanie E. Combs
- Department of Radiation Oncology, University Hospital Rechts der Isar, Technical University Munich (TUM), Ismaninger Str. 22 Munich, Germany
- Department of Radiation Sciences (DRS), Institute of Innovative Radiotherapy (iRT), Helmholtz Zentrum München, Oberschleißheim, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site München, München, Germany
| |
Collapse
|
47
|
Dhir M, Malhotra GK, Sohal DP, Hein NA, Smith LM, O’Reilly EM, Bahary N, Are C. Neoadjuvant treatment of pancreatic adenocarcinoma: a systematic review and meta-analysis of 5520 patients. World J Surg Oncol 2017; 15:183. [PMID: 29017581 PMCID: PMC5634869 DOI: 10.1186/s12957-017-1240-2] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 08/25/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Recent years have seen standardization of the anatomic definitions of pancreatic adenocarcinoma, and increasing utilization of neoadjuvant therapy (NAT). The aim of the current review was to summarize the evidence for NAT in pancreatic adenocarcinoma since 2009, when consensus criteria for resectable (R), borderline resectable (BR), and locally advanced (LA) disease were endorsed. METHODS PubMed search was undertaken along with extensive backward search of the references of published articles to identify studies utilizing NAT for pancreatic adenocarcinoma. Abstracts from ASCO-GI 2014 and 2015 were also searched. RESULTS A total of 96 studies including 5520 patients were included in the final quantitative synthesis. Pooled estimates revealed 36% grade ≥ 3 toxicities, 5% biliary complications, 21% hospitalization rate and low mortality (0%, range 0-16%) during NAT. The majority of patients (59%) had stable disease. On an intention-to-treat basis, R0-resection rates varied from 63% among R patients to 23% among LA patients. R0 rates were > 80% among all patients who were resected after NAT. Among R and BR patients who underwent resection after NAT, median OS was 30 and 27.4 months, respectively. CONCLUSIONS The current study summarizes the recent literature for NAT in pancreatic adenocarcinoma and demonstrates improving outcomes after NAT compared to those historically associated with a surgery-first approach for pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Mashaal Dhir
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY 13210 USA
| | - Gautam K. Malhotra
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 98198 USA
| | - Davendra P.S. Sohal
- Division of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195 USA
| | - Nicholas A. Hein
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Lynette M. Smith
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Eileen M. O’Reilly
- David M. Rubenstein Center for Pancreatic Cancer, Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA
| | - Nathan Bahary
- Department of Medicine, Division of Hematology and Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA 15232 USA
| | - Chandrakanth Are
- Department of Surgery, Division of Surgical Oncology, University of Nebraska Medical Center, Omaha, NE 98198 USA
- Department of Surgery/Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198 USA
| |
Collapse
|
48
|
Bhattacharya S, Asaithamby A. Repurposing DNA repair factors to eradicate tumor cells upon radiotherapy. Transl Cancer Res 2017; 6:S822-S839. [PMID: 30613483 DOI: 10.21037/tcr.2017.05.22] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer is the leading cause of death worldwide. Almost 50% of all cancer patients undergo radiation therapy (RT) during treatment, with varying success. The main goal of RT is to kill tumor cells by damaging their DNA irreversibly while sparing the surrounding normal tissue. The outcome of RT is often determined by how tumors recognize and repair their damaged DNA. A growing body of evidence suggests that tumors often show abnormal expression of DNA double-strand break (DSB) repair genes that are absent from normal cells. Defects in a specific DNA repair pathway make tumor cells overly dependent on alternative or backup pathways to repair their damaged DNA. These tumor cell-specific abnormalities in the DNA damage response (DDR) machinery can potentially be used as biomarkers for treatment outcomes or as targets for sensitization to ionizing radiation (IR). An improved understanding of genetic or epigenetic alterations in the DNA repair pathways specific to cancer cells has paved the way for new treatments that combine pharmacological exploitation of tumor-specific molecular vulnerabilities with IR. Inhibiting DNA repair pathways has the potential to greatly enhance the therapeutic ratio of RT. In this review, we will discuss DNA repair pathways in active cells and how these pathways are deregulated in tumors. We will also describe the impact of targeting cancer-specific aberrations in the DDR as a treatment strategy to improve the efficacy of RT. Finally, we will address the current roadblocks and future prospects of these approaches.
Collapse
Affiliation(s)
- Souparno Bhattacharya
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Aroumougame Asaithamby
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
49
|
Carbon Ion Radiotherapy: A Review of Clinical Experiences and Preclinical Research, with an Emphasis on DNA Damage/Repair. Cancers (Basel) 2017; 9:cancers9060066. [PMID: 28598362 PMCID: PMC5483885 DOI: 10.3390/cancers9060066] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 05/21/2017] [Accepted: 06/06/2017] [Indexed: 12/31/2022] Open
Abstract
Compared to conventional photon-based external beam radiation (PhXRT), carbon ion radiotherapy (CIRT) has superior dose distribution, higher linear energy transfer (LET), and a higher relative biological effectiveness (RBE). This enhanced RBE is driven by a unique DNA damage signature characterized by clustered lesions that overwhelm the DNA repair capacity of malignant cells. These physical and radiobiological characteristics imbue heavy ions with potent tumoricidal capacity, while having the potential for simultaneously maximally sparing normal tissues. Thus, CIRT could potentially be used to treat some of the most difficult to treat tumors, including those that are hypoxic, radio-resistant, or deep-seated. Clinical data, mostly from Japan and Germany, are promising, with favorable oncologic outcomes and acceptable toxicity. In this manuscript, we review the physical and biological rationales for CIRT, with an emphasis on DNA damage and repair, as well as providing a comprehensive overview of the translational and clinical data using CIRT.
Collapse
|
50
|
Zhan HX, Xu JW, Wu D, Wu ZY, Wang L, Hu SY, Zhang GY. Neoadjuvant therapy in pancreatic cancer: a systematic review and meta-analysis of prospective studies. Cancer Med 2017; 6:1201-1219. [PMID: 28544758 PMCID: PMC5463082 DOI: 10.1002/cam4.1071] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/12/2017] [Accepted: 03/13/2017] [Indexed: 12/13/2022] Open
Abstract
There is a strong rationale and many theoretical advantages for neoadjuvant therapy in pancreatic cancer (PC). However, study results have varied significantly. In this study, a systematic review and meta‐analysis of prospective studies were performed in order to evaluate safety and effectiveness of neoadjuvant therapy in PC. Thirty‐nine studies were selected (n = 1458 patients), with 14 studies focusing on patients with resectable disease (group 1), and 19 studies focusing on patients with borderline resectable and locally advanced disease (group 2). Neoadjuvant chemotherapy was administered in 97.4% of the studies, in which 76.9% was given radiotherapy and 74.4% administered with chemoradiation. The complete and partial response rate was 3.8% and 20.9%. The incidence of grade 3/4 toxicity was 11.3%. The overall resection rate after neoadjuvant therapy was 57.7% (group 1: 73.0%, group 2: 40.2%). The R0 resection rate was 84.2% (group 1: 88.2%, group 2: 79.4%). The overall survival for all patients was 16.79 months (resected 24.24, unresected 9.81; group 1: 17.76, group 2: 16.20). Our results demonstrate that neoadjuvant therapy has not been proven to be beneficial and should be considered with caution in patients with resectable PC. Patients with borderline resectable or locally advanced disease may benefit from neoadjuvant therapy, but further research is needed.
Collapse
Affiliation(s)
- Han-Xiang Zhan
- Department of General Surgery, Qilu hospital, Shandong University, Jinan, Shandong Province, 250012, China
| | - Jian-Wei Xu
- Department of General Surgery, Qilu hospital, Shandong University, Jinan, Shandong Province, 250012, China
| | - Dong Wu
- Department of General Surgery, Qilu hospital, Shandong University, Jinan, Shandong Province, 250012, China
| | - Zhi-Yang Wu
- Department of General Surgery, Qilu hospital, Shandong University, Jinan, Shandong Province, 250012, China
| | - Lei Wang
- Department of General Surgery, Qilu hospital, Shandong University, Jinan, Shandong Province, 250012, China
| | - San-Yuan Hu
- Department of General Surgery, Qilu hospital, Shandong University, Jinan, Shandong Province, 250012, China
| | - Guang-Yong Zhang
- Department of General Surgery, Qilu hospital, Shandong University, Jinan, Shandong Province, 250012, China
| |
Collapse
|