1
|
Mazengenya P, Lesku JA, Rattenborg NC, Manger PR. Apparent absence of hypothalamic cholinergic neurons in the common ostrich and emu: Implications for global brain states during sleep. J Comp Neurol 2024; 532:e25587. [PMID: 38335048 DOI: 10.1002/cne.25587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/28/2023] [Accepted: 01/09/2024] [Indexed: 02/12/2024]
Abstract
We examined the presence/absence and parcellation of cholinergic neurons in the hypothalami of five birds: a Congo grey parrot (Psittacus erithacus), a Timneh grey parrot (P. timneh), a pied crow (Corvus albus), a common ostrich (Struthio camelus), and an emu (Dromaius novaehollandiae). Using immunohistochemistry to an antibody raised against the enzyme choline acetyltransferase, hypothalamic cholinergic neurons were observed in six distinct clusters in the medial, lateral, and ventral hypothalamus in the parrots and crow, similar to prior observations made in the pigeon. The expression of cholinergic nuclei was most prominent in the Congo grey parrot, both in the medial and lateral hypothalamus. In contrast, no evidence of cholinergic neurons in the hypothalami of either the ostrich or emu was found. It is known that the expression of sleep states in the ostrich is unusual and resembles that observed in the monotremes that also lack hypothalamic cholinergic neurons. It has been proposed that the cholinergic system acts globally to produce and maintain brain states, such as those of arousal and rapid-eye-movement sleep. The hiatus in the cholinergic system of the ostrich, due to the lack of hypothalamic cholinergic neurons, may explain, in part, the unusual expression of sleep states in this species. These comparative anatomical and sleep studies provide supportive evidence for global cholinergic actions and may provide an important framework for our understanding of one broad function of the cholinergic system and possible dysfunctions associated with global cholinergic neural activity.
Collapse
Affiliation(s)
- Pedzisai Mazengenya
- College of Medicine, Ajman University, Ajman, United Arab Emirates
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg, Republic of South Africa
| | - John A Lesku
- Sleep Ecophysiology Group, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Australia
| | - Niels C Rattenborg
- Avian Sleep Group, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg, Republic of South Africa
| |
Collapse
|
2
|
York JM, Borghese CM, George AA, Cannatella DC, Zakon HH. A potential cost of evolving epibatidine resistance in poison frogs. BMC Biol 2023; 21:144. [PMID: 37370119 DOI: 10.1186/s12915-023-01637-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Some dendrobatid poison frogs sequester the toxin epibatidine as a defense against predators. We previously identified an amino acid substitution (S108C) at a highly conserved site in a nicotinic acetylcholine receptor β2 subunit of dendrobatid frogs that decreases sensitivity to epibatidine in the brain-expressing α4β2 receptor. Introduction of S108C to the orthologous high-sensitivity human receptor similarly decreased sensitivity to epibatidine but also decreased sensitivity to acetylcholine, a potential cost if this were to occur in dendrobatids. This decrease in the acetylcholine sensitivity manifested as a biphasic acetylcholine concentration-response curve consistent with the addition of low-sensitivity receptors. Surprisingly, the addition of the β2 S108C into the α4β2 receptor of the dendrobatid Epipedobates anthonyi did not change acetylcholine sensitivity, appearing cost-free. We proposed that toxin-bearing dendrobatids may have additional amino acid substitutions protecting their receptors from alterations in acetylcholine sensitivity. To test this, in the current study, we compared the dendrobatid receptor to its homologs from two non-dendrobatid frogs. RESULTS The introduction of S108C into the α4β2 receptors of two non-dendrobatid frogs also does not affect acetylcholine sensitivity suggesting no additional dendrobatid-specific substitutions. However, S108C decreased the magnitude of neurotransmitter-induced currents in Epipedobates and the non-dendrobatid frogs. We confirmed that decreased current resulted from fewer receptors in the plasma membrane in Epipedobates using radiolabeled antibodies against the receptors. To test whether S108C alteration of acetylcholine sensitivity in the human receptor was due to (1) adding low-sensitivity binding sites by changing stoichiometry or (2) converting existing high- to low-sensitivity binding sites with no stoichiometric alteration, we made concatenated α4β2 receptors in stoichiometry with only high-sensitivity sites. S108C substitutions decreased maximal current and number of immunolabeled receptors but no longer altered acetylcholine sensitivity. CONCLUSIONS The most parsimonious explanation of our current and previous work is that the S108C substitution renders the β2 subunit less efficient in assembling/trafficking, thereby decreasing the number of receptors in the plasma membrane. Thus, while β2 S108C protects dendrobatids against sequestered epibatidine, it incurs a potential physiological cost of disrupted α4β2 receptor function.
Collapse
Affiliation(s)
- Julia M York
- Department of Neuroscience, The University of Texas, Austin, TX, USA
- Department of Integrative Biology, and Biodiversity Center, The University of Texas, Austin, TX, USA
| | | | - Andrew A George
- Department of Neurobiology, The Barrow Neurological Institute, Phoenix, AZ, USA
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - David C Cannatella
- Department of Integrative Biology, and Biodiversity Center, The University of Texas, Austin, TX, USA
| | - Harold H Zakon
- Department of Neuroscience, The University of Texas, Austin, TX, USA.
- Department of Integrative Biology, and Biodiversity Center, The University of Texas, Austin, TX, USA.
| |
Collapse
|
3
|
York JM, Borghese CM, George AA, Cannatella DC, Zakon HH. A potential cost of evolving epibatidine resistance in poison frogs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.04.522789. [PMID: 36711899 PMCID: PMC9882002 DOI: 10.1101/2023.01.04.522789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Background Some poison arrow frogs sequester the toxin epibatidine as a defense against predators. We previously identified a single amino acid substitution (S108C) at a highly conserved site in a neuronal nicotinic acetylcholine receptor (nAChR) ß2 subunit that prevents epibatidine from binding to this receptor. When placed in a homologous mammalian nAChR this substitution minimized epibatidine binding but also perturbed acetylcholine binding, a clear cost. However, in the nAChRs of poison arrow frogs, this substitution appeared to have no detrimental effect on acetylcholine binding and, thus, appeared cost-free. Results The introduction of S108C into the α4β2 nAChRs of non-dendrobatid frogs also does not affect ACh sensitivity, when these receptors are expressed in Xenopus laevis oocytes. However, α4β2 nAChRs with C108 had a decreased magnitude of neurotransmitter-induced currents in all species tested ( Epipedobates anthonyi , non-dendrobatid frogs, as well as human), compared with α4β2 nAChRs with the conserved S108. Immunolabeling of frog or human α4β2 nAChRs in the plasma membrane using radiolabeled antibody against the β2 nAChR subunit shows that C108 significantly decreased the number of cell-surface α4β2 nAChRs, compared with S108. Conclusions While S108C protects these species against sequestered epibatidine, it incurs a potential physiological cost of disrupted α4β2 nAChR function. These results may explain the high conservation of a serine at this site in vertebrates, as well as provide an example of a tradeoff between beneficial and deleterious effects of an evolutionary change. They also provide important clues for future work on assembly and trafficking of this important neurotransmitter receptor.
Collapse
|
4
|
Marín O, Moreno N. Agustín González, an Inspirational Leader in Spanish Comparative Neuroanatomy. BRAIN, BEHAVIOR AND EVOLUTION 2021; 96:174-180. [PMID: 34644701 DOI: 10.1159/000519259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Oscar Marín
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Nerea Moreno
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
5
|
Janes TA, Rousseau JP, Fournier S, Kiernan EA, Harris MB, Taylor BE, Kinkead R. Development of central respiratory control in anurans: The role of neurochemicals in the emergence of air-breathing and the hypoxic response. Respir Physiol Neurobiol 2019; 270:103266. [PMID: 31408738 PMCID: PMC7476778 DOI: 10.1016/j.resp.2019.103266] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/10/2019] [Accepted: 08/05/2019] [Indexed: 01/08/2023]
Abstract
Physiological and environmental factors impacting respiratory homeostasis vary throughout the course of an animal's lifespan from embryo to adult and can shape respiratory development. The developmental emergence of complex neural networks for aerial breathing dates back to ancestral vertebrates, and represents the most important process for respiratory development in extant taxa ranging from fish to mammals. While substantial progress has been made towards elucidating the anatomical and physiological underpinnings of functional respiratory control networks for air-breathing, much less is known about the mechanisms establishing these networks during early neurodevelopment. This is especially true of the complex neurochemical ensembles key to the development of air-breathing. One approach to this issue has been to utilize comparative models such as anuran amphibians, which offer a unique perspective into early neurodevelopment. Here, we review the developmental emergence of respiratory behaviours in anuran amphibians with emphasis on contributions of neurochemicals to this process and highlight opportunities for future research.
Collapse
Affiliation(s)
- Tara A Janes
- Department of Pediatrics, Université Laval & Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
| | - Jean-Philippe Rousseau
- Department of Pediatrics, Université Laval & Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
| | - Stéphanie Fournier
- Department of Pediatrics, Université Laval & Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
| | - Elizabeth A Kiernan
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison Wisconsin, USA
| | - Michael B Harris
- Department of Biological Sciences, California State University Long Beach, California, USA
| | - Barbara E Taylor
- Department of Biological Sciences, California State University Long Beach, California, USA
| | - Richard Kinkead
- Department of Pediatrics, Université Laval & Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada.
| |
Collapse
|
6
|
Li WC, Zhu XY, Ritson E. Mechanosensory Stimulation Evokes Acute Concussion-Like Behavior by Activating GIRKs Coupled to Muscarinic Receptors in a Simple Vertebrate. eNeuro 2017; 4:ENEURO.0073-17.2017. [PMID: 28462392 PMCID: PMC5409982 DOI: 10.1523/eneuro.0073-17.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/13/2017] [Accepted: 04/14/2017] [Indexed: 11/21/2022] Open
Abstract
Most vertebrates show concussion responses when their heads are hit suddenly by heavy objects. Previous studies have focused on the direct physical injuries to the neural tissue caused by the concussive blow. We study a similar behavior in a simple vertebrate, the Xenopus laevis tadpole. We find that concussion-like behavior can be reliably induced by the mechanosensory stimulation of the head skin without direct physical impacts on the brain. Head skin stimulation activates a cholinergic pathway which then opens G protein-coupled inward-rectifying potassium channels (GIRKs) via postsynaptic M2 muscarinic receptors to inhibit brainstem neurons critical for the initiation and maintenance of swimming for up to minutes and can explain many features commonly observed immediately after concussion. We propose that some acute symptoms of concussion in vertebrates can be explained by the opening of GIRKs following mechanosensory stimulation to the head.
Collapse
Affiliation(s)
- Wen-Chang Li
- University of St Andrews, St Andrews, Fife KY16 9JP, Scotland
| | - Xiao-Yue Zhu
- University of St Andrews, St Andrews, Fife KY16 9JP, Scotland
| | - Emma Ritson
- University of St Andrews, St Andrews, Fife KY16 9JP, Scotland
| |
Collapse
|
7
|
López JM, Morales L, González A. Spatiotemporal Development of the Orexinergic (Hypocretinergic) System in the Central Nervous System of Xenopus laevis. BRAIN, BEHAVIOR AND EVOLUTION 2016; 88:127-146. [DOI: 10.1159/000449278] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/18/2016] [Indexed: 11/19/2022]
Abstract
The present immunohistochemical study represents a detailed spatiotemporal analysis of the localization of orexin-immunoreactive (OX-ir) cells and fibers throughout development in the brain of the anuran amphibian Xenopus laevis, a model frequently used in developmental studies. Anurans undergo remarkable physiological changes during the early life stages, and very little is known about the ontogeny and the localization of the centers that control functions such as appetite and feed ingestion in the developing brain. We examined the onset of the orexinergic system, demonstrated to be involved in appetite regulation, using antibodies against mammalian orexin-A and orexin-B peptides. Simultaneous detection of orexins with other territorial markers was used to assess the precise location of the orexinergic cells in the hypothalamus, analyzed within a segmental paradigm. Double staining of orexins and tyrosine hydroxylase served to evaluate possible interactions with the catecholaminergic systems. At early embryonic stages, the first OX-ir cells were detected in the hypothalamus and, soon after, long descending projections were observed through the brainstem to the spinal cord. As brain development proceeded, the double-staining techniques demonstrated that this OX-ir cell group was located in the suprachiasmatic nucleus within the alar hypothalamus. Throughout larval development, the number of OX-ir cells increased notably and a widespread fiber network that innervated the main areas of the forebrain and brainstem was progressively formed, including innervation in the posterior tubercle and mesencephalon, the locus coeruleus, and the nucleus of the solitary tract where catecholaminergic cells are present. In addition, orexinergic cells were detected in the preoptic area and the tuberal hypothalamus only at late prometamorphic stages. The final distribution pattern, largely similar to that of the adult, was achieved through metamorphic climax. The early expression of orexins in Xenopus suggests important roles in brain development in the embryonic period before feeding, and the progression of the temporal and spatial complexity of the orexinergic system might be correlated to the maturation of appetite control regulation, among other functions.
Collapse
|
8
|
Morona R, Ferran JL, Puelles L, González A. Gene expression analysis of developing cell groups in the pretectal region ofXenopus laevis. J Comp Neurol 2016; 525:715-752. [DOI: 10.1002/cne.24099] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/18/2016] [Accepted: 07/28/2016] [Indexed: 01/09/2023]
Affiliation(s)
- Ruth Morona
- Department of Cell Biology, Faculty of Biology; University Complutense of Madrid; 28040 Madrid Spain
| | - José Luis Ferran
- Department of Human Anatomy and Psychobiology; University of Murcia and Murcian Institute of Biomedical Research (IMIB); E30071 Murcia Spain
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology; University of Murcia and Murcian Institute of Biomedical Research (IMIB); E30071 Murcia Spain
| | - Agustín González
- Department of Cell Biology, Faculty of Biology; University Complutense of Madrid; 28040 Madrid Spain
| |
Collapse
|
9
|
Generation of BAC transgenic tadpoles enabling live imaging of motoneurons by using the urotensin II-related peptide (ust2b) gene as a driver. PLoS One 2015; 10:e0117370. [PMID: 25658845 PMCID: PMC4319907 DOI: 10.1371/journal.pone.0117370] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 12/22/2014] [Indexed: 12/13/2022] Open
Abstract
Xenopus is an excellent tetrapod model for studying normal and pathological motoneuron ontogeny due to its developmental morpho-physiological advantages. In mammals, the urotensin II-related peptide (UTS2B) gene is primarily expressed in motoneurons of the brainstem and the spinal cord. Here, we show that this expression pattern was conserved in Xenopus and established during the early embryonic development, starting at the early tailbud stage. In late tadpole stage, uts2b mRNA was detected both in the hindbrain and in the spinal cord. Spinal uts2b+ cells were identified as axial motoneurons. In adult, however, the uts2b expression was only detected in the hindbrain. We assessed the ability of the uts2b promoter to drive the expression of a fluorescent reporter in motoneurons by recombineering a green fluorescent protein (GFP) into a bacterial artificial chromosome (BAC) clone containing the entire X. tropicalis uts2b locus. After injection of this construction in one-cell stage embryos, a transient GFP expression was observed in the spinal cord of about a quarter of the resulting animals from the early tailbud stage and up to juveniles. The GFP expression pattern was globally consistent with that of the endogenous uts2b in the spinal cord but no fluorescence was observed in the brainstem. A combination of histological and electrophysiological approaches was employed to further characterize the GFP+ cells in the larvae. More than 98% of the GFP+ cells expressed choline acetyltransferase, while their projections were co-localized with α-bungarotoxin labeling. When tail myotomes were injected with rhodamine dextran amine crystals, numerous double-stained GFP+ cells were observed. In addition, intracellular electrophysiological recordings of GFP+ neurons revealed locomotion-related rhythmic discharge patterns during fictive swimming. Taken together our results provide evidence that uts2b is an appropriate driver to express reporter genes in larval motoneurons of the Xenopus spinal cord.
Collapse
|
10
|
Bandín S, Morona R, Moreno N, González A. Regional expression of Pax7 in the brain of Xenopus laevis during embryonic and larval development. Front Neuroanat 2013; 7:48. [PMID: 24399938 PMCID: PMC3871710 DOI: 10.3389/fnana.2013.00048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 12/10/2013] [Indexed: 11/13/2022] Open
Abstract
Pax7 is a member of the highly conserved Pax gene family that is expressed in restricted zones of the central nervous system (CNS) during development, being involved in early brain regionalization and the maintenance of the regional identity. Using sensitive immunohistochemical techniques we have analyzed the spatiotemporal pattern of Pax7 expression in the brain of the anuran amphibian Xenopus laevis, during development. Pax7 expression was first detected in early embryos in the basal plate of prosomere 3, roof and alar plates of prosomere 1 and mesencephalon, and the alar plate of rhombomere 1. As development proceeded, Pax7 cells were observed in the hypothalamus close to the catecholaminergic population of the mammillary region. In the diencephalon, Pax7 was intensely expressed in a portion of the basal plate of prosomere 3, in the roof plate and in scattered cells of the thalamus in prosomere 2, throughout the roof of prosomere 1, and in the commissural and juxtacommissural domains of the pretectum. In the mesencephalon, Pax7 cells were localized in the optic tectum and, to a lesser extent, in the torus semicircularis. The rostral portion of the alar part of rhombomere 1, including the ventricular layer of the cerebellum, expressed Pax7 and, gradually, some of these dorsal cells were observed to populate ventrally the interpeduncular nucleus and the isthmus (rhombomere 0). Additionally, Pax7 positive cells were found in the ventricular zone of the ventral part of the alar plate along the rhombencephalon and the spinal cord. The findings show that the strongly conserved features of Pax7 expression through development shared by amniote vertebrates are also present in the anamniote amphibians as a common characteristic of the brain organization of tetrapods.
Collapse
Affiliation(s)
- Sandra Bandín
- Department of Cell Biology, Faculty of Biology, University Complutense Madrid, Spain
| | - Ruth Morona
- Department of Cell Biology, Faculty of Biology, University Complutense Madrid, Spain
| | - Nerea Moreno
- Department of Cell Biology, Faculty of Biology, University Complutense Madrid, Spain
| | - Agustín González
- Department of Cell Biology, Faculty of Biology, University Complutense Madrid, Spain
| |
Collapse
|
11
|
Morona R, González A. Pattern of calbindin-D28k and calretinin immunoreactivity in the brain of Xenopus laevis during embryonic and larval development. J Comp Neurol 2013; 521:79-108. [PMID: 22678695 DOI: 10.1002/cne.23163] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 05/07/2012] [Accepted: 06/01/2012] [Indexed: 11/09/2022]
Abstract
The present study represents a detailed spatiotemporal analysis of the localization of calbindin-D28k (CB) and calretinin (CR) immunoreactive structures in the brain of Xenopus laevis throughout development, conducted with the aim to correlate the onset of the immunoreactivity with the development of compartmentalization of distinct subdivisions recently identified in the brain of adult amphibians and primarily highlighted when analyzed within a segmental paradigm. CR and CB are expressed early in the brain and showed a progressively increasing expression throughout development, although transient expression in some neuronal subpopulations was also noted. Common and distinct characteristics in Xenopus, as compared with reported features during development in the brain of mammals, were observed. The development of specific regions in the forebrain such as the olfactory bulbs, the components of the basal ganglia and the amygdaloid complex, the alar and basal hypothalamic regions, and the distinct diencephalic neuromeres could be analyzed on the basis of the distinct expression of CB and CR in subregions. Similarly, the compartments of the mesencephalon and the main rhombencephalic regions, including the cerebellum, were differently highlighted by their specific content in CB and CR throughout development. Our results show the usefulness of the analysis of the distribution of these proteins as a tool in neuroanatomy to interpret developmental aspects of many brain regions.
Collapse
Affiliation(s)
- Ruth Morona
- Department of Cell Biology, University Complutense, 28040 Madrid, Spain
| | | |
Collapse
|
12
|
López JM, Perlado J, Morona R, Northcutt RG, González A. Neuroanatomical organization of the cholinergic system in the central nervous system of a basal actinopterygian fish, the senegal bichir Polypterus senegalus. J Comp Neurol 2013; 521:24-49. [PMID: 22628072 DOI: 10.1002/cne.23155] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 05/09/2012] [Accepted: 05/18/2012] [Indexed: 11/10/2022]
Abstract
Polypterid bony fishes are believed to be basal to other living ray-finned fishes, and their brain organization is therefore critical in providing information as to primitive neural characters that existed in the earliest ray-finned fishes. The cholinergic system has been characterized in more advanced ray-finned fishes, but not in polypterids. In order to establish which cholinergic neural centers characterized the earliest ray-finned fishes, the distribution of choline acetyltransferase (ChAT) is described in Polypterus and compared with the distribution of this molecule in other ray-finned fishes. Cell groups immunoreactive for ChAT were observed in the hypothalamus, the habenula, the optic tectum, the isthmus, the cranial motor nuclei, and the spinal motor column. Cholinergic fibers were observed in both the telencephalic pallium and the subpallium, in the thalamus and pretectum, in the optic tectum and torus semicircularis, in the mesencephalic tegmentum, in the cerebellar crest, in the solitary nucleus, and in the dorsal column nuclei. Comparison of the data within a segmental neuromeric context indicates that the cholinergic system in polypterid fishes is generally similar to that in other ray-finned fishes, but cholinergic-positive neurons in the pallium and subpallium, and in the thalamus and cerebellum, of teleosts appear to have evolved following the separation of polypterids and other ray-finned fishes.
Collapse
Affiliation(s)
- Jesús M López
- Department of Cell Biology, University Complutense, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
13
|
Morona R, López JM, Northcutt RG, González A. Comparative Analysis of the Organization of the Cholinergic System in the Brains of Two Holostean Fishes, the Florida GarLepisosteus platyrhincusand the BowfinAmia calva. BRAIN, BEHAVIOR AND EVOLUTION 2013; 81:109-42. [DOI: 10.1159/000347111] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 01/12/2013] [Indexed: 11/19/2022]
|
14
|
López JM, Domínguez L, Morona R, Northcutt RG, González A. Organization of the cholinergic systems in the brain of two lungfishes, Protopterus dolloi and Neoceratodus forsteri. Brain Struct Funct 2011; 217:549-76. [DOI: 10.1007/s00429-011-0341-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 07/23/2011] [Indexed: 01/29/2023]
|
15
|
Moreno N, Morona R, López JM, González A. Subdivisions of the turtle Pseudemys scripta subpallium based on the expression of regulatory genes and neuronal markers. J Comp Neurol 2010; 518:4877-902. [DOI: 10.1002/cne.22493] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
16
|
Takamura K, Minamida N, Okabe S. Neural Map of the Larval Central Nervous System in the AscidianCiona intestinalis. Zoolog Sci 2010; 27:191-203. [DOI: 10.2108/zsj.27.191] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
López JM, Domínguez L, Moreno N, González A. Comparative immunohistochemical analysis of the distribution of orexins (hypocretins) in the brain of amphibians. Peptides 2009; 30:873-87. [PMID: 19428764 DOI: 10.1016/j.peptides.2009.01.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 01/20/2009] [Accepted: 01/21/2009] [Indexed: 10/21/2022]
Abstract
The orexins (hypocretins) are peptides found primarily in neurons of the hypothalamus of all vertebrates. Many differences were reported about the precise location of orexin containing cells and their projections throughout the brain in different species. However, there are few direct cross-species comparisons. Previous studies in anuran amphibians have also reported notable species differences. We examined and directly compared the distribution of orexinergic neurons and fibers within the brains of representatives of the three amphibian orders, anurans, urodeles and gymnophionans. Simultaneous detection of orexins and tyrosine hydroxylase was used to assess the precise location of the orexins in the brain and to evaluate the possible influence of the orexin system on the catecholaminergic cell groups. Although some differences were noted, a common pattern for the distribution of orexins in amphibians was observed. In all species, most immunoreactive neurons were observed in the suprachiasmatic nucleus, whereas the cells in the preoptic area and the tuberal region were more variable. Orexin immunoreactive fibers in the brain of all species included abundant fibers throughout the preoptic area and hypothalamus, whereas moderate amounts of fibers were present in the pallium, striatum, septum, thalamus, optic tectum, torus semicircularis, rhombencephalon and spinal cord. The use of double immunohistochemistry in amphibians revealed orexinergic innervation in dopaminergic and noradrenergic cell groups, such as the midbrain tegmentum, locus coeruleus and nucleus of the solitary tract, as was previously reported in mammals.
Collapse
Affiliation(s)
- Jesús M López
- Department of Cell Biology, Faculty of Biology, University Complutense, Madrid, Spain
| | | | | | | |
Collapse
|
18
|
Nakano M, Goris RC, Atobe Y, Kadota T, Funakoshi K. Mediolateral and rostrocaudal topographic organization of the sympathetic preganglionic cell pool in the spinal cord ofXenopus laevis. J Comp Neurol 2009; 513:292-314. [DOI: 10.1002/cne.21956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Heer T, Yovanovich C, Pozzi A, Paz D. Galanin: Presence and distribution in the brain and pituitary of Rhinella arenarum (Amphibia: Anura) during development. Tissue Cell 2008; 40:333-42. [DOI: 10.1016/j.tice.2008.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 03/07/2008] [Accepted: 03/11/2008] [Indexed: 10/22/2022]
|
20
|
Moreno N, Domínguez L, Rétaux S, González A. Islet1 as a marker of subdivisions and cell types in the developing forebrain of Xenopus. Neuroscience 2008; 154:1423-39. [DOI: 10.1016/j.neuroscience.2008.04.029] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 04/11/2008] [Accepted: 04/11/2008] [Indexed: 10/22/2022]
|
21
|
Embryonically expressed GABA and glutamate drive electrical activity regulating neurotransmitter specification. J Neurosci 2008; 28:4777-84. [PMID: 18448654 DOI: 10.1523/jneurosci.4873-07.2008] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neurotransmitter signaling in the mature nervous system is well understood, but the functions of transmitters in the immature nervous system are less clear. Although transmitters released during embryogenesis regulate neuronal proliferation and migration, little is known about their role in regulating early neuronal differentiation. Here, we show that GABA and glutamate drive calcium-dependent embryonic electrical activity that regulates transmitter specification. The number of neurons expressing different transmitters changes when GABA or glutamate signaling is blocked chronically, either using morpholinos to knock down transmitter-synthetic enzymes or applying pharmacological receptor antagonists during a sensitive period of development. We find that calcium spikes are triggered by metabotropic GABA and glutamate receptors, which engage protein kinases A and C. The results reveal a novel role for embryonically expressed neurotransmitters.
Collapse
|
22
|
Moreno N, González A, Rétaux S. Evidences for tangential migrations in Xenopus telencephalon: developmental patterns and cell tracking experiments. Dev Neurobiol 2008; 68:504-20. [PMID: 18214835 DOI: 10.1002/dneu.20603] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Extensive tangential cell migrations have been described in the developing mammalian, avian, and reptilian forebrain, and they are viewed as a powerful developmental mechanism to increase neuronal complexity in a given brain structure. Here, we report for the first time anatomical and cell tracking evidence for the presence of important migratory processes in the developing forebrain of the anamniote Xenopus laevis. Combining developmental gene expression patterns (Pax6, Nkx2.1, Isl1, Lhx5, Lhx9, and Dll3), neurotransmitter identity (GABA, NOS, ChAT), and connectivity information, several types of putative migratory cell populations and migration routes originating in the ventral pallium and the subpallium are proposed. By means of in vivo cell tracking experiments, pallio-subpallial and subpallio-pallial migrating neurons are visualized. Among them, populations of Nkx2.1(+) striatal interneurons and pallial GABAergic interneurons, which also express the migratory marker doublecortin, are identified. Finally, we find that these tangentially migrating pallial interneurons travel through an "isl1-free channel" that may guide their course through the subpallium. Our findings strongly suggest that the developing Xenopus telencephalon shares many similarities with amniotes in terms of neuronal specification and migrations. However, some differences are discussed, particularly with regard to the evolution of the pallium.
Collapse
Affiliation(s)
- Nerea Moreno
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Spain.
| | | | | |
Collapse
|
23
|
Pratt KG, Dong W, Aizenman CD. Development and spike timing-dependent plasticity of recurrent excitation in the Xenopus optic tectum. Nat Neurosci 2008; 11:467-75. [PMID: 18344990 DOI: 10.1038/nn2076] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Accepted: 02/20/2008] [Indexed: 11/10/2022]
Abstract
Much of the information processing in the brain occurs at the level of local circuits; however, the mechanisms underlying their initial development are poorly understood. We sought to examine the early development and plasticity of local excitatory circuits in the optic tectum of Xenopus laevis tadpoles. We found that retinal input recruits persistent, recurrent intratectal synaptic excitation that becomes more temporally compact and less variable over development, thus increasing the temporal coherence and precision of tectal cell spiking. We also saw that patterned retinal input can sculpt recurrent activity according to a spike timing-dependent plasticity rule, and that impairing this plasticity during development results in abnormal refinement of the temporal characteristics of recurrent circuits. This plasticity is a previously unknown mechanism by which patterned retinal activity allows intratectal circuitry to self-organize, optimizing the temporal response properties of the tectal network, and provides a substrate for rapid modulation of tectal neuron receptive-field properties.
Collapse
Affiliation(s)
- Kara G Pratt
- Department of Neuroscience, Brown University, Box G-LN, Providence, Rhode Island 02912, USA
| | | | | |
Collapse
|
24
|
Comparative analysis of calbindin D-28K and calretinin in the retina of anuran and urodele amphibians: Colocalization with choline acetyltransferase and tyrosine hydroxylase. Brain Res 2007; 1182:34-49. [DOI: 10.1016/j.brainres.2007.07.102] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 07/17/2007] [Accepted: 07/18/2007] [Indexed: 11/19/2022]
|
25
|
López JM, Morona R, Moreno N, Domínguez L, González A. Origins of spinal cholinergic pathways in amphibians demonstrated by retrograde transport and choline acetyltransferase immunohistochemistry. Neurosci Lett 2007; 425:73-7. [PMID: 17822845 DOI: 10.1016/j.neulet.2007.08.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Accepted: 08/09/2007] [Indexed: 11/15/2022]
Abstract
The existence of propriospinal cholinergic pathways and the origin of supraspinal cholinergic descending projections have been investigated in anuran and urodele amphibians. Retrograde tract tracing techniques with dextran amines injected in the spinal cord at different levels were combined with immunohistochemistry for choline acetyltransferase (ChAT). The analysis of the brachial, thoracic and lumbar spinal cord demonstrated that doubly labeled cells were present only close to the injection site. Thus, the participation of the spinal cholinergic cells in distant intersegmental connections is not present, or is very limited, in amphibians. In anurans, tracer applications to the brachial cord revealed cholinergic cells of origin of spinal projections located in four distinct brain nuclei. The most rostrally located cells were found bilaterally in the preoptic area, among the magnocellular cells. In the ipsilateral isthmic region, the laterodorsal tegmental nucleus also showed doubly labeled cells. Throughout the brainstem, abundant codistribution was observed but actual coexistence of the tracer and ChAT was only found in the nucleus of the solitary tract and the inferior reticular nucleus. In the case of the urodele, abundant codistribution between retrogradely labeled cells and ChAT-positive neurons in zones like the suprachiasmatic nucleus, the isthmic region and the rhombencephalic reticular formation was observed, but the only doubly labeled cells were the Mauthner neurons. The present results in amphibians contrast with previous data in mammals in which is striking the presence of a widespread intrinsic cholinergic innervation of the spinal cord and the virtual absence of cholinergic projections descending from the brainstem.
Collapse
Affiliation(s)
- Jesús M López
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
26
|
Funakoshi K, Nakano M. The Sympathetic Nervous System of Anamniotes. BRAIN, BEHAVIOR AND EVOLUTION 2007; 69:105-13. [PMID: 17230018 DOI: 10.1159/000095199] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The sympathetic nervous system develops as an evolutionary trait with gnathostomes (jawed vertebrates), but not with agnathan fishes (i.e., hagfishes and lampreys). Organization of the sympathetic preganglionic neuronal columns is different in teleosts and anurans. In the teleosts so far examined, the majority of sympathetic preganglionic neurons (SPNs) are located in the dorsal part of the spinal central gray matter. In Tetraodontiformes, the cell column occupies only two rostral spinal segments, which are distinct in their cytoarchitecture and projections. On the other hand, the SPNs of anurans form two cell columns segregated mediolaterally. The lateral and medial columns are also distinct in their cytoarchitecture and projections. The neuroactive substances expressed in the SPNs both in teleosts and anurans are coded to the projections. In anurans, the SPNs containing gonadotrophin-releasing hormone and those containing calcitonin gene-related peptide are involved in the regulation of blood vessels and cutaneous glands, respectively. In the filefish, the SPNs containing galanin project specifically to non-adrenergic non-cholinergic postganglionic neurons in the cranial sympathetic ganglia. Therefore, both anuran and teleost systems have different morphological and chemical-coded patterns for functional variation, although the anuran sympathetic nervous system has more organizational similarity with that of amniotes.
Collapse
Affiliation(s)
- Kengo Funakoshi
- Department of Neuroanatomy, Yokohama City University School of Medicine, Yokohama, Japan.
| | | |
Collapse
|
27
|
López JM, Moreno N, Morona R, Muñoz M, González A. Spatiotemporal sequence of appearance of NPFF-immunoreactive structures in the developing central nervous system of Xenopus laevis. Peptides 2006; 27:1036-53. [PMID: 16504341 DOI: 10.1016/j.peptides.2005.07.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Accepted: 07/21/2005] [Indexed: 11/30/2022]
Abstract
Neuropeptide FF-like immunoreactive (NPFFir) cells and fibers were analyzed through development of Xenopus laevis. The first NPFFir cells appeared in the embryonic hypothalamus, which projected to the intermediate lobe of the hypophysis, the brainstem and spinal cord. Slightly later, scattered NPFFir cells were present in the olfactory bulbs and ventral telencephalon. In the caudal medulla, NPFFir cells were observed in the nucleus of the solitary tract only at embryonic and early larval stages. Abundant NPFFir cells and fibers were demonstrated in the spinal cord. The sequence of appearance observed in Xenopus shares many developmental features with mammals although notable differences were observed in the telencephalon and hypothalamus. In general, NPFF immunoreactivity developed earlier in amphibians than in mammals.
Collapse
Affiliation(s)
- Jesús M López
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
28
|
Bachy I, Rétaux S. GABAergic specification in the basal forebrain is controlled by the LIM-hd factor Lhx7. Dev Biol 2006; 291:218-26. [PMID: 16438949 DOI: 10.1016/j.ydbio.2005.10.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2005] [Revised: 10/05/2005] [Accepted: 10/18/2005] [Indexed: 11/18/2022]
Abstract
We present evidence for a temporal control of GABAergic neurotransmitter specification in the basal forebrain orchestrated by the LIM-homeodomain factor Lhx7. In Xenopus, using in vivo overexpression experiments, we show that x-Lhx7 and x-Nkx2.1 inhibit GABAergic specification in the Dlx-expressing areas of the forebrain (subpallium and diencephalon). In addition, x-Lhx7 almost totally represses GABAergic differentiation at early but not late embryonic stages in subpallial mouse primary neurons in culture, indicating that x-Lhx7 is not able to withdraw the GABAergic phenotype once it is acquired. Moreover, anatomical data show striking correlations between x-Lhx7 expression and the GABAergic/cholinergic phenotypes. These functional and anatomical observations suggest a sequential role for x-Lhx7 in neurotransmitter specification. Thus, x-Lhx7 would first prevent a pool of cells to become GABAergic early in development and then promote cholinergic differentiation later on in this pool. We propose two distinct modulatory roles for a single LIM-hd factor, depending on the developmental time window.
Collapse
Affiliation(s)
- Isabelle Bachy
- UPR 2197 Développement, Evolution, Plasticité du Système Nerveux, Institut de Neurobiologie Alfred FESSARD, C.N.R.S., Avenue de la Terrasse, 91198 GIF-sur-YVETTE Cedex, France
| | | |
Collapse
|
29
|
Arenzana FJ, Clemente D, Sánchez-González R, Porteros A, Aijón J, Arévalo R. Development of the cholinergic system in the brain and retina of the zebrafish. Brain Res Bull 2005; 66:421-5. [PMID: 16144624 DOI: 10.1016/j.brainresbull.2005.03.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Indexed: 10/25/2022]
Abstract
We have analyzed the distribution pattern of choline acetyltransferase (ChAT) in the zebrafish brain and retina during ontogeny. ChAT-immunoreactive (ChAT-ir) neurons are observed in the prosencephalon from 60 h postfertilization (hpf) onwards, exclusively in the preoptic area (basal plate of p6) derived from the secondary prosencephalon. In the mesencephalon, ChAT-ir cells are observed in both the optic tectum and the tegmentum. Stained cells in the tegmentum are observed from 60 hpf onwards, while in the optic tectum they appear after hatching. In the rhombencephalon, ChAT-ir cells are first observed in the isthmic region (rh1) and in the medulla oblongata (rh5-rh7) at the end of embryonic life. The rhombencephalic cholinergic cell groups develop in a gradual caudorostral sequence. Motoneurons of the spinal cord are ChAT-ir from 48 hpf onwards. The retina displays ChAT-ir neuropil in both the inner and outer plexiform layers from embryonic life, whereas stained amacrine cells are only observed after hatching. The staining in the outer plexiform layer gradually decreases during juvenile development. The optic nerve axons show a transient expression of ChAT at the end of embryonic development. The early presence of ChAT immunolabeling suggests an important neuromodulator role for acetylcholine in the first developmental stages.
Collapse
Affiliation(s)
- Francisco Javier Arenzana
- Departamento de Biología Celular y Patología, Universidad de Salamanca, Facultad de Medicina, Campus Miguel de Unamuno, Spain
| | | | | | | | | | | |
Collapse
|
30
|
Moreno N, Bachy I, Rétaux S, González A. LIM-homeodomain genes as territory markers in the brainstem of adult and developing Xenopus laevis. J Comp Neurol 2005; 485:240-54. [PMID: 15791640 DOI: 10.1002/cne.20498] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We investigated expression patterns of the LIM-homeodomain (LIM-hd) genes x-Lhx1, x-Lhx2, x-Lhx5, and x-Lhx9 in the brainstem of Xenopus laevis during larval development and in the adult. The two groups of paralogous genes, x-Lhx1/x-Lhx5 and x-Lhx2/x-Lhx9, showed fundamentally different expression patterns, being expressed in ventral versus dorsal territories of the midbrain and hindbrain, respectively. Indeed, prominent expression of x-Lhx1/5 was found in the mesencephalic tegmentum and the hindbrain reticular formation, whereas conspicuous x-Lhx2/9 expression was observed in the torus semicircularis and isthmic nucleus. A few shared expression domains for the two pairs of paralogs included the optic tectum and the anterodorsal and pedunculopontine nuclei. In each structure, expression of the two paralogs was almost identical, indicating that the regulation of their expression in this part of the brain has evolved slightly since gene duplication occurred. Notable exceptions included the expression of x-Lhx1 but not x-Lhx5 in the Purkinje cells and the expression of x-Lhx9 but not x-Lhx2 in the lateral line nucleus. The analysis of LIM-hd expression patterns throughout development allowed the origin of given structures in early embryos to be traced back. x-Lhx1 and x-Lhx5 were relevant to locate the cerebellar anlage and to follow morphogenesis of the cerebellar plate and cerebellar nuclei. They also highlighted the rhombomeric organization of the hindbrain. On the other hand, x-Lhx2 and x-Lhx9 showed a dynamic spatiotemporal pattern relative to tectal development and layering, and x-Lhx9 was useful to trace back the origin of the isthmus in early development.
Collapse
Affiliation(s)
- Nerea Moreno
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
31
|
Sánchez-Camacho C, López JM, González A. Basal forebrain cholinergic system of the anuran amphibianRana perezi: Evidence for a shared organization pattern with amniotes. J Comp Neurol 2005; 494:961-75. [PMID: 16385484 DOI: 10.1002/cne.20833] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The organization of the basal forebrain cholinergic system (BFCS) in the frog was studied by means of choline acetyltransferase (ChAT) immunohistochemistry. The BFCS was observed as a conspicuous cholinergic cell population extending through the diagonal band, medial septal nucleus, bed nucleus of the stria terminalis, and pallidal regions. Abundant fiber labeling was also found around the labeled cell bodies. The combination of retrograde tract tracing with dextran amines and ChAT immunohistochemistry revealed intraseptal and intra-BFCS cholinergic connections. In addition, an extratelencephalic cholinergic input from the laterodorsal tegemental nucleus was demonstrated. The possible influence of monoaminergic inputs on the BFCS neurons was examined by means of tyrosine hydroxylase and serotonin immunohistochemistry combined with ChAT immunolabeling. Our results showed that catecholaminergic fibers overlapped the BFCS, with the exception of the medial septal nucleus. Serotoninergic innervation was widespread, but less abundant in the caudal extent of the BFCS. Taken together, our results on the localization of the cholinergic neurons in the basal forebrain and their relationship with cholinergic, catecholaminergic, and serotoninergic afferents have shown numerous common features with amniotes. In particular, anurans and mammals (for which most data is available) share a strikingly comparable organization pattern of the BFCS.
Collapse
Affiliation(s)
- Cristina Sánchez-Camacho
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense, 28040 Madrid, Spain
| | | | | |
Collapse
|