1
|
Morelli L, Serra L, Ricciardiello F, Gligora I, Donadio V, Caprini M, Liguori R, Giannoccaro MP. The role of antibodies in small fiber neuropathy: a review of currently available evidence. Rev Neurosci 2024; 35:877-893. [PMID: 38865989 DOI: 10.1515/revneuro-2024-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/26/2024] [Indexed: 06/14/2024]
Abstract
Small fiber neuropathy (SFN) is a peripheral nerve condition affecting thin myelinated Aδ and unmyelinated C-fibers, characterized by severe neuropathic pain and other sensory and autonomic symptoms. A variety of medical disorders can cause SFN; however, more than 50% of cases are idiopathic (iSFN). Some investigations suggest an autoimmune etiology, backed by evidence of the efficacy of IVIG and plasma exchange. Several studies suggest that autoantibodies directed against nervous system antigens may play a role in the development of neuropathic pain. For instance, patients with CASPR2 and LGI1 antibodies often complain of pain, and in vitro and in vivo studies support their pathogenicity. Other antibodies have been associated with SFN, including those against TS-HDS, FGFR3, and Plexin-D1, and new potential targets have been proposed. Finally, a few studies reported the onset of SFN after COVID-19 infection and vaccination, investigating the presence of potential antibody targets. Despite these overall findings, the pathogenic role has been demonstrated only for some autoantibodies, and the association with specific clinical phenotypes or response to immunotherapy remains to be clarified. The purpose of this review is to summarise known autoantibody targets involved in neuropathic pain, putative attractive autoantibody targets in iSFN patients, their potential as biomarkers of response to immunotherapy and their role in the development of iSFN.
Collapse
Affiliation(s)
- Luana Morelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura, 3 - 40139, Bologna, Italy
| | - Lucrezia Serra
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura, 3 - 40139, Bologna, Italy
| | - Fortuna Ricciardiello
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura, 3 - 40139, Bologna, Italy
| | - Ilaria Gligora
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura, 3 - 40139, Bologna, Italy
| | - Vincenzo Donadio
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura, 3 - 40139, Bologna, Italy
| | - Marco Caprini
- Department of Pharmacy and Biotechnology (FaBiT), Laboratory of Human and General Physiology, University of Bologna, Via San Donato, 19/2 - 40126, Bologna, Italy
| | - Rocco Liguori
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura, 3 - 40139, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Via Altura, 3 - 40139, Bologna, Italy
| | - Maria Pia Giannoccaro
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura, 3 - 40139, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Via Altura, 3 - 40139, Bologna, Italy
| |
Collapse
|
2
|
Hasegawa T, Aluariachy L, Fujita R, Watanabe Y. Timing of Intracordal Trafermin Injection in Patients With Vocal Fold Paralysis: Recommendations for a New Treatment Time Course. J Voice 2024:S0892-1997(24)00407-7. [PMID: 39638665 DOI: 10.1016/j.jvoice.2024.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024]
Abstract
OBJECTIVE To identify factors correlated with the effect of intracordal trafermin injection. STUDY DESIGN Retrospective cohort study. METHODS Herein, 177 patients who received an intracordal trafermin injection at the Tokyo Voice Center for vocal fold paralysis were included. Medical records of patients were retrospectively reviewed. Information regarding age, sex, date of trafermin injection, date of vocal fold paralysis onset, and voice data indices [maximum phonation time (MPT), pitch range (PR), mean flow rate (MFR), and Voice Handicap Index (VHI)] was extracted. The primary endpoint was the rate of improvement in the VHI, defined as the difference in the VHI values before and after the injection. RESULTS A total of 80 patients (49 men and 31 women; mean age, 61.6 years) were included. No correlations existed between the MPT (r = 0.05, P = 0.64), PR (r = 0.03, P = 0.77), or MFR (r = -0.09, P = 0.42) before injection and the rate of improvement in the VHI. Analyses of 74 cases with an interval of <1000 days between disease onset and injection revealed no correlation between the number of days from the onset to injection and the rate of improvement in the VHI. In 17 cases with an interval of <90 days, a moderate negative correlation existed between these parameters (r = -0.59, P < 0.01). In a univariate linear regression analysis, within 90 days, a 1-week delay in trafermin injection resulted in a 4.87 decrease in the VHI. CONCLUSIONS Intracordal trafermin injection may be an effective therapeutic strategy for severe vocal fold paralysis, with a particularly high efficacy when performed early after paralysis onset. In patients undergoing aortic surgery, intracordal trafermin injection post surgery and before extubation may prevent or reduce postoperative voice disorders caused by vocal fold paralysis due to recurrent nerve palsy and prevent postoperative pulmonary complications.
Collapse
Affiliation(s)
- Tomohiro Hasegawa
- Tokyo Voice Center, International University of Health and Welfare, Tokyo, Japan; School of Medicine, International University of Health and Welfare, Narita, Japan.
| | - Larbi Aluariachy
- Innovation and Research Support Center, International University of Health and Welfare, Tokyo, Japan
| | - Retsu Fujita
- Innovation and Research Support Center, International University of Health and Welfare, Tokyo, Japan
| | - Yusuke Watanabe
- Tokyo Voice Center, International University of Health and Welfare, Tokyo, Japan; School of Medicine, International University of Health and Welfare, Narita, Japan
| |
Collapse
|
3
|
Wiens KR, Wasti N, Ulloa OO, Klegeris A. Diversity of Microglia-Derived Molecules with Neurotrophic Properties That Support Neurons in the Central Nervous System and Other Tissues. Molecules 2024; 29:5525. [PMID: 39683685 DOI: 10.3390/molecules29235525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Microglia, the brain immune cells, support neurons by producing several established neurotrophic molecules including glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF). Modern analytical techniques have identified numerous phenotypic states of microglia, each associated with the secretion of a diverse set of substances, which likely include not only canonical neurotrophic factors but also other less-studied molecules that can interact with neurons and provide trophic support. In this review, we consider the following eight such candidate cytokines: oncostatin M (OSM), leukemia inhibitory factor (LIF), activin A, colony-stimulating factor (CSF)-1, interleukin (IL)-34, growth/differentiation factor (GDF)-15, fibroblast growth factor (FGF)-2, and insulin-like growth factor (IGF)-2. The available literature provides sufficient evidence demonstrating murine cells produce these cytokines and that they exhibit neurotrophic activity in at least one neuronal model. Several distinct types of neurotrophic activity are identified that only partially overlap among the cytokines considered, reflecting either their distinct intrinsic properties or lack of comprehensive studies covering the full spectrum of neurotrophic effects. The scarcity of human-specific studies is another significant knowledge gap revealed by this review. Further studies on these potential microglia-derived neurotrophic factors are warranted since they may be used as targeted treatments for diverse neurological disorders.
Collapse
Affiliation(s)
- Kennedy R Wiens
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada
| | - Naved Wasti
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada
| | - Omar Orlando Ulloa
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada
| | - Andis Klegeris
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|
4
|
Tomé D, Dias MS, Correia J, Almeida RD. Fibroblast growth factor signaling in axons: from development to disease. Cell Commun Signal 2023; 21:290. [PMID: 37845690 PMCID: PMC10577959 DOI: 10.1186/s12964-023-01284-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/18/2023] [Indexed: 10/18/2023] Open
Abstract
The fibroblast growth factor (FGF) family regulates various and important aspects of nervous system development, ranging from the well-established roles in neuronal patterning to more recent and exciting functions in axonal growth and synaptogenesis. In addition, FGFs play a critical role in axonal regeneration, particularly after spinal cord injury, confirming their versatile nature in the nervous system. Due to their widespread involvement in neural development, the FGF system also underlies several human neurological disorders. While particular attention has been given to FGFs in a whole-cell context, their effects at the axonal level are in most cases undervalued. Here we discuss the endeavor of the FGF system in axons, we delve into this neuronal subcompartment to provide an original view of this multipurpose family of growth factors in nervous system (dys)function. Video Abstract.
Collapse
Affiliation(s)
- Diogo Tomé
- Institute of Biomedicine, Department of Medical Sciences - iBiMED, University of Aveiro, Aveiro, Portugal
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Marta S Dias
- Institute of Biomedicine, Department of Medical Sciences - iBiMED, University of Aveiro, Aveiro, Portugal
| | - Joana Correia
- Institute of Biomedicine, Department of Medical Sciences - iBiMED, University of Aveiro, Aveiro, Portugal
| | - Ramiro D Almeida
- Institute of Biomedicine, Department of Medical Sciences - iBiMED, University of Aveiro, Aveiro, Portugal.
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
5
|
Goto T, Ueha R, Sato T, Yamasoba T. Effects of early local administration of high-dose bFGF on a recurrent laryngeal nerve injury model. J Otolaryngol Head Neck Surg 2023; 52:47. [PMID: 37488610 PMCID: PMC10367270 DOI: 10.1186/s40463-023-00647-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/29/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Research on regenerative medicine using basic fibroblast growth factor (bFGF) has recently advanced in the field of laryngology. We previously reported that local administration of bFGF 1 month after recurrent laryngeal nerve (RLN) paralysis compensated for atrophy of the thyroarytenoid muscle. The objective of this study was to elucidate the effects of early bFGF administration on the thyroarytenoid muscle after RLN transection and to investigate the underlying mechanisms. METHODS A rat model of RLN paralysis was established in this study. One day after RLN transection, low- (200 ng) or high-dose (2000 ng) bFGF or saline (control) was administered to the thyroarytenoid muscle. The larynges were excised for histological and immunohistochemical examinations at 1, 7, 14, 28, and 56 days after administration. RESULTS The cross-sectional thyroarytenoid muscle area was significantly larger in the high-dose group than in the saline and low-dose groups on days 28 and 56. Immunohistochemistry indicated that bFGF significantly increased the number of satellite cells in the thyroarytenoid muscle up to day 14 and that of neuromuscular junctions on days 28 and 56. CONCLUSIONS A single, early local administration of high-dose bFGF prevented atrophic changes in the thyroarytenoid muscles by activating satellite cell proliferation and reforming neuromuscular junctions. As increased neuromuscular junctions are expected to maintain myofiber volume, bFGF administration may prevent thyroarytenoid muscle atrophy in the mid to long term.
Collapse
Affiliation(s)
- Takao Goto
- Department of Otorhinolaryngology and Head and Neck Surgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan.
| | - Rumi Ueha
- Department of Otorhinolaryngology and Head and Neck Surgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
- The University of Tokyo Hospital Swallowing Center, Tokyo, Japan
| | - Taku Sato
- Department of Otorhinolaryngology and Head and Neck Surgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Tatsuya Yamasoba
- Department of Otorhinolaryngology and Head and Neck Surgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
- Tokyo Teishin Hospital, Tokyo, Japan
| |
Collapse
|
6
|
Hasegawa T, Fujita R, Komazawa D, Konomi U, Hirosaki M, Watanabe Y. Evaluation of Safety After Intracordal Basic Fibroblast Growth Factor Injection. J Voice 2023:S0892-1997(23)00100-5. [PMID: 37028950 DOI: 10.1016/j.jvoice.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 04/09/2023]
Abstract
OBJECTIVES Although there are many reports of voice improvement with intracordal trafermin (a basic fibroblast growth factor) injections under local anesthesia, few papers have documented the safety of trafermin. Therefore, we aimed to investigate whether trafermin is safer than control drugs (triamcinolone acetonide) early after intracordal injection under local anesthesia. METHODS We conducted a retrospective review from the medical records of patients who underwent intracordal injection with trafermin and triamcinolone acetonide under local anesthesia at our institution. Early postinjective complications were defined as changes in vital signs and chief complaints early after intracordal injection. RESULTS A total of 699 and 297 patients underwent intracordal injection under local anesthesia with trafermin and triamcinolone acetonide, respectively. Of these, 227 and 130 patients had early postinjective complications with trafermin and triamcinolone acetonide, retrospectively. The most common complications occurring with trafermin was increased blood pressure in 39 cases (5.58%): 17 cases (2.43%) of blood pressure increase of ≥20 mm Hg. Other complications included pharyngeal discomfort in 37 (5.29%), lightheadedness in 33 (4.72%), and phlegm discharge in 29 (4.15%). Triamcinolone acetonide caused pharyngeal discomfort in 28 patients (9.43%), phlegm discharge in 17 patients (5.72%), lightheadedness in 12 patients (4.04%), sore throat in 11 patients (3.70%), increased blood pressure in 10 patients (3.37%): 7 cases (2.36%) of blood pressure increase of ≥20 mm Hg, and dizziness in seven patients (2.36%). Statistical analysis of the complications between trafermin and triamcinolone acetonide showed no significant differences. CONCLUSIONS The proportion of early postinjective complications from intracordal injection of trafermin is no significant difference in that of triamcinolone acetonide. The results suggest that the early postinjective complications are not due to the drug action of trafermin, but rather to complications from the intracordal injection procedures. Intracordal trafermin injection may be safe in the short term.
Collapse
Affiliation(s)
- Tomohiro Hasegawa
- Tokyo Voice Center, International University of Health and Welfare, Minato, Tokyo, Japan
| | - Retsu Fujita
- Innovation & Research Support Center, International University of Health and Welfare, Minato, Tokyo, Japan
| | | | - Ujimoto Konomi
- Voice and Dizziness Clinic Futakotamagawa Otolaryngology, Setagaya-ku, Tokyo, Japan
| | - Mayu Hirosaki
- Tokyo Voice Center, International University of Health and Welfare, Minato, Tokyo, Japan
| | - Yusuke Watanabe
- Tokyo Voice Center, International University of Health and Welfare, Minato, Tokyo, Japan.
| |
Collapse
|
7
|
Hasegawa T, Komazawa D, Konomi U, Hirosaki M, Watanabe Y. Changes in serum basic fibroblast growth factor concentration following intracordal injection. Laryngoscope Investig Otolaryngol 2023; 8:478-487. [PMID: 37090871 PMCID: PMC10116976 DOI: 10.1002/lio2.1022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/15/2022] [Accepted: 02/04/2023] [Indexed: 02/23/2023] Open
Abstract
Objective Although many studies have reported improvements in voice outcomes with intracordal trafermin injection, there is a lack of data documenting its changes in serum basic fibroblast growth factor (bFGF) blood concentration. This study examined whether serum bFGF concentrations change after intracordal trafermin injection. Methods This retrospective study was conducted at Tokyo Voice Center. We investigated serum bFGF concentrations before and after injection in 40 patients who underwent intracordal trafermin injection. There were 26 males and 14 females, with an age ranging from 13 to 88 years (average 53.25 years). They were diagnosed with paralysis (15 patients), atrophy (15 patients), sulcus (8 patients), and others (2 patients: scar and functional), presenting with severe hoarseness that interfered with daily life. Results The mean pre- and post-injective serum bFGF concentration of the 40 patients was 6.689 and 4.658 pg/mL, respectively. The difference in mean serum bFGF concentration between pre- and post-injective was -2.031 pg/mL. The Pearson correlation coefficient was calculated to evaluate the correlation between dosage of trafermin and post-injective serum bFGF concentration, and a moderate correlation was found at r = 0.52. Generalized linear model regression analysis was performed for the purpose of adjusting for confounding among variables. The only variable that showed a statistically predominant association with post-injective serum bFGF concentrations was the dosage of trafermin, with an estimated regression coefficient of 0.048. Conclusion In this study, the dosage of trafermin we injected and post-injective serum bFGF concentrations were dose-dependent but the amount of changes in the serum bFGF concentration was negligible within the physiological range. Therefore, as with subcutaneous and wound administration, intracordal trafermin injections may be safe. Level of Evidence Level IV.
Collapse
Affiliation(s)
- Tomohiro Hasegawa
- Tokyo Voice CenterInternational University of Health and WelfareTokyoJapan
| | | | - Ujimoto Konomi
- Voice and Dizziness Clinic Futakotamagawa OtolaryngologyTokyoJapan
| | - Mayu Hirosaki
- Tokyo Voice CenterInternational University of Health and WelfareTokyoJapan
| | - Yuusuke Watanabe
- Tokyo Voice CenterInternational University of Health and WelfareTokyoJapan
| |
Collapse
|
8
|
Zhang Q, Chen Z, Zhang K, Zhu J, Jin T. FGF/FGFR system in the central nervous system demyelinating disease: Recent progress and implications for multiple sclerosis. CNS Neurosci Ther 2023; 29:1497-1511. [PMID: 36924298 PMCID: PMC10173727 DOI: 10.1111/cns.14176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND With millions of victims worldwide, multiple sclerosis is the second most common cause of disability among young adults. Although formidable advancements have been made in understanding the disease, the neurodegeneration associated with multiple sclerosis is only partially counteracted by current treatments, and effective therapy for progressive multiple sclerosis remains an unmet need. Therefore, new approaches are required to delay demyelination and the resulting disability and to restore neural function by promoting remyelination and neuronal repair. AIMS The article reviews the latest literature in this field. MATERIALS AND METHODS The fibroblast growth factor (FGF) signaling pathway is a promising target in progressive multiple sclerosis. DISCUSSION FGF signal transduction contributes to establishing the oligodendrocyte lineage, neural stem cell proliferation and differentiation, and myelination of the central nervous system. Furthermore, FGF signaling is implicated in the control of neuroinflammation. In recent years, interventions targeting FGF, and its receptor (FGFR) have been shown to ameliorate autoimmune encephalomyelitis symptoms in multiple sclerosis animal models moderately. CONCLUSION Here, we summarize the recent findings and investigate the role of FGF/FGFR signaling in the onset and progression, discuss the potential therapeutic advances, and offer fresh insights into managing multiple sclerosis.
Collapse
Affiliation(s)
- Qingxiang Zhang
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Zhiguo Chen
- Cell Therapy Center, Beijing Institute of Geriatrics, National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Kaili Zhang
- Stomatology College of Inner Mongolia Medical University, Hohhot, China
| | - Jie Zhu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China.,Department of Neurobiology, Care Sciences & Society, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Tao Jin
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Jessen KR, Mirsky R. The Role of c-Jun and Autocrine Signaling Loops in the Control of Repair Schwann Cells and Regeneration. Front Cell Neurosci 2022; 15:820216. [PMID: 35221918 PMCID: PMC8863656 DOI: 10.3389/fncel.2021.820216] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/30/2021] [Indexed: 12/12/2022] Open
Abstract
After nerve injury, both Schwann cells and neurons switch to pro-regenerative states. For Schwann cells, this involves reprogramming of myelin and Remak cells to repair Schwann cells that provide the signals and mechanisms needed for the survival of injured neurons, myelin clearance, axonal regeneration and target reinnervation. Because functional repair cells are essential for regeneration, it is unfortunate that their phenotype is not robust. Repair cell activation falters as animals get older and the repair phenotype fades during chronic denervation. These malfunctions are important reasons for the poor outcomes after nerve damage in humans. This review will discuss injury-induced Schwann cell reprogramming and the concept of the repair Schwann cell, and consider the molecular control of these cells with emphasis on c-Jun. This transcription factor is required for the generation of functional repair cells, and failure of c-Jun expression is implicated in repair cell failures in older animals and during chronic denervation. Elevating c-Jun expression in repair cells promotes regeneration, showing in principle that targeting repair cells is an effective way of improving nerve repair. In this context, we will outline the emerging evidence that repair cells are sustained by autocrine signaling loops, attractive targets for interventions aimed at promoting regeneration.
Collapse
Affiliation(s)
- Kristjan R. Jessen
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | | |
Collapse
|
10
|
Tholance Y, Antoine JC, Mohr L, Jung M, Reynaud-Federspiel E, Ferraud K, Camdessanché JP, Moritz CP. Anti-FGFR3 antibody epitopes are functional sites and correlate with the neuropathy pattern. J Neuroimmunol 2021; 361:577757. [PMID: 34768040 DOI: 10.1016/j.jneuroim.2021.577757] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/28/2021] [Accepted: 10/21/2021] [Indexed: 11/29/2022]
Abstract
Antibodies against FGFR3 define a subgroup of sensory neuropathy (SN). The aim of this study was to identify the epitope(s) of anti-FGFR3 autoantibodies and potential epitope-dependent clinical subtypes. Using SPOT methodology, five specific candidate epitopes, three in the juxtamembrane domain (JMD) and two in the tyrosine kinase domain (TKD), were screened with 68 anti-FGFR3-positive patients and 35 healthy controls. The identified epitopes cover 6/15 functionally relevant sites of the protein. Four patients reacted with the JMD and 11 with the TKD, partly even in a phosphorylation-state dependent manner. The epitope could not be identified in the others. Patients with antibodies recognizing TKD exhibited a more severe clinical and electrophysiological impairment than others.
Collapse
Affiliation(s)
- Yannick Tholance
- Synaptopathies and Autoantibodies, Institut NeuroMyoGene INSERM U1217/CNRS UMR 5310, University of Lyon, University Jean Monnet, 10 rue de Marandière, 42270 Saint-Priest-en-Jarez, France; Department of Biochemistry, University hospital of Saint-Etienne, Avenue Albert Raimond, 42270 Saint-Priest-en-Jarez, France.
| | - Jean-Christophe Antoine
- Synaptopathies and Autoantibodies, Institut NeuroMyoGene INSERM U1217/CNRS UMR 5310, University of Lyon, University Jean Monnet, 10 rue de Marandière, 42270 Saint-Priest-en-Jarez, France; Department of Neurology, University hospital of Saint-Etienne, Avenue Albert Raimond, 42270 Saint-Priest-en-Jarez, France.
| | - Lauriane Mohr
- Synaptopathies and Autoantibodies, Institut NeuroMyoGene INSERM U1217/CNRS UMR 5310, University of Lyon, University Jean Monnet, 10 rue de Marandière, 42270 Saint-Priest-en-Jarez, France
| | - Martin Jung
- Medical Biochemistry and Molecular Biology, Saarland University, UKS, 66421 Homburg, Germany.
| | - Evelyne Reynaud-Federspiel
- Synaptopathies and Autoantibodies, Institut NeuroMyoGene INSERM U1217/CNRS UMR 5310, University of Lyon, University Jean Monnet, 10 rue de Marandière, 42270 Saint-Priest-en-Jarez, France
| | - Karine Ferraud
- Department of Neurology, University hospital of Saint-Etienne, Avenue Albert Raimond, 42270 Saint-Priest-en-Jarez, France.
| | - Jean-Philippe Camdessanché
- Synaptopathies and Autoantibodies, Institut NeuroMyoGene INSERM U1217/CNRS UMR 5310, University of Lyon, University Jean Monnet, 10 rue de Marandière, 42270 Saint-Priest-en-Jarez, France; Department of Neurology, University hospital of Saint-Etienne, Avenue Albert Raimond, 42270 Saint-Priest-en-Jarez, France.
| | - Christian P Moritz
- Synaptopathies and Autoantibodies, Institut NeuroMyoGene INSERM U1217/CNRS UMR 5310, University of Lyon, University Jean Monnet, 10 rue de Marandière, 42270 Saint-Priest-en-Jarez, France; Department of Neurology, University hospital of Saint-Etienne, Avenue Albert Raimond, 42270 Saint-Priest-en-Jarez, France.
| |
Collapse
|
11
|
Current Advances in Comprehending Dynamics of Regenerating Axons and Axon-Glia Interactions after Peripheral Nerve Injury in Zebrafish. Int J Mol Sci 2021; 22:ijms22052484. [PMID: 33801205 PMCID: PMC7957880 DOI: 10.3390/ijms22052484] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/11/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Following an injury, axons of both the central nervous system (CNS) and peripheral nervous system (PNS) degenerate through a coordinated and genetically conserved mechanism known as Wallerian degeneration (WD). Unlike central axons, severed peripheral axons have a higher capacity to regenerate and reinnervate their original targets, mainly because of the favorable environment that they inhabit and the presence of different cell types. Even though many aspects of regeneration in peripheral nerves have been studied, there is still a lack of understanding regarding the dynamics of axonal degeneration and regeneration, mostly due to the inherent limitations of most animal models. In this scenario, the use of zebrafish (Danio rerio) larvae combined with time-lapse microscopy currently offers a unique experimental opportunity to monitor the dynamics of the regenerative process in the PNS in vivo. This review summarizes the current knowledge and advances made in understanding the dynamics of the regenerative process of PNS axons. By using different tools available in zebrafish such as electroablation of the posterior lateral line nerve (pLLn), and laser-mediated transection of motor and sensory axons followed by time-lapse microscopy, researchers are beginning to unravel the complexity of the spatiotemporal interactions among different cell types during the regenerative process. Thus, understanding the cellular and molecular mechanisms underlying the degeneration and regeneration of peripheral nerves will open new avenues in the treatment of acute nerve trauma or chronic conditions such as neurodegenerative diseases.
Collapse
|
12
|
Balakrishnan A, Belfiore L, Chu TH, Fleming T, Midha R, Biernaskie J, Schuurmans C. Insights Into the Role and Potential of Schwann Cells for Peripheral Nerve Repair From Studies of Development and Injury. Front Mol Neurosci 2021; 13:608442. [PMID: 33568974 PMCID: PMC7868393 DOI: 10.3389/fnmol.2020.608442] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
Peripheral nerve injuries arising from trauma or disease can lead to sensory and motor deficits and neuropathic pain. Despite the purported ability of the peripheral nerve to self-repair, lifelong disability is common. New molecular and cellular insights have begun to reveal why the peripheral nerve has limited repair capacity. The peripheral nerve is primarily comprised of axons and Schwann cells, the supporting glial cells that produce myelin to facilitate the rapid conduction of electrical impulses. Schwann cells are required for successful nerve regeneration; they partially “de-differentiate” in response to injury, re-initiating the expression of developmental genes that support nerve repair. However, Schwann cell dysfunction, which occurs in chronic nerve injury, disease, and aging, limits their capacity to support endogenous repair, worsening patient outcomes. Cell replacement-based therapeutic approaches using exogenous Schwann cells could be curative, but not all Schwann cells have a “repair” phenotype, defined as the ability to promote axonal growth, maintain a proliferative phenotype, and remyelinate axons. Two cell replacement strategies are being championed for peripheral nerve repair: prospective isolation of “repair” Schwann cells for autologous cell transplants, which is hampered by supply challenges, and directed differentiation of pluripotent stem cells or lineage conversion of accessible somatic cells to induced Schwann cells, with the potential of “unlimited” supply. All approaches require a solid understanding of the molecular mechanisms guiding Schwann cell development and the repair phenotype, which we review herein. Together these studies provide essential context for current efforts to design glial cell-based therapies for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Anjali Balakrishnan
- Biological Sciences Platform, Sunnybrook Research Institute (SRI), Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Lauren Belfiore
- Biological Sciences Platform, Sunnybrook Research Institute (SRI), Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Tak-Ho Chu
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Taylor Fleming
- Biological Sciences Platform, Sunnybrook Research Institute (SRI), Toronto, ON, Canada
| | - Rajiv Midha
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jeff Biernaskie
- Department of Comparative Biology and Experimental Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Carol Schuurmans
- Biological Sciences Platform, Sunnybrook Research Institute (SRI), Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
13
|
Zhang M, Jin F, Zhu Y, Qi F. Peripheral FGFR1 Regulates Myofascial Pain in Rats via the PI3K/AKT Pathway. Neuroscience 2020; 436:1-10. [PMID: 32278061 DOI: 10.1016/j.neuroscience.2020.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/26/2022]
Abstract
Myofascial pain syndrome (MPS) is a type of skeletal pain identified by myofascial trigger points (MTrPs). The formation of MTrPs is linked to muscle damage. The fibroblast growth factor receptor (FGFR1) has been found to cause pain sensitivity while repairing tissue damage. The aim of the current study was to explore the mechanism of FGFR1 in MTrPs. We used a RayBio human phosphorylation array kit to measure p-FGFR1 levels in human control subjects and patients with MTrPs. P-FGFR1 was upregulated in the patients with MTrPs. Then a rat model of MPS was established by a blunt strike on the left gastrocnemius muscles (GM) and eccentric-exercise for 8 weeks with 4 weeks of recovery. After establishing the MPS model, the morphology of the GM changed, and the differently augmented sizes of round fibers (contracture knots) in the transverse section and fusiform shapes in the longitudinal section were clearly seen in the rats with myofascial pain. The expression of p-FGFR1 was upregulated on the peripheral nerves and dorsal root ganglion neurons in the MTrPs group. The spinal Fos protein expression was increased in the MTrPs group. Additionally, the mechanical pain threshold was reduced, and the expression of FGF2, p-FGFR1, PI3K-p110γ, and p-AKT increased in the MTrPs group. PD173074 increased the mechanical pain threshold of the MTrPs group, and inhibited the expression of p-FGFR1, PI3K-p110γ, and p-AKT. Moreover, LY294002 increased the mechanical pain threshold of the MTrPs group. These findings suggest that FGFR1 may regulate myofascial pain in rats through the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Mingyang Zhang
- Department of Anesthesiology and Pain Clinic, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Ji'nan, Shandong 250012, China; Department of Anesthesiology, Tengzhou Central People's Hospital, 181 Xingtan Road, Tengzhou, Shandong 277500, China
| | - Feihong Jin
- Department of Anesthesiology and Pain Clinic, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Ji'nan, Shandong 250012, China
| | - Yuchang Zhu
- Department of Anesthesiology, Tai'an City Central Hospital, 29 Longtan Road, Tai'an, Shandong 271000, China
| | - Feng Qi
- Department of Anesthesiology and Pain Clinic, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Ji'nan, Shandong 250012, China.
| |
Collapse
|
14
|
Kovvuru S, Cardenas YC, Huttner A, Nowak RJ, Roy B. Clinical characteristics of fibroblast growth factor receptor 3 antibody-related polyneuropathy: a retrospective study. Eur J Neurol 2020; 27:1310-1318. [PMID: 32068339 DOI: 10.1111/ene.14180] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 02/14/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND PURPOSE Autoantibodies are increasingly being used as a diagnostic biomarker of chronic inflammatory neuropathies. However, their role and associated clinical syndrome are not well defined. METHODS This retrospective chart review evaluated the clinical presentation, diagnostic workup and therapeutic responses in fibroblast growth factor receptor 3 (FGFR3) antibody-associated neuropathy. RESULTS A total of 27 patients [14 men, aged 29-87 (65 ± 14) years] with positive FGFR3 antibody were included. Distal lower-extremity paresthesia (66%), unsteady gait (26%) and foot drop (11%) were common presenting symptoms. Symptom onset was acute in four (15%) cases. Distal lower-extremity weakness (mild in eight and severe in three patients) was the most frequent motor finding. Decreased distal sensation to pinprick (59%) and loss of vibration sensation (37%) were observed. Titer of FGFR3 ranged between 3100 and 30 000 (normal < 3000) with a mean of 10 688 ± 7284. Apart from the occasional association of other neuropathy-related autoantibodies, comprehensive neuropathy workup was otherwise unrevealing. Six patients had other autoimmune disease and seven patients had a history of cancer. Electromyography reflected sensorimotor neuropathy with mixed axonal and demyelinating features in 11 cases. Pure sensory neuropathy was noted in three patients. Demyelination was found in five of six nerve biopsies. Intravenous immunoglobulin response was observed in 8/10 treated patients. CONCLUSIONS The FGFR3 antibody appears not to be restricted to sensory neuropathy only. Its role in the pathogenicity of chronic inflammatory neuropathies is not yet well established and, although there may be a role for immunotherapy, larger studies are warranted.
Collapse
Affiliation(s)
- S Kovvuru
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.,Department of Neurology, University of Arkansas, Little Rock, AR, USA
| | - Y C Cardenas
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - A Huttner
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - R J Nowak
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - B Roy
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
15
|
Tholance Y, Moritz CP, Rosier C, Ferraud K, Lassablière F, Reynaud-Federspiel E, França MC, Martinez ARM, Camdessanché JP, Antoine JC. Clinical characterisation of sensory neuropathy with anti-FGFR3 autoantibodies. J Neurol Neurosurg Psychiatry 2020; 91:49-57. [PMID: 31690697 DOI: 10.1136/jnnp-2019-321849] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/15/2019] [Accepted: 10/28/2019] [Indexed: 11/03/2022]
Abstract
OBJECTIVE Sensory neuropathies (SNs) are often classified as idiopathic even if immunological mechanisms can be suspected. Antibodies against the intracellular domain of the fibroblast growth factor receptor 3 (FGFR3) possibly identify a subgroup of SN affecting mostly the dorsal root ganglion (DRG). The aim of this study was to identify the frequency of anti-FGFR3 antibodies and the associated clinical pattern in a large cohort of patients with SN. METHODS A prospective, multicentric, European and Brazilian study included adults with pure SN. Serum anti-FGRF3 antibodies were analysed by ELISA. Detailed clinical and paraclinical data were collected for each anti-FGFR3-positive patient and as control for anti-FGFR3-negative patients from the same centres ('center-matched'). RESULTS Sixty-five patients out of 426 (15%) had anti-FGFR3 antibodies, which were the only identified autoimmune markers in 43 patients (66%). The neuropathy was non-length dependent in 89% and classified as sensory neuronopathy in 64%, non-length-dependent small fibre neuropathy in 17% and other neuropathy in 19%. Specific clinical features occurred after 5-6 years of evolution including frequent paresthesia, predominant clinical and electrophysiological involvement of the lower limbs, and a less frequent mixed large and small fibre involvement. Brazilians had a higher frequency of anti-FGFR3 antibodies than Europeans (36% vs 13%, p<0.001), and a more frequent asymmetrical distribution of symptoms (OR 169, 95% CI 3.4 to 8424). CONCLUSIONS Anti-FGFR3 antibodies occur in a subgroup of SN probably predominantly affecting the DRG. Differences between Europeans and Brazilians could suggest involvement of genetic or environmental factors.
Collapse
Affiliation(s)
- Yannick Tholance
- Laboratory of Biochemistry, CHU Saint-Etienne, Saint-Etienne, France .,Synaptopathies et autoanticorps (synatac), Institut Neuromyogène, Saint-Priest-en-Jarez, France
| | - Christian Peter Moritz
- Synaptopathies et autoanticorps (synatac), Institut Neuromyogène, Saint-Priest-en-Jarez, France
| | - Carole Rosier
- Synaptopathies et autoanticorps (synatac), Institut Neuromyogène, Saint-Priest-en-Jarez, France.,Department of Neurology, CHU Saint-Etienne, Saint-Etienne, France
| | - Karine Ferraud
- Department of Neurology, CHU Saint-Etienne, Saint-Etienne, France
| | - François Lassablière
- Synaptopathies et autoanticorps (synatac), Institut Neuromyogène, Saint-Priest-en-Jarez, France
| | | | - Marcondes C França
- Department of Neurology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Alberto R M Martinez
- Department of Neurology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Jean-Philippe Camdessanché
- Synaptopathies et autoanticorps (synatac), Institut Neuromyogène, Saint-Priest-en-Jarez, France.,Department of Neurology, CHU Saint-Etienne, Saint-Etienne, France
| | - Jean-Christophe Antoine
- Synaptopathies et autoanticorps (synatac), Institut Neuromyogène, Saint-Priest-en-Jarez, France.,Department of Neurology, CHU Saint-Etienne, Saint-Etienne, France
| | | |
Collapse
|
16
|
Hausott B, Förste A, Zach F, Mangger S, Haugsten EM, Klimaschewski L. Endocytosis and Transport of Growth Factor Receptors in Peripheral Axon Regeneration: Novel Lessons from Neurons Expressing Lysine-Deficient FGF Receptor Type 1 in vitro. Anat Rec (Hoboken) 2019; 302:1268-1275. [PMID: 30950230 PMCID: PMC6767123 DOI: 10.1002/ar.24120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/06/2018] [Accepted: 01/18/2019] [Indexed: 11/13/2022]
Abstract
In the course of peripheral nerve regeneration, axons encounter different extracellular growth factors secreted by non‐neuronal cells at the injury site and retrogradely transported after binding to neuronal membrane receptor tyrosine kinases. The present study reviews the role of receptor transport in peripheral axon outgrowth and provides novel data on trafficking of fibroblast growth factor receptor type 1 (FGFR1). Differences in receptor transport are determined by different numbers of lysine residues acting as ubiquitination sites in the intracellular receptor domain. We previously demonstrated that overexpression of mutant FGFR1‐25R (25 out of 29 intracellular lysines replaced with arginine) results in enhanced receptor recycling as compared to wild‐type FGFR1 followed by strong stimulation of elongative axon growth in vitro. Here, the effects of lysine‐deficient FGFR1 (FGFR1‐29R lacking all 29 cytoplasmic lysine residues) or of only 15 lysine mutations (FGFR1‐15R) on axon outgrowth and concomitant changes in signal pathway activation were investigated by immunocytochemistry and morphometry of cultured primary neurons. Overexpression of FGFR1‐15R in adult sensory neurons resulted in enhanced receptor recycling, which was accompanied by increased axon elongation without stimulating axon branching. By contrast, FGFR1‐29R was neither endocytosed nor axon outgrowth affected. Although overexpression of FGFR1‐15R or FGFR1‐25Ra strongly promoted elongation, we did not detect increased signal pathway activation (ERK, AKT, PLC, or STAT3) in neurons expressing mutant FGFR1 as compared with wild‐type neurons raising the possibility that other signaling pathways or signaling independent mechanisms may be involved in the axon outgrowth effects of recycled FGF receptors. Anat Rec, 302:1268–1275, 2019. © 2019 The Authors. The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.
Collapse
Affiliation(s)
- Barbara Hausott
- Department of Anatomy, Histology and Embryology, Division of Neuroanatomy, Medical University Innsbruck, Innsbruck, Austria
| | - Alexandra Förste
- Department of Anatomy, Histology and Embryology, Division of Neuroanatomy, Medical University Innsbruck, Innsbruck, Austria
| | - Fabian Zach
- Department of Anatomy, Histology and Embryology, Division of Neuroanatomy, Medical University Innsbruck, Innsbruck, Austria
| | - Stefan Mangger
- Department of Anatomy, Histology and Embryology, Division of Neuroanatomy, Medical University Innsbruck, Innsbruck, Austria
| | - Ellen Margrethe Haugsten
- Department of Tumor Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo, Norway.,Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Lars Klimaschewski
- Department of Anatomy, Histology and Embryology, Division of Neuroanatomy, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
17
|
Duraikannu A, Krishnan A, Chandrasekhar A, Zochodne DW. Beyond Trophic Factors: Exploiting the Intrinsic Regenerative Properties of Adult Neurons. Front Cell Neurosci 2019; 13:128. [PMID: 31024258 PMCID: PMC6460947 DOI: 10.3389/fncel.2019.00128] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/14/2019] [Indexed: 01/19/2023] Open
Abstract
Injuries and diseases of the peripheral nervous system (PNS) are common but frequently irreversible. It is often but mistakenly assumed that peripheral neuron regeneration is robust without a need to be improved or supported. However, axonal lesions, especially those involving proximal nerves rarely recover fully and injuries generally are complicated by slow and incomplete regeneration. Strategies to enhance the intrinsic growth properties of reluctant adult neurons offer an alternative approach to consider during regeneration. Since axons rarely regrow without an intimately partnered Schwann cell (SC), approaches to enhance SC plasticity carry along benefits to their axon partners. Direct targeting of molecules that inhibit growth cone plasticity can inform important regenerative strategies. A newer approach, a focus of our laboratory, exploits tumor suppressor molecules that normally dampen unconstrained growth. However several are also prominently expressed in stable adult neurons. During regeneration their ongoing expression “brakes” growth, whereas their inhibition and knockdown may enhance regrowth. Examples have included phosphatase and tensin homolog deleted on chromosome ten (PTEN), a tumor suppressor that inhibits PI3K/pAkt signaling, Rb1, the protein involved in retinoblastoma development, and adenomatous polyposis coli (APC), a tumor suppressor that inhibits β-Catenin transcriptional signaling and its translocation to the nucleus. The identification of several new targets to manipulate the plasticity of regenerating adult peripheral neurons is exciting. How they fit with canonical regeneration strategies and their feasibility require additional work. Newer forms of nonviral siRNA delivery may be approaches for molecular manipulation to improve regeneration.
Collapse
Affiliation(s)
- Arul Duraikannu
- Division of Neurology, Department of Medicine, and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Anand Krishnan
- Division of Neurology, Department of Medicine, and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Ambika Chandrasekhar
- Division of Neurology, Department of Medicine, and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Douglas W Zochodne
- Division of Neurology, Department of Medicine, and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
18
|
Goto T, Ueha R, Sato T, Fujimaki Y, Nito T, Yamasoba T. Single, high-dose local injection of bFGF improves thyroarytenoid muscle atrophy after paralysis. Laryngoscope 2019; 130:159-165. [PMID: 30810241 DOI: 10.1002/lary.27887] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/10/2019] [Accepted: 02/04/2019] [Indexed: 12/28/2022]
Abstract
OBJECTIVES/HYPOTHESIS Unilateral vocal fold paralysis (UVFP) induces hoarseness due to progressive atrophy of the denervated thyroarytenoid (TA) muscle. Therefore, treatments aimed at regenerating the atrophied TA muscle are required. Basic fibroblast growth factor (bFGF) is involved in muscle development and regeneration. This study aimed to elucidate the effects of bFGF injection on atrophied TA muscle. STUDY DESIGN Animal research. METHODS A recurrent laryngeal nerve-paralysis rat model was established, and low- (200 ng) or high-dose (2,000 ng) bFGF or saline (control) was injected into the TA muscle 28 days later. The larynges were excised on day 1, 3, 7, 14, and 28 after treatment. The cross-sectional area of the TA muscle in normal and paralyzed sides was compared, and the Ki67-positive (Ki67+ ) dividing cells, paired box 7-positive (Pax7+ ) satellite cells (SCs), and myogenic differentiation-positive (MyoD+ ) myoblasts were counted. RESULTS The TA muscle area of animals administered high-dose bFGF increased with time and was significantly larger than that of the saline-injected controls 28 days after treatment (P < .05). The counts of Ki67+ and Pax7+ cells were the highest on day 1, whereas the MyoD+ myoblast count was highest on day 7. These results suggest that bFGF administration into the denervated TA muscles compensated for the atrophied TA muscles by inducing proliferation of SCs and their differentiation to myoblasts. CONCLUSIONS A single injection of high-dose bFGF augmented regeneration and differentiation of the atrophied TA muscle by enhancing proliferation and differentiation of muscle SCs, suggesting its possible clinical application in humans with UVFP. LEVEL OF EVIDENCE NA Laryngoscope, 130:159-165, 2020.
Collapse
Affiliation(s)
- Takao Goto
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Rumi Ueha
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Taku Sato
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Yoko Fujimaki
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Takaharu Nito
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Tatsuya Yamasoba
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| |
Collapse
|
19
|
Ji XM, Wang SS, Cai XD, Wang XH, Liu QY, Wang P, Cheng ZC, Qian TM. Novel miRNA, miR-sc14, promotes Schwann cell proliferation and migration. Neural Regen Res 2019; 14:1651-1656. [PMID: 31089066 PMCID: PMC6557103 DOI: 10.4103/1673-5374.255996] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
MicroRNAs refer to a class of endogenous, short non-coding RNAs that mediate numerous biological functions. MicroRNAs regulate various physiological and pathological activities of peripheral nerves, including peripheral nerve repair and regeneration. Previously, using a rat sciatic nerve injury model, we identified many functionally annotated novel microRNAs, including miR-sc14. Here, we used real-time reverse transcription-polymerase chain reaction to examine miR-sc14 expression in rat sciatic nerve stumps. Our results show that miR-sc14 is noticeably altered following sciatic nerve injury, being up-regulated at 1 day and diminished at 7 days. EdU and transwell chamber assay results showed that miR-sc14 mimic promoted proliferation and migration of Schwann cells, while miR-sc14 inhibitor suppressed their proliferation and migration. Additionally, bioinformatic analysis examined potential target genes of miR-sc14, and found that fibroblast growth factor receptor 2 might be a potential target gene. Specifically, our results show changes of miR-sc14 expression in the sciatic nerve of rats at different time points after nerve injury. Appropriately, up-regulation of miR-sc14 promoted proliferation and migration of Schwann cells. Consequently, miR-sc14 may be an intervention target to promote repair of peripheral nerve injury. The study was approved by the Jiangsu Provincial Laboratory Animal Management Committee, China on March 4, 2015 (approval No. 20150304-004).
Collapse
Affiliation(s)
- Xi-Meng Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong; Nonnasality Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Shan-Shan Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong; Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Xiao-Dong Cai
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Xing-Hui Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Qian-Yan Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Pan Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Zhang-Chun Cheng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Tian-Mei Qian
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
20
|
Abstract
OBJECTIVES To describe the variability of fibroblast growth factor receptor 3 (FGFR3) antibody titers in a small series of patients. METHODS We performed a retrospective review of patients with neuropathy and positive FGFR3 antibodies. RESULTS We report 7 patients (3 women) with an age range 44-81 years. Symptoms were acute onset in 3 and subacute onset in 4 patients. Five had neuropathic pain. Examination revealed normal large fiber function to mild/moderate predominantly sensory neuropathy and ataxia in one patient. Electrodiagnostic studies revealed normal large fiber function (3), demyelinating neuropathy (1), and mild/moderate axonal neuropathy (3). Four patients had high and 3 patients had low FGFR3 titers. Repeat testing revealed absence of antibodies in 2 patients and a significant reduction in one patient without any intervening immunotherapy. CONCLUSIONS Our case series highlights the variability and inconsistency in FGFR3 antibody titers through enzyme-linked immunosorbent assay testing. These antibody titers should always be interpreted with caution in clinical context.
Collapse
Affiliation(s)
- Verena Samara
- Department of Neurology and Neurosciences, Stanford Medical Center, Palo Alto, CA
| | | | | |
Collapse
|
21
|
Mozafari R, Kyrylenko S, Castro MV, Ferreira RS, Barraviera B, Oliveira ALR. Combination of heterologous fibrin sealant and bioengineered human embryonic stem cells to improve regeneration following autogenous sciatic nerve grafting repair. J Venom Anim Toxins Incl Trop Dis 2018; 24:11. [PMID: 29681920 PMCID: PMC5897995 DOI: 10.1186/s40409-018-0147-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/16/2018] [Indexed: 12/17/2022] Open
Abstract
Background Peripheral nerve injury is a worldwide clinical problem, and the preferred surgical method for treating it is the end-to-end neurorrhaphy. When it is not possible due to a large nerve gap, autologous nerve grafting is used. However, these surgical techniques result in nerve regeneration at highly variable degrees. It is thus very important to seek complementary techniques to improve motor and sensory recovery. One promising approach could be cell therapy. Transplantation therapy with human embryonic stem cells (hESCs) is appealing because these cells are pluripotent and can differentiate into specialized cell types and have self-renewal ability. Therefore, the main objective of this study was to find conditions under which functional recovery is improved after sciatic nerve neurorrhaphy. We assumed that hESC, either alone or in combination with heterologous fibrin sealant scaffold, could be used to support regeneration in a mouse model of sciatic nerve injury and repair via autografting with end-to-end neurorrhaphy. Methods Five millimeters of the sciatic nerve of C57BL/6 J mice were transected off and rotated 180 degrees to simulate an injury, and then stumps were sutured. Next, we applied heterologous fibrin sealant and/or human embryonic stem cells genetically altered to overexpress fibroblast growth factor 2 (FGF2) at the site of the injury. The study was designed to include six experimental groups comprising neurorrhaphy (N), neurorrhaphy + heterologous fibrin sealant (N + F), neurorrhaphy + heterologous fibrin sealant + doxycycline (N + F + D), neurorrhaphy + heterologous fibrin sealant + wild-type hESC (N + F + W), neurorrhaphy + heterologous fibrin sealant + hESC off (N + F + T), and neurorrhaphy + heterologous fibrin sealant + hESC on via doxycycline (N + F + D + T). We evaluated the recovery rate using Catwalk and von Frey functional recovery tests, as well as immunohistochemistry analysis. Results The experiments indicated that sensory function improved when transgenic hESCs were used. The regeneration of sensory fibers indeed led to increased reflexes, upon stimulation of the paw ipsilateral to the lesion, as seen by von-Frey evaluation, which was supported by immunohistochemistry. Conclusions Overall, the present data demonstrated that transgenic embryonic stem cells, engineered to overexpress FGF-2 in an inducible fashion, could be employed to support regeneration aiming at the recovery of both motor and sensory functions.
Collapse
Affiliation(s)
- Roghayeh Mozafari
- 1Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Laboratory of Nerve Regeneration, Campinas, SP CEP 13083-970 Brazil
| | - Sergiy Kyrylenko
- 2Department of Public Health, Medical Institute of Sumy State University, Sumy, 40007 Ukraine
| | - Mateus Vidigal Castro
- 1Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Laboratory of Nerve Regeneration, Campinas, SP CEP 13083-970 Brazil
| | - Rui Seabra Ferreira
- 3Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP - Univ Estadual Paulista), Botucatu, SP Brazil
| | - Benedito Barraviera
- 3Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP - Univ Estadual Paulista), Botucatu, SP Brazil
| | - Alexandre Leite Rodrigues Oliveira
- 1Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Laboratory of Nerve Regeneration, Campinas, SP CEP 13083-970 Brazil
| |
Collapse
|
22
|
Kaneko M, Tsuji T, Kishimoto Y, Sugiyama Y, Nakamura T, Hirano S. Regenerative Effects of Basic Fibroblast Growth Factor on Restoration of Thyroarytenoid Muscle Atrophy Caused by Recurrent Laryngeal Nerve Transection. J Voice 2017; 32:645-651. [PMID: 29111336 DOI: 10.1016/j.jvoice.2017.09.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/21/2017] [Accepted: 09/22/2017] [Indexed: 10/18/2022]
Abstract
OBJECTIVES Vocal fold atrophy following unilateral vocal fold paralysis is caused by atrophy of the thyroarytenoid (TA) muscle and remains a challenge. Medialization procedures are popular treatment options; however, hoarseness often remains due to the reduction in mass or tension of the TA muscle. Therefore, in addition to medialization procedures, TA muscle reinnervation is desirable. In vivo studies have shown the potential for basic fibroblast growth factor (bFGF) to affect muscular and nerve regeneration. The present study aimed to examine the regenerative effects of bFGF on restoration of TA muscle atrophy caused by recurrent laryngeal nerve transection. STUDY DESIGN Prospective animal experiments with controls. METHODS TA muscle atrophy was induced by unilateral transection of the recurrent laryngeal nerve. One month after transection, different doses (200 ng, 100 ng, 10 ng) of bFGF in 50 µL were repeatedly injected into the TA muscle four times with an interval of 1 week between injections. Saline only was injected in the sham group. Larynges were harvested for histologic and immunohistochemical examination 4 weeks after the final injection. RESULTS The cross-sectional TA muscle area was significantly larger in the bFGF-treated groups compared with the sham-treated groups. Immunohistochemistry indicated that bFGF significantly increases the number of neuromuscular junctions and satellite cells in the TA muscle. CONCLUSIONS These results suggest that local application of bFGF to the TA muscle may improve TA muscle atrophy caused by recurrent laryngeal nerve paralysis. Furthermore, bFGF may have regenerative effects on both nerves and muscles.
Collapse
Affiliation(s)
- Mami Kaneko
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takuya Tsuji
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yo Kishimoto
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoichiro Sugiyama
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tatsuo Nakamura
- Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Shigeru Hirano
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| |
Collapse
|
23
|
Bremer J, Skinner J, Granato M. A small molecule screen identifies in vivo modulators of peripheral nerve regeneration in zebrafish. PLoS One 2017; 12:e0178854. [PMID: 28575069 PMCID: PMC5456414 DOI: 10.1371/journal.pone.0178854] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 05/21/2017] [Indexed: 12/29/2022] Open
Abstract
Adult vertebrates have retained the ability to regenerate peripheral nerves after injury, although regeneration is frequently incomplete, often leading to functional impairments. Small molecule screens using whole organisms have high potential to identify biologically relevant targets, yet currently available assays for in vivo peripheral nerve regeneration are either very laborious and/or require complex technology. Here we take advantage of the optical transparency of larval zebrafish to develop a simple and fast pectoral fin removal assay that measures peripheral nerve regeneration in vivo. Twenty-four hours after fin amputation we observe robust and stereotyped nerve regrowth at the fin base. Similar to laser mediated nerve transection, nerve regrowth after fin amputation requires Schwann cells and FGF signaling, confirming that the fin amputation assay identifies pathways relevant for peripheral nerve regeneration. From a library of small molecules with known targets, we identified 21 compounds that impair peripheral nerve regeneration. Several of these compounds target known regulators of nerve regeneration, further validating the fin removal assay. Twelve of the identified compounds affect targets not previously known to control peripheral nerve regeneration. Using a laser-mediated nerve transection assay we tested ten of those compounds and confirmed six of these compounds to impair peripheral nerve regeneration: an EGFR inhibitor, a glucocorticoid, prostaglandin D2, a retinoic acid agonist, an inhibitor of calcium channels and a topoisomerase I inhibitor. Thus, we established a technically simple assay to rapidly identify valuable entry points into pathways critical for vertebrate peripheral nerve regeneration.
Collapse
Affiliation(s)
- Juliane Bremer
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Julianne Skinner
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Michael Granato
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
24
|
Boilly B, Faulkner S, Jobling P, Hondermarck H. Nerve Dependence: From Regeneration to Cancer. Cancer Cell 2017; 31:342-354. [PMID: 28292437 DOI: 10.1016/j.ccell.2017.02.005] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/07/2016] [Accepted: 02/08/2017] [Indexed: 02/06/2023]
Abstract
Nerve dependence has long been described in animal regeneration, where the outgrowth of axons is necessary to the reconstitution of lost body parts and tissue remodeling in various species. Recent discoveries have demonstrated that denervation can suppress tumor growth and metastasis, pointing to nerve dependence in cancer. Regeneration and cancer share similarities in regard to the stimulatory role of nerves, and there are indications that the stem cell compartment is a preferred target of innervation. Thus, the neurobiology of cancer is an emerging discipline that opens new perspectives in oncology.
Collapse
Affiliation(s)
- Benoni Boilly
- UFR de Biologie, Université de Lille, 59655 Villeneuve d'Ascq, France
| | - Sam Faulkner
- School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Phillip Jobling
- School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Hubert Hondermarck
- School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
25
|
Regulation of FGF signaling: Recent insights from studying positive and negative modulators. Semin Cell Dev Biol 2016; 53:101-14. [DOI: 10.1016/j.semcdb.2016.01.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 01/19/2016] [Indexed: 11/19/2022]
|
26
|
Guzen FP, de Araújo DP, Lucena EEDS, de Morais HHA, Cavalcanti JRLDP, do Nascimento ES, Costa MSMDO, Cavalcante JS. Effect of FGF-2 and sciatic nerve grafting on ChAT expression in dorsal root ganglia neurons of spinal cord transected rats. Neurosci Lett 2016; 616:43-8. [PMID: 26320023 DOI: 10.1016/j.neulet.2015.08.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/17/2015] [Accepted: 08/23/2015] [Indexed: 11/29/2022]
Abstract
Neurotrophic factors and peripheral nerves are known to be good substrates for bridging CNS trauma. The involvement of fibroblast growth factor-2 (FGF-2) activation in the dorsal root ganglion (DRG) was examined following spinal cord injury in the rat. We evaluated whether FGF-2 increases the ability of a sciatic nerve graft to enhance neuronal plasticity, in a gap promoted by complete transection of the spinal cord. The rats were subjected to a 4mm-long gap at low thoracic level and were repaired with saline (Saline or control group, n=10), or fragment of the sciatic nerve (Nerve group, n=10), or fragment of the sciatic nerve to which FGF-2 (Nerve+FGF-2 group, n=10) had been added immediately after lesion. The effects of the FGF-2 and fragment of the sciatic nerve grafts on neuronal plasticity were investigated using choline acetyl transferase (ChAT)-immunoreactivity of neurons in the dorsal root ganglion after 8 weeks. Preservation of the area and diameter of neuronal cell bodies in dorsal root ganglion (DRG) was seen in animals treated with the sciatic nerve, an effect enhanced by the addition of FGF-2. Thus, the addition of exogenous FGF-2 to a sciatic nerve fragment grafted in a gap of the rat spinal cord submitted to complete transection was able to improve neuroprotection in the DRG. The results emphasized that the manipulation of the microenvironment in the wound might amplify the regenerative capacity of peripheral neurons.
Collapse
Affiliation(s)
- Fausto Pierdoná Guzen
- Laboratory of Experimental Neurology, Health Science Center, State University of Rio Grande do Norte, Mossoró, RN, Brazil.
| | - Dayane Pessoa de Araújo
- Laboratory of Experimental Neurology, Health Science Center, State University of Rio Grande do Norte, Mossoró, RN, Brazil
| | - Eudes Euler de Souza Lucena
- Laboratory of Experimental Neurology, Health Science Center, State University of Rio Grande do Norte, Mossoró, RN, Brazil
| | | | | | - Expedito Silva do Nascimento
- Laboratory of Neuroanatomy, Department of Morphology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | - Jeferson Sousa Cavalcante
- Laboratory of Neurochemical Studies, Department of Physiology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| |
Collapse
|
27
|
Huang C, Yuan P, Wu J, Huang J. Estrogen regulates excitatory amino acid carrier 1 (EAAC1) expression through sphingosine kinase 1 (SphK1) transacting FGFR-mediated ERK signaling in rat C6 astroglial cells. Neuroscience 2016; 319:9-22. [PMID: 26804240 DOI: 10.1016/j.neuroscience.2016.01.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/04/2016] [Accepted: 01/12/2016] [Indexed: 12/28/2022]
Abstract
Excitatory amino acid carrier 1 (EAAC1) is one important subtype of the excitatory amino acid transporters (EAATs), and its absence can increase the vulnerability to oxidative stress in neural tissue. Enhanced expression of EAAC1 can provide neuroprotection in multiple disorders, including ischemia and multiple sclerosis. However, the mechanism regulating EAAC1 expression is not fully understood. Using rat C6 astroglial cells, which specifically express EAAC1, we found that 17β-estradiol (E2) and (±)-1-[(3aR(∗),4S(∗),9bS(∗))-4-(6-bromo-1,3-benzodioxol-5-yl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinolin-8-yl]-ethanone (G1), an agonist of the G-protein-coupled estrogen receptor (GPR30), strongly increased EAAC1 protein levels and protected cells from hydrogen peroxide (H2O2) toxicity. We further found that E2/G1 activated sphingosine kinase 1 (SphK1) via GPR30, resulting in the transcription of fibroblast growth factor 2 (FGF2), which stimulated its receptor (FGFR) and led to the phosphorylation of FGFR substrate 2α (FRS2α). This triggered downstream ERK1/2 signaling for the expression of EAAC1. Both the knockdown of FGF2 by siRNA and the pharmacological suppression of the FGFR-ERK cascade abolished the E2/G1 effect on EAAC1 expression. Overall, our work characterizes a signaling pathway by which E2 transactivates FGFR-ERK to induce EAAC1 expression in an FGF2-dependent manner. This occurs through SphK1 activation via GPR30 and leads to a resistance to H2O2 toxicity. This signal transduction pathway may provide novel insights into our understanding of the neuroprotective effects of E2 and may reveal new therapeutic targets or drugs for regulating the oxidative toxicity effects of various neurological diseases.
Collapse
Affiliation(s)
- C Huang
- College of Life Science, Wuhan University, Wuhan 430072, PR China
| | - P Yuan
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT, USA
| | - J Wu
- College of Life Science, Wuhan University, Wuhan 430072, PR China
| | - J Huang
- College of Life Science, Wuhan University, Wuhan 430072, PR China.
| |
Collapse
|
28
|
Meyer C, Wrobel S, Raimondo S, Rochkind S, Heimann C, Shahar A, Ziv-Polat O, Geuna S, Grothe C, Haastert-Talini K. Peripheral Nerve Regeneration through Hydrogel-Enriched Chitosan Conduits Containing Engineered Schwann Cells for Drug Delivery. Cell Transplant 2016; 25:159-82. [DOI: 10.3727/096368915x688010] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Critical length nerve defects in the rat sciatic nerve model were reconstructed with chitosan nerve guides filled with Schwann cells (SCs) containing hydrogel. The transplanted SCs were naive or had been genetically modified to overexpress neurotrophic factors, thus providing a cellular neurotrophic factor delivery system. Prior to the assessment in vivo, in vitro studies evaluating the properties of engineered SCs overexpressing glial cell line-derived neurotrophic factor (GDNF) or fibroblast growth factor 2 (FGF-218kDa) demonstrated their neurite outgrowth inductive bioactivity for sympathetic PC-12 cells as well as for dissociated dorsal root ganglion cell drop cultures. SCs within NVR-hydrogel, which is mainly composed of hyaluronic acid and laminin, were delivered into the lumen of chitosan hollow conduits with a 5% degree of acetylation. The viability and neurotrophic factor production by engineered SCs within NVR-Gel inside the chitosan nerve guides was further demonstrated in vitro. In vivo we studied the outcome of peripheral nerve regeneration after reconstruction of 15-mm nerve gaps with either chitosan/NVR-Gel/SCs composite nerve guides or autologous nerve grafts (ANGs). While ANGs did guarantee for functional sensory and motor regeneration in 100% of the animals, delivery of NVR-Gel into the chitosan nerve guides obviously impaired sufficient axonal outgrowth. This obstacle was overcome to a remarkable extent when the NVR-Gel was enriched with FGF-218kDa overexpressing SCs.
Collapse
Affiliation(s)
- Cora Meyer
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Lower-Saxony, Germany
- Center for Systems Neuroscience (ZSN) Hannover, Lower-Saxony, Germany
| | - Sandra Wrobel
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Lower-Saxony, Germany
- Center for Systems Neuroscience (ZSN) Hannover, Lower-Saxony, Germany
| | - Stefania Raimondo
- Department of Clinical and Biological Sciences, Università degli studi di Torino, Orbassano, Piemonte, Italy
| | - Shimon Rochkind
- Division of Peripheral Nerve Reconstruction, Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | - Stefano Geuna
- Department of Clinical and Biological Sciences, Università degli studi di Torino, Orbassano, Piemonte, Italy
| | - Claudia Grothe
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Lower-Saxony, Germany
- Center for Systems Neuroscience (ZSN) Hannover, Lower-Saxony, Germany
| | - Kirsten Haastert-Talini
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Lower-Saxony, Germany
- Center for Systems Neuroscience (ZSN) Hannover, Lower-Saxony, Germany
| |
Collapse
|
29
|
Current status and future directions of botulinum neurotoxins for targeting pain processing. Toxins (Basel) 2015; 7:4519-63. [PMID: 26556371 PMCID: PMC4663519 DOI: 10.3390/toxins7114519] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/29/2015] [Accepted: 10/19/2015] [Indexed: 12/20/2022] Open
Abstract
Current evidence suggests that botulinum neurotoxins (BoNTs) A1 and B1, given locally into peripheral tissues such as skin, muscles, and joints, alter nociceptive processing otherwise initiated by inflammation or nerve injury in animal models and humans. Recent data indicate that such locally delivered BoNTs exert not only local action on sensory afferent terminals but undergo transport to central afferent cell bodies (dorsal root ganglia) and spinal dorsal horn terminals, where they cleave SNAREs and block transmitter release. Increasing evidence supports the possibility of a trans-synaptic movement to alter postsynaptic function in neuronal and possibly non-neuronal (glial) cells. The vast majority of these studies have been conducted on BoNT/A1 and BoNT/B1, the only two pharmaceutically developed variants. However, now over 40 different subtypes of botulinum neurotoxins (BoNTs) have been identified. By combining our existing and rapidly growing understanding of BoNT/A1 and /B1 in altering nociceptive processing with explorations of the specific characteristics of the various toxins from this family, we may be able to discover or design novel, effective, and long-lasting pain therapeutics. This review will focus on our current understanding of the molecular mechanisms whereby BoNTs alter pain processing, and future directions in the development of these agents as pain therapeutics.
Collapse
|
30
|
Ma F, Xiao Z, Chen B, Hou X, Dai J, Xu R. Linear ordered collagen scaffolds loaded with collagen-binding basic fibroblast growth factor facilitate recovery of sciatic nerve injury in rats. Tissue Eng Part A 2014; 20:1253-62. [PMID: 24188561 DOI: 10.1089/ten.tea.2013.0158] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Natural biological functional scaffolds, consisting of biological materials filled with promoting elements, provide a promising strategy for the regeneration of peripheral nerve defects. Collagen conduits have been used widely due to their excellent biological properties. Linear ordered collagen scaffold (LOCS) fibers are good lumen fillers that can guide nerve regeneration in an ordered direction. In addition, basic fibroblast growth factor (bFGF) is important in the recovery of nerve injury. However, the traditional method for delivering bFGF to the lesion site has no long-term effect because of its short half-life and rapid diffusion. Therefore, we fused a specific collagen-binding domain (CBD) peptide to the N-terminal of native basic fibroblast growth factor (NAT-bFGF) to retain bFGF on the collagen scaffolds. In this study, a natural biological functional scaffold was constructed using collagen tubes filled with collagen-binding bFGF (CBD-bFGF)-loaded LOCS to promote regeneration in a 5-mm rat sciatic nerve transection model. Functional evaluation, histological investigation, and morphometric analysis indicated that the natural biological functional scaffold retained more bFGF at the injury site, guided axon growth, and promoted nerve regeneration as well as functional restoration.
Collapse
Affiliation(s)
- Fukai Ma
- 1 The Affiliated Bayi Brain Hospital, The Military General Hospital of Beijing PLA , Beijing, China
| | | | | | | | | | | |
Collapse
|
31
|
Förthmann B, Brinkmann H, Ratzka A, Stachowiak MK, Grothe C, Claus P. Immobile survival of motoneuron (SMN) protein stored in Cajal bodies can be mobilized by protein interactions. Cell Mol Life Sci 2013; 70:2555-68. [PMID: 23334184 PMCID: PMC11113639 DOI: 10.1007/s00018-012-1242-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 11/29/2012] [Accepted: 12/10/2012] [Indexed: 12/25/2022]
Abstract
Reduced levels of survival of motoneuron (SMN) protein lead to spinal muscular atrophy, but it is still unknown how SMN protects motoneurons in the spinal cord against degeneration. In the nucleus, SMN is associated with two types of nuclear bodies denoted as gems and Cajal bodies (CBs). The 23 kDa isoform of fibroblast growth factor-2 (FGF-2(23)) is a nuclear protein that binds to SMN and destabilizes the SMN-Gemin2 complex. In the present study, we show that FGF-2(23) depletes SMN from CBs without affecting their general structure. FRAP analysis of SMN-EGFP in CBs demonstrated that the majority of SMN in CBs remained mobile and allowed quantification of fast, slow and immobile nuclear SMN populations. The potential for SMN release was confirmed by in vivo photoconversion of SMN-Dendra2, indicating that CBs concentrate immobile SMN that could have a specialized function in CBs. FGF-2(23) accelerated SMN release from CBs, accompanied by a conversion of immobile SMN into a mobile population. Furthermore, FGF-2(23) caused snRNP accumulation in CBs. We propose a model in which Cajal bodies store immobile SMN that can be mobilized by its nuclear interaction partner FGF-2(23), leading to U4 snRNP accumulation in CBs, indicating a role for immobile SMN in tri-snRNP assembly.
Collapse
Affiliation(s)
- Benjamin Förthmann
- Institute of Neuroanatomy, Hannover Medical School, OE 4140, Carl-Neuberg-Str.1, 30625 Hannover, Germany
- Center for Systems Neuroscience, 30625 Hannover, Germany
| | - Hella Brinkmann
- Institute of Neuroanatomy, Hannover Medical School, OE 4140, Carl-Neuberg-Str.1, 30625 Hannover, Germany
| | - Andreas Ratzka
- Institute of Neuroanatomy, Hannover Medical School, OE 4140, Carl-Neuberg-Str.1, 30625 Hannover, Germany
| | - Michal K. Stachowiak
- Department of Pathology and Anatomical Sciences, State University of New York, Buffalo, NY 14214 USA
| | - Claudia Grothe
- Institute of Neuroanatomy, Hannover Medical School, OE 4140, Carl-Neuberg-Str.1, 30625 Hannover, Germany
- Center for Systems Neuroscience, 30625 Hannover, Germany
| | - Peter Claus
- Institute of Neuroanatomy, Hannover Medical School, OE 4140, Carl-Neuberg-Str.1, 30625 Hannover, Germany
- Center for Systems Neuroscience, 30625 Hannover, Germany
| |
Collapse
|
32
|
Yang DP, Kim J, Syed N, Tung YJ, Bhaskaran A, Mindos T, Mirsky R, Jessen KR, Maurel P, Parkinson DB, Kim HA. p38 MAPK activation promotes denervated Schwann cell phenotype and functions as a negative regulator of Schwann cell differentiation and myelination. J Neurosci 2012; 32:7158-68. [PMID: 22623660 PMCID: PMC3369433 DOI: 10.1523/jneurosci.5812-11.2012] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 03/06/2012] [Accepted: 03/29/2012] [Indexed: 01/24/2023] Open
Abstract
Physical damage to the peripheral nerves triggers Schwann cell injury response in the distal nerves in an event termed Wallerian degeneration: the Schwann cells degrade their myelin sheaths and dedifferentiate, reverting to a phenotype that supports axon regeneration and nerve repair. The molecular mechanisms regulating Schwann cell plasticity in the PNS remain to be elucidated. Using both in vivo and in vitro models for peripheral nerve injury, here we show that inhibition of p38 mitogen-activated protein kinase (MAPK) activity in mice blocks Schwann cell demyelination and dedifferentiation following nerve injury, suggesting that the kinase mediates the injury signal that triggers distal Schwann cell injury response. In myelinating cocultures, p38 MAPK also mediates myelin breakdown induced by Schwann cell growth factors, such as neuregulin and FGF-2. Furthermore, ectopic activation of p38 MAPK is sufficient to induce myelin breakdown and drives differentiated Schwann cells to acquire phenotypic features of immature Schwann cells. We also show that p38 MAPK concomitantly functions as a negative regulator of Schwann cell differentiation: enforced p38 MAPK activation blocks cAMP-induced expression of Krox 20 and myelin proteins, but induces expression of c-Jun. As expected of its role as a negative signal for myelination, inhibition of p38 MAPK in cocultures promotes myelin formation by increasing the number as well as the length of individual myelin segments. Altogether, our data identify p38 MAPK as an important regulator of Schwann cell plasticity and differentiation.
Collapse
Affiliation(s)
- David P. Yang
- Department of Biological Sciences, Rutgers University, Newark, New Jersey 07102
| | - Jihyun Kim
- Department of Biological Sciences, Rutgers University, Newark, New Jersey 07102
| | - Neeraja Syed
- Department of Biological Sciences, Rutgers University, Newark, New Jersey 07102
| | - Young-john Tung
- Department of Biological Sciences, Rutgers University, Newark, New Jersey 07102
| | - Ambily Bhaskaran
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
| | - Thomas Mindos
- Peninsula Medical School, University of Exeter, Institute of Biomedical and Clinical Sciences, Plymouth PL6 8BU, Devon, United Kingdom, and
| | - Rhona Mirsky
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
| | - Kristjan R. Jessen
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
| | - Patrice Maurel
- Department of Biological Sciences, Rutgers University, Newark, New Jersey 07102
| | - David B. Parkinson
- Peninsula Medical School, University of Exeter, Institute of Biomedical and Clinical Sciences, Plymouth PL6 8BU, Devon, United Kingdom, and
| | - Haesun A. Kim
- Department of Biological Sciences, Rutgers University, Newark, New Jersey 07102
| |
Collapse
|
33
|
Bryan DJ, Litchfield CR, Manchio JV, Logvinenko T, Holway AH, Austin J, Summerhayes IC, Rieger-Christ KM. Spatiotemporal expression profiling of proteins in rat sciatic nerve regeneration using reverse phase protein arrays. Proteome Sci 2012; 10:9. [PMID: 22325251 PMCID: PMC3295716 DOI: 10.1186/1477-5956-10-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 02/10/2012] [Indexed: 01/19/2023] Open
Abstract
Background Protein expression profiles throughout 28 days of peripheral nerve regeneration were characterized using an established rat sciatic nerve transection injury model. Reverse phase protein microarrays were used to identify the spatial and temporal expression profile of multiple proteins implicated in peripheral nerve regeneration including growth factors, extracellular matrix proteins, and proteins involved in adhesion and migration. This high-throughput approach enabled the simultaneous analysis of 3,360 samples on a nitrocellulose-coated slide. Results The extracellular matrix proteins collagen I and III, laminin gamma-1, fibronectin, nidogen and versican displayed an early increase in protein levels in the guide and proximal sections of the regenerating nerve with levels at or above the baseline expression of intact nerve by the end of the 28 day experimental course. The 28 day protein levels were also at or above baseline in the distal segment however an early increase was only noted for laminin, nidogen, and fibronectin. While the level of epidermal growth factor, ciliary neurotrophic factor and fibroblast growth factor-1 and -2 increased throughout the experimental course in the proximal and distal segments, nerve growth factor only increased in the distal segment and fibroblast growth factor-1 and -2 and nerve growth factor were the only proteins in that group to show an early increase in the guide contents. As expected, several proteins involved in cell adhesion and motility; namely focal adhesion kinase, N-cadherin and β-catenin increased earlier in the proximal and distal segments than in the guide contents reflecting the relatively acellular matrix of the early regenerate. Conclusions In this study we identified changes in expression of multiple proteins over time linked to regeneration of the rat sciatic nerve both demonstrating the utility of reverse phase protein arrays in nerve regeneration research and revealing a detailed, composite spatiotemporal expression profile of peripheral nerve regeneration.
Collapse
Affiliation(s)
- David J Bryan
- Tissue Engineering Laboratory, Lahey Clinic Medical Center, Burlington, Massachusetts, USA.,Department of Plastic and Reconstructive Surgery, Lahey Clinic Medical Center, Burlington, Massachusetts, USA
| | - C Robert Litchfield
- Tissue Engineering Laboratory, Lahey Clinic Medical Center, Burlington, Massachusetts, USA
| | - Jeffrey V Manchio
- Tissue Engineering Laboratory, Lahey Clinic Medical Center, Burlington, Massachusetts, USA.,Department Surgery, Section of General Surgery, Saint Joseph Mercy Hospital, Ann Arbor, Michigan, USA
| | - Tanya Logvinenko
- Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, Massachusetts, USA
| | - Antonia H Holway
- Ian C. Summerhayes Cell and Molecular Biology Laboratory, Lahey Clinic Medical Center, Burlington, Massachusetts, USA.,Aushon BioSystems Inc., Billerica, Massachusetts, USA
| | - John Austin
- Aushon BioSystems Inc., Billerica, Massachusetts, USA
| | - Ian C Summerhayes
- Ian C. Summerhayes Cell and Molecular Biology Laboratory, Lahey Clinic Medical Center, Burlington, Massachusetts, USA
| | - Kimberly M Rieger-Christ
- Ian C. Summerhayes Cell and Molecular Biology Laboratory, Lahey Clinic Medical Center, Burlington, Massachusetts, USA
| |
Collapse
|
34
|
Kaplan PB, Usta U, Inal HA, Tastekin E, Tastekin T, Tokuc B. Neuromuscular morphometry of the uterine ligaments and vaginal wall in women with pelvic organ prolapse. Neurourol Urodyn 2011; 30:126-32. [PMID: 21046656 DOI: 10.1002/nau.20972] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
AIMS The aim of this study was to compare neuromuscular histomorphometry of the uterine ligaments and vaginal wall in women with and without pelvic organ prolapse. METHODS Biopsies were obtained from the round, uterosacral, and cardinal ligaments of the uterus and apical vaginal wall of women having pelvic organ prolapse repaired (stage ≥ II; prolapse group, 37) and the same location in patients with no prolapse (stage < II; control group, 47). Routine hematoxylin-eosin (H & E) staining and immunohistochemical staining for Protein Gene Product 9.5 (PGP 9.5) and smooth muscle α-actin were performed for all specimens. RESULTS Smooth muscle percentage of the uterosacral and cardinal ligaments were not significantly different in women with prolapse than in women without. In round ligament, mean smooth muscle percentage was lower than in women with normal support (81.63 ± 8.2 vs. 51.63 ± 16, P=0.000). Mean distance of the smooth muscle fibers from surface epithelium of the vaginal epithelium of the women with prolapse were significantly higher than the control group (1.679 ± 0.34 vs. 2.240 ± 0.33, P = 0.000). PGP 9.5 stained area percentage of uterine ligaments and vaginal wall tissue samples were significantly lower in women with prolapse. CONCLUSIONS Both total innervation of the anterior vaginal epithelium and uterine ligaments, and muscular percentage of the round ligament and vaginal wall were decreased in women with pelvic organ prolapse.
Collapse
Affiliation(s)
- Petek Balkanli Kaplan
- Department of Obstetric & Gynecology, Trakya University Medical Faculty, Edirne, Turkey.
| | | | | | | | | | | |
Collapse
|
35
|
Seitz M, Grosheva M, Skouras E, Angelova SK, Ankerne J, Jungnickel J, Grothe C, Klimaschewski L, Hübbers CU, Dunlop SA, Angelov DN. Poor functional recovery and muscle polyinnervation after facial nerve injury in fibroblast growth factor-2-/- mice can be improved by manual stimulation of denervated vibrissal muscles. Neuroscience 2011; 182:241-7. [PMID: 21440044 DOI: 10.1016/j.neuroscience.2011.03.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 03/17/2011] [Accepted: 03/17/2011] [Indexed: 12/23/2022]
Abstract
Functional recovery following facial nerve injury is poor. Adjacent neuromuscular junctions (NMJs) are "bridged" by terminal Schwann cells and numerous regenerating axonal sprouts. We have recently shown that manual stimulation (MS) restores whisking function and reduces polyinnervation of NMJs. Furthermore, MS requires both insulin-like growth factor-1 (IGF-1) and brain-derived neurotrophic factor (BDNF). Here, we investigated whether fibroblast growth factor-2 (FGF-2) was also required for the beneficial effects of MS. Following transection and suture of the facial nerve (facial-facial anastomisis, FFA) in homozygous mice lacking FGF-2 (FGF-2(-/-)), vibrissal motor performance and the percentage of poly-innervated NMJ were quantified. In intact FGF-2(-/-) mice and their wildtype (WT) counterparts, there were no differences in amplitude of vibrissal whisking (about 50°) or in the percentage of polyinnervated NMJ (0%). After 2 months FFA and handling alone (i.e. no MS), the amplitude of vibrissal whisking in WT-mice decreased to 22±3°. In the FGF-2(-/-) mice, the amplitude was reduced further to 15±4°, that is, function was significantly poorer. Functional deficits were mirrored by increased polyinnervation of NMJ in WT mice (40.33±2.16%) with polyinnervation being increased further in FGF-2(-/-) mice (50.33±4.33%). However, regardless of the genotype, MS increased vibrissal whisking amplitude (WT: 33.9°±7.7; FGF-2(-/-): 33.4°±8.1) and concomitantly reduced polyinnervation (WT: 33.9%±7.7; FGF-2(-/-): 33.4%±8.1) to a similar extent. We conclude that, whereas lack of FGF-2 leads to poor functional recovery and target reinnervation, MS can nevertheless confer some functional benefit in its absence.
Collapse
Affiliation(s)
- M Seitz
- Department of Anatomy I, University of Cologne, Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Mishra B, von der Ohe M, Schulze C, Bian S, Makhina T, Loers G, Kleene R, Schachner M. Functional role of the interaction between polysialic acid and extracellular histone H1. J Neurosci 2010; 30:12400-13. [PMID: 20844135 PMCID: PMC6633434 DOI: 10.1523/jneurosci.6407-09.2010] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 07/12/2010] [Accepted: 07/19/2010] [Indexed: 11/21/2022] Open
Abstract
Polysialic acid (PSA) is a large and highly negatively charged glycan that plays crucial roles in nervous system development and function in the adult. It has been suggested to facilitate cell migration, neurite outgrowth, and synaptic plasticity because its hydration volume could enhance flexibility of cell interactions. Evidence for receptors of PSA has so far been elusive. We now identified histone H1 as binding partner of PSA via a single-chain variable fragment antibody using an anti-idiotypic approach. Histone H1 directly binds to PSA as shown by ELISA. Surface biotinylation of cultured cerebellar neurons indicated an extracellular localization of histone H1. Immunostaining of live cerebellar neurons and Schwann cells confirmed that an extracellular pool of histone H1 colocalizes with PSA at the cell surface. Histone H1 was also detected in detergent-insoluble synaptosomal membrane subfractions and postsynaptic densities. When applied in vitro, histone H1 stimulated neuritogenesis, process formation and proliferation of Schwann cells, and migration of neural precursor cells via a PSA-dependent mechanism, further indicating that histone H1 is active extracellularly. These in vitro observations suggested an important functional role for the interaction between histone H1 and PSA not only for nervous system development but also for regeneration in the adult. Indeed, histone H1 improved functional recovery, axon regrowth, and precision of reinnervation of the motor branch in adult mice with femoral nerve injury. Our findings encourage investigations on the therapeutic potential of histone H1 in humans.
Collapse
Affiliation(s)
- Bibhudatta Mishra
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg–Eppendorf, 20246 Hamburg, Germany, and
| | - Maren von der Ohe
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg–Eppendorf, 20246 Hamburg, Germany, and
| | - Christian Schulze
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg–Eppendorf, 20246 Hamburg, Germany, and
| | - Shan Bian
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg–Eppendorf, 20246 Hamburg, Germany, and
| | - Tatjana Makhina
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg–Eppendorf, 20246 Hamburg, Germany, and
| | - Gabriele Loers
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg–Eppendorf, 20246 Hamburg, Germany, and
| | - Ralf Kleene
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg–Eppendorf, 20246 Hamburg, Germany, and
| | - Melitta Schachner
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg–Eppendorf, 20246 Hamburg, Germany, and
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
| |
Collapse
|
37
|
Inal HA, Kaplan PB, Usta U, Taştekin E, Aybatli A, Tokuc B. Neuromuscular morphometry of the vaginal wall in women with anterior vaginal wall prolapse. Neurourol Urodyn 2010; 29:458-63. [PMID: 19714736 DOI: 10.1002/nau.20779] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION AND HYPOTHESIS The aim of this study was to compare the changes in hystomorphometry and innervation of the anterior vaginal wall in women with and without anterior vaginal wall prolapse. METHODS Eighty-nine biopsy specimens were obtained from the anterior vaginal wall of women having a cystocele repaired (stage >or=II; prolapse group, 49) and the same location in patients with no prolapse (stage <II; control group, 40). Routine H&E staining and immunohistochemical staining for protein gene product 9.5 (PGP-9.5) and smooth muscle alpha-actin (SMA) were performed for all specimens. RESULTS Number and diameter of the submucosal nerve fibers were significantly lower, submucosal distance to muscular region was significantly higher in the vaginal wall of patients with cystocele than in women with normal vaginal support. We found that there was a negative correlation between the vaginal delivery and the nerve number and diameter measurements, and positive correlation between the vaginal delivery and submucosal distance of muscular level. CONCLUSIONS Results indicate that women with a cystocele have a significantly lower total innervation and higher muscular distance of the anterior vaginal epithelium than the control subjects.
Collapse
Affiliation(s)
- Hasan Ali Inal
- Department of Obstetric & Gynecology, Trakya University Medical Faculty, Edirne, Turkey
| | | | | | | | | | | |
Collapse
|
38
|
Rudenko O, Tkach V, Berezin V, Bock E. Effects of FGF receptor peptide agonists on animal behavior under normal and pathological conditions. Neurosci Res 2010; 68:35-43. [PMID: 20562017 DOI: 10.1016/j.neures.2010.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 04/25/2010] [Accepted: 05/10/2010] [Indexed: 01/19/2023]
Abstract
Hexafins are recently identified low-molecular-weight peptide agonists of the fibroblast growth factor receptor (FGFR), derived from the beta6-beta7 loop region of various FGFs. Synthetic hexafin peptides have been shown to bind to and induce tyrosine phosphorylation of FGFR1, stimulate neurite outgrowth, and promote neuronal survival in vitro. Thus, the pronounced biological activities of hexafins in vitro make them attractive compounds for pharmacological studies in vivo. The present study investigated the effects of subcutaneous administration of hexafin1 and hexafin2 (peptides derived from FGF1 and FGF2, respectively) on social memory, exploratory activity, and anxiety-like behavior in adult rats. Treatment with hexafin1 and hexafin2 resulted in prolonged retention of social memory. Furthermore, rats treated with hexafin2 exhibited decreased anxiety-like behavior in the elevated plus maze. Employing an R6/2 mouse model of Huntington's disease (HD), we found that although hexafin2 did not affect the progression of motor symptoms, it alleviated deficits in activity related to social behavior, including sociability and social novelty. Thus, hexafin2 may have therapeutic potential for the treatment of HD.
Collapse
Affiliation(s)
- Olga Rudenko
- Protein Laboratory, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
39
|
Jungnickel J, Haastert K, Grzybek M, Thau N, Lipokatic-Takacs E, Ratzka A, Nölle A, Claus P, Grothe C. Mice lacking basic fibroblast growth factor showed faster sensory recovery. Exp Neurol 2010; 223:166-72. [DOI: 10.1016/j.expneurol.2009.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 05/20/2009] [Accepted: 06/02/2009] [Indexed: 01/08/2023]
|
40
|
Duobles T, Lima TDS, Levy BDFA, Chadi G. S100beta and fibroblast growth factor-2 are present in cultured Schwann cells and may exert paracrine actions on the peripheral nerve injury. Acta Cir Bras 2009; 23:555-60. [PMID: 19030756 DOI: 10.1590/s0102-86502008000600014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2008] [Accepted: 10/21/2008] [Indexed: 11/21/2022] Open
Abstract
PURPOSE The neurotrophic factor fibroblast growth factor-2 (FGF-2, bFGF) and Ca++ binding protein S100beta are expressed by the Schwann cells of the peripheral nerves and by the satellite cells of the dorsal root ganglia (DRG). Recent studies have pointed out the importance of the molecules in the paracrine mechanisms related to neuronal maintenance and plasticity of lesioned motor and sensory peripheral neurons. Moreover, cultured Schwann cells have been employed experimentally in the treatment of central nervous system lesions, in special the spinal cord injury, a procedure that triggers an enhanced sensorymotor function. Those cells have been proposed to repair long gap nerve injury. METHODS Here we used double labeling immunohistochemistry and Western blot to better characterize in vitro and in vivo the presence of the proteins in the Schwann cells and in the satellite cells of the DRG as well as their regulation in those cells after a crush of the rat sciatic nerve. RESULTS FGF-2 and S100beta are present in the Schwann cells of the sciatic nerve and in the satellite cells of the DRG. S100beta positive satellite cells showed increased size of the axotomized DRG and possessed elevated amount of FGF-2 immunoreactivity. Reactive satellite cells with increased FGF-2 labeling formed a ring-like structure surrounding DRG neuronal cell bodies.Reactive S100beta positive Schwann cells of proximal stump of axotomized sciatic nerve also expressed higher amounts of FGF-2. CONCLUSION Reactive peripheral glial cells synthesizing FGF-2 and S100beta may be important in wound repair and restorative events in the lesioned peripheral nerves.
Collapse
Affiliation(s)
- Tatiana Duobles
- Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | | | | | | |
Collapse
|
41
|
Fibroblast growth factor-2 regulates the stability of nuclear bodies. Proc Natl Acad Sci U S A 2009; 106:12747-52. [PMID: 19617559 DOI: 10.1073/pnas.0900122106] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nuclear bodies are distinct subnuclear structures. The survival of motoneuron (SMN) gene is mutated or deleted in patients with the neurodegenerative disease spinal muscular atrophy (SMA). The gene product SMN is a marker protein for one class of nuclear bodies denoted as nuclear gems. SMN has also been found in Cajal bodies, which co-localize with gems in many cell types. Interestingly, SMA patients display a reduced number of gems. Little is known about the regulation of nuclear body formation and stabilization. We have previously shown that a nuclear isoform of the fibroblast growth factor-2 (FGF-2(23)) binds directly to SMN. In this study, we analyzed the consequences of FGF-2(23) binding to SMN with regard to nuclear body formation. On a molecular level, we showed that FGF-2(23) competed with Gemin2 (a component of the SMN complex that is necessary for gem stabilization) for binding to SMN. Down-regulation of Gemin2 by siRNA caused destabilization of SMN-positive nuclear bodies. This process is reflected in both cellular and in vivo systems by a negative regulatory function of FGF-2 in nuclear body formation: in HEK293 cells, FGF-2(23) decreased the number of SMN-positive nuclear bodies. The same effect could be observed in motoneurons of FGF-2 transgenic mice. This study demonstrates the functional role of a growth factor in the regulation of structural entities of the nucleus.
Collapse
|
42
|
Mehanna A, Mishra B, Kurschat N, Schulze C, Bian S, Loers G, Irintchev A, Schachner M. Polysialic acid glycomimetics promote myelination and functional recovery after peripheral nerve injury in mice. Brain 2009; 132:1449-62. [DOI: 10.1093/brain/awp128] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
43
|
Petri S, Krampfl K, Kuhlemann K, Dengler R, Grothe C. Preserved expression of fibroblast growth factor (FGF)-2 and FGF receptor 1 in brain and spinal cord of amyotrophic lateral sclerosis patients. Histochem Cell Biol 2008; 131:509-19. [DOI: 10.1007/s00418-008-0549-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2008] [Indexed: 12/20/2022]
|
44
|
Grothe C, Jungnickel J, Haastert K. Physiological role of basic FGF in peripheral nerve development and regeneration: potential for reconstruction approaches. FUTURE NEUROLOGY 2008. [DOI: 10.2217/14796708.3.5.605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
According to expression studies and functional analyses in mutant mice and in rats, FGF-2 appears to be specifically involved during development of peripheral nerves and in de-/re-generating processes at the lesion site and in spinal ganglia. In the absence of FGF receptor (FGFR)3, axonal and myelin diameters of peripheral nerves are significantly reduced, suggesting that FGFR3 physiologically regulates axonal development. The normally occurring neuronal cell death in spinal ganglia after peripheral nerve axotomy does not take place in FGF-2 and FGFR3-deleted mice, respectively, suggesting that injury-induced apoptosis is mediated via FGF-2 binding to FGFR3. According to a bimodal function of FGF-2, lesion-induced neuron death in rat spinal ganglia can be prevented by application of FGF-2 to the proximal nerve stump, which could be mediated via FGFR1/2. At the lesion site, FGF-2 appears to be involved in stimulating Schwann cell proliferation, promoting neurite outgrowth, especially of sensory nerve fibers, and regulating remyelination.
Collapse
Affiliation(s)
- Claudia Grothe
- Hannover Medical School, Institute of Neuroanatomy, OE 4140, Carl-Neuberg Str. 1, D-30625, Hannover, Germany
| | - Julia Jungnickel
- Hannover Medical School, Institute of Neuroanatomy, OE 4140, Carl-Neuberg Str. 1, D-30625, Hannover, Germany
| | - Kirsten Haastert
- Hannover Medical School, Institute of Neuroanatomy, OE 4140, Carl-Neuberg Str. 1, D-30625, Hannover, Germany
| |
Collapse
|
45
|
Hausott B, Schlick B, Vallant N, Dorn R, Klimaschewski L. Promotion of neurite outgrowth by fibroblast growth factor receptor 1 overexpression and lysosomal inhibition of receptor degradation in pheochromocytoma cells and adult sensory neurons. Neuroscience 2008; 153:461-73. [DOI: 10.1016/j.neuroscience.2008.01.083] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Revised: 01/28/2008] [Accepted: 01/28/2008] [Indexed: 11/24/2022]
|
46
|
Abstract
New fundamental results on stem cell biology have been obtained in the past 15 years. These results allow us to reinterpret the functioning of the cerebral tissue in health and disease. Proliferating stem cells have been found in the adult brain, which can be involved in postinjury repair and can replace dead cells under specific conditions. Numerous genomic mechanisms controlling stem cell proliferation and differentiation have been identified. The involvement of stem cells in the genesis of malignant tumors has been demonstrated. Neural stem cell tropism toward tumors has been shown. These findings suggest new lines of research on brain functioning and development. Stem cells can be used to develop radically new treatments of neurodegenerative and cancer diseases of the brain.
Collapse
|
47
|
Grothe C, Claus P, Haastert K, Lutwak E, Ron D. Expression and regulation of Sef, a novel signaling inhibitor of receptor tyrosine kinases-mediated signaling in the nervous system. Acta Histochem 2008; 110:155-62. [PMID: 17980404 DOI: 10.1016/j.acthis.2007.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Revised: 08/06/2007] [Accepted: 08/23/2007] [Indexed: 10/22/2022]
Abstract
Fibroblast growth factors (FGFs) signal via four distinct high affinity cell surface tyrosine kinase receptors, termed FGFR1-FGFR4 (FGFR-FGF-receptor). Recently, a new modulator of the FGF signaling pathway, the transmembrane protein 'similar expression to FGF genes' (Sef), has been identified in zebrafish and subsequently in mammals. Sef from mouse and human inhibits FGF mitogenic activity. In the present study, we analyzed the expression of Sef in distinct rat brain areas, in the spinal cord and in peripheral nerves and spinal ganglia using semi-quantitative RT-PCR. Furthermore, we studied the cellular expression pattern of Sef in intact spinal ganglia and sciatic nerves and, in addition, after crush lesion, using in situ hybridization and immunohistochemistry. Sef transcripts were expressed in all brain areas evaluated and in the spinal cord. A neuronal expression was found in both intact and injured spinal ganglia. Intact sciatic nerves, however, showed little or no Sef expression. Seven days after injury, high Sef expression was concentrated to the crush site, and Schwann cells seemed to be the source of Sef. The labeling pattern of up-regulated Sef was complementary to the patterns of FGF-2 and FGFR1-3, which were localized proximal and distal to the crush site. These results suggest an involvement of Sef during the nerve regeneration process, possibly by fine-tuning the effects of FGF signaling.
Collapse
|
48
|
Levy BDFA, Cunha JDC, Chadi G. Cellular analysis of S100Beta and fibroblast growth factor-2 in the dorsal root ganglia and sciatic nerve of rodents. focus on paracrine actions of activated satellite cells after axotomy. Int J Neurosci 2007; 117:1481-503. [PMID: 17729158 DOI: 10.1080/15569520701502716] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The role of satellite cells, a type of peripheral glia, in the paracrine mechanisms related to neuronal maintenance and plasticity in the dorsal root ganglia (DRG) needs to be further investigated. This study employed immunohistochemistry and image analysis to investigate basic fibroblast growth factor (bFGF, FGF-2) and S100Beta immunoreactivities in the DRG and sciatic nerve of the rat and mouse. Well-characterized antibodies against bovine (residues 1-24) and rat (residues 1-23) FGF-2 were employed. Furthermore, the state of satellite cell reaction and changes in the FGF-2/S100Beta immunoreactivity were analyzed after axotomy of rat sciatic nerve. Scattered neurons and the majority of the satellite cells of the rat DRG and also Schwann cells of the rat sciatic nerve stained for S100Beta. In the mouse, strong S100Beta was encountered in the majority of sensory neurons and Schwann cells. Moderate FGF-2 (residues 1-24) immunoreactivity was found in scattered small size neurons of the rat DRG. A strong FGF-2 (residues 1-23) immunoreactivity was achieved in the satellite cells of rat DRG. Both FGF-2 antisera showed strong labeling in the mouse DRG sensory neurons. Activated satellite cells of the axotomized DRG possessed increased amount of FGF-2 and S100Beta immunoreactivity as demonstrated by quantitative image analysis. The proximal stump of the lesioned rat sciatic nerve showed increased FGF-2 (residues 1-24 and 1-23) in the Schwann cells, myelin sheaths, and neuronal fibers, without changes in the level of S100Beta immunoreactivity. Results suggested a possible interaction between FGF-2 and S100Beta in activated satellite cells of the DRG, which might trigger paracrine actions in the axotomized sensory neurons.
Collapse
|
49
|
Verderio C, Bianco F, Blanchard MP, Bergami M, Canossa M, Scarfone E, Matteoli M. Cross talk between vestibular neurons and Schwann cells mediates BDNF release and neuronal regeneration. ACTA ACUST UNITED AC 2007; 35:187-201. [PMID: 17957483 DOI: 10.1007/s11068-007-9011-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 05/08/2007] [Accepted: 05/15/2007] [Indexed: 02/03/2023]
Abstract
It is now well-established that an active cross-talk occurs between neurons and glial cells, in the adult as well as in the developing and regenerating nervous systems. These functional interactions not only actively modulate synaptic transmission, but also support neuronal growth and differentiation. We have investigated the possible existence of a reciprocal interaction between inner ear vestibular neurons and Schwann cells maintained in primary cultures. We show that ATP released by the extending vestibular axons elevates intracellular calcium levels within Schwann cells. Purinergic activation of the Schwann P2X(7) receptor induces the release of neurotrophin BDNF, which occurs via a regulated, tetanus-toxin sensitive, vesicular pathway. BDNF, in turn, is required by the vestibular neuron to support its own survival and growth. Given the massive release of ATP during tissue damage, cross-talk between vestibular neurons and Schwann cells could play a primary role during regeneration.
Collapse
Affiliation(s)
- Claudia Verderio
- Department of Medical Pharmacology, CNR Institute of Neuroscience, University of Milano, Via Vanvitelli 32, 20129, Milano, Italy.
| | | | | | | | | | | | | |
Collapse
|
50
|
Yamanaka H, Obata K, Kobayashi K, Dai Y, Fukuoka T, Noguchi K. Activation of fibroblast growth factor receptor by axotomy, through downstream p38 in dorsal root ganglion, contributes to neuropathic pain. Neuroscience 2007; 150:202-11. [PMID: 17905520 DOI: 10.1016/j.neuroscience.2007.08.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2007] [Revised: 08/02/2007] [Accepted: 08/24/2007] [Indexed: 11/21/2022]
Abstract
The possible involvement of fibroblast growth factor receptor (FGFR) activation in the dorsal root ganglion (DRG) was examined following peripheral nerve injury in the rat. Ligation of the sciatic nerve down-regulated FGFR2, -3 and -4 mRNA; however, the expression of FGFR1 mRNA showed no change. Activation of FGFR was examined by immunohistochemistry using an antibody of the phosphorylated form of FGFR1-4. Ligation of the sciatic nerve produced phosphorylation of FGFR in the L4 and 5 DRG ipsilateral to the injury, starting at 3 days after the lesion and persisting for more than 30 days. Substantial activation of FGFR was observed, mainly in unmyelinated small DRG neurons that co-expressed phosphorylated p38 mitogen-activated protein kinase (MAPK). Continuous intrathecal infusion of the FGFR1 inhibitor, 3-[3-(2-carboxyethyl)-4-methylpyrrol-2-methylidenyl]-2-indolinone, reduced p38 MAPK phosphorylation in the DRG and pain-related behaviors in the partial sciatic nerve model rat without affecting on the activation of spinal glia cells (microglia and astrocyte). In the injured small DRG neurons, activation of FGFR1 may contribute to the generation of neuropathic pain by activating p38 MAPK.
Collapse
Affiliation(s)
- H Yamanaka
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | | | | | | | | | | |
Collapse
|