1
|
Lazaridis I, Crittenden JR, Ahn G, Hirokane K, Wickersham IR, Yoshida T, Mahar A, Skara V, Loftus JH, Parvataneni K, Meletis K, Ting JT, Hueske E, Matsushima A, Graybiel AM. Striosomes control dopamine via dual pathways paralleling canonical basal ganglia circuits. Curr Biol 2024; 34:5263-5283.e8. [PMID: 39447573 DOI: 10.1016/j.cub.2024.09.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024]
Abstract
Balanced activity of canonical direct D1 and indirect D2 basal ganglia pathways is considered a core requirement for normal movement, and their imbalance is an etiologic factor in movement and neuropsychiatric disorders. We present evidence for a conceptually equivalent pair of direct D1 and indirect D2 pathways that arise from striatal projection neurons (SPNs) of the striosome compartment rather than from SPNs of the matrix, as do the canonical pathways. These striosomal D1 (S-D1) and D2 (S-D2) pathways target substantia nigra dopamine-containing neurons instead of basal ganglia motor output nuclei. They modulate movement with net effects opposite to those exerted by the canonical pathways: S-D1 is net inhibitory and S-D2 is net excitatory. The S-D1 and S-D2 circuits likely influence motivation for learning and action, complementing and reorienting canonical pathway modulation. A major conceptual reformulation of the classic direct-indirect pathway model of basal ganglia function is needed, as well as reconsideration of the effects of D2-targeting therapeutic drugs.
Collapse
Affiliation(s)
- Iakovos Lazaridis
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Jill R Crittenden
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gun Ahn
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kojiro Hirokane
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ian R Wickersham
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tomoko Yoshida
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ara Mahar
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Vasiliki Skara
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Johnny H Loftus
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Krishna Parvataneni
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Jonathan T Ting
- Human Cell Types Department, Allen Institute for Brain Science, Seattle, WA 98109, USA; Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Emily Hueske
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ayano Matsushima
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ann M Graybiel
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
2
|
Lazaridis I, Crittenden JR, Ahn G, Hirokane K, Yoshida T, Wickersham IR, Mahar A, Skara V, Loftus JH, Parvataneni K, Meletis K, Ting JT, Hueske E, Matsushima A, Graybiel AM. Striosomes Target Nigral Dopamine-Containing Neurons via Direct-D1 and Indirect-D2 Pathways Paralleling Classic Direct-Indirect Basal Ganglia Systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.01.596922. [PMID: 38915684 PMCID: PMC11195572 DOI: 10.1101/2024.06.01.596922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Balanced activity of canonical direct D1 and indirect D2 basal ganglia pathways is considered a core requirement for normal movement, and their imbalance is an etiologic factor in movement and neuropsychiatric disorders. We present evidence for a conceptually equivalent pair of direct-D1 and indirect-D2 pathways that arise from striatal projection neurons (SPNs) of the striosome compartment rather than from SPNs of the matrix, as do the canonical pathways. These S-D1 and S-D2 striosomal pathways target substantia nigra dopamine-containing neurons instead of basal ganglia motor output nuclei. They modulate movement oppositely to the modulation by the canonical pathways: S-D1 is inhibitory and S-D2 is excitatory. The S-D1 and S-D2 circuits likely influence motivation for learning and action, complementing and reorienting canonical pathway modulation. A major conceptual reformulation of the classic direct-indirect pathway model of basal ganglia function is needed, as well as reconsideration of the effects of D2-targeting therapeutic drugs.
Collapse
Affiliation(s)
- Iakovos Lazaridis
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences
| | - Jill R. Crittenden
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences
| | - Gun Ahn
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences
| | - Kojiro Hirokane
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences
| | - Tomoko Yoshida
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences
| | - Ian R. Wickersham
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences
| | - Ara Mahar
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences
| | | | - Johnny H. Loftus
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences
| | - Krishna Parvataneni
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences
| | | | - Jonathan T. Ting
- Human Cell Types Dept, Allen Institute for Brain Science, Seattle WA 98109, USA
- Department of Physiology and Biophysics, University of Washington, Seattle WA 98195, USA
| | - Emily Hueske
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences
| | - Ayano Matsushima
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences
| | - Ann M. Graybiel
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences
| |
Collapse
|
3
|
Liu H, Xue Y, Chen L. Angiotensin II increases the firing activity of pallidal neurons and participates in motor control in rats. Metab Brain Dis 2023; 38:573-587. [PMID: 36454502 DOI: 10.1007/s11011-022-01127-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022]
Abstract
The globus pallidus has emerged as a crucial node in the basal ganglia motor control circuit under both healthy and parkinsonian states. Previous studies have shown that angiotensin II (Ang II) and angiotensin subtype 1 receptor (AT1R) are closely related to Parkinson's disease (PD). Recent morphological study revealed the expression of AT1R in the globus pallidus of mice. To investigate the functions of Ang II/AT1R on the globus pallidus neurons of both normal and parkinsonian rats, electrophysiological recordings and behavioral tests were performed in the present study. Electrophysiological recordings showed that exogenous and endogenous Ang II mainly excited the globus pallidus neurons through AT1R. Behavioral tests further demonstrated that unilateral microinjection of Ang II into the globus pallidus induced significantly contralateral-biased swing in elevated body swing test (EBST), and bilateral microinjection of Ang II into the globus pallidus alleviated catalepsy and akinesia caused by haloperidol. AT1R was involved in Ang II-induced behavioral effects. Immunostaining showed that AT1R was expressed in the globus pallidus of rats. On the basis of the present findings, we concluded that pallidal Ang II/AT1R alleviated parkinsonian motor deficits through activating globus pallidus neurons, which will provide a rationale for further investigations into the potential of Ang II in the treatment of motor disorders originating from the basal ganglia.
Collapse
Affiliation(s)
- Hongxia Liu
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
- Department of Physiology, Binzhou Medical University, Yantai, China
| | - Yan Xue
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, China.
| | - Lei Chen
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
4
|
Xie J, Chen Z, He T, Zhu H, Chen T, Liu C, Fu X, Shen H, Li T. Deep brain stimulation in the globus pallidus alleviates motor activity defects and abnormal electrical activities of the parafascicular nucleus in parkinsonian rats. Front Aging Neurosci 2022; 14:1020321. [PMID: 36248005 PMCID: PMC9555567 DOI: 10.3389/fnagi.2022.1020321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/09/2022] [Indexed: 12/02/2022] Open
Abstract
Deep brain stimulation (DBS) is an effective treatment for Parkinson’s disease (PD). The most common sites targeted for DBS in PD are the globus pallidus internal (GPi) and subthalamic nucleus (STN). However, STN-DBS and GPi-DBS have limited improvement in some symptoms and even aggravate disease symptoms. Therefore, discovering new targets is more helpful for treating refractory symptoms of PD. Therefore, our study selected a new brain region, the lateral globus pallidus (GP), as the target of DBS, and the study found that GP-DBS can improve motor symptoms. It has been reported that the thalamic parafascicular (PF) nucleus is strongly related to PD pathology. Moreover, the PF nucleus and GP have very close direct and indirect fiber connections. However, whether GP-DBS can change the activity of the PF remains unclear. Therefore, in this study, we monitored the activity changes in the PF nucleus in PD rats during a quiet awake state after GP-DBS. We found that GP-DBS could reverse the electrical activity of the PF nucleus in PD model rats, including the discharge pattern of the neurons and the local field potential (0.7–12 and 12–70 Hz). Based on the results mentioned above, PF activity in PD model rats could be changed by GP-DBS. Thus, the normalization of PF neuronal activity may be a potential mechanism for GP-DBS in the treatment of PD; these findings lay the foundation for PD treatment strategies.
Collapse
Affiliation(s)
- Jinlu Xie
- Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou University, Huzhou, China
- Key Laboratory of Animal Resistance of Shandong Province, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Zheng Chen
- Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou University, Huzhou, China
| | - Tingting He
- Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Hengya Zhu
- Department of Neurology, Huzhou Central Hospital, Affiliated Center Hospital of Huzhou University, Huzhou, China
| | - Tingyu Chen
- Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou University, Huzhou, China
| | - Chongbin Liu
- Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou University, Huzhou, China
| | - Xuyan Fu
- Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou University, Huzhou, China
| | - Hong Shen
- Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou University, Huzhou, China
| | - Tao Li
- Department of Physical Education, Kyungnam University, Changwon, South Korea
- *Correspondence: Tao Li,
| |
Collapse
|
5
|
Baumgartner AJ, Thompson JA, Kern DS, Ojemann SG. Novel targets in deep brain stimulation for movement disorders. Neurosurg Rev 2022; 45:2593-2613. [PMID: 35511309 DOI: 10.1007/s10143-022-01770-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/01/2021] [Accepted: 03/08/2022] [Indexed: 12/26/2022]
Abstract
The neurosurgical treatment of movement disorders, primarily via deep brain stimulation (DBS), is a rapidly expanding and evolving field. Although conventional targets including the subthalamic nucleus (STN) and internal segment of the globus pallidus (GPi) for Parkinson's disease and ventral intermediate nucleus of the thalams (VIM) for tremor provide substantial benefit in terms of both motor symptoms and quality of life, other targets for DBS have been explored in an effort to maximize clinical benefit and also avoid undesired adverse effects associated with stimulation. These novel targets primarily include the rostral zona incerta (rZI), caudal zona incerta (cZI)/posterior subthalamic area (PSA), prelemniscal radiation (Raprl), pedunculopontine nucleus (PPN), substantia nigra pars reticulata (SNr), centromedian/parafascicular (CM/PF) nucleus of the thalamus, nucleus basalis of Meynert (NBM), dentato-rubro-thalamic tract (DRTT), dentate nucleus of the cerebellum, external segment of the globus pallidus (GPe), and ventral oralis (VO) complex of the thalamus. However, reports of outcomes utilizing these targets are scattered and disparate. In order to provide a comprehensive resource for researchers and clinicians alike, we have summarized the existing literature surrounding these novel targets, including rationale for their use, neurosurgical techniques where relevant, outcomes and adverse effects of stimulation, and future directions for research.
Collapse
Affiliation(s)
| | - John A Thompson
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA
- University of Colorado Hospital, 12631 East 17th Avenue, PO Box 6511, Aurora, CO, 80045, USA
| | - Drew S Kern
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA
- University of Colorado Hospital, 12631 East 17th Avenue, PO Box 6511, Aurora, CO, 80045, USA
| | - Steven G Ojemann
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA.
- University of Colorado Hospital, 12631 East 17th Avenue, PO Box 6511, Aurora, CO, 80045, USA.
| |
Collapse
|
6
|
Liu J, Shelkar GP, Sarode LP, Gawande DY, Zhao F, Clausen RP, Ugale RR, Dravid SM. Facilitation of GluN2C-containing NMDA receptors in the external globus pallidus increases firing of fast spiking neurons and improves motor function in a hemiparkinsonian mouse model. Neurobiol Dis 2021; 150:105254. [PMID: 33421565 PMCID: PMC8063913 DOI: 10.1016/j.nbd.2021.105254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 12/18/2020] [Accepted: 01/04/2021] [Indexed: 12/19/2022] Open
Abstract
Globus pallidus externa (GPe) is a nucleus in the basal ganglia circuitry involved in the control of movement. Recent studies have demonstrated a critical role of GPe cell types in Parkinsonism. Specifically increasing the function of parvalbumin (PV) neurons in the GPe has been found to facilitate motor function in a mouse model of Parkinson’s disease (PD). The knowledge of contribution of NMDA receptors to GPe function is limited. Here, we demonstrate that fast spiking neurons in the GPe express NMDA receptor currents sensitive to GluN2C/GluN2D-selective inhibitors and glycine site agonist with higher efficacy at GluN2C-containing receptors. Furthermore, using a novel reporter model, we demonstrate the expression of GluN2C subunits in PV neurons in the GPe which project to subthalamic nuclei. GluN2D subunit was also found to localize to PV neurons in GPe. Ablation of GluN2C subunit does not affect spontaneous firing of fast spiking neurons. In contrast, facilitating the function of GluN2C-containing receptors using glycine-site NMDA receptor agonists, D-cycloserine (DCS) or AICP, increased the spontaneous firing frequency of PV neurons in a GluN2C-dependent manner. Finally, we demonstrate that local infusion of DCS or AICP into the GPe improved motor function in a mouse model of PD. Together, these results demonstrate that GluN2C-containing receptors and potentially GluN2D-containing receptors in the GPe may serve as a therapeutic target for alleviating motor dysfunction in PD and related disorders.
Collapse
Affiliation(s)
- Jinxu Liu
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, United States of America
| | - Gajanan P Shelkar
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, United States of America
| | - Lopmudra P Sarode
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra 440033, India
| | - Dinesh Y Gawande
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, United States of America
| | - Fabao Zhao
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Rasmus Praetorius Clausen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Rajesh R Ugale
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra 440033, India
| | - Shashank Manohar Dravid
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, United States of America.
| |
Collapse
|
7
|
Conde Rojas I, Acosta-García J, Caballero-Florán RN, Jijón-Lorenzo R, Recillas-Morales S, Avalos-Fuentes JA, Paz-Bermúdez F, Leyva-Gómez G, Cortés H, Florán B. Dopamine D4 receptor modulates inhibitory transmission in pallido-pallidal terminals and regulates motor behavior. Eur J Neurosci 2020; 52:4563-4585. [PMID: 33098606 DOI: 10.1111/ejn.15020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 12/28/2022]
Abstract
Two major groups of terminals release GABA within the Globus pallidus; one group is constituted by projections from striatal neurons, while endings of the intranuclear collaterals form the other one. Each neurons' population expresses different subtypes of dopamine D2-like receptors: D2 R subtype is expressed by encephalin-positive MSNs, while pallidal neurons express the D4 R subtype. The D2 R modulates the firing rate of striatal neurons and GABA release at their projection areas, while the D4 R regulates Globus pallidus neurons excitability and GABA release at their projection areas. However, it is unknown if these receptors control GABA release at pallido-pallidal collaterals and regulate motor behavior. Here, we present neurochemical evidence of protein content and binding of D4 R in pallidal synaptosomes, control of [3 H] GABA release in pallidal slices of rat, electrophysiological evidence of the presence of D4 R on pallidal recurrent collaterals in mouse slices, and turning behavior induced by D4 R antagonist microinjected in amphetamine challenged rats. As in projection areas of pallidal neurons, GABAergic transmission in pallido-pallidal recurrent synapses is under modulation of D4 R, while the D2 R subtype, as known, modulates striato-pallidal projections. Also, as in projection areas, D4 R contributes to control the motor activity differently than D2 R. This study could help to understand the organization of intra-pallidal circuitry.
Collapse
Affiliation(s)
- Israel Conde Rojas
- Departamento de Fisiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México, México
| | | | | | - Rafael Jijón-Lorenzo
- Departamento de Fisiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México, México
| | - Sergio Recillas-Morales
- Faculty of Veterinary Medicine, Universidad Autónoma del Estado de México, Toluca, Estado de México, México
| | - José Arturo Avalos-Fuentes
- Departamento de Fisiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México, México
| | - Francisco Paz-Bermúdez
- Departamento de Fisiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México, México
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, México
| | - Benjamín Florán
- Departamento de Fisiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México, México
| |
Collapse
|
8
|
Okamoto S, Sohn J, Tanaka T, Takahashi M, Ishida Y, Yamauchi K, Koike M, Fujiyama F, Hioki H. Overlapping Projections of Neighboring Direct and Indirect Pathway Neostriatal Neurons to Globus Pallidus External Segment. iScience 2020; 23:101409. [PMID: 32877648 PMCID: PMC7520896 DOI: 10.1016/j.isci.2020.101409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/15/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023] Open
Abstract
Indirect pathway medium-sized spiny neurons (iMSNs) in the neostriatum are well known to project to the external segment of the globus pallidus (GPe). Although direct MSNs (dMSNs) also send axon collaterals to the GPe, it remains unclear how dMSNs and iMSNs converge within the GPe. Here, we selectively labeled neighboring dMSNs and iMSNs with green and red fluorescent proteins using an adeno-associated virus vector and examined axonal projections of dMSNs and iMSNs to the GPe in mice. Both dMSNs and iMSNs formed two axonal arborizations displaying topographical projections in the dorsoventral and mediolateral planes. iMSNs displayed a wider and denser axon distribution, which included that of dMSNs. Density peaks of dMSN and iMSN axons almost overlapped, revealing convergence of dMSN axons in the center of iMSN projection fields. These overlapping projections suggest that dMSNs and iMSNs may work cooperatively via interactions within the GPe.
Collapse
Affiliation(s)
- Shinichiro Okamoto
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Advanced Research Institute for Health Sciences, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Jaerin Sohn
- Division of Cerebral Circuitry, National Institute for Physiological Sciences, 5-1 Higashiyama Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Takuma Tanaka
- Graduate School of Data Science, Shiga University, 1-1-1 Banba, Hikone, Shiga 522-8522, Japan
| | - Megumu Takahashi
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoko Ishida
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Kenta Yamauchi
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Advanced Research Institute for Health Sciences, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Masato Koike
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Advanced Research Institute for Health Sciences, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Fumino Fujiyama
- Laboratory of Neural Circuitry, Graduate School of Brain Science, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto 610-0394, Japan
| | - Hiroyuki Hioki
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
9
|
Karube F, Takahashi S, Kobayashi K, Fujiyama F. Motor cortex can directly drive the globus pallidus neurons in a projection neuron type-dependent manner in the rat. eLife 2019; 8:e49511. [PMID: 31711567 PMCID: PMC6863630 DOI: 10.7554/elife.49511] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/29/2019] [Indexed: 12/14/2022] Open
Abstract
The basal ganglia are critical for the control of motor behaviors and for reinforcement learning. Here, we demonstrate in rats that primary and secondary motor areas (M1 and M2) make functional synaptic connections in the globus pallidus (GP), not usually thought of as an input site of the basal ganglia. Morphological observation revealed that the density of axonal boutons from motor cortices in the GP was 47% and 78% of that in the subthalamic nucleus (STN) from M1 and M2, respectively. Cortical excitation of GP neurons was comparable to that of STN neurons in slice preparations. FoxP2-expressing arkypallidal neurons were preferentially innervated by the motor cortex. The connection probability of cortico-pallidal innervation was higher for M2 than M1. These results suggest that cortico-pallidal innervation is an additional excitatory input to the basal ganglia, and that it can affect behaviors via the cortex-basal ganglia-thalamus motor loop.
Collapse
Affiliation(s)
- Fuyuki Karube
- Laboratory of Neural Circuitry, Graduate School of Brain ScienceDoshisha UniversityKyotanabeJapan
| | - Susumu Takahashi
- Laboratory of Neural Circuitry, Graduate School of Brain ScienceDoshisha UniversityKyotanabeJapan
- Laboratory of Cognitive and Behavioral Neuroscience, Graduate School of Brain ScienceDoshisha UniversityKyotanabeJapan
| | - Kenta Kobayashi
- Section of Viral Vector DevelopmentNational Institute for Physiological SciencesOkazakiJapan
| | - Fumino Fujiyama
- Laboratory of Neural Circuitry, Graduate School of Brain ScienceDoshisha UniversityKyotanabeJapan
| |
Collapse
|
10
|
Perez-Rosello T, Gelman S, Tombaugh G, Cachope R, Beaumont V, Surmeier DJ. Enhanced striatopallidal gamma-aminobutyric acid (GABA) A receptor transmission in mouse models of huntington's disease. Mov Disord 2019; 34:684-696. [PMID: 30726572 DOI: 10.1002/mds.27622] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/20/2018] [Accepted: 01/03/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Huntington's disease (HD) is caused by a CAG repeat expansion in the huntingtin gene. This mutation leads to progressive dysfunction that is largely attributable to dysfunction of the striatum. The earliest signs of striatal pathology in HD are found in indirect pathway gamma-Aminobutyric acid (GABA)-ergic spiny projection neurons that innervate the external segment of the globus pallidus (GPe). What is less clear is whether the synaptic coupling of spiny projection neurons with GPe neurons changes in HD. OBJECTIVES The principal goal of this study was to determine whether striatopallidal synaptic transmission was altered in 2 mouse models of HD. METHODS Striatopallidal synaptic transmission was studied using electrophysiological and optogenetic approaches in ex vivo brain slices from 2 HD models: Q175 heterozygous (het) and R6/2 mice. RESULTS Striatopallidal synaptic transmission increased in strength with the progression of behavioral deficits in Q175 and R6/2 mice. The alteration in synaptic transmission was evident in both prototypical and arkypallidal GPe neurons. This change did not appear attributable to an increase in the probability of GABA release but, rather, to an enhancement in the postsynaptic response to GABA released at synaptic sites. This alteration significantly increased the ability of striatopallidal axon terminals to pause ongoing GPe activity. CONCLUSIONS In 2 mouse models of HD, striatopallidal synaptic transmission increased in parallel with the progression of behavioral deficits. This adaptation could compensate in part for the concomitant deficit in the ability of corticostriatal signals to activate spiny projection neurons and pause GPe activity. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Tamara Perez-Rosello
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | | | - Roger Cachope
- CHDI Management/CHDI Foundation, California, Los Angeles, USA
| | - Vahri Beaumont
- CHDI Management/CHDI Foundation, California, Los Angeles, USA
| | - D James Surmeier
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
11
|
Modaberi S, Heysieattalab S, Shahbazi M, Naghdi N. Combination Effects of Forced Mild Exercise and GABA B Receptor Agonist on Spatial Learning, Memory, and Motor Activity in Striatum Lesion Rats. J Mot Behav 2018; 51:438-450. [PMID: 30474512 DOI: 10.1080/00222895.2018.1505711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Basal ganglia (BG) lesions cause impairments of different mammalian's movement and cognition behaviors. Motor circuit impairment has a dominant role in the movement disorders. An inhibitory factor in BG is GABA neurotransmitter, which is released from striatum. Lesions in GABAergic neurons could trigger movement and cognition disorders. Previous evidence showed that GABAB receptor agonist (Baclofen) administration in human improves movement disorders and exercise can improve neurodegenerative and cognitive decline; however, the effects of both Baclofen and mild forced treadmill exercise on movement disorders are not well known. The main objective of this study is to investigate the combined effects of mild forced treadmill exercise and microinjection of Baclofen in the internal Globus Pallidus on striatum lesion-induced impairments of spatial learning and motor activity. We used Morris water maze and open filed tests for studying spatial learning, and motor activity, respectively. Results showed that mild exercise and Baclofen microinjection could not lonely affect the spatial learning, and motor activity impairments while the combination of them could alleviate spatial learning, and motor activity impairments in striatum-lesion animals. Our results suggest that striatum lesion-induced memory and motor activity impairments can improve with combination interaction of GABAB receptor agonist and exercise training.
Collapse
Affiliation(s)
- Shaghayegh Modaberi
- a Department of motor learning and control , Sport Science and Physical University of Tehran , Tehran , Iran
| | | | - Mehdi Shahbazi
- c Department of motor learning and control , Sport Science and Physical University of Tehran , Tehran , Iran
| | - Nasser Naghdi
- d Department of Physiology and Pharmacology , Pasteur Institute of Iran , Tehran , Iran
| |
Collapse
|
12
|
Nougaret S, Ravel S. Dynamic Encoding of Effort and Reward throughout the Execution of Action by External Globus Pallidus Neurons in Monkeys. J Cogn Neurosci 2018; 30:1130-1144. [PMID: 29762102 DOI: 10.1162/jocn_a_01277] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Humans and animals must evaluate the costs and expected benefits of their actions to make adaptive choices. Prior studies have demonstrated the involvement of the basal ganglia in this evaluation. However, little is known about the role of the external part of the globus pallidus (GPe), which is well positioned to integrate motor and reward-related information, in this process. To investigate this role, the activity of 126 neurons was recorded in the associative and limbic parts of the GPe of two monkeys performing a behavioral task in which different levels of force were required to obtain different amounts of liquid reward. The results first revealed that the activity of associative and limbic GPe neurons could be modulated not only by cognitive and limbic but also motor information at the same time, both during a single period or during different periods throughout the trial, mainly in an independent way. Moreover, as a population, GPe neurons encoded these types of information dynamically throughout the trial, when each piece of information was the most relevant for the achievement of the action. Taken together, these results suggest that GPe neurons could be dedicated to the parallel monitoring of task parameters essential to adjusting and maintaining goal-directed behavior.
Collapse
Affiliation(s)
- Simon Nougaret
- Institut de Neurosciences de la Timone, UMR7289 Centre National de la Recherche Scientifique and Aix-Marseille Université, France
| | - Sabrina Ravel
- Institut de Neurosciences de la Timone, UMR7289 Centre National de la Recherche Scientifique and Aix-Marseille Université, France
| |
Collapse
|
13
|
Diao HL, Xue Y, Han XH, Wang SY, Liu C, Chen WF, Chen L. Adenosine A 2A Receptor Modulates the Activity of Globus Pallidus Neurons in Rats. Front Physiol 2017; 8:897. [PMID: 29163226 PMCID: PMC5682020 DOI: 10.3389/fphys.2017.00897] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 10/24/2017] [Indexed: 12/23/2022] Open
Abstract
The globus pallidus is a central nucleus in the basal ganglia motor control circuit. Morphological studies have revealed the expression of adenosine A2A receptors in the globus pallidus. To determine the modulation of adenosine A2A receptors on the activity of pallidal neurons in both normal and parkinsonian rats, in vivo electrophysiological and behavioral tests were performed in the present study. The extracellular single unit recordings showed that micro-pressure administration of adenosine A2A receptor agonist, CGS21680, regulated the pallidal firing activity. GABAergic neurotransmission was involved in CGS21680-induced modulation of pallidal neurons via a PKA pathway. Furthermore, application of two adenosine A2A receptor antagonists, KW6002 or SCH442416, mainly increased the spontaneous firing of pallidal neurons, suggesting that endogenous adenosine system modulates the activity of pallidal neurons through adenosine A2A receptors. Finally, elevated body swing test (EBST) showed that intrapallidal microinjection of adenosine A2A receptor agonist/antagonist induced ipsilateral/contralateral-biased swing, respectively. In addition, the electrophysiological and behavioral findings also revealed that activation of dopamine D2 receptors by quinpirole strengthened KW6002/SCH442416-induced excitation of pallidal activity. Co-application of quinpirole with KW6002 or SCH442416 alleviated biased swing in hemi-parkinsonian rats. Based on the present findings, we concluded that pallidal adenosine A2A receptors may be potentially useful in the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Hui-Ling Diao
- Department of Physiology, Qingdao University, Qingdao, China.,Department of Physiology, Binzhou Medical University, Yantai, China
| | - Yan Xue
- Department of Physiology, Qingdao University, Qingdao, China
| | - Xiao-Hua Han
- Department of Physiology, Qingdao University, Qingdao, China
| | - Shuang-Yan Wang
- Department of Physiology, Qingdao University, Qingdao, China.,Department of Anatomy, Qingdao University, Qingdao, China
| | - Cui Liu
- Department of Physiology, Qingdao University, Qingdao, China
| | - Wen-Fang Chen
- Department of Physiology, Qingdao University, Qingdao, China
| | - Lei Chen
- Department of Physiology, Qingdao University, Qingdao, China
| |
Collapse
|
14
|
Npas1+ Pallidal Neurons Target Striatal Projection Neurons. J Neurosci 2017; 36:5472-88. [PMID: 27194328 DOI: 10.1523/jneurosci.1720-15.2016] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 04/03/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Compelling evidence demonstrates that the external globus pallidus (GPe) plays a key role in processing sensorimotor information. An anatomical projection from the GPe to the dorsal striatum has been described for decades. However, the cellular target and functional impact of this projection remain unknown. Using cell-specific transgenic mice, modern monosynaptic tracing techniques, and optogenetics-based mapping, we discovered that GPe neurons provide inhibitory inputs to direct and indirect pathway striatal projection neurons (SPNs). Our results indicate that the GPe input to SPNs arises primarily from Npas1-expressing neurons and is strengthened in a chronic Parkinson's disease (PD) model. Alterations of the GPe-SPN input in a PD model argue for the critical position of this connection in regulating basal ganglia motor output and PD symptomatology. Finally, chemogenetic activation of Npas1-expressing GPe neurons suppresses motor output, arguing that strengthening of the GPe-SPN connection is maladaptive and may underlie the hypokinetic symptoms in PD. SIGNIFICANCE STATEMENT An anatomical projection from the pallidum to the striatum has been described for decades, but little is known about its connectivity pattern. The authors dissect the presynaptic and postsynaptic neurons involved in this projection, and show its cell-specific remodeling and strengthening in parkinsonian mice. Chemogenetic activation of Npas1(+) pallidal neurons that give rise to the principal pallidostriatal projection increases the time that the mice spend motionless. This argues that maladaptive strengthening of this connection underlies the paucity of volitional movements, which is a hallmark of Parkinson's disease.
Collapse
|
15
|
Oh YM, Karube F, Takahashi S, Kobayashi K, Takada M, Uchigashima M, Watanabe M, Nishizawa K, Kobayashi K, Fujiyama F. Using a novel PV-Cre rat model to characterize pallidonigral cells and their terminations. Brain Struct Funct 2016; 222:2359-2378. [PMID: 27995326 DOI: 10.1007/s00429-016-1346-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/25/2016] [Indexed: 10/20/2022]
Abstract
In the present study, we generated a novel parvalbumin (PV)-Cre rat model and conducted detailed morphological and electrophysiological investigations of axons from PV neurons in globus pallidus (GP). The GP is considered as a relay nucleus in the indirect pathway of the basal ganglia (BG). Previous studies have used molecular profiling and projection patterns to demonstrate cellular heterogeneity in the GP; for example, PV-expressing neurons are known to comprise approximately 50% of GP neurons and represent majority of prototypic neurons that project to the subthalamic nucleus and/or output nuclei of BG, entopeduncular nucleus and substantia nigra (SN). The present study aimed to identify the characteristic projection patterns of PV neurons in the GP (PV-GP neurons) and determine whether these neurons target dopaminergic or GABAergic neurons in SN pars compacta (SNc) or reticulata (SNr), respectively. We initially found that (1) 57% of PV neurons co-expressed Lim-homeobox 6, (2) the PV-GP terminals were preferentially distributed in the ventral part of dorsal tier of SNc, (3) PV-GP neurons formed basket-like appositions with the somata of tyrosine hydroxylase, PV, calretinin and cholecystokinin immunoreactive neurons in the SN, and (4) in vitro whole-cell recording during optogenetic photo-stimulation of PV-GP terminals in SNc demonstrated that PV-GP neurons strongly inhibited dopamine neurons via GABAA receptors. These results suggest that dopamine neurons receive direct focal inputs from PV-GP prototypic neurons. The identification of high-contrast inhibitory systems on dopamine neurons might represent a key step toward understanding the BG function.
Collapse
Affiliation(s)
- Yoon-Mi Oh
- Laboratory of Neural Circuitry, Graduate School of Brain Science, Doshisha University, Kyotanabe, 610-0394, Japan
| | - Fuyuki Karube
- Laboratory of Neural Circuitry, Graduate School of Brain Science, Doshisha University, Kyotanabe, 610-0394, Japan
| | - Susumu Takahashi
- Laboratory of Neural Circuitry, Graduate School of Brain Science, Doshisha University, Kyotanabe, 610-0394, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological Sciences, Okazaki, 444-8585, Japan
| | - Masahiko Takada
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, 484-8506, Japan
| | - Motokazu Uchigashima
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan
| | - Kayo Nishizawa
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Fumino Fujiyama
- Laboratory of Neural Circuitry, Graduate School of Brain Science, Doshisha University, Kyotanabe, 610-0394, Japan.
| |
Collapse
|
16
|
Kita T, Shigematsu N, Kita H. Intralaminar and tectal projections to the subthalamus in the rat. Eur J Neurosci 2016; 44:2899-2908. [PMID: 27717088 PMCID: PMC5157720 DOI: 10.1111/ejn.13413] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/19/2016] [Accepted: 09/21/2016] [Indexed: 12/29/2022]
Abstract
Projections from the posterior intralaminar thalamic nuclei and the superior colliculus (SC) to the subthalamic nucleus (STN) and the zona incerta (ZI) have been described in the primate and rodent. The aims of this study was to investigate several questions on these projections, using modern neurotracing techniques in rats, to advance our understanding of the role of STN and ZI. We examined whether projection patterns to the subthlamus can be used to identify homologues of the primate centromedian (CM) and the parafascicular nucleus (Pf) in the rodent, the topography of the projection including what percent of intralaminar neurons participate in the projections, and electron microscopic examination of intralaminar synaptic boutons in STN. The aim on the SC‐subthalamic projection was to examine whether STN is the main target of the projection. This study revealed: (i) the areas similar to primate CM and Pf could be recognized in the rat; (ii) the Pf‐like area sends a very heavy topographically organized projection to STN but very sparse projection to ZI, which suggested that Pf might control basal ganglia function through STN; (iii) the projection from the CM‐like area to the subthalamus was very sparse; (iv) Pf boutons and randomly sampled asymmetrical synapses had similar distributions on the dendrites of STN neurons; and (v) the lateral part of the deep layers of SC sends a very heavy projection to ZI and moderate to sparse projection to limited parts of STN, suggesting that SC is involved in a limited control of basal ganglia function.
Collapse
Affiliation(s)
- Takako Kita
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, 855 Monroe Avenue, Memphis, TN, 38163, USA
| | - Naoki Shigematsu
- Department of Anatomy and Neurobiology, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hitoshi Kita
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, 855 Monroe Avenue, Memphis, TN, 38163, USA
| |
Collapse
|
17
|
Hegeman DJ, Hong ES, Hernández VM, Chan CS. The external globus pallidus: progress and perspectives. Eur J Neurosci 2016; 43:1239-65. [PMID: 26841063 PMCID: PMC4874844 DOI: 10.1111/ejn.13196] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/20/2016] [Accepted: 01/27/2016] [Indexed: 12/12/2022]
Abstract
The external globus pallidus (GPe) of the basal ganglia is in a unique and powerful position to influence processing of motor information by virtue of its widespread projections to all basal ganglia nuclei. Despite the clinical importance of the GPe in common motor disorders such as Parkinson's disease, there is only limited information about its cellular composition and organizational principles. In this review, recent advances in the understanding of the diversity in the molecular profile, anatomy, physiology and corresponding behaviour during movement of GPe neurons are described. Importantly, this study attempts to build consensus and highlight commonalities of the cellular classification based on existing but contentious literature. Additionally, an analysis of the literature concerning the intricate reciprocal loops formed between the GPe and major synaptic partners, including both the striatum and the subthalamic nucleus, is provided. In conclusion, the GPe has emerged as a crucial node in the basal ganglia macrocircuit. While subtleties in the cellular makeup and synaptic connection of the GPe create new challenges, modern research tools have shown promise in untangling such complexity, and will provide better understanding of the roles of the GPe in encoding movements and their associated pathologies.
Collapse
Affiliation(s)
- Daniel J Hegeman
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Ellie S Hong
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Vivian M Hernández
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - C Savio Chan
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
18
|
Saunders A, Huang KW, Sabatini BL. Globus Pallidus Externus Neurons Expressing parvalbumin Interconnect the Subthalamic Nucleus and Striatal Interneurons. PLoS One 2016; 11:e0149798. [PMID: 26905595 PMCID: PMC4764347 DOI: 10.1371/journal.pone.0149798] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 02/04/2016] [Indexed: 01/24/2023] Open
Abstract
The globus pallidus externus (GP) is a nucleus of the basal ganglia (BG), containing GABAergic projection neurons that arborize widely throughout the BG, thalamus and cortex. Ongoing work seeks to map axonal projection patterns from GP cell types, as defined by their electrophysiological and molecular properties. Here we use transgenic mice and recombinant viruses to characterize parvalbumin expressing (PV+) GP neurons within the BG circuit. We confirm that PV+ neurons 1) make up ~40% of the GP neurons 2) exhibit fast-firing spontaneous activity and 3) provide the major axonal arborization to the STN and substantia nigra reticulata/compacta (SNr/c). PV+ neurons also innervate the striatum. Retrograde labeling identifies ~17% of pallidostriatal neurons as PV+, at least a subset of which also innervate the STN and SNr. Optogenetic experiments in acute brain slices demonstrate that the PV+ pallidostriatal axons make potent inhibitory synapses on low threshold spiking (LTS) and fast-spiking interneurons (FS) in the striatum, but rarely on spiny projection neurons (SPNs). Thus PV+ GP neurons are synaptically positioned to directly coordinate activity between BG input nuclei, the striatum and STN, and thalamic-output from the SNr.
Collapse
Affiliation(s)
- Arpiar Saunders
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kee Wui Huang
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Bernardo Luis Sabatini
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
19
|
Salvadè A, D'Angelo V, Di Giovanni G, Tinkhauser G, Sancesario G, Städler C, Möller JC, Stefani A, Kaelin-Lang A, Galati S. Distinct roles of cortical and pallidal β and γ frequencies in hemiparkinsonian and dyskinetic rats. Exp Neurol 2016; 275 Pt 1:199-208. [DOI: 10.1016/j.expneurol.2015.11.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 09/21/2015] [Accepted: 11/10/2015] [Indexed: 01/25/2023]
|
20
|
Fujiyama F, Nakano T, Matsuda W, Furuta T, Udagawa J, Kaneko T. A single-neuron tracing study of arkypallidal and prototypic neurons in healthy rats. Brain Struct Funct 2015; 221:4733-4740. [PMID: 26642797 DOI: 10.1007/s00429-015-1152-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/18/2015] [Indexed: 02/01/2023]
Abstract
The external globus pallidus (GP) is known as a relay nucleus of the indirect pathway of the basal ganglia. Recent studies in dopamine-depleted and healthy rats indicate that the GP comprises two main types of pallidofugal neurons: the so-called "prototypic" and "arkypallidal" neurons. However, the reconstruction of complete arkypallidal neurons in healthy rats has not been reported. Here we visualized the entire axonal arborization of four single arkypallidal neurons and six single prototypic neurons in rat brain using labeling with a viral vector expressing membrane-targeted green fluorescent protein and examined the distribution of axon boutons in the target nuclei. Results revealed that not only the arkypallidal neurons but nearly all of the prototypic neurons projected to the striatum with numerous axon varicosities. Thus, the striatum is a major target nucleus for pallidal neurons. Arkypallidal and prototypic GP neurons located in the calbindin-positive and calbindin-negative regions mainly projected to the corresponding positive and negative regions in the striatum. Because the GP and striatum calbindin staining patterns reflect the topographic organization of the striatopallidal projection, the striatal neurons in the sensorimotor and associative regions constitute the reciprocal connection with the GP neurons in the corresponding regions.
Collapse
Affiliation(s)
- Fumino Fujiyama
- Laboratory of Neural Circuitry, Graduate School of Brain Science, Doshisha University, Kyotanabe, Kyoto, 619-0394, Japan.
- CREST, JST, Saitama, 332-0012, Japan.
| | - Takashi Nakano
- Department of Anatomy, Shiga University of Medical Science, Shiga, 520-2121, Japan
| | - Wakoto Matsuda
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Takahiro Furuta
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Jun Udagawa
- Department of Anatomy, Shiga University of Medical Science, Shiga, 520-2121, Japan
| | - Takeshi Kaneko
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| |
Collapse
|
21
|
Parvalbumin+ Neurons and Npas1+ Neurons Are Distinct Neuron Classes in the Mouse External Globus Pallidus. J Neurosci 2015; 35:11830-47. [PMID: 26311767 DOI: 10.1523/jneurosci.4672-14.2015] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED Compelling evidence suggests that pathological activity of the external globus pallidus (GPe), a nucleus in the basal ganglia, contributes to the motor symptoms of a variety of movement disorders such as Parkinson's disease. Recent studies have challenged the idea that the GPe comprises a single, homogenous population of neurons that serves as a simple relay in the indirect pathway. However, we still lack a full understanding of the diversity of the neurons that make up the GPe. Specifically, a more precise classification scheme is needed to better describe the fundamental biology and function of different GPe neuron classes. To this end, we generated a novel multicistronic BAC (bacterial artificial chromosome) transgenic mouse line under the regulatory elements of the Npas1 gene. Using a combinatorial transgenic and immunohistochemical approach, we discovered that parvalbumin-expressing neurons and Npas1-expressing neurons in the GPe represent two nonoverlapping cell classes, amounting to 55% and 27% of the total GPe neuron population, respectively. These two genetically identified cell classes projected primarily to the subthalamic nucleus and to the striatum, respectively. Additionally, parvalbumin-expressing neurons and Npas1-expressing neurons were distinct in their autonomous and driven firing characteristics, their expression of intrinsic ion conductances, and their responsiveness to chronic 6-hydroxydopamine lesion. In summary, our data argue that parvalbumin-expressing neurons and Npas1-expressing neurons are two distinct functional classes of GPe neurons. This work revises our understanding of the GPe, and provides the foundation for future studies of its function and dysfunction. SIGNIFICANCE STATEMENT Until recently, the heterogeneity of the constituent neurons within the external globus pallidus (GPe) was not fully appreciated. We addressed this knowledge gap by discovering two principal GPe neuron classes, which were identified by their nonoverlapping expression of the markers parvalbumin and Npas1. Our study provides evidence that parvalbumin and Npas1 neurons have different topologies within the basal ganglia.
Collapse
|
22
|
Tomioka R, Sakimura K, Yanagawa Y. Corticofugal GABAergic projection neurons in the mouse frontal cortex. Front Neuroanat 2015; 9:133. [PMID: 26578895 PMCID: PMC4623159 DOI: 10.3389/fnana.2015.00133] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/05/2015] [Indexed: 01/16/2023] Open
Abstract
Cortical projection neurons are classified by hodology in corticocortical, commissural and corticofugal subtypes. Although cortical projection neurons had been regarded as only glutamatergic neurons, recently corticocortical GABAergic projection neurons has been also reported in several species. Here, we demonstrate corticofugal GABAergic projection neurons in the mouse frontal cortex. We employed viral-vector-mediated anterograde tracing, classical retrograde tracing, and immunohistochemistry to characterize neocortical GABAergic projection neurons. Injections of the Cre-dependent adeno-associated virus into glutamate decarboxylase 67 (GAD67)-Cre knock-in mice revealed neocortical GABAergic projections widely to the forebrain, including the cerebral cortices, caudate putamen (CPu), ventral pallidum (VP), lateral globus pallidus (LGP), nucleus accumbens, and olfactory tubercle (Tu). Minor GABAergic projections were also found in the mediodorsal thalamic nucleus, diagonal band of Broca, medial globus pallidus, substantial nigra, and dorsal raphe nucleus. Retrograde tracing studies also demonstrated corticofugal GABAergic projection neurons in the mouse frontal cortex. Further immunohistochemical screening with neurochemical markers revealed the majority of corticostriatal GABAergic projection neurons were positive for somatostatin (SS)-immunoreactivity. In contrast, corticothalamic GABAergic projection neurons were not identified by representative neurochemical markers for GABAergic neurons. These findings suggest that corticofugal GABAergic projection neurons are heterogeneous in terms of their neurochemical properties and target nuclei, and provide axonal innervations mainly to the nuclei in the basal ganglia.
Collapse
Affiliation(s)
- Ryohei Tomioka
- Department of Morphological Neural Science, Graduate School of Medical Sciences, Kumamoto University Kumamoto, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University Niigata, Japan
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine Maebashi, Japan
| |
Collapse
|
23
|
Noblejas MI, Schechtman E, Adler A, Joshua M, Katabi S, Bergman H. Hold your pauses: external globus pallidus neurons respond to behavioural events by decreasing pause activity. Eur J Neurosci 2015; 42:2415-25. [PMID: 26263048 DOI: 10.1111/ejn.13041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 07/26/2015] [Accepted: 08/03/2015] [Indexed: 11/29/2022]
Abstract
Awareness of its rich structural pathways has earned the external segment of the globus pallidus (GPe) recognition as a central figure within the basal ganglia circuitry. Interestingly, GPe neurons are uniquely identified by the presence of prominent pauses interspersed among a high-frequency discharge rate of 50-80 spikes/s. These pauses have an average pause duration of 620 ms with a frequency of 13/min, yielding an average pause activity (probability of a GPe neuron being in a pause) of (620 × 13)/(60 × 1000) = 0.13. Spontaneous pause activity has been found to be inversely related to arousal state. The relationship of pause activity with behavioural events remains to be elucidated. In the present study, we analysed the electrophysiological activity of 200 well-isolated GPe pauser cells recorded from four non-human primates (Macaque fascicularis) while they were engaged in similar classical conditioning tasks. The isolation quality of the recorded activity and the pauses were determined with objective automatic methods. The results showed that the pause probability decreased by 9.09 and 10.0%, and the discharge rate increased by 2.96 and 1.95%, around cue and outcome presentation, respectively. Analysis of the linear relationship between the changes in pause activity and discharge rate showed r(2) = 0.46 and r(2) = 0.66 upon cue onset and outcome presentation, respectively. Thus, pause activity is a pertinent element in short-term encoding of relevant behavioural events, and has a significant, but not exclusive, role in the modulation of GPe discharge rate around these events.
Collapse
Affiliation(s)
- Maria Imelda Noblejas
- Department of Neurobiology, Institute of Medical Research - Israel Canada (IMRIC), Hadassah Medical School, The Hebrew University, Jerusalem, 91120, Israel
| | - Eitan Schechtman
- Department of Neurobiology, Institute of Medical Research - Israel Canada (IMRIC), Hadassah Medical School, The Hebrew University, Jerusalem, 91120, Israel.,Edmond and Lily Safra Centre for Brain Sciences, The Hebrew University, Jerusalem, Israel
| | - Avital Adler
- Department of Neurobiology, Institute of Medical Research - Israel Canada (IMRIC), Hadassah Medical School, The Hebrew University, Jerusalem, 91120, Israel.,Edmond and Lily Safra Centre for Brain Sciences, The Hebrew University, Jerusalem, Israel
| | - Mati Joshua
- Department of Neurobiology, Institute of Medical Research - Israel Canada (IMRIC), Hadassah Medical School, The Hebrew University, Jerusalem, 91120, Israel.,Edmond and Lily Safra Centre for Brain Sciences, The Hebrew University, Jerusalem, Israel
| | - Shiran Katabi
- Department of Neurobiology, Institute of Medical Research - Israel Canada (IMRIC), Hadassah Medical School, The Hebrew University, Jerusalem, 91120, Israel
| | - Hagai Bergman
- Department of Neurobiology, Institute of Medical Research - Israel Canada (IMRIC), Hadassah Medical School, The Hebrew University, Jerusalem, 91120, Israel.,Edmond and Lily Safra Centre for Brain Sciences, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
24
|
Abstract
Studies in dopamine-depleted rats indicate that the external globus pallidus (GPe) contains two main types of GABAergic projection cell; so-called "prototypic" and "arkypallidal" neurons. Here, we used correlative anatomical and electrophysiological approaches in rats to determine whether and how this dichotomous organization applies to the dopamine-intact GPe. Prototypic neurons coexpressed the transcription factors Nkx2-1 and Lhx6, comprised approximately two-thirds of all GPe neurons, and were the major GPe cell type innervating the subthalamic nucleus (STN). In contrast, arkypallidal neurons expressed the transcription factor FoxP2, constituted just over one-fourth of GPe neurons, and innervated the striatum but not STN. In anesthetized dopamine-intact rats, molecularly identified prototypic neurons fired at relatively high rates and with high regularity, regardless of brain state (slow-wave activity or spontaneous activation). On average, arkypallidal neurons fired at lower rates and regularities than prototypic neurons, and the two cell types could be further distinguished by the temporal coupling of their firing to ongoing cortical oscillations. Complementing the activity differences observed in vivo, the autonomous firing of identified arkypallidal neurons in vitro was slower and more variable than that of prototypic neurons, which tallied with arkypallidal neurons displaying lower amplitudes of a "persistent" sodium current important for such pacemaking. Arkypallidal neurons also exhibited weaker driven and rebound firing compared with prototypic neurons. In conclusion, our data support the concept that a dichotomous functional organization, as actioned by arkypallidal and prototypic neurons with specialized molecular, structural, and physiological properties, is fundamental to the operations of the dopamine-intact GPe.
Collapse
|
25
|
Bergman H, Katabi S, Slovik M, Deffains M, Arkadir D, Israel Z, Eitan R. Motor Pathways, Basal Ganglia Physiology, and Pathophysiology. Brain Stimul 2015. [DOI: 10.1002/9781118568323.ch3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
26
|
Chen L, Xu R, Sun FJ, Xue Y, Hao XM, Liu HX, Wang H, Chen XY, Liu ZR, Deng WS, Han XH, Xie JX, Yung WH. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels regulate firing of globus pallidus neurons in vivo. Mol Cell Neurosci 2015; 68:46-55. [PMID: 25858108 DOI: 10.1016/j.mcn.2015.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 03/26/2015] [Accepted: 04/03/2015] [Indexed: 01/27/2023] Open
Abstract
The globus pallidus plays a significant role in motor control under both health and pathological states. Recent studies have revealed that hyperpolarization-activated cyclic nucleotide-gated (HCN) channels occupy a critical position in globus pallidus pacemaking activity. Morphological studies have shown the expression of HCN channels in the globus pallidus. To investigate the in vivo effects of HCN channels in the globus pallidus, extracellular recordings and behavioral tests were performed in the present study. In normal rats, micro-pressure ejection of 0.05mM ZD7288, the selective HCN channel blocker, decreased the frequency of spontaneous firing in 21 out of the 40 pallidal neurons. The average decrease was 50.4±5.4%. Interestingly, in another 18 out of the 40 pallidal neurons, ZD7288 increased the firing rate by 137.1±27.6%. Similar bidirectional modulation on the firing rate was observed by a higher concentration of ZD7288 (0.5mM) as well as another HCN channel blocker, CsCl. Furthermore, activation of HCN channels by 8-Br-cAMP increased the firing rate by 63.0±9.3% in 15 out of the 25 pallidal neurons and decreased the firing rate by 46.9±9.4% in another 8 out of the 25 pallidal neurons. Further experiments revealed that modulation of glutamatergic but not GABAergic transmission may be involved in ZD7288-induced increase in firing rate. Consistent with electrophysiological results, further studies revealed that modulation of HCN channels also had bidirectional effects on behavior. Taken together, the present studies suggest that HCN channels may modulate the activity of pallidal neurons by different pathways in vivo.
Collapse
Affiliation(s)
- Lei Chen
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao 266071, China.
| | - Rong Xu
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao 266071, China
| | - Feng-Jiao Sun
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao 266071, China
| | - Yan Xue
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao 266071, China
| | - Xiao-Meng Hao
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao 266071, China
| | - Hong-Xia Liu
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao 266071, China
| | - Hua Wang
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao 266071, China
| | - Xin-Yi Chen
- Department of Neurology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Zi-Ran Liu
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao 266071, China
| | - Wen-Shuai Deng
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao 266071, China
| | - Xiao-Hua Han
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao 266071, China
| | - Jun-Xia Xie
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao 266071, China
| | - Wing-Ho Yung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
27
|
Abstract
The basal ganglia are a series of interconnected subcortical nuclei. The function and dysfunction of these nuclei have been studied intensively in motor control, but more recently our knowledge of these functions has broadened to include prominent roles in cognition and affective control. This review summarizes historical models of basal ganglia function, as well as findings supporting or conflicting with these models, while emphasizing recent work in animals and humans directly testing the hypotheses generated by these models.
Collapse
|
28
|
Abstract
The development of methodology to identify specific cell populations and circuits within the basal ganglia is rapidly transforming our ability to understand the function of this complex circuit. This mini-symposium highlights recent advances in delineating the organization and function of neural circuits in the external segment of the globus pallidus (GPe). Although long considered a homogeneous structure in the motor-suppressing "indirect-pathway," the GPe consists of a number of distinct cell types and anatomical subdomains that contribute differentially to both motor and nonmotor features of behavior. Here, we integrate recent studies using techniques, such as viral tracing, transgenic mice, electrophysiology, and behavioral approaches, to create a revised framework for understanding how the GPe relates to behavior in both health and disease.
Collapse
|
29
|
Kita T, Osten P, Kita H. Rat subthalamic nucleus and zona incerta share extensively overlapped representations of cortical functional territories. J Comp Neurol 2014; 522:4043-56. [PMID: 25048050 DOI: 10.1002/cne.23655] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/15/2014] [Accepted: 07/18/2014] [Indexed: 11/10/2022]
Abstract
The subthalamic nucleus (STN) and the zona incerta (ZI) are two major structures of the subthalamus. The STN has strong connections between the basal ganglia and related nuclei. The ZI has strong connections between brainstem reticular nuclei, sensory nuclei, and nonspecific thalamic nuclei. Both the STN and ZI receive heavy projections from a subgroup of layer V neurons in the cerebral cortex. The major goal of this study was to investigate the following two questions about the cortico-subthalamic projections using the lentivirus anterograde tracing method in the rat: 1) whether cortical projections to the STN and ZI have independent functional organizations or a global organization encompassing the entire subthalamus as a whole; and 2) how the cortical functional zones are represented in the subthalamus. This study revealed that the subthalamus receives heavy projections from the motor and sensory cortices, that the cortico-subthalamic projections have a large-scale functional organization that encompasses both the STN and two subdivisions of the ZI, and that the group of cortical axons that originate from a particular area of the cortex sequentially innervate and form separate terminal fields in the STN and ZI. The terminal zones formed by different cortical functional areas have highly overlapped and fuzzy borders, as do the somatotopic representations of the sensorimotor cortex in the subthalamus. The present study suggests that the layer V neurons in the wide areas of the sensorimotor cortex simultaneously control STN and ZI neurons. Together with other known afferent and efferent connections, possible new functionality of the STN and ZI is discussed.
Collapse
Affiliation(s)
- Takako Kita
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, 38163
| | | | | |
Collapse
|
30
|
Medina L, Abellán A, Vicario A, Desfilis E. Evolutionary and developmental contributions for understanding the organization of the basal ganglia. BRAIN, BEHAVIOR AND EVOLUTION 2014; 83:112-25. [PMID: 24776992 DOI: 10.1159/000357832] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 12/06/2013] [Indexed: 11/19/2022]
Abstract
Herein we take advantage of the evolutionary developmental biology approach in order to improve our understanding of both the functional organization and the evolution of the basal ganglia, with a particular focus on the globus pallidus. Therefore, we review data on the expression of developmental regulatory genes (that play key roles in patterning, regional specification and/or morphogenesis), gene function and fate mapping available in different vertebrate species, which are useful to (a) understand the embryonic origin and basic features of each neuron subtype of the basal ganglia (including neurotransmitter/neuropeptide expression and connectivity patterns); (b) identify the same (homologous) subpopulations in different species and the degree of variation or conservation throughout phylogeny, and (c) identify possible mechanisms that may explain the evolution of the basal ganglia. These data show that the globus pallidus of rodents contains two major subpopulations of GABAergic projection neurons: (1) neurons containing parvalbumin and neurotensin-related hexapetide (LANT6), with descending projections to the subthalamus and substantia nigra, which originate from progenitors expressing Nkx2.1, primarily located in the pallidal embryonic domain (medial ganglionic eminence), and (2) neurons containing preproenkephalin (and possibly calbindin), with ascending projections to the striatum, which appear to originate from progenitors expressing Islet1 in the striatal embryonic domain (lateral ganglionic eminence). Based on data on Nkx2.1, Islet1, LANT6 and proenkephalin, it appears that both cell types are also present in the globus pallidus/dorsal pallidum of chicken, frog and lungfish. In chicken, the globus pallidus also contains neurons expressing substance P (SP), perhaps originating in the striatal embryonic domain. In ray-finned and cartilaginous fishes, the pallidum contains at least the Nkx2.1 lineage cell population (likely representing the neurons containing LANT6). Based on the presence of neurons containing enkephalin or SP, it is possible that the pallidum of these animals also includes the Islet1 lineage cell subpopulation, and both neuron subtypes were likely present in the pallidum of the first jawed vertebrates. In contrast, lampreys (jawless fishes) appear to lack the pallidal embryonic domain and the Nkx2.1 lineage cell population that mainly characterize the pallidum in jawed vertebrates. In the absence of data in other jawless fishes, the ancestral condition in vertebrates remains to be elucidated. Perhaps, a major event in telencephalic evolution was the novel expression of Nkx2.1 in the subpallium, which has been related to Hedgehog expression and changes in the regulatory region of Nkx2.1.
Collapse
Affiliation(s)
- Loreta Medina
- Laboratory of Brain Development and Evolution, Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Institute of Biomedical Research of Lleida (IRBLleida), Lleida, Spain
| | | | | | | |
Collapse
|
31
|
Bienkowski MS, Wendel ES, Rinaman L. Organization of multisynaptic circuits within and between the medial and the central extended amygdala. J Comp Neurol 2014; 521:3406-31. [PMID: 23640841 DOI: 10.1002/cne.23356] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 04/16/2013] [Accepted: 04/25/2013] [Indexed: 11/05/2022]
Abstract
The central and medial extended amygdala comprises the central (CEA) and medial nuclei of the amygdala (MEA), respectively, together with anatomically connected regions of the bed nucleus of the stria terminalis (BST). To reveal direct and multisynaptic connections within the central and medial extended amygdala, monosynaptic and transneuronal viral tracing experiments were performed in adult male rats. In the first set of experiments, a cocktail of anterograde and retrograde tracers was iontophoretically delivered into the medial CEA (CEAm), anterodorsal MEA (MEAad), or posterodorsal MEA (MEApd), revealing direct, topographically organized projections between distinct amygdalar and BST subnuclei. In the second set of experiments, the retrograde transneuronal tracer pseudorabies virus (PRV) was microinjected into the CEAm or MEAad. After 48 hours of survival, there were no significant differences between monosynaptic and PRV cases in the subnuclear distribution or proportions of retrogradely labeled BST neurons. However, after 60 hours of survival, CEAm-injected cases displayed an increased proportion of labeled neurons within the anteromedial group of BST subnuclei (amgBST) and within the posterior BST, which do not directly innervate the CEA. MEApd-injected 60-hour cases displayed a significantly increased proportion of retrograde labeling in the amgBST compared with monosynaptic and 48-hour cases, whereas MEAad-injected cases displayed no proportional changes over time. Thus, multisynaptic circuits within the medial extended amygdala overlap the direct connections making up this anatomical unit, whereas the multisynaptic boundaries of the central extended amygdala extend into BST subnuclei previously identified as part of the medial extended amygdala.
Collapse
Affiliation(s)
- Michael S Bienkowski
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260
| | | | | |
Collapse
|
32
|
Abstract
The ability to control the speed of movement is compromised in neurological disorders involving the basal ganglia, a set of subcortical cerebral nuclei that receive prominent dopaminergic projections from the midbrain. For example, bradykinesia, slowness of movement, is a major symptom of Parkinson's disease, whereas rapid tics are observed in patients with Tourette syndrome. Recent experimental work has also implicated dopamine (DA) and the basal ganglia in action timing. Here, I advance the hypothesis that the basal ganglia control the rate of change in kinaesthetic perceptual variables. In particular, the sensorimotor cortico-basal ganglia network implements a feedback circuit for the control of movement velocity. By modulating activity in this network, DA can change the gain of velocity reference signals. The lack of DA thus reduces the output of the velocity control system which specifies the rate of change in body configurations, slowing the transition from one body configuration to another.
Collapse
Affiliation(s)
- Henry H Yin
- Department of Psychology and Neuroscience, and
| |
Collapse
|
33
|
Koshimizu Y, Fujiyama F, Nakamura KC, Furuta T, Kaneko T. Quantitative analysis of axon bouton distribution of subthalamic nucleus neurons in the rat by single neuron visualization with a viral vector. J Comp Neurol 2013; 521:2125-46. [PMID: 23595816 DOI: 10.1002/cne.23277] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Revised: 10/19/2012] [Accepted: 11/27/2012] [Indexed: 12/17/2022]
Abstract
The subthalamic nucleus (STN) of the basal ganglia plays a key role in motor control, and STN efferents are known to mainly target the external segment of the globus pallidus (GPe), entopeduncular nucleus (Ep), and substantia nigra (SN) with some axon collaterals to the other regions. However, it remains to be clarified how each STN neuron projects axon fibers and collaterals to those target nuclei of the STN. Here we visualized the whole axonal arborization of single STN neurons in the rat brain by using a viral vector expressing membrane-targeted green fluorescent protein, and examined the distribution of axon boutons in those target nuclei. The vast majority (8-9) of 10 reconstructed STN neurons projected to the GPe, SN, caudate-putamen (CPu), and Ep, which received, on average ± SD, 457 ± 425, 400 ± 347, 126 ± 143, and 106 ± 100 axon boutons per STN neuron, respectively. Furthermore, the density of axon boutons in the GPe was highest among these nuclei. Although these target nuclei were divided into calbindin-rich and -poor portions, STN projection showed no exclusive preference for those portions. Since STN neurons mainly projected not only to the GPe, SN, and Ep but also to the CPu, the subthalamostriatal projection might serve as a positive feedback path for the striato-GPe-subthalamic disinhibitory pathway, or work as another route of cortical inputs to the striatum through the corticosubthalamostriatal disynaptic excitatory pathway.
Collapse
Affiliation(s)
- Yoshinori Koshimizu
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | | | |
Collapse
|
34
|
Abstract
Inhibitory connections among striatal projection neurons (SPNs) called "feedback inhibition," have been proposed to endow the striatal microcircuit with computational capabilities, such as motor sequence selection, filtering, and the emergence of alternating network states. These properties are disrupted in models of Parkinsonism. However, the impact of feedback inhibition in the striatal network has remained under debate. Here, we test this inhibition at the microcircuit level. We used optical and electrophysiological recordings in mice and rats to demonstrate the action of striatal feedback transmission in normal and pathological conditions. Dynamic calcium imaging with single-cell resolution revealed the synchronous activation of a pool of identified SPNs by antidromic stimulation. Using bacterial artificial chromosome-transgenic mice, we demonstrate that the activated neuron pool equally possessed cells from the direct and indirect basal ganglia pathways. This pool inhibits itself because of its own GABA release when stimuli are frequent enough, demonstrating functional and significant inhibition. Blockade of GABAA receptors doubled the number of responsive neurons to the same stimulus, revealing a second postsynaptic neuron pool whose firing was being arrested by the first pool. Stronger connections arise from indirect SPNs. Dopamine deprivation impaired striatal feedback transmission disrupting the ability of a neuronal pool to arrest the firing of another neuronal pool. We demonstrate that feedback inhibition among SPNs is strong enough to control the firing of cell ensembles in the striatal microcircuit. However, to be effective, feedback inhibition should arise from synchronized pools of SPNs whose targets are other SPNs pools.
Collapse
|
35
|
Loss of parvalbumin-positive neurons from the globus pallidus in animal models of Parkinson disease. J Neuropathol Exp Neurol 2013; 71:973-82. [PMID: 23044920 DOI: 10.1097/nen.0b013e3182717cba] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The external segment of the globus pallidus (GPe) in humans and the equivalent structure in rodents, the globus pallidus (GP), influence signal processing in the basal ganglia under normal and pathological conditions. Parvalbumin (PV) immunoreactivity defines 2 main neuronal subpopulations in the GP/GPe: PV-immunopositive cells that project mainly to the subthalamic nucleus and the internal segment of the GP and PV-negative cells that mainly project to the striatum. We evaluated the number of neurons in the GP/GPe in animal models of Parkinson disease. In rats, dopaminergic denervation with 6-hydroxydopamine (6-OHDA) provoked a significant decrease in the number of GP neurons (12% ± 4%, p < 0.05), which specifically affected the PV subpopulation. A similar trend was observed in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkeys. Markers of GABAergic activity (GAD65 and GAD67 mRNA) were not different from those of controls in 6-OHDA-lesioned rats. Taken together, these findings provide evidence for nondopaminergic neuronal cell loss in the basal ganglia of 6-OHDA-lesioned rats and suggest that a similar loss may occur in the MPTP monkey. These data suggest that in patients with Parkinson disease, the loss of GABAergic neurons projecting to the subthalamic nucleus may contribute to the hyperactivity of this nucleus despite the absence of gross alterations in GAD mRNA expression.
Collapse
|
36
|
Deister CA, Dodla R, Barraza D, Kita H, Wilson CJ. Firing rate and pattern heterogeneity in the globus pallidus arise from a single neuronal population. J Neurophysiol 2012; 109:497-506. [PMID: 23114208 DOI: 10.1152/jn.00677.2012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Intrinsic heterogeneity in networks of interconnected cells has profound effects on synchrony and spike-time reliability of network responses. Projection neurons of the globus pallidus (GPe) are interconnected by GABAergic inhibitory synapses and in vivo fire continuously but display significant rate and firing pattern heterogeneity. Despite being deprived of most of their synaptic inputs, GPe neurons in slices also fire continuously and vary greatly in their firing rate (1-70 spikes/s) and in regularity of their firing. We asked if this rate and pattern heterogeneity arises from separate cell types differing in rate, local synaptic interconnections, or variability of intrinsic properties. We recorded the resting discharge of GPe neurons using extracellular methods both in vivo and in vitro. Spike-to-spike variability (jitter) was measured as the standard deviation of interspike intervals. Firing rate and jitter covaried continuously, with slow firing being associated with higher variability than faster firing, as would be expected from heterogeneity arising from a single physiologically distinct cell type. The relationship between rate and jitter was unaffected by blockade of GABA and glutamate receptors. When the firing rate of individual neurons was altered with constant current, jitter changed to maintain the rate-jitter relationship seen across neurons. Long duration (30-60 min) recordings showed slow and spontaneous bidirectional drift in rate similar to the across-cell heterogeneity. Paired recordings in vivo and in vitro showed that individual cells wandered in rate independently of each other. Input conductance and rate wandered together, in a manner suggestive that both were due to fluctuations of an inward current.
Collapse
Affiliation(s)
- Christopher A Deister
- Department of Biology and Neurosciences Institute, University of Texas, San Antonio, Texas, USA.
| | | | | | | | | |
Collapse
|
37
|
Abstract
Different striatal projection neurons are the origin of a dual organization essential for basal ganglia function. We have defined an analogous division of labor in the external globus pallidus (GPe) of Parkinsonian rats, showing that the distinct temporal activities of two populations of GPe neuron in vivo are underpinned by distinct molecular profiles and axonal connectivities. A first population of prototypic GABAergic GPe neurons fire antiphase to subthalamic nucleus (STN) neurons, often express parvalbumin, and target downstream basal ganglia nuclei, including STN. In contrast, a second population (arkypallidal neurons) fire in-phase with STN neurons, express preproenkephalin, and only innervate the striatum. This novel cell type provides the largest extrinsic GABAergic innervation of striatum, targeting both projection neurons and interneurons. We conclude that GPe exhibits several core components of a dichotomous organization as fundamental as that in striatum. Thus, two populations of GPe neuron together orchestrate activities across all basal ganglia nuclei in a cell-type-specific manner.
Collapse
|
38
|
Abstract
Corticotropin-releasing factor receptor type 1 (CRFR1) plays a major role in the regulation of neuroendocrine and behavioral responses to stress and is considered a key mediator of anxiety behavior. The globus pallidus external (GPe), a main relay center within the basal ganglia that is primarily associated with motor and associative functions, is one of the brain nuclei with the highest levels of CRFR1 expression in the rodent brain. However, the role of CRFR1 in the GPe is yet unknown. In the present study, we used a lentiviral-based system of RNA interference to show that knockdown of CRFR1 mRNA expression in the GPe of adult mice induces a significant increase in anxiety-like behavior, as revealed by the light-dark transfer, open-field, and elevated plus-maze tests. This effect was further confirmed by pharmacological administration of the selective CRFR1 antagonist NBI 30775 (1.75 μg/side) directly into the GPe. In the marble-burying test, blockade of CRFR1 in the GPe increased the percentage of marbles buried and the duration of burying behavior. Additionally, we present evidence suggesting that the enkephalin system is involved in the effect of GPe-CRFR1 on anxiety-like behavior. In contrast to the well established anxiogenic role of CRFR1 in the extended amygdala, our data reveal a novel anxiolytic role for CRFR1 in the GPe.
Collapse
|
39
|
Goldberg J, Bergman H. Computational physiology of the neural networks of the primate globus pallidus: function and dysfunction. Neuroscience 2011; 198:171-92. [DOI: 10.1016/j.neuroscience.2011.08.068] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 08/29/2011] [Accepted: 08/30/2011] [Indexed: 11/25/2022]
|
40
|
Kuenzel WJ, Medina L, Csillag A, Perkel DJ, Reiner A. The avian subpallium: new insights into structural and functional subdivisions occupying the lateral subpallial wall and their embryological origins. Brain Res 2011; 1424:67-101. [PMID: 22015350 PMCID: PMC3378669 DOI: 10.1016/j.brainres.2011.09.037] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 09/16/2011] [Accepted: 09/17/2011] [Indexed: 12/18/2022]
Abstract
The subpallial region of the avian telencephalon contains neural systems whose functions are critical to the survival of individual vertebrates and their species. The subpallial neural structures can be grouped into five major functional systems, namely the dorsal somatomotor basal ganglia; ventral viscerolimbic basal ganglia; subpallial extended amygdala including the central and medial extended amygdala and bed nuclei of the stria terminalis; basal telencephalic cholinergic and non-cholinergic corticopetal systems; and septum. The paper provides an overview of the major developmental, neuroanatomical and functional characteristics of the first four of these neural systems, all of which belong to the lateral telencephalic wall. The review particularly focuses on new findings that have emerged since the identity, extent and terminology for the regions were considered by the Avian Brain Nomenclature Forum. New terminology is introduced as appropriate based on the new findings. The paper also addresses regional similarities and differences between birds and mammals, and notes areas where gaps in knowledge occur for birds.
Collapse
Affiliation(s)
- Wayne J Kuenzel
- Department of Poultry Science, Poultry Science Center, University of Arkansas, Fayetteville, Arkansas 72701, USA.
| | | | | | | | | |
Collapse
|
41
|
Effects of pallidal neurotensin on haloperidol-induced parkinsonian catalepsy: behavioral and electrophysiological studies. Neurosci Bull 2011; 26:345-54. [PMID: 20882060 DOI: 10.1007/s12264-010-0518-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
OBJECTIVE The globus pallidus plays a critical role in movement regulation. Previous studies have indicated that the globus pallidus receives neurotensinergic innervation from the striatum, and systemic administration of a neurotensin analog could produce antiparkinsonian effects. The present study aimed to investigate the effects of pallidal neurotensin on haloperidol-induced parkinsonian symptoms. METHODS Behavioral experiments and electrophysiological recordings were performed in the present study. RESULTS Bilateral infusions of neurotensin into the globus pallidus reversed haloperidol-induced parkinsonian catalepsy in rats. Electrophysiological recordings showed that microinjection of neurotensin induced excitation of pallidal neurons in the presence of systemic haloperidol administration. The neurotensin type-1 receptor antagonist SR48692 blocked both the behavioral and the electrophysiological effects induced by neurotensin. CONCLUSION Activation of pallidal neurotensin receptors may be involved in neurotensin-induced antiparkinsonian effects.
Collapse
|
42
|
Jin XT, Paré JF, Smith Y. Differential localization and function of GABA transporters, GAT-1 and GAT-3, in the rat globus pallidus. Eur J Neurosci 2011; 33:1504-18. [PMID: 21410779 DOI: 10.1111/j.1460-9568.2011.07636.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
GABA transporter subtype 1 (GAT-1) and GABA transporter subtype 3 (GAT-3) are the main transporters that regulate inhibitory GABAergic transmission in the mammalian brain through GABA reuptake. In this study, we characterized the ultrastructural localizations and determined the respective roles of these transporters in regulating evoked inhibitory postsynaptic currents (eIPSCs) in globus pallidus (GP) neurons after striatal stimulation. In the young and adult rat GP, GAT-1 was preferentially expressed in unmyelinated axons, whereas GAT-3 was almost exclusively found in glial processes. Except for rare instances of GAT-1 localization, neither of the two transporters was significantly expressed in GABAergic terminals in the rat GP. 1-(4,4-Diphenyl-3-butenyl)-3-piperidinecarboxylic acid hydrochloride (SKF 89976A) (10 μm), a GAT-1 inhibitor, significantly prolonged the decay time, but did not affect the amplitude, of eIPSCs induced by striatal stimulation (15-20 V). On the other hand, the semi-selective GAT-3 inhibitor 1-(2-[tris(4-methoxyphenyl)methoxy]ethyl)-(S)-3-piperidinecarboxylic acid (SNAP 5114) (10 μm) increased the amplitude and prolonged the decay time of eIPSCs. The effects of transporter blockade on the decay time and amplitude of eIPSCs were further increased when both inhibitors were applied together. Furthermore, SKF 89976A or SNAP 5114 blockade also increased the amplitude and frequency of spontaneous IPSCs, but did not affect miniature IPSCs. Significant GABA(A) receptor-mediated tonic currents were induced in the presence of high concentrations of both SKF 89976A (30 μm) and SNAP 5114 (30 μm). In conclusion, these data indicate that GAT-1 and GAT-3 represent different target sites through which GABA reuptake may subserve complementary regulation of GABAergic transmission in the rat GP.
Collapse
Affiliation(s)
- Xiao-Tao Jin
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA.
| | | | | |
Collapse
|
43
|
Abstract
The mechanisms controlling the assembly of brain nuclei are poorly understood. In the forebrain, it is typically assumed that the formation of nuclei follows a similar sequence of events that in the cortex. In this structure, projection neurons are generated sequentially from common progenitor cells and migrate radially to reach their final destination, whereas interneurons are generated remotely and arrive to the cortex through tangential migration. Using the globus pallidus as a model to study the formation of forebrain nuclei, we found that the development of this basal ganglia structure involves the generation of several distinct classes of projection neurons from relatively distant progenitor pools, which then assemble together through tangential migration. Our results thus suggest that tangential migration in the forebrain is not limited to interneurons, as previously thought, but also involves projection neurons and reveal that the assembly of forebrain nuclei is more complex than previously anticipated.
Collapse
|
44
|
Xue Y, Han XH, Chen L. Effects of Pharmacological Block of GABA(A) Receptors on Pallidal Neurons in Normal and Parkinsonian State. Front Cell Neurosci 2010; 4:2. [PMID: 20204138 PMCID: PMC2831626 DOI: 10.3389/neuro.03.002.2010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 01/26/2010] [Indexed: 11/19/2022] Open
Abstract
The globus pallidus plays a central integrative role in the basal ganglia circuitry. Morphological studies have revealed a high level of GABA and GABAA receptors in the globus pallidus. To further investigate the effects of endogenous GABAA neurotransmission in the globus pallidus of normal and parkinsonian rats, in vivo extracellular recording and behavioral tests were performed in the present studies. In normal rats, micro-pressure ejection of GABAA receptor antagonist gabazine (0.1 mM) increased the spontaneous firing rate of pallidal neurons by 28.3%. Furthermore, in 6-hydroxydopamine parkinsonian rats, gabazine increased the firing rate by 46.0% on the lesioned side, which was significantly greater than that on the unlesioned side (21.5%, P < 0.05), as well as that in normal rats (P < 0.05). In the behaving rats, unilateral microinjection of gabazine (0.1 mM) evoked consistent contralateral rotation in normal rats, and significantly potentiated the number of apomorphine-induced contralateral rotations in parkinsonian rats. The present electrophysiological and behavioral findings may provide a rational for further investigations into the potential of pallidal endogenous GABAA neurotransmission in the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Yan Xue
- Department of Physiology, Qingdao University Qingdao, China
| | | | | |
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW Akinesia, rigidity and low-frequency rest tremor are the three cardinal motor signs of Parkinson's disease and some Parkinson's disease animal models. However, cumulative evidence supports the view that akinesia/rigidity vs. tremor reflect different pathophysiological phenomena in the basal ganglia. Here, we review the recent physiological literature correlating abnormal neural activity in the basal ganglia with Parkinson's disease clinical symptoms. RECENT FINDINGS The subthalamic nucleus of Parkinson's disease patients is characterized by oscillatory activity in the beta-frequency (approximately 15 Hz) range. However, Parkinson's disease tremor is not strictly correlated with the abnormal synchronous oscillations of the basal ganglia. On the other hand, akinesia and rigidity are better correlated with the basal ganglia beta oscillations. SUMMARY The abnormal basal ganglia output leads to akinesia and rigidity. Parkinson's disease tremor most likely evolves as a downstream compensatory mechanism.
Collapse
|
46
|
Abellán A, Medina L. Subdivisions and derivatives of the chicken subpallium based on expression of LIM and other regulatory genes and markers of neuron subpopulations during development. J Comp Neurol 2009; 515:465-501. [DOI: 10.1002/cne.22083] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
47
|
Sani S, Ostrem JL, Shimamoto S, Levesque N, Starr PA. Single unit "pauser" characteristics of the globus pallidus pars externa distinguish primary dystonia from secondary dystonia and Parkinson's disease. Exp Neurol 2009; 216:295-9. [PMID: 19146856 PMCID: PMC2659350 DOI: 10.1016/j.expneurol.2008.12.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 12/01/2008] [Accepted: 12/03/2008] [Indexed: 11/16/2022]
Abstract
The presence of high frequency discharge neurons with long periods of silence or "pauses" in the globus pallidus pars externa (GPe) is a unique identifying feature of this nucleus. Prior studies have demonstrated that pause characteristics reflect synaptic inputs into GPe. We hypothesized that GPe pause characteristics should distinguish movement disorders whose basal ganglia network abnormalities are different. We examined pause characteristics in 224 GPe units in patients with primary generalized dystonia, Parkinson's disease (PD), and secondary dystonia, undergoing single unit microelectrode recording for DBS placement in the awake state. Pauses in neuronal discharge were identified using the Poisson surprise method. Mean pause length in primary dystonia (606.8373.3) was higher than in PD (557.4366.6) (p<0.05). Interpause interval (IPI) was lower in primary dystonia (2331.63874.1) than PD (3646.45894.5) (p<0.01), and mean pause frequency was higher in primary dystonia (0.140.10) than PD (0.070.12) (p<0.01). Comparison of pause characteristics in primary versus secondary generalized dystonia revealed a significantly longer mean pause length in primary (606.8373.3) than in secondary dystonia (495.6236.5) (p<0.01). IPI was shorter in primary (2331.6+/-3874.1) than in secondary dystonia (3484.5+/-3981.6) (p<0.01). The results show that pause characteristics recorded in the awake human GPe distinguish primary dystonia from Parkinson's disease and secondary dystonia. The differences may reflect increased phasic input from striatal D2 receptor positive cells in primary dystonia, and are consistent with a recent model proposing that GPe provides capacity scaling for cortical input.
Collapse
Affiliation(s)
- Sepehr Sani
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California 94143, USA
| | | | | | | | | |
Collapse
|
48
|
Künzle H. The presence and absence of prosencephalic cell groups relaying striatal information to the medial and lateral thalamus in tenrec. J Anat 2008; 212:795-816. [PMID: 18510507 DOI: 10.1111/j.1469-7580.2008.00905.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Although there are remarkable differences regarding the output organization of basal ganglia between mammals and non-mammals, mammalian species with poorly differentiated brain have scarcely been investigated in this respect. The aim of the present study was to identify the pallidal neurons giving rise to thalamic projections in the Madagascar lesser hedgehog tenrec (Afrotheria). Following tracer injections into the thalamus, retrogradely labelled neurons were found in the depth of the olfactory tubercle (particularly the hilus of the Callejal islands and the insula magna), in subdivisions of the diagonal band complex, the peripeduncular region and the thalamic reticular nucleus. No labelled cells were seen in the globus pallidus. Pallidal neurons were tentatively identified on the basis of their striatal afferents revealed hodologically using anterograde axonal tracer substances and immunohistochemically with antibodies against enkephalin and substance P. The data showed that the tenrec's medial thalamus received prominent projections from ventral pallidal cells as well as from a few neurons within and ventral to the cerebral peduncle. The only regions projecting to the lateral thalamus appeared to be the thalamic reticular nucleus (RTh) and the dorsal peripeduncular nucleus (PpD). On the basis of immunohistochemical data and the topography of its thalamic projections, the PpD was considered to be an equivalent to the pregeniculate nucleus in other mammals. There was no evidence of entopeduncular (internal pallidal) neurons being present within the RTh/PpD complex, neuropils of which did not stain for enkephalin and substance P. The ventrolateral portion of RTh, the only region eventually receiving a striatal input, projected to the caudolateral rather than the rostrolateral thalamus. Thus, the striatopallidal output organization in the tenrec appeared similar, in many respects, to the output organization in non-mammals. This paper considers the failure to identify entopeduncular neurons projecting to the rostrolateral thalamus in a mammal with a little differentiated cerebral cortex, and also stresses the discrepancy between this absence and the presence of a distinct external pallidal segment (globus pallidus).
Collapse
Affiliation(s)
- Heinz Künzle
- Anatomisches Institut, LM Universität München, Germany.
| |
Collapse
|
49
|
Miura M, Masuda M, Aosaki T. Roles of micro-opioid receptors in GABAergic synaptic transmission in the striosome and matrix compartments of the striatum. Mol Neurobiol 2008; 37:104-15. [PMID: 18473190 DOI: 10.1007/s12035-008-8023-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Accepted: 04/17/2008] [Indexed: 10/22/2022]
Abstract
The striatum is divided into two compartments, the striosomes and extrastriosomal matrix, which differ in several cytochemical markers, input-output connections, and time of neurogenesis. Since it is thought that limbic, reward-related information and executive aspects of behavioral information may be differentially processed in the striosomes and matrix, respectively, intercompartmental communication should be of critical importance to proper functioning of the basal ganglia-thalamocortical circuits. Cholinergic interneurons are in a suitable position for this communication since they are preferentially located in the striosome-matrix boundaries and are known to elicit a conditioned pause response during sensorimotor learning. Recently, micro-opioid receptor (MOR) activation was found to presynaptically suppress the amplitude of GABAergic inhibitory postsynaptic currents in striosomal cells but not in matrix cells. Disinhibition of cells in the striosomes is further enhanced by inactivation of the protein kinase C cascade. We discuss in this review the possibility that MOR activation in the striosomes affects the activity of cholinergic interneurons and thus leads to changes in synaptic efficacy in the striatum.
Collapse
Affiliation(s)
- Masami Miura
- Neural Circuits Dynamics Research Group, Tokyo Metropolitan Institute of Gerontology, 35-2, Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | | | | |
Collapse
|
50
|
Burkhardt JM, Constantinidis C, Anstrom KK, Roberts DCS, Woodward DJ. Synchronous oscillations and phase reorganization in the basal ganglia during akinesia induced by high-dose haloperidol. Eur J Neurosci 2008; 26:1912-24. [PMID: 17897397 DOI: 10.1111/j.1460-9568.2007.05813.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Movement disorders such as tremor and akinesia observed in Parkinson's disease have been attributed to dopamine (DA) depletion in the basal ganglia. The changes in subcortical neuronal discharge patterns that follow DA depletion have been a matter of much discussion. Here, we implanted rats with chronic recording electrodes bilaterally in the striatum (CPu) and external globus pallidus (GPe), and induced both acute and repeated DA blockade by administration of high-dose haloperidol. Recordings were made in baseline states, as well as before and after haloperidol injections, which rendered rats akinetic. The immediate physiological effect of pharmacological DA blockade was the development of prominent oscillatory firing in the 6-8 Hz range in both CPu and GPe. Importantly, this oscillatory pattern was not accompanied by consistent changes in the firing rate of either CPu or GPe neurons. Cross-correlation analysis further indicated that neurons within the CPu and GPe fired synchronously after DA blockade. Furthermore, although phase lags between neuronal discharges in the GPe and CPu were uniformly distributed prior to haloperidol administration, CPu significantly lagged GPe discharges after repeated DA blockade. Our results demonstrate that acute DA blockade is sufficient to produce synchronous oscillatory activity across basal ganglia neuron populations, and that prolonged DA blockade results in phase lag changes in pallidostriatal synchrony.
Collapse
Affiliation(s)
- John M Burkhardt
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157, USA.
| | | | | | | | | |
Collapse
|