1
|
Folgueira M, Clarke JDW. Telencephalic eversion in embryos and early larvae of four teleost species. Evol Dev 2024; 26:e12474. [PMID: 38425004 DOI: 10.1111/ede.12474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024]
Abstract
The telencephalon of ray-finned fishes undergoes eversion, which is very different to the evagination that occurs in most other vertebrates. Ventricle morphogenesis is key to build an everted telencephalon. Thus, here we use the apical marker zona occludens 1 to understand ventricle morphology, extension of the tela choroidea and the eversion process during early telencephalon development of four teleost species: giant danio (Devario aequipinnatus), blind cavefish (Astyanax mexicanus), medaka (Oryzias latipes), and paradise fish (Macroposus opercularis). In addition, by using immunohistochemistry against tubulin and calcium-binding proteins, we analyze the general morphology of the telencephalon, showing changes in the location and extension of the olfactory bulb and other telencephalic regions from 2 to 5 days of development. We also analyze the impact of abnormal eye and telencephalon morphogenesis on eversion, showing that cyclops mutants do undergo eversion despite very dramatic abnormal eye morphology. We discuss how the formation of the telencephalic ventricle in teleost fish, with its characteristic shape, is a crucial event during eversion.
Collapse
Affiliation(s)
- Mónica Folgueira
- Departamento de Bioloxía, Facultade de Ciencias, Centro Interdisciplinar de Química e Bioloxía (CICA), Universidade da Coruña, A Coruña, Spain
| | - Jonathan D W Clarke
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| |
Collapse
|
2
|
Otsuka M, Sugita S, Shimizu D, Aoyama M, Matsuda M. Radial polarity in the first cranial neuromast of selected teleost fishes. J Morphol 2023; 284:e21654. [PMID: 37856275 DOI: 10.1002/jmor.21654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 10/02/2023] [Accepted: 10/08/2023] [Indexed: 10/21/2023]
Abstract
The neuromast is a sensory structure of the lateral line system in aquatic vertebrates, which consists of hair cells and supporting cells. Hair cells are mechanosensory cells, generally arranged with bidirectional polarity. Here, we describe a neuromast with hair cells arranged radially instead of bidirectionally in the first cranial neuromast of four teleost species: red seabream (Pagrus major), spotted halibut (Verasper variegatus), brown sole (Pseudopleuronectes herzensteini), and marbled sole (Pseudopleuronectes yokohamae). In these four species, this polarity was identified only in the first cranial neuromast, where it appeared at the rostral edge of the otic vesicle before hatching. We investigated the initial appearance and fate of this unique neuromast using scanning electron microscopy. We also assessed characteristics of radial neuromast pertaining to morphogenesis, development, and innervation using a vital fluorescent marker and immunohistochemistry in V. variegatus. The kinocilium initially appears at the center of each hair cell, then moves to its outer perimeter to form radial polarity by around 7 days postfertilization. However, hair cells arranged radially disappear about 15 days after hatching. This is followed by the appearance of bidirectionally arranged hair cells, indicating that polarity replacement from radial to bidirectional has occurred. In P. herzensteini, both afferent and efferent synapses between the nerve fibers and hair cells were observed by transmission electron microscopy, suggesting that radial neuromast is functional. Our discovery suggests that neuromasts with radial polarity could enable larval fish to assimilate multiaxial stimuli during this life stage, potentially assisting them in detecting small water vibrations or water pressure changes.
Collapse
Affiliation(s)
- Machiko Otsuka
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, Japan
| | - Shoei Sugita
- Department of Agrobiology and Bioresources, Faculty of Agriculture, Utsunomiya University, Tochigi, Japan
| | | | - Masato Aoyama
- Department of Agrobiology and Bioresources, Faculty of Agriculture, Utsunomiya University, Tochigi, Japan
| | - Masaru Matsuda
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, Japan
| |
Collapse
|
3
|
Yamamoto N, Yoshimoto M. Obituary: Hironobu Ito, M.D., Ph.D. (1939–2020). J Comp Neurol 2021. [DOI: 10.1002/cne.25016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Naoyuki Yamamoto
- Laboratory of Fish Biology, Graduate School of Bioagricultural Sciences Nagoya University Nagoya Japan
| | - Masami Yoshimoto
- Department of Rehabilitation Sciences University of Tokyo Health Sciences Tokyo Japan
| |
Collapse
|
4
|
Dodo Y, Chatani M, Azetsu Y, Hosonuma M, Karakawa A, Sakai N, Negishi-Koga T, Tsuji M, Inagaki K, Kiuchi Y, Takami M. Myelination during fracture healing in vivo in myelin protein zero (p0) transgenic medaka line. Bone 2020; 133:115225. [PMID: 31923703 DOI: 10.1016/j.bone.2020.115225] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/04/2020] [Accepted: 01/05/2020] [Indexed: 12/11/2022]
Abstract
During the fracture healing process, osteoblasts and osteoclasts, as well as the nervous system are known to play important roles for signaling in the body. Glia cells contribute to the healing process by myelination, which can increase the speed of signals transmitted between neurons. However, the behavior of myelinating cells at a fracture site remains unclear. We developed a myelin protein zero (mpz)-EGFP transgenic medaka line for tracing myelinating cells. Mpz-enhanced green fluorescence protein (EGFP)-positive (mpz+) cells are driven by the 2.9-kb promoter of the medaka mpz gene, which is distributed throughout the nervous system, such as the brain, spinal cord, lateral line, and peripheral nerves. In the caudal fin region, mpz+ cells were found localized parallel with the fin ray (bone) in the adult stage. mpz+ cells were not distributed with fli-DsRed positive (fli+) blood vessels, but with some nerve fibers, and were dyed with the anti-acetylated tubulin antibody. We then fractured one side of the caudal lepidotrichia in a caudal fin of mpz-EGFP medaka and found a unique phenomenon, in that mpz+ cells were accumulated at 1 bone away from the fracture site. This mpz+ cell accumulation phenomenon started from 4 days after fracture of the proximal bone. Thereafter, mpz+ cells became elongated from the proximal bone to the distal bone and finally showed a crosslink connection crossing the fracture site to the distal bone at 28 days after fracture. Finally, the effects of rapamycin, known as a mTOR inhibitor, on myelination was examined. Rapamycin treatment of mpz-EGFP/osterix-DsRed double transgenic medaka inhibited not only the crosslink connection of mpz+ cells but also osterix+ osteoblast accumulation at the fracture site, accompanied with a fracture healing defect. These findings indicated that mTOR signaling plays important roles in bone formation and neural networking during fracture healing. Taken together, the present results are the first to show the dynamics of myelinating cells in vivo.
Collapse
Affiliation(s)
- Yusuke Dodo
- Department of Pharmacology, Division of Medical Pharmacology, Showa University School of Medicine, Tokyo 142-8555, Japan; Department of Pharmacology, Showa University School of Dentistry, Tokyo 142-8555, Japan; Pharmacological Research Center, Showa University, Tokyo 142-8555, Japan; Department of Orthopaedic Surgery, Showa University School of Medicine, Tokyo 142-8555, Japan
| | - Masahiro Chatani
- Department of Pharmacology, Showa University School of Dentistry, Tokyo 142-8555, Japan; Pharmacological Research Center, Showa University, Tokyo 142-8555, Japan.
| | - Yuki Azetsu
- Department of Pharmacology, Showa University School of Dentistry, Tokyo 142-8555, Japan; Pharmacological Research Center, Showa University, Tokyo 142-8555, Japan
| | - Masahiro Hosonuma
- Department of Pharmacology, Division of Medical Pharmacology, Showa University School of Medicine, Tokyo 142-8555, Japan; Department of Pharmacology, Showa University School of Dentistry, Tokyo 142-8555, Japan; Pharmacological Research Center, Showa University, Tokyo 142-8555, Japan
| | - Akiko Karakawa
- Department of Pharmacology, Showa University School of Dentistry, Tokyo 142-8555, Japan; Pharmacological Research Center, Showa University, Tokyo 142-8555, Japan
| | - Nobuhiro Sakai
- Department of Pharmacology, Showa University School of Dentistry, Tokyo 142-8555, Japan; Pharmacological Research Center, Showa University, Tokyo 142-8555, Japan
| | - Takako Negishi-Koga
- Department of Pharmacology, Showa University School of Dentistry, Tokyo 142-8555, Japan; Pharmacological Research Center, Showa University, Tokyo 142-8555, Japan; Division of Mucosal Barriology, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Mayumi Tsuji
- Department of Pharmacology, Division of Medical Pharmacology, Showa University School of Medicine, Tokyo 142-8555, Japan; Pharmacological Research Center, Showa University, Tokyo 142-8555, Japan
| | - Katsunori Inagaki
- Department of Orthopaedic Surgery, Showa University School of Medicine, Tokyo 142-8555, Japan
| | - Yuji Kiuchi
- Department of Pharmacology, Division of Medical Pharmacology, Showa University School of Medicine, Tokyo 142-8555, Japan; Pharmacological Research Center, Showa University, Tokyo 142-8555, Japan
| | - Masamichi Takami
- Department of Pharmacology, Showa University School of Dentistry, Tokyo 142-8555, Japan; Pharmacological Research Center, Showa University, Tokyo 142-8555, Japan
| |
Collapse
|
5
|
Tosa Y, Tsukano K, Itoyama T, Fukagawa M, Nii Y, Ishikawa R, Suzuki KIT, Fukui M, Kawaguchi M, Murakami Y. Involvement of Slit-Robo signaling in the development of the posterior commissure and concomitant swimming behavior in Xenopus laevis. ZOOLOGICAL LETTERS 2015; 1:28. [PMID: 26605073 PMCID: PMC4657333 DOI: 10.1186/s40851-015-0029-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 08/31/2015] [Indexed: 06/05/2023]
Abstract
INTRODUCTION During vertebrate development, the central nervous system (CNS) has stereotyped neuronal tracts (scaffolds) that include longitudinal and commissural axonal bundles, such as the medial longitudinal fascicle or the posterior commissure (PC). As these early tracts appear to guide later-developing neurons, they are thought to provide the basic framework of vertebrate neuronal circuitry. The proper construction of these neuronal circuits is thought to be a crucial step for eliciting coordinated behaviors, as these circuits transmit sensory information to the integrative center, which produces motor commands for the effective apparatus. However, the developmental plan underlying some commissures and the evolutionary transitions they have undergone remain to be elucidated. Little is known about the role of axon guidance molecules in the elicitation of early-hatched larval behavior as well. RESULTS Here, we report the developmentally regulated expression pattern of axon-guidance molecules Slit2 ligand and Robo2 receptor in Xenopus laevis and show that treatment of X. laevis larvae with a slit2- or robo2-morpholino resulted in abnormal swimming behavior. We also observed an abnormal morphology of the PC, which is part of the early axonal scaffold. CONCLUSION Our present findings suggest that expression patterns of Slit2 and Robo2 are conserved in tetrapods, and that their signaling contributes to the construction of the PC in Xenopus. Given that the PC also includes several types of neurons stemming from various parts of the CNS, it may represent a candidate prerequisite neuronal tract in the construction of subsequent complex neuronal circuits that trigger coordinated behavior.
Collapse
Affiliation(s)
- Yasuhiko Tosa
- />Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577 Japan
| | - Kiyohito Tsukano
- />Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577 Japan
| | - Tatsuya Itoyama
- />Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577 Japan
| | - Mai Fukagawa
- />Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577 Japan
| | - Yukako Nii
- />Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577 Japan
| | - Ryota Ishikawa
- />Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577 Japan
| | - Ken-ichi T. Suzuki
- />Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526 Japan
| | - Makiko Fukui
- />Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577 Japan
| | - Masahumi Kawaguchi
- />Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194 Japan
| | - Yasunori Murakami
- />Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577 Japan
| |
Collapse
|
6
|
Ware M, Dupé V, Schubert FR. Evolutionary Conservation of the Early Axon Scaffold in the Vertebrate Brain. Dev Dyn 2015; 244:1202-14. [PMID: 26228689 DOI: 10.1002/dvdy.24312] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 07/20/2015] [Accepted: 07/20/2015] [Indexed: 11/11/2022] Open
Abstract
The early axon scaffold is the first axonal structure to appear in the rostral brain of vertebrates, paving the way for later, more complex connections. Several early axon scaffold components are conserved between all vertebrates; most notably two main ventral longitudinal tracts, the tract of the postoptic commissure and the medial longitudinal fascicle. While the overall structure is remarkably similar, differences both in the organization and the development of the early tracts are apparent. This review will bring together extensive data from the last 25 years in different vertebrates and for the first time, the timing and anatomy of these early tracts have been directly compared. Representatives of major vertebrate clades, including cat shark, Xenopus, chick, and mouse embryos, will be compared using immunohistochemistry staining based on previous results. There is still confusion over the nomenclature and homology of these tracts which this review will aim to address. The discussion here is relevant both for understanding the evolution of the early axon scaffold and for future studies into the molecular regulation of its formation.
Collapse
Affiliation(s)
- Michelle Ware
- Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, United Kingdom.,Institut de Génétique et Développement, CNRS UMR6290, Université de Rennes1, IFR140, GFAS, Faculté de Médecine, Rennes, France
| | - Valérie Dupé
- Institut de Génétique et Développement, CNRS UMR6290, Université de Rennes1, IFR140, GFAS, Faculté de Médecine, Rennes, France
| | - Frank R Schubert
- Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, United Kingdom
| |
Collapse
|
7
|
Development of the Early Axon Scaffold in the Rostral Brain of the Small Spotted Cat Shark (Scyliorhinus canicula) Embryo. INTERNATIONAL SCHOLARLY RESEARCH NOTICES 2014; 2014:196594. [PMID: 27350994 PMCID: PMC4897524 DOI: 10.1155/2014/196594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/15/2014] [Accepted: 09/16/2014] [Indexed: 11/30/2022]
Abstract
The cat shark is increasingly used as a model for Chondrichthyes, an evolutionarily important sister group of the bony vertebrates that include teleosts and tetrapods. In the bony vertebrates, the first axon tracts form a highly conserved early axon scaffold. The corresponding structure has not been well characterised in cat shark and will prove a useful model for comparative studies. Using pan-neural markers, the early axon scaffold of the cat shark, Scyliorhinus canicula, was analysed. Like in other vertebrates, the medial longitudinal fascicle was the first axon tract to form from a small cluster of neurones in the ventral brain. Subsequently, additional neuronal clusters and axon tracts emerged which formed an array of longitudinal, transversal, and commissural axons tracts in the Scyliorhinus canicula embryonic brain. The first structures to appear after the medial longitudinal fascicle were the tract of the postoptic commissure, the dorsoventral diencephalic tract, and the descending tract of the mesencephalic nucleus of the trigeminal nerve. These results confirm that the early axon scaffold in the embryonic brain is highly conserved through vertebrate evolution.
Collapse
|
8
|
Feasibility of Medaka (Oryzias latipes) as an Animal Model to Study Fetal Alcohol Spectrum Disorder. ADVANCES IN MOLECULAR TOXICOLOGY VOLUME 6 2012. [DOI: 10.1016/b978-0-444-59389-4.00003-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Abstract
The arrangement of the early nerve connections in the embryonic vertebrate brain follows a well-conserved pattern, forming the early axon scaffold. The early axon tracts have been described in a number of anamniote species and in mouse, but a detailed analysis in chick is lacking. We have used immunostaining, axon tracing and in situ hybridisation to analyse the development of the early axon scaffold in the embryonic chick brain in relation to the neuromeric organisation of the brain. The first tract to be formed is the medial longitudinal fascicle (MLF), shortly followed by the tract of the postoptic commissure to pioneer the ventral longitudinal tract system. The MLF was found to originate from three different populations of neurones located in the diencephalon. Neurones close to the dorsal midline of the mesencephalon establish the descending tract of the mesencephalic nucleus of the trigeminus. Their axons pioneer the lateral longitudinal tract. At later stages, the tract of the posterior commissure emerges in the caudal pretectum as the first transversal tract. It is formed by dorsally projecting axons from neurones located in the ventral pretectum, and by ventrally projecting axons from neurones located in the dorsal pretectum. The organisation of neurones and axons in the chick brain is similar to that described in the mouse, though tracts form in a different order and appear more clearly distinguished than in the mammalian model.
Collapse
Affiliation(s)
- Michelle Ware
- Institute of Biomedical and Biomolecular Sciences, School of Biological Sciences, University of Portsmouth, Portsmouth, UK
| | | |
Collapse
|
10
|
Pritz MB. Forebrain and midbrain fiber tract formation during early development in Alligator embryos. Brain Res 2009; 1313:34-44. [PMID: 19968970 DOI: 10.1016/j.brainres.2009.11.081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 11/20/2009] [Accepted: 11/30/2009] [Indexed: 10/20/2022]
Abstract
The relationship between fiber tract formation and transverse and longitudinal borders of the diencephalon was investigated in Alligator embryos beginning when this structure was a single unit and continuing until internal subgroups were present within individual segments. At all stages of development, distinct bundles of fibers were not restricted to borders between morphological segments nor were they located at the alar/basal plate boundary. With the exception of a few fine fibers that occupied only a part of certain inter-diencephalic boundaries, fiber tracts were present within the parenchyma of respective subdivisions. In the process of this analysis, fiber tract formation was also documented in the telencephalon, secondary prosencephalon, and midbrain during this period of early development. Fiber tracts were classified into three groups based on orientation: transverse; longitudinal; and commissural. At early stages of development, similarities between Alligator and other species suggest that these bundles represent a primary scaffold for all vertebrates with two exceptions. One was the presence of the descending tract of the mesencephalic trigeminal nucleus in Alligator and other jawed animals but not in jawless vertebrates. The other was the absence of the dorsoventral diencephalic tract in Alligator which lacks a pineal gland.
Collapse
Affiliation(s)
- Michael B Pritz
- Department of Neurological Surgery and Stark Neurosciences Research Institute, Indiana University School of Medicine, 545 Barnhill Drive, Emerson 141, Indianapolis, IN 46202-5124, USA.
| |
Collapse
|
11
|
Takashima S, Kage T, Yasuda T, Inohaya K, Maruyama K, Araki K, Takeda H, Ishikawa Y. Phenotypic analyses of a medaka mutant reveal the importance of bilaterally synchronized expression of isthmic fgf8 for bilaterally symmetric formation of the optic tectum. Genesis 2009; 46:537-45. [PMID: 18802954 DOI: 10.1002/dvg.20424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Developing neural tubes are bilaterally symmetric in all vertebrate embryos, irrespective of the presence of gene networks that generate left-right asymmetry. To explore the mechanisms that underlie the bilaterally symmetric formation of the neural tube, we examined a medaka (Oryzias latipes) dominant mutant, Oot, the neural tube of which transiently lacks normal symmetry in the optic tectum. We found that spatial changes in isthmic fgf8 expression do not occur on one side of the mutant, resulting in a transient desynchronized expression that correlates with tectal asymmetry. The application of exogenous FGF8 on one side of a wild-type embryo mimics the Oot phenotype, indicating that the bilaterally equivalent expression of isthmic fgf8 is crucial for the bilaterally symmetric development of the tectum. These results suggest that tectal symmetry is not a "default" state, but rather is maintained actively by a bilaterally coupled and synchronized regulation of isthmic fgf8 expression.
Collapse
Affiliation(s)
- Shigeo Takashima
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Abe H, Oka Y. Primary culture of the isolated terminal nerve-gonadotrophin-releasing hormone neurones derived from adult teleost (dwarf gourami, Colisa lalia) brain for the study of peptide release mechanisms. J Neuroendocrinol 2009; 21:489-505. [PMID: 19302187 DOI: 10.1111/j.1365-2826.2009.01866.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Terminal nerve (TN)-gonadotrophin-releasing hormone (GnRH) neurones are suggested to release GnRH peptides from widely-branched neural processes and the somatodendritic regions, depending on their firing activities. The released GnRH may exert its neuromodulatory actions on GnRH receptors located on various target neurones. The electrophysiological and morphological characteristics of TN-GnRH neurones, which are shared with other peptidergic neurones of vertebrate brains, are thought to represent general features of neuromodulatory and ⁄ or neurosecretory neurones. To address questions concerning the ways in which the electrical activities of peptidergic (TN-GnRH) neuronal somata affect GnRH release from different neuronal compartments, we established a primary culture system of TN-GnRH neurones, which will facilitate simultaneous recordings of various physiological signals from different compartments of a single TN-GnRH neurone cultured in a flat plane. The whole brain of an adult freshwater teleost, the dwarf gourami, was dissected out. The TN-GnRH neurones were then isolated and plated on a coverslip in culture medium. The isolated TN-GnRH neurones could be cultured for up to 2 weeks. In culture, the neurones grew both axon- and dendrite-like neurites, and these processes were phenotypically similar to those found in situ. Unlike the neurones in situ, the cultured neurones had somewhat depolarised resting membrane potentials and showed no spontaneous discharge, which, however, should not be considered to comprise unhealthy culture conditions. Instead, they showed subthreshold spontaneous membrane potential oscillations and could be induced to fire in phasic or tonic patterns. In addition, stimulus-induced exocytotic events could be demonstrated in the soma and neurites using a fluorescent dye, FM1-43. Thus, the present isolated culture of TN-GnRH neurones will open up a wide range of possibilities for studying cellular mechanism of exocytosis, generation of spontaneous firing activity, and neurite outgrowth in peptidergic neurones.
Collapse
Affiliation(s)
- Hideki Abe
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Japan.
| | | |
Collapse
|
13
|
Murakami Y, Watanabe A. Development of the central and peripheral nervous systems in the lamprey. Dev Growth Differ 2009; 51:197-205. [DOI: 10.1111/j.1440-169x.2009.01087.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Padilla S, Cowden J, Hinton DE, Johnson R, Flynn K, Hardman RC, Yuen B, Law S, Kullman SW, Au DW. Use of medaka in toxicity testing. CURRENT PROTOCOLS IN TOXICOLOGY 2009; Chapter 1:Unit1.10. [PMID: 20922755 PMCID: PMC4300524 DOI: 10.1002/0471140856.tx0110s39] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Small aquarium fishes are increasingly used as animal models, and one of these, the Japanese Medaka (Oryzias latipes), is frequently utilized for toxicity testing. While these vertebrates have many similarities with their terrestrial counterparts, there are differences that must be considered if these organisms are to be used to their highest potential. Commonly, testing may employ either the developing embryo or adults; both are easy to use and work with. To illustrate the utility and breadth of toxicity testing possible using medaka fish, we present protocols for assessing neurotoxicity in developing embryos, evaluating toxicant effects on sexual phenotype after treatment with endocrine-disrupting chemicals by sexual genotyping, and measuring hepatotoxicity in adult fish after treatment with a model hepatotoxicant. The methods run the gamut from immunohistology through PCR to basic histological techniques.
Collapse
Affiliation(s)
- Stephanie Padilla
- Neurotoxicology Division, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - John Cowden
- Neurotoxicology Division, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - David E. Hinton
- Environmental Sciences and Policy Division, Nicholas School of the Environment and Earth Sciences, Duke University, Box 90328, Durham, NC 27708-0328
| | | | - Kevin Flynn
- U.S. Environmental Protection Agency, Duluth, Minnesota
| | - Ronald C. Hardman
- Environmental Sciences and Policy Division, Nicholas School of the Environment and Earth Sciences, Duke University, Box 90328, Durham, NC 27708-0328
| | - Bonny Yuen
- Environmental Sciences and Policy Division, Nicholas School of the Environment and Earth Sciences, Duke University, Box 90328, Durham, NC 27708-0328
| | - Sheran Law
- Environmental Sciences and Policy Division, Nicholas School of the Environment and Earth Sciences, Duke University, Box 90328, Durham, NC 27708-0328
| | - Seth W. Kullman
- Environmental Sciences and Policy Division, Nicholas School of the Environment and Earth Sciences, Duke University, Box 90328, Durham, NC 27708-0328
| | - Doris W.T. Au
- Department of Biology and Chemistry, City University of Hong Kong, Hong Kong
| |
Collapse
|
15
|
Maruyama K, Kojima A, Yasuda T, Suetomi K, Kubota Y, Takahashi S, Ishikawa Y, Fujimori A. Expression of brain-type fatty acid-binding protein (fabp7) in medaka during development. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2008; 310:577-87. [DOI: 10.1002/jez.b.21226] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Watanabe A, Hirano S, Murakami Y. Development of the Lamprey Central Nervous System, with Reference to Vertebrate Evolution. Zoolog Sci 2008; 25:1020-7. [DOI: 10.2108/zsj.25.1020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Yasuda T, Yoshimoto M, Maeda K, Matsumoto A, Maruyama K, Ishikawa Y. Rapid and simple method for quantitative evaluation of neurocytotoxic effects of radiation on developing medaka brain. JOURNAL OF RADIATION RESEARCH 2008; 49:533-540. [PMID: 18654045 DOI: 10.1269/jrr.08030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We describe a novel method for rapid and quantitative evaluation of the degree of radiation-induced apoptosis in the developing brain of medaka (Oryzias latipes). Embryos at stage 28 were irradiated with 1, 2, 3.5, and 5 Gy x-ray. Living embryos were stained with a vital dye, acridine orange (AO), for 1-2 h, and whole-mount brains were examined under an epifluorescence microscope. From 7 to 10 h after irradiation with 5 Gy x-ray, we found two morphologically different types of AO-stained structures, namely, small single nuclei and rosette-shaped nuclear clusters. Electron microscopy revealed that these two distinct types of structures were single apoptotic cells with condensed nuclei and aggregates of apoptotic cells, respectively. From 10 to 30 h after irradiation, a similar AO-staining pattern was observed. The numbers of AO-stained rosette-shaped nuclear clusters and AO-stained single nuclei increased in a dose-dependent manner in the optic tectum. We used the number of AO-stained rosette-shaped nuclear clusters/optic tectum as an index of the degree of radiation-induced brain cell death at 20-24 h after irradiation. The results showed that the number of rosette-shaped nuclear clusters/optic tectum in irradiated embryos exposed to 2 Gy or higher doses was highly significant compared to the number in nonirradiated control embryos, whereas no difference was detected at 1 Gy. Thus, the threshold dose for brain cell death in medaka embryos was taken as being between 1-2 Gy, which may not be so extraordinarily large compared to those for rodents and humans. The results show that medaka embryos are useful for quantitative evaluation of developmental neurocytotoxic effects of radiation.
Collapse
Affiliation(s)
- Takako Yasuda
- Environmental Radiation Effects Research Group, Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba, Japan.
| | | | | | | | | | | |
Collapse
|
18
|
Ishikawa Y, Yasuda T, Kage T, Takashima S, Yoshimoto M, Yamamoto N, Maruyama K, Takeda H, Ito H. Early Development of the Cerebellum in Teleost Fishes: A Study Based on Gene Expression Patterns and Histology in the Medaka Embryo. Zoolog Sci 2008; 25:407-18. [DOI: 10.2108/zsj.25.407] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Accepted: 02/07/2008] [Indexed: 11/17/2022]
|
19
|
Selected papers on zebrafish and other aquarium fish models. Zebrafish 2008; 1:165-72. [PMID: 18248227 DOI: 10.1089/zeb.2004.1.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
20
|
The early scaffold of axon tracts in the brain of a primitive vertebrate, the sea lamprey. Brain Res Bull 2008; 75:42-52. [DOI: 10.1016/j.brainresbull.2007.07.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 06/28/2007] [Accepted: 07/11/2007] [Indexed: 01/19/2023]
|
21
|
Coecke S, Goldberg AM, Allen S, Buzanska L, Calamandrei G, Crofton K, Hareng L, Hartung T, Knaut H, Honegger P, Jacobs M, Lein P, Li A, Mundy W, Owen D, Schneider S, Silbergeld E, Reum T, Trnovec T, Monnet-Tschudi F, Bal-Price A. Workgroup report: incorporating in vitro alternative methods for developmental neurotoxicity into international hazard and risk assessment strategies. ENVIRONMENTAL HEALTH PERSPECTIVES 2007; 115:924-31. [PMID: 17589601 PMCID: PMC1892131 DOI: 10.1289/ehp.9427] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Accepted: 02/06/2007] [Indexed: 05/16/2023]
Abstract
This is the report of the first workshop on Incorporating In Vitro Alternative Methods for Developmental Neurotoxicity (DNT) Testing into International Hazard and Risk Assessment Strategies, held in Ispra, Italy, on 19-21 April 2005. The workshop was hosted by the European Centre for the Validation of Alternative Methods (ECVAM) and jointly organized by ECVAM, the European Chemical Industry Council, and the Johns Hopkins University Center for Alternatives to Animal Testing. The primary aim of the workshop was to identify and catalog potential methods that could be used to assess how data from in vitro alternative methods could help to predict and identify DNT hazards. Working groups focused on two different aspects: a) details on the science available in the field of DNT, including discussions on the models available to capture the critical DNT mechanisms and processes, and b) policy and strategy aspects to assess the integration of alternative methods in a regulatory framework. This report summarizes these discussions and details the recommendations and priorities for future work.
Collapse
Affiliation(s)
- Sandra Coecke
- ECVAM-European Centre for the Validation of Alternative Methods, Institute for Health and Consumer Protection, European Commission, Joint Research Center, Ispra, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ishikawa Y, Yamamoto N, Yoshimoto M, Yasuda T, Maruyama K, Kage T, Takeda H, Ito H. Developmental Origin of Diencephalic Sensory Relay Nuclei in Teleosts. BRAIN, BEHAVIOR AND EVOLUTION 2007; 69:87-95. [PMID: 17230016 DOI: 10.1159/000095197] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We propose here a novel interpretation of the embryonic origin of cells of diencephalic sensory relay nuclei in teleosts based on our recent studies of gene expression patterns in the medaka (Oryzias latipes) embryonic brain and comparative hodological studies. It has been proposed that the diencephalic sensory relay system in teleosts is unique among vertebrates. Teleost relay nuclei, the preglomerular complex (PG), have been assumed to originate from the basal plate (the posterior tuberculum) of the diencephalon, whereas relay nuclei in mammals are derived from the alar plate (dorsal thalamus) of the diencephalon. Our results using in situ hybridization show, however, that many pax6- or dlx2-positive cells migrate laterally and ventrocaudally from the diencephalic alar plate to the basal plate during development. Massive clusters of the migrated alar cells become localized in the mantle layer lateral to the posterior tubercular neuroepithelium, from which main nuclei of the PG appear to differentiate. We therefore consider most if not all neurons in the PG to be of alar, not basal, origin. Thus, the teleost PG, at least in part, can be regarded as migrated alar nuclei. Developmental and hodological data strongly suggest that the teleost PG is homologous to a part of the mammalian dorsal thalamus. The organization and origin of the diencephalic sensory relay system might have been conserved across vertebrates.
Collapse
Affiliation(s)
- Yuji Ishikawa
- National Institute of Radiological Sciences, Chiba, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Yasuda T, Aoki K, Matsumoto A, Maruyama K, Hyodo-Taguchi Y, Fushiki S, Ishikawa Y. Radiation-induced brain cell death can be observed in living medaka embryos. JOURNAL OF RADIATION RESEARCH 2006; 47:295-303. [PMID: 16988493 DOI: 10.1269/jrr.0617] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Medaka (Oryzias latipes) embryos at 25-26 and 28-30 stages were irradiated with a single acute dose of 10 Gy of X-ray, which is lower than the LD(50 )of the embryos. The effects on developing brains were examined under a stereomicroscope in living embryos until hatching. All the irradiated embryos survived; however, from 6 to 35 h after X-ray irradiation, massive clusters of optically opaque and round cells were observed either in the entire brain region (when irradiated at 25-26 stages) or mainly in the optic tectum (when irradiated at 28-30 stages). Histological examination and TUNEL showed that these cells are clusters of dead cells. These dead cell clusters disappeared thereafter, and the irradiated embryos continued to develop apparently normally. The grown irradiated embryos, however, had smaller brains and eyes than the nonirradiated control embryos. At hatching, the irradiated embryos exhibited histological abnormalities in the brain, particularly in the torus longitudinalis, and in the retina, although most of them hatched normally and survived. The results indicate that brain cell death and a reduced brain size can be observed in living irradiated embryos, and suggest that the medaka embryo is useful for screening the developmental neurotoxicity effects of various hazardous factors.
Collapse
|
24
|
Kage T, Takeda H, Yasuda T, Maruyama K, Yamamoto N, Yoshimoto M, Araki K, Inohaya K, Okamoto H, Yasumasu S, Watanabe K, Ito H, Ishikawa Y. Morphogenesis and regionalization of the medaka embryonic brain. J Comp Neurol 2004; 476:219-39. [PMID: 15269967 DOI: 10.1002/cne.20219] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We examined the morphogenesis and regionalization of the embryonic brain of an acanthopterygian teleost, medaka (Oryzias latipes), by in situ hybridization using 14 gene probes. We compared our results with previous studies in other vertebrates, particularly zebrafish, an ostariophysan teleost. During the early development of the medaka neural rod, three initial brain vesicles arose: the anterior brain vesicle, which later developed into the telencephalon and rostral diencephalon; the intermediate brain vesicle, which later developed into the caudal diencephalon, mesencephalon, and metencephalon; and the posterior brain vesicle, which later developed into the myelencephalon. In the late neural rod, the rostral brain bent ventrally and the axis of the brain had a marked curvature at the diencephalon. In the final stage of the neural rod, ventricles began to develop, transforming the neural rod into the neural tube. In situ hybridization revealed that the brain can be divided into three longitudinal zones (dorsal, intermediate, and ventral) and many transverse subdivisions, on the basis of molecular expression patterns. The telencephalon was subdivided into two transverse domains. Our results support the basic concept of neuromeric models, including the prosomeric model, which suggests the existence of a conserved organization of all vertebrate neural tubes. Our results also show that brain development in medaka differs from that reported in other vertebrates, including zebrafish, in gene-expression patterns in the telencephalon, in brain vesicle formation, and in developmental speed. Developmental and genetic programs for brain development may be somewhat different even among teleosts.
Collapse
Affiliation(s)
- Takahiro Kage
- National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|