1
|
Yagi S, Mohammad A, Wen Y, Batallán Burrowes AA, Blankers SA, Galea LAM. Estrogens dynamically regulate neurogenesis in the dentate gyrus of adult female rats. Hippocampus 2024; 34:583-597. [PMID: 39166359 DOI: 10.1002/hipo.23633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 08/01/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024]
Abstract
Estrone and estradiol differentially modulate neuroplasticity and cognition. How they influence the maturation of new neurons in the adult hippocampus, however, is not known. The present study assessed the effects of estrone and estradiol on the maturation timeline of neurogenesis in the dentate gyrus (DG) of ovariectomized (a model of surgical menopause) young adult Sprague-Dawley rats using daily subcutaneous injections of 17β-estradiol, estrone or vehicle. Rats were injected with a DNA synthesis marker, 5-bromo-2-deoxyuridine (BrdU), and were perfused 1, 2, or 3 weeks after BrdU injection and daily hormone treatment. Brains were sectioned and processed for various markers including: sex-determining region Y-box 2 (Sox2), glial fibrillary acidic protein (GFAP), antigen kiel 67 (Ki67), doublecortin (DCX), and neuronal nuclei (NeuN). Immunofluorescent labeling or co-labelling of BrdU with Sox2 (progenitor cells), Sox2/GFAP (neural progenitor cells), Ki67 (cell proliferation), DCX (immature neurons), NeuN (mature neurons) was used to examine the trajectory and maturation of adult-born neurons over time. Estrogens had early (1 week of exposure) effects on different stages of neurogenesis (neural progenitor cells, cell proliferation and early maturation of new cells into neurons) but these effects were less pronounced after prolonged treatment. Estradiol enhanced, whereas estrone reduced cell proliferation after 1 week but not after longer exposure to either estrogen. Both estrogens increased the density of immature neurons (BrdU/DCX-ir) after 1 week of exposure compared to vehicle treatment but this increased density was not sustained over longer durations of treatments to estrogens, suggesting that the enhancing effects of estrogens on neurogenesis were short-lived. Longer duration post-ovariectomy, without treatments with either of the estrogens, was associated with reduced neural progenitor cells in the DG. These results demonstrate that estrogens modulate several aspects of adult hippocampal neurogenesis differently in the short term, but may lose their ability to influence neurogenesis after long-term exposure. These findings have potential implications for treatments involving estrogens after surgical menopause.
Collapse
Affiliation(s)
- Shunya Yagi
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ahmad Mohammad
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Yanhua Wen
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ariel A Batallán Burrowes
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Samantha A Blankers
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Liisa A M Galea
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Mirzaeian L, Bahrehbar K, Emamdoust M, Amiri M, Azari M, Taghi Ghorbanian M. Investigating the influence of estrous cycle-dependent hormonal changes on neurogenesis in adult mice. Steroids 2024; 212:109513. [PMID: 39305945 DOI: 10.1016/j.steroids.2024.109513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 10/18/2024]
Abstract
OBJECTIVE Neurogenesis is the process of generating new neurons from neural stem cells (NSCs) in the adult brain. Sex hormones play an essential role in the development of the brain. The aim of this study was to evaluate the neurogenic changes in the brain at different phases of the estrous cycle in adult mice. MATERIALS AND METHODS Female NMRI mice were divided into four groups: 1- Estrous, 2- Proestrous, 3- Metestrous, and 4- Diestrous. Different stages of the estrous cycle were determined by staining of vaginal smears. The level of estrogen, progesterone, prolactin, follicle-stimulating hormone (FSH) and luteinizing hormone (LH) hormones was evaluated by the enzyme-linked immunosorbent assay (ELISA) method. The expression of brain-derived neurotrophic factor) BDNF), nerve growth factor (NGF), ciliary neurotrophic factor(CNTF)) genes in hippocampal and the expression of glial fibrillary acidic protein (GFAP) in subventricular zone (SVZ) tissue were evaluated. RESULTS The serum estrogen and FSH increased significantly in Proestrous group (p < 0.001). Also, progesterone and prolactin hormones were significantly increased in the Diaestrus group (p < 0.001). The expression levels of BDNF, NGF, and CNTF significantly increased in the hippocampal tissue of Proestrous and Diaestrus groups (p < 0.001). The number of GFAP+ cells in SVZ of the Proestrous and Diestrous groups had a significant increase (p < 0.05, p < 0.01, p < 0.001). CONCLUSION Our data showed that Changes in sex hormones, especially estrogen in the estrous cycle, can cause the production of new neurons and astrocytes in the hippocampus and SVZ. Therefore, the increase in neurotrophic factors in the Proestrus and Diestrus leads to neurogenesis in adult mice brains.
Collapse
Affiliation(s)
- Leila Mirzaeian
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Khadijeh Bahrehbar
- Department of Biology, Faculty of Basic Sciences, Yasouj University, Yasouj, Iran
| | - Mandana Emamdoust
- Department of Cellular and Molecular Biology, School of Biology, Damghan University, Damghan, Iran
| | - Masoumeh Amiri
- Department of Cellular and Molecular Biology, School of Biology, Damghan University, Damghan, Iran
| | - Maryam Azari
- Department of Cellular and Molecular Biology, School of Biology, Damghan University, Damghan, Iran
| | | |
Collapse
|
3
|
Méndez P, de la Vega-Ruiz R, Montes-Mellado A. Estrogenic regulation of hippocampal inhibitory system across lifespan. J Neuroendocrinol 2024:e13441. [PMID: 39143852 DOI: 10.1111/jne.13441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/08/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024]
Abstract
Estrogens produced in peripheral tissues and locally in the brain are potent neuromodulators. The function of the hippocampus, a brain region essential for episodic memory and spatial navigation, relies on the activity of ensembles of excitatory neurons whose activity is temporally and spatially coordinated by a wide diversity of inhibitory neurons (INs) types. Over the last years, we have accumulated evidence that indicates that estrogens regulate the function of hippocampal INs through different mechanisms, including transcriptional regulation and rapid nongenomic signaling. Here, we argue that the well-documented influence of estrogens on episodic memory may be related to the actions of local and peripheral estrogens on the heterogenous populations of hippocampal INs. We discuss how physiological changes in peripheral sex hormone levels throughout lifespan may interact with local brain sources to regulate IN function at different stages of life, from early hippocampal development to the aging brain. We conclude that considering INs as mediators of sex hormone actions in the hippocampus across the healthy life span will benefit our understanding of sex-biased neurodevelopmental disorders and physiological aging.
Collapse
|
4
|
Davignon LM, Brouillard A, Juster RP, Marin MF. The role of sex hormones, oral contraceptive use, and its parameters on visuospatial abilities, verbal fluency, and verbal memory. Horm Behav 2024; 157:105454. [PMID: 37981465 DOI: 10.1016/j.yhbeh.2023.105454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/18/2023] [Accepted: 11/07/2023] [Indexed: 11/21/2023]
Abstract
Sex hormones can cross the blood-brain barrier and access brain regions underlying higher-order cognition. Containing synthetic sex hormones, oral contraceptives (OC) have been found to modulate visuospatial and verbal abilities, though inconsistencies have been found in the literature. Among possible explanations, certain OC use parameters (progestin androgenicity, synthetic hormone levels, duration of use) have not received consistent consideration. Thus, the objectives were to (1) examine group differences between men, combined OC users, and naturally cycling women (NC women; not using OC) in visuospatial abilities, verbal fluency, and verbal memory and (2) investigate the contribution of endogenous and exogenous sex hormones on these effects. We also aimed to (3) identify OC use parameters relevant to cognitive outcomes. In total, 70 combined OC users, 53 early follicular (EF) women, 43 pre-ovulatory (PO) women, and 47 men underwent cognitive tests. Performance was compared based on hormonal milieus (OC, EF, PO, men) and OC users' contraceptive androgenicity (anti, low, high). Correlations between performance, hormone levels and OC use duration were also conducted. OC use dampened the sex difference that typically favors men in 3D visuospatial abilities, whereas its duration of use positively predicted verbal fluency. Androgenicity and hormone levels did not predict performance in any task. These results highlight the importance of considering OC use duration. Results also did not support a role for androgenicity in cognition. Importantly, combined OC use (including prolonged use) does not impair visuospatial, verbal, and memory functions in a healthy young sample.
Collapse
Affiliation(s)
- Lisa-Marie Davignon
- Research Center of the Institut Universitaire en Santé Mentale de Montréal, 7331 Hochelaga Street, Montreal H1N 3J4, Canada; Department of Psychology, Université du Québec à Montréal, 100 Sherbrooke Street W, Montreal H2X 2P3, Canada
| | - Alexandra Brouillard
- Research Center of the Institut Universitaire en Santé Mentale de Montréal, 7331 Hochelaga Street, Montreal H1N 3J4, Canada; Department of Psychology, Université du Québec à Montréal, 100 Sherbrooke Street W, Montreal H2X 2P3, Canada
| | - Robert-Paul Juster
- Research Center of the Institut Universitaire en Santé Mentale de Montréal, 7331 Hochelaga Street, Montreal H1N 3J4, Canada; Department of Psychiatry and Addiction, Université de Montréal, 2900 Edouard-Montpetit Boulevard, Montreal H3T 1J4, Canada
| | - Marie-France Marin
- Research Center of the Institut Universitaire en Santé Mentale de Montréal, 7331 Hochelaga Street, Montreal H1N 3J4, Canada; Department of Psychology, Université du Québec à Montréal, 100 Sherbrooke Street W, Montreal H2X 2P3, Canada; Department of Psychiatry and Addiction, Université de Montréal, 2900 Edouard-Montpetit Boulevard, Montreal H3T 1J4, Canada.
| |
Collapse
|
5
|
Ramli NZ, Yahaya MF, Mohd Fahami NA, Abdul Manan H, Singh M, Damanhuri HA. Brain volumetric changes in menopausal women and its association with cognitive function: a structured review. Front Aging Neurosci 2023; 15:1158001. [PMID: 37818479 PMCID: PMC10561270 DOI: 10.3389/fnagi.2023.1158001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/04/2023] [Indexed: 10/12/2023] Open
Abstract
The menopausal transition has been proposed to put women at risk for undesirable neurological symptoms, including cognitive decline. Previous studies suggest that alterations in the hormonal milieu modulate brain structures associated with cognitive function. This structured review provides an overview of the relevant studies that have utilized MRI to report volumetric differences in the brain following menopause, and its correlations with the evaluated cognitive functions. We performed an electronic literature search using Medline (Ovid) and Scopus to identify studies that assessed the influence of menopause on brain structure with MRI. Fourteen studies met the inclusion criteria. Brain volumetric differences have been reported most frequently in the frontal and temporal cortices as well as the hippocampus. These regions are important for higher cognitive tasks and memory. Additionally, the deficit in verbal and visuospatial memory in postmenopausal women has been associated with smaller regional brain volumes. Nevertheless, the limited number of eligible studies and cross-sectional study designs warrant further research to draw more robust conclusions.
Collapse
Affiliation(s)
- Nur Zuliani Ramli
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Mohamad Fairuz Yahaya
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nur Azlina Mohd Fahami
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Hanani Abdul Manan
- Functional Image Processing Laboratory, Department of Radiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Meharvan Singh
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Hanafi Ahmad Damanhuri
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Sharma DR, Cheng B, Sahu R, Zhang X, Mehdizadeh R, Singh D, Iacobas D, Ballabh P. Oestrogen treatment restores dentate gyrus development in premature newborns by IGF1 regulation. J Cell Mol Med 2023; 27:2467-2481. [PMID: 37594177 PMCID: PMC10468667 DOI: 10.1111/jcmm.17816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/06/2023] [Accepted: 06/10/2023] [Indexed: 08/19/2023] Open
Abstract
Prematurely-born infants cared for in the neonatal units suffer from memory and learning deficits. Prematurity diminishes neurogenesis and synaptogenesis in the hippocampal dentate gyrus (DG). This dysmaturation of neurons is attributed to elevated PSD95, NMDR2A, and IGF1 levels. Since oestrogen treatment plays key roles in the development and plasticity of DG, we hypothesized that 17β-estradiol (E2) treatment would ameliorate neurogenesis and synaptogenesis in the DG, reversing cognitive deficits in premature newborns. Additionally, E2-induced recovery would be mediated by IGF1 signalling. These hypotheses were tested in a rabbit model of prematurity and nonmaternal care, in which premature kits were gavage-fed and reared by laboratory personnel. We compared E2- and vehicle-treated preterm kits for morphological, molecular, and behavioural parameters. We also treated kits with oestrogen degrader, RAD1901, and assessed IGF1 signalling. We found that E2 treatment increased the number of Tbr2+ and DCX+ neuronal progenitors and increased the density of glutamatergic synapses in the DG. E2 treatment restored PSD95 and NMDAR2A levels and cognitive function in preterm kits. Transcriptomic analyses showed that E2 treatment contributed to recovery by influencing interactions between IGF1R and neurodegenerative, as well as glutamatergic genes. ERα expression was reduced on completion of E2 treatment at D7, followed by D30 elevation. E2-induced fluctuation in ERα levels was associated with a reciprocal elevation in IGF1/2 expression at D7 and reduction at D30. ERα degradation by RAD1901 treatment enhanced IGF1 levels, suggesting ERα inhibits IGF1 expression. E2 treatment alleviates the prematurity-induced maldevelopment of DG and cognitive dysfunctions by regulating ERα and IGF1 levels.
Collapse
Affiliation(s)
- Deep R. Sharma
- Department of PediatricsAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Bokun Cheng
- Department of PediatricsAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Rauhin Sahu
- Department of PediatricsAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Xusheng Zhang
- Computational Genomics CoreAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Rana Mehdizadeh
- Department of PediatricsAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Divya Singh
- Department of PediatricsAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Dumitru Iacobas
- Dominick P. Purpura Department of NeuroscienceAlbert Einstein College of MedicineBronxNew YorkUSA
- Personalized Genomics Laboratory, Texas Undergraduate Medical AcademyPrairie View A&M UniversityPrairie ViewTexasUSA
| | - Praveen Ballabh
- Department of PediatricsAlbert Einstein College of MedicineBronxNew YorkUSA
- Dominick P. Purpura Department of NeuroscienceAlbert Einstein College of MedicineBronxNew YorkUSA
| |
Collapse
|
7
|
Bahiru MS, Bittman EL. Adult Neurogenesis Is Altered by Circadian Phase Shifts and the Duper Mutation in Female Syrian Hamsters. eNeuro 2023; 10:ENEURO.0359-22.2023. [PMID: 36878716 PMCID: PMC10062491 DOI: 10.1523/eneuro.0359-22.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 03/08/2023] Open
Abstract
Cell birth and survival in the adult hippocampus are regulated by a circadian clock. Rotating shift work and jet lag disrupt circadian rhythms and aggravate disease. Internal misalignment, a state in which abnormal phase relationships prevail between and within organs, is proposed to account for adverse effects of circadian disruption. This hypothesis has been difficult to test because phase shifts of the entraining cycle inevitably lead to transient desynchrony. Thus, it remains possible that phase shifts, regardless of internal desynchrony, account for adverse effects of circadian disruption and alter neurogenesis and cell fate. To address this question, we examined cell birth and differentiation in the duper Syrian hamster (Mesocricetus auratus), a Cry1-null mutant in which re-entrainment of locomotor rhythms is greatly accelerated. Adult females were subjected to alternating 8 h advances and delays at eight 16 d intervals. BrdU, a cell birth marker, was given midway through the experiment. Repeated phase shifts decreased the number of newborn non-neuronal cells in WT, but not in duper hamsters. The duper mutation increased the number of BrdU-IR cells that stained for NeuN, which marks neuronal differentiation. Immunocytochemical staining for proliferating cell nuclear antigen indicated no overall effect of genotype or repeated shifts on cell division rates after 131 days. Cell differentiation, assessed by doublecortin, was higher in duper hamsters but was not significantly altered by repeated phase shifts. Our results support the internal misalignment hypothesis and indicate that Cry1 regulates cell differentiation. Phase shifts may determine neuronal stem cell survival and time course of differentiation after cell birth. Figure created with BioRender.
Collapse
Affiliation(s)
- Michael Seifu Bahiru
- Program in Neuroscience and Behavior, University of Massachusetts, Amherst, Massachusetts 01003
| | - Eric L Bittman
- Program in Neuroscience and Behavior, University of Massachusetts, Amherst, Massachusetts 01003
- Department of Biology, University of Massachusetts, Amherst, Massachusetts 01003
| |
Collapse
|
8
|
Pletzer B, Winkler-Crepaz K, Hillerer K. Progesterone and contraceptive progestin actions on the brain: A systematic review of animal studies and comparison to human neuroimaging studies. Front Neuroendocrinol 2023; 69:101060. [PMID: 36758768 DOI: 10.1016/j.yfrne.2023.101060] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 01/25/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
In this review we systematically summarize the effects of progesterone and synthetic progestins on neurogenesis, synaptogenesis, myelination and six neurotransmitter systems. Several parallels between progesterone and older generation progestin actions emerged, suggesting actions via progesterone receptors. However, existing results suggest a general lack of knowledge regarding the effects of currently used progestins in hormonal contraception regarding these cellular and molecular brain parameters. Human neuroimaging studies were reviewed with a focus on randomized placebo-controlled trials and cross-sectional studies controlling for progestin type. The prefrontal cortex, amygdala, salience network and hippocampus were identified as regions of interest for future preclinical studies. This review proposes a series of experiments to elucidate the cellular and molecular actions of contraceptive progestins in these areas and link these actions to behavioral markers of emotional and cognitive functioning. Emotional effects of contraceptive progestins appear to be related to 1) alterations in the serotonergic system, 2) direct/indirect modulations of inhibitory GABA-ergic signalling via effects on the allopregnanolone content of the brain, which differ between androgenic and anti-androgenic progestins. Cognitive effects of combined oral contraceptives appear to depend on the ethinylestradiol dose.
Collapse
Affiliation(s)
- Belinda Pletzer
- Department of Psychology & Centre for Cognitive Neuroscience, Paris-Lodron-University Salzburg, Salzburg Austria.
| | | | - Katharina Hillerer
- Department of Gynaecology & Obstetrics, Private Medical University, Salzburg, Austria
| |
Collapse
|
9
|
Grabowska K, Ziemichód W, Biała G. Recent Studies on the Development of Nicotine Abuse and Behavioral Changes Induced by Chronic Stress Depending on Gender. Brain Sci 2023; 13:brainsci13010121. [PMID: 36672102 PMCID: PMC9857036 DOI: 10.3390/brainsci13010121] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
Nowadays, stressful situations are an unavoidable element of everyday life. Stressors activate a number of complex mental and physiological reactions in the organism, thus affecting the state of health of an individual. Stress is the main risk factor in the development of mental disorders, such as depression and other disorders developing as a result of addiction. Studies indicate that women are twice as likely as men to develop anxiety, depression and therefore addiction, e.g., to nicotine. Even though the data presented is indicative of significant differences between the sexes in the prevalence of these disorders, the majority of preclinical animal models for investigating stress-induced disorders use predominantly male subjects. However, the recent data indicates that this type of studies has also been launched in female rodents. Therefore, conducting research on both sexes allows for a more accurate understanding and assessment of the impact of stress on stress-induced behavioral, peripheral and molecular changes in the body and brain. In this manuscript we have gathered the data from 41 years (from 1981-2022) on the influence of stress on the development of depression and nicotine addiction in both sexes.
Collapse
|
10
|
Hilz EN, Lee HJ. Estradiol and progesterone in female reward-learning, addiction, and therapeutic interventions. Front Neuroendocrinol 2023; 68:101043. [PMID: 36356909 DOI: 10.1016/j.yfrne.2022.101043] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/24/2022] [Accepted: 10/28/2022] [Indexed: 11/09/2022]
Abstract
Sex steroid hormones like estradiol (E2) and progesterone (P4) guide the sexual organization and activation of the developing brain and control female reproductive behavior throughout the lifecycle; importantly, these hormones modulate functional activity of not just the endocrine system, but most of the nervous system including the brain reward system. The effects of E2 and P4 can be seen in the processing of and memory for rewarding stimuli and in the development of compulsive reward-seeking behaviors like those seen in substance use disorders. Women are at increased risk of developing substance use disorders; however, the origins of this sex difference are not well understood and therapeutic interventions targeting ovarian hormones have produced conflicting results. This article reviews the contribution of the E2 and P4 in females to functional modulation of the brain reward system, their possible roles in origins of addiction vulnerability, and the development and treatment of compulsive reward-seeking behaviors.
Collapse
Affiliation(s)
- Emily N Hilz
- The University of Texas at Austin, Department of Pharmacology, USA.
| | - Hongjoo J Lee
- The University of Texas at Austin, Department of Psychology, USA; The University of Texas at Austin, Institute for Neuroscience, USA
| |
Collapse
|
11
|
Harrington YA, Parisi JM, Duan D, Rojo-Wissar DM, Holingue C, Spira AP. Sex Hormones, Sleep, and Memory: Interrelationships Across the Adult Female Lifespan. Front Aging Neurosci 2022; 14:800278. [PMID: 35912083 PMCID: PMC9331168 DOI: 10.3389/fnagi.2022.800278] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 06/09/2022] [Indexed: 01/26/2023] Open
Abstract
As the population of older adults grows, so will the prevalence of aging-related conditions, including memory impairments and sleep disturbances, both of which are more common among women. Compared to older men, older women are up to twice as likely to experience sleep disturbances and are at a higher risk of cognitive decline and Alzheimer's disease and related dementias (ADRD). These sex differences may be attributed in part to fluctuations in levels of female sex hormones (i.e., estrogen and progesterone) that occur across the adult female lifespan. Though women tend to experience the most significant sleep and memory problems during the peri-menopausal period, changes in memory and sleep have also been observed across the menstrual cycle and during pregnancy. Here, we review current knowledge on the interrelationships among female sex hormones, sleep, and memory across the female lifespan, propose possible mediating and moderating mechanisms linking these variables and describe implications for ADRD risk in later life.
Collapse
Affiliation(s)
- Yasmin A. Harrington
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Jeanine M. Parisi
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Daisy Duan
- Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Darlynn M. Rojo-Wissar
- The Initiative on Stress, Trauma, and Resilience (STAR), Department of Psychiatry and Human Behavior, Center for Behavioral and Preventive Medicine, The Miriam Hospital, Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Calliope Holingue
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Center for Autism and Related Disorders, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Adam P. Spira
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Johns Hopkins Center on Aging and Health, Baltimore, MD, United States
| |
Collapse
|
12
|
Kohne S, Diekhof EK. Testosterone and estradiol affect adolescent reinforcement learning. PeerJ 2022; 10:e12653. [PMID: 35186450 PMCID: PMC8818269 DOI: 10.7717/peerj.12653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 11/29/2021] [Indexed: 01/11/2023] Open
Abstract
During adolescence, gonadal hormones influence brain maturation and behavior. The impact of 17β-estradiol and testosterone on reinforcement learning was previously investigated in adults, but studies with adolescents are rare. We tested 89 German male and female adolescents (mean age ± sd = 14.7 ± 1.9 years) to determine the extent 17β-estradiol and testosterone influenced reinforcement learning capacity in a response time adjustment task. Our data showed, that 17β-estradiol correlated with an enhanced ability to speed up responses for reward in both sexes, while the ability to wait for higher reward correlated with testosterone primary in males. This suggests that individual differences in reinforcement learning may be associated with variations in these hormones during adolescence, which may shift the balance between a more reward- and an avoidance-oriented learning style.
Collapse
Affiliation(s)
- Sina Kohne
- Faculty of Mathematics, Informatics and Natural Sciences, Department of Biology, Institute of Animal Cell and Systems Biology, Neuroendocrinology and Human Biology Unit, Universität Hamburg, Hamburg, Germany
| | - Esther K. Diekhof
- Faculty of Mathematics, Informatics and Natural Sciences, Department of Biology, Institute of Animal Cell and Systems Biology, Neuroendocrinology and Human Biology Unit, Universität Hamburg, Hamburg, Germany
| |
Collapse
|
13
|
Noorjahan N, Cattini PA. Neurogenesis in the Maternal Rodent Brain: Impacts of Gestation-Related Hormonal Regulation, Stress, and Obesity. Neuroendocrinology 2022; 112:702-722. [PMID: 34510034 DOI: 10.1159/000519415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 09/02/2021] [Indexed: 11/19/2022]
Abstract
In order to maintain maternal behavior, it is important that the maternal rodent brain promotes neurogenesis. Maternal neurogenesis is altered by the dynamic shifts in reproductive hormone levels during pregnancy. Thus, lifestyle events such as gestational stress and obesity that can affect hormone production will affect neuroendocrine control of maternal neurogenesis. However, there is a lack of information about the regulation of maternal neurogenesis by placental hormones, which are key components of the reproductive hormonal profile during pregnancy. There is also little known about how maternal neurogenesis can be affected by health concerns such as gestational stress and obesity, and its relationship to peripartum mental health disorders. This review summarizes the changing levels of neurogenesis in mice and rats during gestation and postpartum as well as regulation of neurogenesis by pregnancy-related hormones. The influence of neurogenesis on maternal behavior is also discussed while bringing attention to the effect of health-related concerns during gestation, such as stress and obesity on neuroendocrine control of maternal neurogenesis. In doing so, this review identifies the gaps in the literature and specifically emphasizes the importance of further research on maternal brain physiology to address them.
Collapse
Affiliation(s)
- Noshin Noorjahan
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Peter A Cattini
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
14
|
Hodges TE, Puri TA, Blankers SA, Qiu W, Galea LAM. Steroid hormones and hippocampal neurogenesis in the adult mammalian brain. VITAMINS AND HORMONES 2021; 118:129-170. [PMID: 35180925 DOI: 10.1016/bs.vh.2021.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hippocampal neurogenesis persists across the lifespan in many species, including rodents and humans, and is associated with cognitive performance and the pathogenesis of neurodegenerative disease and psychiatric disorders. Neurogenesis is modulated by steroid hormones that change across development and differ between the sexes in rodents and humans. Here, we discuss the effects of stress and glucocorticoid exposure from gestation to adulthood as well as the effects of androgens and estrogens in adulthood on neurogenesis in the hippocampus. Throughout the review we highlight sex differences in the effects of steroid hormones on neurogenesis and how they may relate to hippocampal function and disease. These data highlight the importance of examining age and sex when evaluating the effects of steroid hormones on hippocampal neurogenesis.
Collapse
Affiliation(s)
- Travis E Hodges
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Department of Psychology, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Tanvi A Puri
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Samantha A Blankers
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Wansu Qiu
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Liisa A M Galea
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Department of Psychology, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
15
|
Blankers SA, Galea LA. Androgens and Adult Neurogenesis in the Hippocampus. ANDROGENS: CLINICAL RESEARCH AND THERAPEUTICS 2021; 2:203-215. [PMID: 35024692 PMCID: PMC8744005 DOI: 10.1089/andro.2021.0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/19/2021] [Indexed: 11/12/2022]
Abstract
Adult neurogenesis in the hippocampus is modulated by steroid hormones, including androgens, in male rodents. In this review, we summarize research showing that chronic exposure to androgens, such as testosterone and dihydrotestosterone, enhances the survival of new neurons in the dentate gyrus of male, but not female, rodents, via the androgen receptor. However, the neurogenesis promoting the effect of androgens in the dentate gyrus may be limited to younger adulthood as it is not evident in middle-aged male rodents. Although direct exposure to androgens in adult or middle age does not significantly influence neurogenesis in female rodents, the aromatase inhibitor letrozole enhances neurogenesis in the hippocampus of middle-aged female mice. Unlike other androgens, androgenic anabolic steroids reduce neurogenesis in the hippocampus of male rodents. Collectively, the research indicates that the ability of androgens to enhance hippocampal neurogenesis in adult rodents is dependent on dose, androgen type, sex, duration, and age. We discuss these findings and how androgens may be influencing neuroprotection, via neurogenesis in the hippocampus, in the context of health and disease.
Collapse
Affiliation(s)
- Samantha A. Blankers
- Graduate Program in Neuroscience, The University of British Columbia, Vancouver, Canada
- Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, Canada
| | - Liisa A.M. Galea
- Graduate Program in Neuroscience, The University of British Columbia, Vancouver, Canada
- Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, Canada
- Department of Psychology, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
16
|
Wan L, Huang RJ, Luo ZH, Gong JE, Pan A, Manavis J, Yan XX, Xiao B. Reproduction-Associated Hormones and Adult Hippocampal Neurogenesis. Neural Plast 2021; 2021:3651735. [PMID: 34539776 PMCID: PMC8448607 DOI: 10.1155/2021/3651735] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/17/2021] [Indexed: 11/18/2022] Open
Abstract
The levels of reproduction-associated hormones in females, such as estrogen, progesterone, prolactin, and oxytocin, change dramatically during pregnancy and postpartum. Reproduction-associated hormones can affect adult hippocampal neurogenesis (AHN), thereby regulating mothers' behavior after delivery. In this review, we first briefly introduce the overall functional significance of AHN and the methods commonly used to explore this front. Then, we attempt to reconcile the changes of reproduction-associated hormones during pregnancy. We further update the findings on how reproduction-related hormones influence adult hippocampal neurogenesis. This review is aimed at emphasizing a potential role of AHN in reproduction-related brain plasticity and its neurobiological relevance to motherhood behavior.
Collapse
Affiliation(s)
- Lily Wan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Rou-Jie Huang
- Medical Doctor Program, Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhao-Hui Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jiao-e Gong
- Department of Neurology, Hunan Children's Hospital, Changsha 410007, China
| | - Aihua Pan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, Hunan 410013, China
| | - Jim Manavis
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia 5000
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, Hunan 410013, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
17
|
Abotalebi H, Ebrahimi B, Shahriyari R, Shafieian R. Sex steroids-induced neurogenesis in adult brain: a better look at mechanisms and mediators. Horm Mol Biol Clin Investig 2021; 42:209-221. [PMID: 34058796 DOI: 10.1515/hmbci-2020-0036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 01/14/2021] [Indexed: 11/15/2022]
Abstract
Adult neurogenesis is the production of new nerve cells in the adult brain. Neurogenesis is a clear example of the neuroplasticity phenomenon which can be observed in most of mammalian species, including human beings. This phenomenon occurs, at least, in two regions of the brain: the subgranular zone of the dentate gyrus in hippocampus and the ventricular zone of lateral ventricles. Numerous studies have investigated the relationship between sex steroid hormones and neurogenesis of adult brain; of which, mostly concentrated on the role of estradiol. It has been shown that estrogen plays a significant role in this process through both classic and non-classic mechanisms, including a variety of different growth factors. Therefore, the objective of this review is to investigate the role of female sex steroids with an emphasis on estradiol and also its potential implications for regulating the neurogenesis in the adult brain.
Collapse
Affiliation(s)
- Hamideh Abotalebi
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Babak Ebrahimi
- Department of Anatomy and Cell Biology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Raziyeh Shahriyari
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reyhaneh Shafieian
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
18
|
Trova S, Bovetti S, Pellegrino G, Bonzano S, Giacobini P, Peretto P. HPG-Dependent Peri-Pubertal Regulation of Adult Neurogenesis in Mice. Front Neuroanat 2020; 14:584493. [PMID: 33328903 PMCID: PMC7732626 DOI: 10.3389/fnana.2020.584493] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/29/2020] [Indexed: 11/13/2022] Open
Abstract
Adult neurogenesis, a striking form of neural plasticity, is involved in the modulation of social stimuli driving reproduction. Previous studies on adult neurogenesis have shown that this process is significantly modulated around puberty in female mice. Puberty is a critical developmental period triggered by increased secretion of the gonadotropin releasing hormone (GnRH), which controls the activity of the hypothalamic-pituitary-gonadal axis (HPG). Secretion of HPG-axis factors at puberty participates to the refinement of neural circuits that govern reproduction. Here, by exploiting a transgenic GnRH deficient mouse model, that progressively loses GnRH expression during postnatal development (GnRH::Cre;Dicer loxP/loxP mice), we found that a postnatally-acquired dysfunction in the GnRH system affects adult neurogenesis selectively in the subventricular-zone neurogenic niche in a sexually dimorphic way. Moreover, by examining adult females ovariectomized before the onset of puberty, we provide important evidence that, among the HPG-axis secreting factors, the circulating levels of gonadal hormones during pre-/peri-pubertal life contribute to set-up the proper adult subventricular zone-olfactory bulb neurogenic system.
Collapse
Affiliation(s)
- Sara Trova
- Department of Life Sciences and Systems Biology, Neuroscience Institute Cavalieri Ottolenghi, University of Torino, Orbassano, Italy.,Univ.Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience and Cognition, Laboratory of the Development and Plasticity of Neuroendocrine Brain, Lille, France
| | - Serena Bovetti
- Department of Life Sciences and Systems Biology, Neuroscience Institute Cavalieri Ottolenghi, University of Torino, Orbassano, Italy
| | - Giuliana Pellegrino
- Univ.Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience and Cognition, Laboratory of the Development and Plasticity of Neuroendocrine Brain, Lille, France
| | - Sara Bonzano
- Department of Life Sciences and Systems Biology, Neuroscience Institute Cavalieri Ottolenghi, University of Torino, Orbassano, Italy
| | - Paolo Giacobini
- Univ.Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience and Cognition, Laboratory of the Development and Plasticity of Neuroendocrine Brain, Lille, France
| | - Paolo Peretto
- Department of Life Sciences and Systems Biology, Neuroscience Institute Cavalieri Ottolenghi, University of Torino, Orbassano, Italy
| |
Collapse
|
19
|
Taylor CM, Pritschet L, Olsen RK, Layher E, Santander T, Grafton ST, Jacobs EG. Progesterone shapes medial temporal lobe volume across the human menstrual cycle. Neuroimage 2020; 220:117125. [DOI: 10.1016/j.neuroimage.2020.117125] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/10/2020] [Accepted: 06/29/2020] [Indexed: 01/05/2023] Open
|
20
|
Jorgensen C, Wang Z. Hormonal Regulation of Mammalian Adult Neurogenesis: A Multifaceted Mechanism. Biomolecules 2020; 10:biom10081151. [PMID: 32781670 PMCID: PMC7465680 DOI: 10.3390/biom10081151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/27/2020] [Accepted: 08/01/2020] [Indexed: 02/07/2023] Open
Abstract
Adult neurogenesis—resulting in adult-generated functioning, integrated neurons—is still one of the most captivating research areas of neuroplasticity. The addition of new neurons in adulthood follows a seemingly consistent multi-step process. These neurogenic stages include proliferation, differentiation, migration, maturation/survival, and integration of new neurons into the existing neuronal network. Most studies assessing the impact of exogenous (e.g., restraint stress) or endogenous (e.g., neurotrophins) factors on adult neurogenesis have focused on proliferation, survival, and neuronal differentiation. This review will discuss the multifaceted impact of hormones on these various stages of adult neurogenesis. Specifically, we will review the evidence for hormonal facilitation (via gonadal hormones), inhibition (via glucocorticoids), and neuroprotection (via recruitment of other neurochemicals such as neurotrophin and neuromodulators) on newly adult-generated neurons in the mammalian brain.
Collapse
Affiliation(s)
- Claudia Jorgensen
- Behavioral Science Department, Utah Valley University, Orem, UT 84058, USA
- Correspondence:
| | - Zuoxin Wang
- Psychology Department and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA;
| |
Collapse
|
21
|
Qin Y, An D, Xu W, Qi X, Wang X, Chen L, Chen L, Sha S. Estradiol Replacement at the Critical Period Protects Hippocampal Neural Stem Cells to Improve Cognition in APP/PS1 Mice. Front Aging Neurosci 2020; 12:240. [PMID: 32903757 PMCID: PMC7438824 DOI: 10.3389/fnagi.2020.00240] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/10/2020] [Indexed: 12/17/2022] Open
Abstract
It has been suggested that there is a critical window for estrogen replacement therapy (ERT) in postmenopausal women with Alzheimer’s disease (AD); however, supporting evidence is lacking. To address this issue, we investigated the effective period for estradiol (E2) treatment using a mouse model of AD. Four-month-old female APPswe/PSEN1dE9 (APP/PS1) mice were ovariectomized (OVX) and treated with E2 for 2 months starting at the age of 4 months (early period), 6 months (mid-period), or 8 months (late period). We then evaluated hippocampal neurogenesis, β-amyloid (Aβ) accumulation, telomerase activity, and hippocampal-dependent behavior. Compared to age-matched wild type mice, APP/PS1 mice with intact ovaries showed increased proliferation of hippocampal neural stem cells (NSCs) at 8 months of age and decreased proliferation of NSCs at 10 months of age; meanwhile, Aβ accumulation progressively increased with age, paralleling the reduced survival of immature neurons. OVX-induced depletion of E2 in APP/PS1 mice resulted in elevated Aβ levels accompanied by elevated p75 neurotrophin receptor (p75NTR) expression and increased NSC proliferation at 6 months of age, which subsequently declined; accelerated reduction of immature neurons starting from 6 months of age, and reduced telomerase activity and worsened memory performance at 10 months of age. Treatment with E2 in the early period post-OVX, rather than in the mid or late period, abrogated these effects, and p75NTR inhibition reduced the overproliferation of NSCs in 6-month-old OVX-APP/PS1 mice. Thus, E2 deficiency in young APP/PS1 mice exacerbates cognitive deficits and depletes the hippocampal NSC pool in later life; this can be alleviated by E2 treatment in the early period following OVX, which prevents Aβ/p75NTR-induced NSC overproliferation and preserves telomerase activity.
Collapse
Affiliation(s)
- Yaoyao Qin
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Dong An
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Weixing Xu
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Xiuting Qi
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Xiaoli Wang
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Ling Chen
- Department of Physiology, Nanjing Medical University, Nanjing, China.,State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Lei Chen
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Sha Sha
- Department of Physiology, Nanjing Medical University, Nanjing, China.,State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
22
|
Correa J, Ronchetti S, Labombarda F, De Nicola AF, Pietranera L. Activation of the G Protein-Coupled Estrogen Receptor (GPER) Increases Neurogenesis and Ameliorates Neuroinflammation in the Hippocampus of Male Spontaneously Hypertensive Rats. Cell Mol Neurobiol 2020; 40:711-723. [PMID: 31784921 PMCID: PMC11448800 DOI: 10.1007/s10571-019-00766-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/22/2019] [Indexed: 01/20/2023]
Abstract
It is known that spontaneously hypertensive rats (SHR) present a marked encephalopathy, targeting vulnerable regions such as the hippocampus. Abnormalities of the hippocampus of SHR include decreased neurogenesis in the dentate gyrus (DG), partial loss of neurons in the hilus of the DG, micro and astrogliosis and inflammation. It is also known that 17β-estradiol (E2) exert neuroprotective effects and prevent hippocampal abnormalities of SHR. The effects of E2 may involve a variety of mechanisms, including intracellular receptors of the ERα and ERβ subtypes or membrane-located receptors, such as the G protein-coupled estradiol receptor (GPER). We have now investigated the protective role of GPER in SHR employing its synthetic agonist G1. To accomplish this objective, 5 month-old male SHR received 150 μg/day of G1 during 2 weeks. At the end of this period, we analyzed neuronal progenitors by staining for doublecortin (DCX), and counted the number of glial fibrillary acidic protein (GFAP)-labeled astrocytes and Iba1-stained microglial cells by computerized image analysis. We found that G1 activation of GPER increased DCX+ cells in the DG and reduced GFAP+ astrogliosis and Iba1+ microgliosis in the CA1 region of hippocampus. We also found that the high expression of proinflammatory makers IL1β and cyclooxygenase 2 (COX2) of SHR was decreased after G1 treatment, which correlated with a change of microglia phenotype from the activated to a resting morphology. Additionally, G1 treatment increased the anti-inflammatory factor TGFβ in SHR hippocampus. Altogether, our results suggest that activation of GPER plays a neuroprotective role on the encephalopathy of SHR, an outcome resembling E2 effects but avoiding secondary effects of the natural hormone.
Collapse
Affiliation(s)
- Julieta Correa
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, 1428, Buenos Aires, Argentina
| | - Santiago Ronchetti
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, 1428, Buenos Aires, Argentina
| | - Florencia Labombarda
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, 1428, Buenos Aires, Argentina
- Department of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Alejandro F De Nicola
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, 1428, Buenos Aires, Argentina
- Department of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Luciana Pietranera
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, 1428, Buenos Aires, Argentina.
- Department of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
23
|
Labusch M, Mancini L, Morizet D, Bally-Cuif L. Conserved and Divergent Features of Adult Neurogenesis in Zebrafish. Front Cell Dev Biol 2020; 8:525. [PMID: 32695781 PMCID: PMC7338623 DOI: 10.3389/fcell.2020.00525] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/03/2020] [Indexed: 12/14/2022] Open
Abstract
Adult neurogenesis, i.e., the generation of neurons from neural stem cells (NSCs) in the adult brain, contributes to brain plasticity in all vertebrates. It varies, however, greatly in extent, location and physiological characteristics between species. During the last decade, the teleost zebrafish (D. rerio) was increasingly used to study the molecular and cellular properties of adult NSCs, in particular as a prominent NSC population was discovered at the ventricular surface of the dorsal telencephalon (pallium), in territories homologous to the adult neurogenic niches of rodents. This model, for its specific features (large NSC population, amenability to intravital imaging, high regenerative capacity) allowed rapid progress in the characterization of basic adult NSC features. We review here these findings, with specific comparisons with the situation in rodents. We specifically discuss the cellular nature of NSCs (astroglial or neuroepithelial cells), their heterogeneities and their neurogenic lineages, and the mechanisms controlling NSC quiescence and fate choices, which all impact the neurogenic output. We further discuss the regulation of NSC activity in response to physiological triggers and non-physiological conditions such as regenerative contexts.
Collapse
Affiliation(s)
- Miriam Labusch
- Zebrafish Neurogenetics Unit, Institut Pasteur, UMR 3738, CNRS, Team Supported by the Ligue Nationale Contre le Cancer, Paris, France.,Sorbonne Université, Collège Doctoral, Paris, France
| | - Laure Mancini
- Zebrafish Neurogenetics Unit, Institut Pasteur, UMR 3738, CNRS, Team Supported by the Ligue Nationale Contre le Cancer, Paris, France.,Sorbonne Université, Collège Doctoral, Paris, France
| | - David Morizet
- Zebrafish Neurogenetics Unit, Institut Pasteur, UMR 3738, CNRS, Team Supported by the Ligue Nationale Contre le Cancer, Paris, France.,Sorbonne Université, Collège Doctoral, Paris, France
| | - Laure Bally-Cuif
- Zebrafish Neurogenetics Unit, Institut Pasteur, UMR 3738, CNRS, Team Supported by the Ligue Nationale Contre le Cancer, Paris, France
| |
Collapse
|
24
|
Fluoxetine effects on behavior and adult hippocampal neurogenesis in female C57BL/6J mice across the estrous cycle. Psychopharmacology (Berl) 2020; 237:1281-1290. [PMID: 31965254 PMCID: PMC7196514 DOI: 10.1007/s00213-020-05456-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/10/2020] [Indexed: 12/11/2022]
Abstract
RATIONALE Some mood disorders, such as major depressive disorder, are more prevalent in women than in men. However, historically preclinical studies in rodents have a lower inclusion rate of females than males, possibly due to the fact that behavior can be affected by the estrous cycle. Several studies have demonstrated that chronic antidepressant treatment can decrease anxiety-associated behaviors and increase adult hippocampal neurogenesis in male rodents. OBJECTIVE Very few studies have looked at the effects of antidepressants on behavior and neurogenesis across the estrous cycle in naturally cycling female rodents. METHODS Here, we analyze the effects of chronic treatment with the selective serotonin reuptake inhibitor (SSRI) fluoxetine (Prozac) on behavior and adult hippocampal neurogenesis in naturally cycling C57BL/6J females across all four phases of the estrous cycle. RESULTS In naturally cycling C57BL/6J females, fluoxetine decreases negative valence behaviors associated with anxiety in the elevated plus maze and novelty-suppressed feeding task, reduces immobility time in forced swim test, and increases adult hippocampal neurogenesis. Interestingly, the effects of fluoxetine on several negative valence behavior and adult hippocampal neurogenesis measures were mainly found within the estrus and diestrus phases of the estrous cycle. CONCLUSIONS Taken together, these data are the first to illustrate the effects of fluoxetine on behavior and adult hippocampal neurogenesis across all four phases of the murine estrous cycle.
Collapse
|
25
|
Sahab-Negah S, Hajali V, Moradi HR, Gorji A. The Impact of Estradiol on Neurogenesis and Cognitive Functions in Alzheimer's Disease. Cell Mol Neurobiol 2020; 40:283-299. [PMID: 31502112 PMCID: PMC11448899 DOI: 10.1007/s10571-019-00733-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/31/2019] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is described as cognitive and memory impairments with a sex-related epidemiological profile, affecting two times more women than men. There is emerging evidence that alternations in the hippocampal neurogenesis occur at the early stage of AD. Therapies that may effectively slow, stop, or regenerate the dying neurons in AD are being extensively investigated in the last few decades, but none has yet been found to be effective. The regulation of endogenous neurogenesis is one of the main therapeutic targets for AD. Mounting evidence indicates that the neurosteroid estradiol (17β-estradiol) plays a supporting role in neurogenesis, neuronal activity, and synaptic plasticity of AD. This effect may provide preventive and/or therapeutic approaches for AD. In this article, we discuss the molecular mechanism of potential estradiol modulatory action on endogenous neurogenesis, synaptic plasticity, and cognitive function in AD.
Collapse
Affiliation(s)
- Sajad Sahab-Negah
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Vahid Hajali
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Moradi
- Histology and Embryology Group, Basic Science Department, Faculty of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Ali Gorji
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
- Department of Neurosurgery and Department of Neurology, Westfälische Wilhelms-Universität Münster, Münster, Germany.
- Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, Domagkstr. 11, Münster, Germany.
| |
Collapse
|
26
|
Eid RS, Lieblich SE, Duarte-Guterman P, Chaiton JA, Mah AG, Wong SJ, Wen Y, Galea LAM. Selective activation of estrogen receptors α and β: Implications for depressive-like phenotypes in female mice exposed to chronic unpredictable stress. Horm Behav 2020; 119:104651. [PMID: 31790664 DOI: 10.1016/j.yhbeh.2019.104651] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/06/2019] [Accepted: 11/26/2019] [Indexed: 01/19/2023]
Abstract
The estrogen receptor (ER) mechanisms by which 17β-estradiol influences depressive-like behaviour have primarily been investigated acutely and not within an animal model of depression. Therefore, the current study aimed to dissect the contribution of ERα and ERβ to the effects of 17β-estradiol under non-stress and chronic stress conditions. Ovariectomized (OVX) or sham-operated mice were treated chronically (47 days) with 17β-estradiol (E2), the ERβ agonist diarylpropionitrile (DPN), the ERα agonist propylpyrazole-triol (PPT), or vehicle. On day 15 of treatment, mice from each group were assigned to chronic unpredictable stress (CUS; 28 days) or non-CUS conditions. Mice were assessed for anxiety- and depressive-like behaviour and hypothalamic-pituitary-adrenal (HPA) axis function. Cytokine and chemokine levels, and postsynaptic density protein 95 were measured in the hippocampus and frontal cortex, and adult hippocampal neurogenesis was assessed. Overall, the effects of CUS were more robust that those of estrogenic treatments, as seen by increased immobility in the tail suspension test (TST), reduced PSD-95 expression, reduced neurogenesis in the ventral hippocampus, and HPA axis negative feedback dysregulation. However, we also observe CUS-dependent and -independent effects of ovarian status and estrogenic treatments. The effects of CUS on PSD-95 expression, the cytokine milieu, and in TST were largely driven by PPT and DPN, indicating that these treatments were not protective. Independent of CUS, estradiol increased neurogenesis in the dorsal hippocampus, blunted the corticosterone response to an acute stressor, and increased anxiety-like behaviour. These findings provide insights into the complexities of estrogen signaling in modulating depressive-like phenotypes under non-stress and chronic stress conditions.
Collapse
Affiliation(s)
- Rand S Eid
- Graduate program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Stephanie E Lieblich
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Paula Duarte-Guterman
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Jessica A Chaiton
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Amanda G Mah
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Sarah J Wong
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Yanhua Wen
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Liisa A M Galea
- Graduate program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Department of Psychology, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
27
|
Spritzer MD, Roy EA. Testosterone and Adult Neurogenesis. Biomolecules 2020; 10:biom10020225. [PMID: 32028656 PMCID: PMC7072323 DOI: 10.3390/biom10020225] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/22/2020] [Accepted: 01/28/2020] [Indexed: 12/16/2022] Open
Abstract
It is now well established that neurogenesis occurs throughout adulthood in select brain regions, but the functional significance of adult neurogenesis remains unclear. There is considerable evidence that steroid hormones modulate various stages of adult neurogenesis, and this review provides a focused summary of the effects of testosterone on adult neurogenesis. Initial evidence came from field studies with birds and wild rodent populations. Subsequent experiments with laboratory rodents have tested the effects of testosterone and its steroid metabolites upon adult neurogenesis, as well as the functional consequences of induced changes in neurogenesis. These experiments have provided clear evidence that testosterone increases adult neurogenesis within the dentate gyrus region of the hippocampus through an androgen-dependent pathway. Most evidence indicates that androgens selectively enhance the survival of newly generated neurons, while having little effect on cell proliferation. Whether this is a result of androgens acting directly on receptors of new neurons remains unclear, and indirect routes involving brain-derived neurotrophic factor (BDNF) and glucocorticoids may be involved. In vitro experiments suggest that testosterone has broad-ranging neuroprotective effects, which will be briefly reviewed. A better understanding of the effects of testosterone upon adult neurogenesis could shed light on neurological diseases that show sex differences.
Collapse
Affiliation(s)
- Mark D. Spritzer
- Department of Biology, Middlebury College, Middlebury, VT 05753, USA
- Correspondence: ; Tel.: 802-443-5676
| | - Ethan A. Roy
- Graduate School of Education, Stanford University, Stanford, CA 94305, USA;
| |
Collapse
|
28
|
Prolactin, Estradiol and Testosterone Differentially Impact Human Hippocampal Neurogenesis in an In Vitro Model. Neuroscience 2020; 454:15-39. [PMID: 31930958 PMCID: PMC7839971 DOI: 10.1016/j.neuroscience.2019.12.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 12/20/2022]
Abstract
Human hippocampal progenitor cells (HPCs) and tissue express classical sex hormone receptors. Prolactin does not impact human HPCs maintained in a proliferative state. Prolactin increases neuronal differentiation of human HPCs only in the short term. Estradiol and testosterone both increase the cell density of proliferating HPCs. Estradiol and testosterone have no observed effect on differentiating HPCs.
Previous studies have indicated that sex hormones such as prolactin, estradiol and testosterone may play a role in the modulation of adult hippocampal neurogenesis (AHN) in rodents and non-human primates, but so far there has been no investigation of their impact on human hippocampal neurogenesis. Here, we quantify the expression levels of the relevant receptors in human post-mortem hippocampal tissue and a human hippocampal progenitor cell (HPC) line. Secondly, we investigate how these hormones modulate hippocampal neurogenesis using a human in vitro cellular model. Human female HPCs were cultured with biologically relevant concentrations of either prolactin, estradiol or testosterone. Bromodeoxyuridine (BrdU) incorporation, immunocytochemistry (ICC) and high-throughput analyses were used to quantify markers determining cell fate after HPCs were either maintained in a proliferative state or allowed to differentiate in the presence of these hormones. In proliferating cells, estrogen and testosterone increased cell density but had no clear effect on markers of proliferation or cell death to account for this. In differentiating cells, a 3-day treatment of prolactin elicited a transient effect, whereby it increased the proportion of microtubule-associated protein 2 (MAP2)-positive and Doublecortin (DCX)-positive cells, but this effect was not apparent after 7-days. At this timepoint we instead observe a decrease in proliferation. Overall, our study demonstrates relatively minor, and possibly short-term effects of sex hormones on hippocampal neurogenesis in human cells. Further work will be needed to understand if our results differ to previous animal research due to species-specific differences, or whether it relates to limitations of our in vitro model.
Collapse
|
29
|
Qiu W, Gobinath AR, Wen Y, Austin J, Galea LAM. Folic acid, but not folate, regulates different stages of neurogenesis in the ventral hippocampus of adult female rats. J Neuroendocrinol 2019; 31:e12787. [PMID: 31478270 DOI: 10.1111/jne.12787] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 12/16/2022]
Abstract
Folate is an important regulator of hippocampal neurogenesis, and folic acid is needed prenatally to reduce the risk of neural tube defects. Both high levels of folic acid and low levels of folate can be harmful to health because low levels of folate have been linked to several diseases while high folic acid supplements can mask a vitamin B12 deficiency. Depressed patients exhibit folate deficiencies, lower levels of hippocampal neurogenesis, elevated levels of homocysteine and elevated levels of the stress hormone, cortisol, which may be inter-related. In the present study, we were interested in whether different doses of natural folate or synthetic folic acid diets can influence neurogenesis in the hippocampus, levels of plasma homocysteine and serum corticosterone in adult female rats. Adult female Sprague-Dawley rats underwent dietary interventions for 29 days. Animals were randomly assigned to six different dietary groups: folate deficient + succinylsulphathiazole (SST), low 5-methyltetrahydrofolate (5-MTHF), low 5-MTHF + (SST), high 5-MTHF + SST, low folic acid and high folic acid. SST was added to a subset of the 5-MTHF diets to eliminate folic acid production in the gut. Before and after dietary treatment, blood samples were collected for corticosterone and homocysteine analysis, and brain tissue was collected for neurogenesis analysis. High folic acid and low 5-MTHF without SST increased the number of immature neurones (doublecortin-expressing cells) within the ventral hippocampus compared to folate deficient controls. Low 5-MTHF without SST significantly increased the number of immature neurones compared to low and high 5-MTHF + SST, indicating that SST interfered with elevations in neurogenesis. Low folic acid and high 5-MTHF + SST reduced plasma homocysteine levels compared to controls, although there was no significant effect of diet on serum corticosterone levels. In addition, low folic acid and high 5-MTHF + SST reduced the number of mature new neurones in the ventral hippocampus (bromodeoxyuridine/NeuN-positive cells) compared to folate deficient controls. Overall, folic acid dose-dependently influenced neurogenesis with low levels decreasing but high levels increasing neurogenesis in the ventral hippocampus, suggesting that this region, which is important for regulating stress, is particularly sensitive to folic acid in diets. Furthermore, the addition of SST negated the effects of 5-MTHF to increase neurogenesis in the ventral hippocampus.
Collapse
Affiliation(s)
- Wansu Qiu
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
| | - Aarthi R Gobinath
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Yanhua Wen
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Jehannine Austin
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Liisa A M Galea
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
30
|
Hillerer KM, Slattery DA, Pletzer B. Neurobiological mechanisms underlying sex-related differences in stress-related disorders: Effects of neuroactive steroids on the hippocampus. Front Neuroendocrinol 2019; 55:100796. [PMID: 31580837 PMCID: PMC7115954 DOI: 10.1016/j.yfrne.2019.100796] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/19/2022]
Abstract
Men and women differ in their vulnerability to a variety of stress-related illnesses, but the underlying neurobiological mechanisms are not well understood. This is likely due to a comparative dearth of neurobiological studies that assess male and female rodents at the same time, while human neuroimaging studies often don't model sex as a variable of interest. These sex differences are often attributed to the actions of sex hormones, i.e. estrogens, progestogens and androgens. In this review, we summarize the results on sex hormone actions in the hippocampus and seek to bridge the gap between animal models and findings in humans. However, while effects of sex hormones on the hippocampus are largely consistent in animals and humans, methodological differences challenge the comparability of animal and human studies on stress effects. We summarise our current understanding of the neurobiological mechanisms that underlie sex-related differences in behavior and discuss implications for stress-related illnesses.
Collapse
Affiliation(s)
- Katharina M Hillerer
- Department of Obstetrics and Gynaecology, Salzburger Landeskrankenhaus (SALK), Paracelsus Medical University (PMU), Clinical Research Center Salzburg (CRCS), Salzburg, Austria.
| | - David A Slattery
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Belinda Pletzer
- Department of Psychology, University of Salzburg, Salzburg, Austria; Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| |
Collapse
|
31
|
Duarte-Guterman P, Lieblich SE, Wainwright SR, Chow C, Chaiton JA, Watson NV, Galea LAM. Androgens Enhance Adult Hippocampal Neurogenesis in Males but Not Females in an Age-Dependent Manner. Endocrinology 2019; 160:2128-2136. [PMID: 31219567 PMCID: PMC6736050 DOI: 10.1210/en.2019-00114] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/24/2019] [Indexed: 01/27/2023]
Abstract
Androgens (testosterone and DHT) increase adult hippocampal neurogenesis by increasing survival of new neurons in male rats and mice via an androgen receptor pathway, but it is not known whether androgens regulate neurogenesis in female rats and whether the effect is age-dependent. We investigated the effects of DHT, a potent androgen, on neurogenesis in young adult and middle-aged male and female rats. Rats were gonadectomized and injected with the DNA synthesis marker bromodeoxyuridine (BrdU). The following day, rats began receiving daily injections of oil or DHT for 30 days. We evaluated cell proliferation (Ki67) and survival of new neurons (BrdU and BrdU/NeuN) in the hippocampus of male and female rats by using immunohistochemistry. As expected, DHT increased the number of BrdU+ cells in young males but surprisingly not in middle-aged males or in young and middle-aged females. In middle age, DHT increased the proportion of BrdU/NeuN cells, an effect driven by females. Androgen receptor expression also increased with aging in both female and male rats, which may contribute to a lack of DHT neurogenic effect in middle age. Our results indicate that DHT regulates adult hippocampal neurogenesis in a sex- and age-dependent manner.
Collapse
Affiliation(s)
- Paula Duarte-Guterman
- Djavad Mowafaghian Centre for Brain Health and Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephanie E Lieblich
- Djavad Mowafaghian Centre for Brain Health and Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Steven R Wainwright
- Djavad Mowafaghian Centre for Brain Health and Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Carmen Chow
- Djavad Mowafaghian Centre for Brain Health and Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jessica A Chaiton
- Djavad Mowafaghian Centre for Brain Health and Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Neil V Watson
- Department of Psychology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Liisa A M Galea
- Djavad Mowafaghian Centre for Brain Health and Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
- Correspondence: Liisa A. M. Galea, PhD, Djavad Mowafaghian Centre for Brain Health, 2215 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3, Canada. E-mail:
| |
Collapse
|
32
|
Siddiqui A, Romeo RD. Sex Differences and Similarities in Hippocampal Cellular Proliferation and the Number of Immature Neurons during Adolescence in Rats. Dev Neurosci 2019; 41:132-138. [PMID: 31430748 DOI: 10.1159/000502056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/10/2019] [Indexed: 11/19/2022] Open
Abstract
Adolescence is associated with significant reductions in hippocampal cellular proliferation and neurogenesis, the physiological and behavioral implications of which are unclear. Though sex differences exist in these proliferative processes in adulthood, relatively little is known about the role sex plays in these adolescent-related changes. To address this gap, we examined cross-sectional area of the dentate gyrus and cellular proliferation, as measured by Ki-67 immunohistochemistry, in pre- (30 days), mid- (45 days), and post-adolescent (70 days) male and female rats. We also investigated the number of immature neurons using doublecortin (DCX) immunohistochemistry in pre- and post-adolescent males and females. Despite increases in the size of the dentate gyrus during adolescence, we found significant adolescent-related decreases in hippocampal proliferation in both males and females, with a more dramatic decrease in males, indicating both age- and sex-dependent changes in the dentate gyrus. We also found an adolescent-related decline in the number of immature neurons in the dentate gyrus of male rats and a female-biased sex difference in the number of immature neurons in adults. Given these significant changes in the dentate gyrus, these data suggest that this period in development might be particularly sensitive to internal and external factors known to modulate neurogenesis, with potential sex-specific neurobehavioral ramifications.
Collapse
Affiliation(s)
- Alina Siddiqui
- Department of Psychology and Neuroscience and Behavior Program Barnard College of Columbia University, New York, New York, USA
| | - Russell D Romeo
- Department of Psychology and Neuroscience and Behavior Program Barnard College of Columbia University, New York, New York, USA,
| |
Collapse
|
33
|
Sex steroid hormone modulation of neural stem cells: a critical review. Biol Sex Differ 2019; 10:28. [PMID: 31146782 PMCID: PMC6543604 DOI: 10.1186/s13293-019-0242-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/13/2019] [Indexed: 12/18/2022] Open
Abstract
While numerous in vivo experiments have sought to explore the effects of sex chromosome composition and sex steroid hormones on cellular proliferation and differentiation within the mammalian brain, far fewer studies as reviewed here, have explored these factors using a direct in vitro approach. Generally speaking, in vivo studies provide the gold standard to demonstrate applicable findings in regards to the role hormones play in development. However, in the case of neural stem cell (NSC) biology, there remain many unknown factors that likely contribute to observations made within the developed brain, specifically in regions where there are abundant sex steroid hormone receptors. For these reasons, using a NSC in vitro model may provide a more controlled and refined system to explore the direct effects of sex and hormone response, limiting the vast array of other influences on NSCs occurring during development and within adult cellular niches. These specific cellular models may have the ability to greatly improve the mechanistic understanding of changes occurring within the developing brain during the hormonal organization process, in addition to other modifications that may contribute to neuro-psychiatric sex-biased diseases.
Collapse
|
34
|
Pregnancy Promotes Maternal Hippocampal Neurogenesis in Guinea Pigs. Neural Plast 2019; 2019:5765284. [PMID: 31097956 PMCID: PMC6487096 DOI: 10.1155/2019/5765284] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/08/2019] [Accepted: 02/21/2019] [Indexed: 11/26/2022] Open
Abstract
Adult neurogenesis in the hippocampal dentate gyrus (DG) modulates cognition and behavior in mammals, while motherhood is associated with cognitive and behavioral changes essential for the care of the young. In mice and rats, hippocampal neurogenesis is reported to be reduced or unchanged during pregnancy, with few data available from other species. In guinea pigs, pregnancy lasts ~9 weeks; we set to explore if hippocampal neurogenesis is altered in these animals, relative to gestational stages. Time-pregnant primigravidas (3-5 months old) and age-matched nonpregnant females were examined, with neurogenic potential evaluated via immunolabeling of Ki67, Sp8, doublecortin (DCX), and neuron-specific nuclear antigen (NeuN) combined with bromodeoxyuridine (BrdU) birth-dating. Relative to control, subgranular Ki67, Sp8, and DCX-immunoreactive (+) cells tended to increase from early gestation to postpartum and peaked at the late gestational stage. In BrdU pulse-chasing experiments in nonpregnant females surviving for different time points (2-120 days), BrdU+ cells in the DG colocalized with DCX partially from 2 to 42 days (most frequently at 14-30 days) and with NeuN increasingly from 14 to 120 days. In pregnant females that received BrdU at early, middle, and late gestational stages and survived for 42 days, the density of BrdU+ cells in the DG was mostly high in the late gestational group. The rates of BrdU/DCX and BrdU/NeuN colocalization were similar among these groups and comparable to those among the corresponding control group. Together, the findings suggest that pregnancy promotes maternal hippocampal neurogenesis in guinea pigs, at least among primigravidas.
Collapse
|
35
|
Shakya R, Chongthammakun S. 17β-Estradiol attenuates the influence of chronic activated microglia on SH-SY5Y cell proliferation via canonical WNT signaling pathway. Neurosci Lett 2019; 692:174-180. [PMID: 30391546 DOI: 10.1016/j.neulet.2018.10.063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 10/21/2018] [Accepted: 10/31/2018] [Indexed: 01/22/2023]
Abstract
The decline in circulating estrogen following menopause or aging is likely to initiate chronic inflammatory disorders, leading to neurodegenerative disease. Though, WNT1 paracrine molecules are crucial in embryonic neuroblastoma cell proliferation, very less is known about its role in adult brain that is associated with estrogen as preventive therapeutic strategy. The present study evidenced for the first time that 17β-estradiol (E2), a potent form of estrogen, could compensate the chronic neuroinflammation-associated loss of neurons by upregulating canonical WNT signaling pathway. Lipopolysaccharide was used to induce inflammatory responses in microglial cell line. The increased secretion of IL-6 cytokine was confirmed as a marker of chronic microglial activation. LPS-conditioned microglial media significantly reduced the viable cells and proliferative markers, BrdU and CyclinD1 in SH-SY5Y. It also decreased the expression of canonical WNT signaling components; WNT1 and β-catenin, which were significantly rescued with pre- and co-treatment of 10 nM E2. Furthermore, estrogen antagonist ICI 182,780 abolished the E2-mediated recovery in WNT1 expression. Whereas, canonical WNT receptor antagonist, Dkk1 was able to inhibit E2-mediated recovery in the expression of downstream component, β-catenin. It suggests a promising role of canonical WNT signaling pathway in estrogen mediated prevention of neuronal cell loss under chronic neuroinflammatory condition.
Collapse
Affiliation(s)
- Rubina Shakya
- Anatomy and Structural Biology Graduate Program, Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Sukumal Chongthammakun
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
36
|
Yoest KE, Cummings JA, Becker JB. Oestradiol influences on dopamine release from the nucleus accumbens shell: sex differences and the role of selective oestradiol receptor subtypes. Br J Pharmacol 2018; 176:4136-4148. [PMID: 30381823 DOI: 10.1111/bph.14531] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 10/15/2018] [Accepted: 10/18/2018] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND AND PURPOSE Females are more sensitive than males to both the acute and prolonged effects of psychomotor stimulants. In females, this is regulated by oestradiol, which enhances dopamine release in the dorsal striatum. In this study, we tested the acute effect of oestradiol on dopamine release in the nucleus accumbens (NAc) shell after cocaine administration and investigated which oestradiol receptors (ERs) contribute to sex differences in the response to cocaine. EXPERIMENTAL APPROACH The ability of oestradiol benzoate (EB) to acutely modulate the effect of cocaine on phasic dopamine release in the NAc shell was measured by fast-scan cyclic voltammetry in anaesthetized male and female rats. The roles of ER subtypes, ERα and ERβ, was determined with selective agonists. KEY RESULTS EB acutely enhanced the effect of cocaine on stimulated dopamine release from the NAc shell in females but not in male rats only at levels of stimulation expected to optimally saturate dopamine transporters. Enhanced dopamine release after cocaine administration was also observed in females after selective activation of ERβ but not ERα. EB attenuated the effect of cocaine on NAc shell dopamine reuptake in males but not in females. CONCLUSIONS AND IMPLICATIONS Oestradiol acutely and rapidly regulates dopamine release in females and dopamine reuptake in males. In females, oestradiol rapidly enhances the effect of cocaine on dopamine release, likely via activation of ERβ. The effect of oestradiol in males is not seen with selective receptor subtype activation, a topic deserving of further study. LINKED ARTICLES This article is part of a themed section on The Importance of Sex Differences in Pharmacology Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.21/issuetoc.
Collapse
Affiliation(s)
- Katie E Yoest
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | | | - Jill B Becker
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA.,Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA.,Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
37
|
Chen S, Kumar N, Mao Z, Sitruk-Ware R, Brinton RD. Therapeutic progestin segesterone acetate promotes neurogenesis: implications for sustaining regeneration in female brain. Menopause 2018; 25:1138-1151. [PMID: 29846284 PMCID: PMC7731586 DOI: 10.1097/gme.0000000000001135] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Neurogenesis is the principal regenerative mechanism to sustain the plasticity potential in adult brains. Decreased neurogenesis parallels the cognition decline with aging, and has been suggested as a common hallmark in the progression of many neurodegeneration diseases. We previously reported that acute exposure to segesterone acetate (ST-1435; Nestorone), alone or in combination with 17β-estradiol (E2), increased human neural stem cells proliferation and survival both in vitro and in vivo. The present study expanded our previous findings to investigate the more clinical related chronic exposure in combination with E2 on the regenerative capacity of adult brain. METHODS To mimic the chronic contraception exposure in women, 3-month old female mice (n = 110) were treated with ST-1435, with or without co-administration of E2, for 4 weeks. Neural cell proliferation and survival, and oligodendrocyte generation were assessed. The involvement of insulin-like growth factor 1 signaling was studied. RESULTS Our results demonstrated that chronic ST-1435 and E2 alone or in combination increased neurogenesis by a comparable magnitude, with minimum to no antagonistic or additive effects between ST-1435 and E2. In addition, chronic exposure of ST-1435 or ST-1435 + E2 stimulated oligodendrocyte generation, indicating potential elevated myelination. Insulin-like growth factor-1 (IGF-1) and IGF-1 receptor (IGF-1R) were also up-regulated after chronic ST-1435 and E2 exposure, suggesting the involvement of IGF-1 signaling as the potential underlined regulatory pathway transducing ST-1435 effect. CONCLUSION These findings provide preclinical evidence and mechanistic insights for the development of ST-1435 as a neuroregenerative therapy to promote intrinsic regenerative capacity in female brains against aging and neurodegenerative disorders.
Collapse
Affiliation(s)
- Shuhua Chen
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, USA
| | - Narendar Kumar
- Center for Biomedical Research, Population Council,, New York, NY, USA
| | - Zisu Mao
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, USA
| | | | - Roberta Diaz Brinton
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, USA
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA
- Department of Neurology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
38
|
Hyer MM, Phillips LL, Neigh GN. Sex Differences in Synaptic Plasticity: Hormones and Beyond. Front Mol Neurosci 2018; 11:266. [PMID: 30108482 PMCID: PMC6079238 DOI: 10.3389/fnmol.2018.00266] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/13/2018] [Indexed: 12/24/2022] Open
Abstract
Notable sex-differences exist between neural structures that regulate sexually dimorphic behaviors such as reproduction and parenting. While anatomical differences have been well-characterized, advancements in neuroimaging and pharmacology techniques have allowed researchers to identify differences between males and females down to the level of the synapse. Disparate mechanisms at the synaptic level contribute to sex-specific neuroplasticity that is reflected in sex-dependent behaviors. Many of these synaptic differences are driven by the endocrine system and its impact on molecular signaling and physiology. While sex-dependent modifications exist at baseline, further differences emerge in response to stimuli such as stressors. While some of these mechanisms are unifying between sexes, they often have directly opposing consequences in males and females. This variability is tied to gonadal steroids and their interactions with intra- and extra-cellular signaling mechanisms. This review article focuses on the various mechanisms by which sex can alter synaptic plasticity, both directly and indirectly, through steroid hormones such as estrogen and testosterone. That sex can drive neuroplasticity throughout the brain, highlights the importance of understanding sex-dependent neural mechanisms of the changing brain to enhance interpretation of results regarding males and females. As mood and stress responsivity are characterized by significant sex-differences, understanding the molecular mechanisms that may be altering structure and function can improve our understanding of these behavioral and mental characteristics.
Collapse
Affiliation(s)
- Molly M Hyer
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
| | - Linda L Phillips
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
| | - Gretchen N Neigh
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
39
|
Larson TA. Sex Steroids, Adult Neurogenesis, and Inflammation in CNS Homeostasis, Degeneration, and Repair. Front Endocrinol (Lausanne) 2018; 9:205. [PMID: 29760681 PMCID: PMC5936772 DOI: 10.3389/fendo.2018.00205] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/12/2018] [Indexed: 01/16/2023] Open
Abstract
Sex steroidal hormones coordinate the development and maintenance of tissue architecture in many organs, including the central nervous systems (CNS). Within the CNS, sex steroids regulate the morphology, physiology, and behavior of a wide variety of neural cells including, but not limited to, neurons, glia, endothelial cells, and immune cells. Sex steroids spatially and temporally control distinct molecular networks, that, in turn modulate neural activity, synaptic plasticity, growth factor expression and function, nutrient exchange, cellular proliferation, and apoptosis. Over the last several decades, it has become increasingly evident that sex steroids, often in conjunction with neuroinflammation, have profound impact on the occurrence and severity of neuropsychiatric and neurodegenerative disorders. Here, I review the foundational discoveries that established the regulatory role of sex steroids in the CNS and highlight recent advances toward elucidating the complex interaction between sex steroids, neuroinflammation, and CNS regeneration through adult neurogenesis. The majority of recent work has focused on neuroinflammatory responses following acute physical damage, chronic degeneration, or pharmacological insult. Few studies directly assess the role of immune cells in regulating adult neurogenesis under healthy, homeostatic conditions. As such, I also introduce tractable, non-traditional models for examining the role of neuroimmune cells in natural neuronal turnover, seasonal plasticity of neural circuits, and extreme CNS regeneration.
Collapse
Affiliation(s)
- Tracy A. Larson
- Department of Biology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
40
|
Calderon-Garcidueñas AL, Mathon B, Lévy P, Bertrand A, Mokhtari K, Samson V, Thuriès V, Lambrecq V, Nguyen VHM, Dupont S, Adam C, Baulac M, Clémenceau S, Duyckaerts C, Navarro V, Bielle F. New clinicopathological associations and histoprognostic markers in ILAE types of hippocampal sclerosis. Brain Pathol 2018; 28:644-655. [PMID: 29476662 DOI: 10.1111/bpa.12596] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 01/06/2018] [Accepted: 01/27/2018] [Indexed: 12/30/2022] Open
Abstract
Mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS) is a heterogeneous syndrome. Surgery results in seizure freedom for most pharmacoresistant patients, but the epileptic and cognitive prognosis remains variable. The 2013 International League Against Epilepsy (ILAE) histopathological classification of hippocampal sclerosis (HS) has fostered research to understand MTLE-HS heterogeneity. We investigated the associations between histopathological features (ILAE types, hypertrophic CA4 neurons, granule cell layer alterations, CD34 immunopositive cells) and clinical features (presurgical history, postsurgical outcome) in a monocentric series of 247 MTLE-HS patients treated by surgery. NeuN, GFAP and CD34 immunostainings and a double independent pathological examination were performed. 186 samples were type 1, 47 type 2, 7 type 3 and 7 samples were gliosis only but no neuronal loss (noHS). In the type 1, hypertrophic CA4 neurons were associated with a worse postsurgical outcome and granule cell layer duplication was associated with generalized seizures and episodes of status epilepticus. In the type 2, granule cell layer duplication was associated with generalized seizures. CD34+ stellate cells were more frequent in the type 2, type 3 and in noHS. These cells had a Nestin and SOX2 positive, immature neural immunophenotype. Patients with nodules of CD34+ cells had more frequent dysmnesic auras. CD34+ stellate cells in scarce pattern were associated with higher ratio of normal MRI and of stereo-electroencephalographic studies. CD34+ cells were associated with a trend for a better postsurgical outcome. Among CD34+ cases, we proposed a new entity of BRAF V600E positive HS and we described three hippocampal multinodular and vacuolating neuronal tumors. To conclude, our data identified new clinicopathological associations with ILAE types. They showed the prognostic value of CA4 hypertrophic neurons. They highlighted CD34+ stellate cells and BRAF V600E as biomarkers to further decipher MTLE-HS heterogeneity.
Collapse
Affiliation(s)
- Ana Laura Calderon-Garcidueñas
- Department of Neuropathology, AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière Charles Foix, Paris, France.,Institute of Forensic Medicine, Universidad Veracruzana, Boca del Río, Mexico
| | - Bertrand Mathon
- Department of Neurosurgery, AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière Charles Foix, Paris, France.,Sorbonne University, UPMC, Univ Paris 06, Paris, France
| | - Pierre Lévy
- Sorbonne University, UPMC, Univ Paris 06, Paris, France.,UPMC and Inserm UMR S 1136 (EPAR team), Département de Santé Publique, Hôpital Tenon, Groupe Hospitalier Universitaire de l'Est Parisien, AP-HP, Paris, France
| | - Anne Bertrand
- Sorbonne University, UPMC, Univ Paris 06, Paris, France.,Brain and Spine Institute (ICM; INSERM, UMRS 1127; CNRS, UMR 7225), Paris, France.,Inria Paris, Aramis project-team, Paris, France.,Department of Radiology, AP-HP, Hôpital Saint Antoine, Paris, France
| | - Karima Mokhtari
- Department of Neuropathology, AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière Charles Foix, Paris, France.,Brain and Spine Institute (ICM; INSERM, UMRS 1127; CNRS, UMR 7225), Paris, France
| | - Véronique Samson
- Department of Epileptology, AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière Charles Foix, Paris, France
| | - Valérie Thuriès
- Department of Neuropathology, AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière Charles Foix, Paris, France
| | - Virginie Lambrecq
- Sorbonne University, UPMC, Univ Paris 06, Paris, France.,Brain and Spine Institute (ICM; INSERM, UMRS 1127; CNRS, UMR 7225), Paris, France.,Department of Epileptology, AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière Charles Foix, Paris, France
| | - Vi-Huong Michel Nguyen
- Department of Epileptology, AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière Charles Foix, Paris, France
| | - Sophie Dupont
- Sorbonne University, UPMC, Univ Paris 06, Paris, France.,Brain and Spine Institute (ICM; INSERM, UMRS 1127; CNRS, UMR 7225), Paris, France.,Department of Epileptology, AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière Charles Foix, Paris, France.,Department of Rehabilitation, AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière Charles Foix, Paris, France
| | - Claude Adam
- Brain and Spine Institute (ICM; INSERM, UMRS 1127; CNRS, UMR 7225), Paris, France.,Department of Epileptology, AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière Charles Foix, Paris, France
| | - Michel Baulac
- Sorbonne University, UPMC, Univ Paris 06, Paris, France.,Brain and Spine Institute (ICM; INSERM, UMRS 1127; CNRS, UMR 7225), Paris, France.,Department of Epileptology, AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière Charles Foix, Paris, France
| | - Stéphane Clémenceau
- Department of Neurosurgery, AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière Charles Foix, Paris, France
| | - Charles Duyckaerts
- Department of Neuropathology, AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière Charles Foix, Paris, France.,Sorbonne University, UPMC, Univ Paris 06, Paris, France.,Brain and Spine Institute (ICM; INSERM, UMRS 1127; CNRS, UMR 7225), Paris, France
| | - Vincent Navarro
- Sorbonne University, UPMC, Univ Paris 06, Paris, France.,Brain and Spine Institute (ICM; INSERM, UMRS 1127; CNRS, UMR 7225), Paris, France.,Department of Epileptology, AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière Charles Foix, Paris, France
| | - Franck Bielle
- Department of Neuropathology, AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière Charles Foix, Paris, France.,Sorbonne University, UPMC, Univ Paris 06, Paris, France.,Brain and Spine Institute (ICM; INSERM, UMRS 1127; CNRS, UMR 7225), Paris, France
| |
Collapse
|
41
|
Swift-Gallant A, Duarte-Guterman P, Hamson DK, Ibrahim M, Monks DA, Galea LAM. Neural androgen receptors affect the number of surviving new neurones in the adult dentate gyrus of male mice. J Neuroendocrinol 2018; 30:e12578. [PMID: 29411916 DOI: 10.1111/jne.12578] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/12/2018] [Accepted: 01/31/2018] [Indexed: 12/28/2022]
Abstract
Adult hippocampal neurogenesis occurs in many mammalian species. In rats, the survival of new neurones within the hippocampus is modulated by the action of androgen via the androgen receptor (AR); however, it is not known whether this holds true in mice. Furthermore, the evidence is mixed regarding whether androgens act in neural tissue or via peripheral non-neural targets to promote new neurone survival in the hippocampus. We evaluated whether the action of androgen via AR underlies the survival of new neurones in mice, and investigated whether increasing AR selectively in neural tissue would increase new neurone survival in the hippocampus. We used the cre-loxP system to overexpress AR only in neural tissues (Nestin-AR). These males were compared with wild-type males, as well as control males with 1 of the 2 mutations required for overexpression. Mice were gonadectomised and injected with the DNA synthesis marker, bromodeoxyuridine (BrdU) and for 37 days (following BrdU injection), mice were treated with oil or dihydrotestosterone (DHT). Using immunohistochemistry, proliferation (Ki67) and survival (BrdU) of new neurones were both evaluated in the dorsal and ventral dentate gyrus. Dihydrotestosterone treatment increased the survival of new neurones in the entire hippocampus in wild-type mice and control mice that only have 1 of 2 necessary mutations for transgenic expression. However, DHT treatment did not increase the survival of new neurones in mice that overexpressed AR in neural tissue. Cell proliferation (Ki67) and cell death (pyknotic cells) were not affected by DHT treatment in wild-type or transgenic males. These results suggest that androgens act via neural AR to affect hippocampal neurogenesis by promoting cell survival; however, the relationship between androgen dose and new neurone survival is nonlinear.
Collapse
Affiliation(s)
- A Swift-Gallant
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- Department of Psychology, University of Toronto, Mississauga, ON, Canada
| | - P Duarte-Guterman
- Djavad Mowafaghian Centre for Brain Health and Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - D K Hamson
- Djavad Mowafaghian Centre for Brain Health and Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - M Ibrahim
- Djavad Mowafaghian Centre for Brain Health and Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - D A Monks
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- Department of Psychology, University of Toronto, Mississauga, ON, Canada
- Department of Neuroscience, University of Toronto, Toronto, ON, Canada
| | - L A M Galea
- Djavad Mowafaghian Centre for Brain Health and Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
42
|
Linear and inverted U-shaped dose-response functions describe estrogen effects on hippocampal activity in young women. Nat Commun 2018; 9:1220. [PMID: 29572476 PMCID: PMC5865215 DOI: 10.1038/s41467-018-03679-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/02/2018] [Indexed: 01/07/2023] Open
Abstract
In animals, 17-beta-estradiol (E2) enhances hippocampal plasticity in a dose-dependent, monotonically increasing manner, but this relationship can also exhibit an inverted U-shaped function. To investigate E2’s dose-response function in the human hippocampus, we pharmacologically increased E2 levels in 125 naturally cycling women (who were in their low-hormone menstruation phase) to physiological (equivalent to menstrual cycle peak) and supraphysiological (equivalent to levels during early pregnancy) concentrations in a placebo-controlled design. Twenty-four hours after first E2 intake, we measured brain activity during encoding of neutral and negative pictures and then tested recognition memory 24 h after encoding. Here we report that E2 exhibits both a monotonically increasing relationship with hippocampal activity as well as an inverted U-shaped relationship, depending on the hippocampal region. Hippocampal activity exhibiting a U-shaped relationship inflects at supraphysiological E2 levels, suggesting that while E2 within physiological ranges stimulates hippocampal activity, supraphysiological ranges show opposite effects. While estrogen is known to change hippocampal activity in animals, it is not known if this effect extends to humans. Here, authors vary the doses of estrogen in young women and show that the effects on hippocampal activity can be described by linear and inverted-U shaped dose-response functions.
Collapse
|
43
|
Diotel N, Charlier TD, Lefebvre d'Hellencourt C, Couret D, Trudeau VL, Nicolau JC, Meilhac O, Kah O, Pellegrini E. Steroid Transport, Local Synthesis, and Signaling within the Brain: Roles in Neurogenesis, Neuroprotection, and Sexual Behaviors. Front Neurosci 2018; 12:84. [PMID: 29515356 PMCID: PMC5826223 DOI: 10.3389/fnins.2018.00084] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/02/2018] [Indexed: 01/18/2023] Open
Abstract
Sex steroid hormones are synthesized from cholesterol and exert pleiotropic effects notably in the central nervous system. Pioneering studies from Baulieu and colleagues have suggested that steroids are also locally-synthesized in the brain. Such steroids, called neurosteroids, can rapidly modulate neuronal excitability and functions, brain plasticity, and behavior. Accumulating data obtained on a wide variety of species demonstrate that neurosteroidogenesis is an evolutionary conserved feature across fish, birds, and mammals. In this review, we will first document neurosteroidogenesis and steroid signaling for estrogens, progestagens, and androgens in the brain of teleost fish, birds, and mammals. We will next consider the effects of sex steroids in homeostatic and regenerative neurogenesis, in neuroprotection, and in sexual behaviors. In a last part, we will discuss the transport of steroids and lipoproteins from the periphery within the brain (and vice-versa) and document their effects on the blood-brain barrier (BBB) permeability and on neuroprotection. We will emphasize the potential interaction between lipoproteins and sex steroids, addressing the beneficial effects of steroids and lipoproteins, particularly HDL-cholesterol, against the breakdown of the BBB reported to occur during brain ischemic stroke. We will consequently highlight the potential anti-inflammatory, anti-oxidant, and neuroprotective properties of sex steroid and lipoproteins, these latest improving cholesterol and steroid ester transport within the brain after insults.
Collapse
Affiliation(s)
- Nicolas Diotel
- Université de La Réunion, Institut National de la Santé et de la Recherche Médicale, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien, Saint-Denis de La Réunion, France
| | - Thierry D. Charlier
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Christian Lefebvre d'Hellencourt
- Université de La Réunion, Institut National de la Santé et de la Recherche Médicale, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien, Saint-Denis de La Réunion, France
| | - David Couret
- Université de La Réunion, Institut National de la Santé et de la Recherche Médicale, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien, Saint-Denis de La Réunion, France
- CHU de La Réunion, Saint-Denis, France
| | | | - Joel C. Nicolau
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Olivier Meilhac
- Université de La Réunion, Institut National de la Santé et de la Recherche Médicale, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien, Saint-Denis de La Réunion, France
- CHU de La Réunion, Saint-Denis, France
| | - Olivier Kah
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Elisabeth Pellegrini
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| |
Collapse
|
44
|
Gheorghe A, Qiu W, Galea LAM. Hormonal Regulation of Hippocampal Neurogenesis: Implications for Depression and Exercise. Curr Top Behav Neurosci 2018; 43:379-421. [PMID: 30414016 DOI: 10.1007/7854_2018_62] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Adult hippocampal neurogenesis exists in all mammalian species, including humans, and although there has been considerable research investigating the function and regulation of neurogenesis, there remain many open questions surrounding the complexity of this phenomenon. This stems partially from the fact that neurogenesis is a multistage process that involves proliferation, differentiation, migration, survival, and eventual integration of new cells into the existing hippocampal circuitry, each of which can be independently influenced. The function of adult neurogenesis in the hippocampus is related to stress regulation, behavioral efficacy of antidepressants, long-term spatial memory, forgetting, and pattern separation. Steroid hormones influence the regulation of hippocampal neurogenesis, stress regulation, and cognition and differently in males and females. In this chapter, we will briefly tap into the complex network of steroid hormone modulation of neurogenesis in the hippocampus with specific emphasis on stress, testosterone, and estrogen. We examine the possible role of neurogenesis in the etiology of depression and influencing treatment by examining the influence of both pharmacological (selective serotonin reuptake inhibitors, tricyclic antidepressants) treatments and non-pharmacological (exercise) remedies.
Collapse
Affiliation(s)
- Ana Gheorghe
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.,Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
| | - Wansu Qiu
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.,Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
| | - Liisa A M Galea
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada. .,Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada. .,Department of Psychology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
45
|
Disruption of Interneuron Neurogenesis in Premature Newborns and Reversal with Estrogen Treatment. J Neurosci 2017; 38:1100-1113. [PMID: 29246927 DOI: 10.1523/jneurosci.1875-17.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/19/2017] [Accepted: 10/26/2017] [Indexed: 11/21/2022] Open
Abstract
Many Preterm-born children suffer from neurobehavioral disorders. Premature birth terminates the hypoxic in utero environment and supply of maternal hormones. As the production of interneurons continues until the end of pregnancy, we hypothesized that premature birth would disrupt interneuron production and that restoration of the hypoxic milieu or estrogen treatment might reverse interneuron generation. To test these hypotheses, we compared interneuronal progenitors in the medial ganglionic eminences (MGEs), lateral ganglionic eminences (LGEs), and caudal ganglionic eminences (CGEs) between preterm-born [born on embryonic day (E) 29; examined on postnatal day (D) 3 and D7] and term-born (born on E32; examined on D0 and D4) rabbits at equivalent postconceptional ages. We found that both total and cycling Nkx2.1+, Dlx2+, and Sox2+ cells were more abundant in the MGEs of preterm rabbits at D3 compared with term rabbits at D0, but not in D7 preterm relative to D4 term pups. Total Nkx2.1+ progenitors were also more numerous in the LGEs of preterm pups at D3 compared with term rabbits at D0. Dlx2+ cells in CGEs were comparable between preterm and term pups. Simulation of hypoxia by dimethyloxalylglycine treatment did not affect the number of interneuronal progenitors. However, estrogen treatment reduced the density of total and proliferating Nkx2.1+ and Dlx2+ cells in the MGEs and enhanced Ascl1 transcription factor. Estrogen treatment also reduced Ki67, c-Myc, and phosphorylation of retinoblastoma protein, suggesting inhibition of the G1-to-S phase transition. Hence, preterm birth disrupts interneuron neurogenesis in the MGE and estrogen treatment reverses interneuron neurogenesis in preterm newborns by cell-cycle inhibition and elevation of Ascl1. We speculate that estrogen replacement might partially restore neurogenesis in human premature infants.SIGNIFICANCE STATEMENT Prematurity results in developmental delays and neurobehavioral disorders, which might be ascribed to disturbances in the development of cortical interneurons. Here, we show that preterm birth disrupts interneuron neurogenesis in the medial ganglionic eminence (MGE) and, more importantly, that estrogen treatment reverses this perturbation in the population of interneuron progenitors in the MGE. The estrogen seems to restore neurogenesis by inhibiting the cell cycle and elevating Ascl1 expression. As preterm birth causes plasma estrogen level to drop 100-fold, the estrogen replacement in preterm infants is physiological. We speculate that estrogen replacement might ameliorate disruption in production of interneurons in human premature infants.
Collapse
|
46
|
Sundström Poromaa I, Comasco E, Georgakis MK, Skalkidou A. Sex differences in depression during pregnancy and the postpartum period. J Neurosci Res 2017; 95:719-730. [PMID: 27870443 PMCID: PMC5129485 DOI: 10.1002/jnr.23859] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/01/2016] [Accepted: 07/11/2016] [Indexed: 12/29/2022]
Abstract
Women have a lifetime risk of major depression double that of men but only during their reproductive years. This sex difference has been attributed partially to activational effects of female sex steroids and also to the burdens of pregnancy, childbirth, and parenting. Men, in contrast, have a reproductive period difficult to delineate, and research on the mental health of men has rarely considered the effects of fatherhood. However, the couple goes through a number of potentially stressing events during the reproductive period, and both mothers and fathers are at risk of developing peripartum depression. This Review discusses the literature on maternal and paternal depression and the endocrine changes that may predispose a person to depression at this stage of life, with specific focus on the hypothalamus–pituitary axis, oxytocin, and testosterone levels in men. Important findings on sex differences in the neural correlates of maternal and paternal behavior have emerged, highlighting the relevance of the emotional brain in mothers and the sociocognitive brain in fathers and pointing toward the presence of a common parents' brain. Additionally, sex differences in neurogenesis and brain plasticity are described in relation to peripartum depression. © 2016 The Authors. Journal of Neuroscience Research Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Erika Comasco
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Marios K Georgakis
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden.,Department of Hygiene, Epidemiology, and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Alkistis Skalkidou
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| |
Collapse
|
47
|
Hyer MM, Khantsis S, Venezia AC, Madison FN, Hallgarth L, Adekola E, Glasper ER. Estrogen-dependent modifications to hippocampal plasticity in paternal California mice (Peromyscus californicus). Horm Behav 2017; 96:147-155. [PMID: 28954216 DOI: 10.1016/j.yhbeh.2017.09.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/19/2017] [Accepted: 09/22/2017] [Indexed: 11/22/2022]
Abstract
In many biparental species, mothers and fathers experience similar modifications to circulating hormones. With these modifications come alterations in neural structure and function suggesting that neuroendocrine mechanisms may underlie postpartum plasticity in both males and females. In the biparental California mouse (Peromyscus californicus), adult neurogenesis is maintained and anxiety-like behavior is attenuated in fathers during the mid-postpartum period. Given a causal relationship between estrogen and regulation of both adult neurogenesis and anxiety, we aimed to elucidate the role of estrogen-dependent mechanisms in paternal experience-related modifications to hippocampal neuroplasticity in California mice. In Experiment 1, hippocampal estrogen receptor beta (ERβ) mRNA expression, along with circulating estradiol concentrations, were determined throughout the postpartum period. An upregulation in ERβ expression was observed in postnatal day 16 males compared to virgins. Additionally, a rise in circulating estradiol concentrations was detected on postnatal day 2 compared to virgins; levels began to decline toward virgin levels on postnatal day 16 and postnatal day 30. In Experiment 2, we determined the role of estrogen-dependent mechanisms in adult neurogenesis and anxiety-like behavior by treating virgin and paternal males with saline or the selective estrogen receptor modulator, tamoxifen (TMX), during the time of axon extension (i.e., one week after bromodeoxyuridine injection). While TMX failed to alter elevated plus maze performance, TMX treatment inhibited survival of adult born neurons but only in paternal mice. These findings highlight the potential for estrogen-dependent pathways to mediate hippocampal adult neurogenesis in paternal mice.
Collapse
Affiliation(s)
- Molly M Hyer
- Program in Neuroscience and Cognitive Sciences, University of Maryland, College Park, MD 20742, USA
| | - Sabina Khantsis
- Department of Psychology, University of Maryland, College Park, MD 20742, USA
| | - Andrew C Venezia
- Program in Neuroscience and Cognitive Sciences, University of Maryland, College Park, MD 20742, USA
| | - Farrah N Madison
- Program in Neuroscience and Cognitive Sciences, University of Maryland, College Park, MD 20742, USA; Department of Psychology, University of Maryland, College Park, MD 20742, USA
| | - Luke Hallgarth
- Department of Psychology, University of Maryland, College Park, MD 20742, USA
| | - Enoch Adekola
- Department of Psychology, University of Maryland, College Park, MD 20742, USA
| | - Erica R Glasper
- Program in Neuroscience and Cognitive Sciences, University of Maryland, College Park, MD 20742, USA; Department of Psychology, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
48
|
Lévy F, Batailler M, Meurisse M, Migaud M. Adult Neurogenesis in Sheep: Characterization and Contribution to Reproduction and Behavior. Front Neurosci 2017; 11:570. [PMID: 29109674 PMCID: PMC5660097 DOI: 10.3389/fnins.2017.00570] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/28/2017] [Indexed: 01/18/2023] Open
Abstract
Sheep have many advantages to study neurogenesis in comparison to the well-known rodent models. Their development and life expectancy are relatively long and they possess a gyrencephalic brain. Sheep are also seasonal breeders, a characteristic that allows studying the involvement of hypothalamic neurogenesis in the control of seasonal reproduction. Sheep are also able to individually recognize their conspecifics and develop selective and lasting bonds. Adult olfactory neurogenesis could be adapted to social behavior by supporting recognition of conspecifics. The present review reveals the distinctive features of the hippocampal, olfactory, and hypothalamic neurogenesis in sheep. In particular, the organization of the subventricular zone and the dynamic of neuronal maturation differs from that of rodents. In addition, we show that various physiological conditions, such as seasonal reproduction, gestation, and lactation differently modulate these three neurogenic niches. Last, we discuss recent evidence indicating that hypothalamic neurogenesis acts as an important regulator of the seasonal control of reproduction and that olfactory neurogenesis could be involved in odor processing in the context of maternal behavior.
Collapse
Affiliation(s)
- Frederic Lévy
- Institut National de la Recherche Agronomique, UMR85, Centre National de la Recherche Scientifique, UMR7247, Université F. Rabelais, IFCE, Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Martine Batailler
- Institut National de la Recherche Agronomique, UMR85, Centre National de la Recherche Scientifique, UMR7247, Université F. Rabelais, IFCE, Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Maryse Meurisse
- Institut National de la Recherche Agronomique, UMR85, Centre National de la Recherche Scientifique, UMR7247, Université F. Rabelais, IFCE, Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Martine Migaud
- Institut National de la Recherche Agronomique, UMR85, Centre National de la Recherche Scientifique, UMR7247, Université F. Rabelais, IFCE, Physiologie de la Reproduction et des Comportements, Nouzilly, France
| |
Collapse
|
49
|
Engler-Chiurazzi EB, Brown CM, Povroznik JM, Simpkins JW. Estrogens as neuroprotectants: Estrogenic actions in the context of cognitive aging and brain injury. Prog Neurobiol 2017; 157:188-211. [PMID: 26891883 PMCID: PMC4985492 DOI: 10.1016/j.pneurobio.2015.12.008] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/06/2015] [Accepted: 12/10/2015] [Indexed: 12/30/2022]
Abstract
There is ample empirical evidence to support the notion that the biological impacts of estrogen extend beyond the gonads to other bodily systems, including the brain and behavior. Converging preclinical findings have indicated a neuroprotective role for estrogen in a variety of experimental models of cognitive function and brain insult. However, the surprising null or even detrimental findings of several large clinical trials evaluating the ability of estrogen-containing hormone treatments to protect against age-related brain changes and insults, including cognitive aging and brain injury, led to hesitation by both clinicians and patients in the use of exogenous estrogenic treatments for nervous system outcomes. That estrogen-containing therapies are used by tens of millions of women for a variety of health-related applications across the lifespan has made identifying conditions under which benefits with estrogen treatment will be realized an important public health issue. Here we provide a summary of the biological actions of estrogen and estrogen-containing formulations in the context of aging, cognition, stroke, and traumatic brain injury. We have devoted special attention to highlighting the notion that estrogen appears to be a conditional neuroprotectant whose efficacy is modulated by several interacting factors. By developing criteria standards for desired beneficial peripheral and neuroprotective outcomes among unique patient populations, we can optimize estrogen treatments for attenuating the consequences of, and perhaps even preventing, cognitive aging and brain injury.
Collapse
Affiliation(s)
- E B Engler-Chiurazzi
- Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, WV 26506, United States; Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV 26506, United States.
| | - C M Brown
- Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, WV 26506, United States; Department of Neurobiology and Anatomy, West Virginia University, Morgantown, WV 26506, United States.
| | - J M Povroznik
- Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, WV 26506, United States; Department of Pediatrics, West Virginia University, Morgantown, WV 26506, United States.
| | - J W Simpkins
- Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, WV 26506, United States; Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV 26506, United States.
| |
Collapse
|
50
|
Spritzer MD, Panning AW, Engelman SM, Prince WT, Casler AE, Georgakas JE, Jaeger EC, Nelson LR, Roy EA, Wagner BA. Seasonal and sex differences in cell proliferation, neurogenesis, and cell death within the dentate gyrus of adult wild-caught meadow voles. Neuroscience 2017; 360:155-165. [DOI: 10.1016/j.neuroscience.2017.07.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/11/2017] [Accepted: 07/18/2017] [Indexed: 12/28/2022]
|