1
|
Vohra SK, Harth P, Isoe Y, Bahl A, Fotowat H, Engert F, Hege HC, Baum D. A Visual Interface for Exploring Hypotheses About Neural Circuits. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:3945-3958. [PMID: 37022819 PMCID: PMC11252567 DOI: 10.1109/tvcg.2023.3243668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
One of the fundamental problems in neurobiological research is to understand how neural circuits generate behaviors in response to sensory stimuli. Elucidating such neural circuits requires anatomical and functional information about the neurons that are active during the processing of the sensory information and generation of the respective response, as well as an identification of the connections between these neurons. With modern imaging techniques, both morphological properties of individual neurons as well as functional information related to sensory processing, information integration and behavior can be obtained. Given the resulting information, neurobiologists are faced with the task of identifying the anatomical structures down to individual neurons that are linked to the studied behavior and the processing of the respective sensory stimuli. Here, we present a novel interactive tool that assists neurobiologists in the aforementioned tasks by allowing them to extract hypothetical neural circuits constrained by anatomical and functional data. Our approach is based on two types of structural data: brain regions that are anatomically or functionally defined, and morphologies of individual neurons. Both types of structural data are interlinked and augmented with additional information. The presented tool allows the expert user to identify neurons using Boolean queries. The interactive formulation of these queries is supported by linked views, using, among other things, two novel 2D abstractions of neural circuits. The approach was validated in two case studies investigating the neural basis of vision-based behavioral responses in zebrafish larvae. Despite this particular application, we believe that the presented tool will be of general interest for exploring hypotheses about neural circuits in other species, genera and taxa.
Collapse
|
2
|
Monchanin C, Drujont E, Le Roux G, Lösel PD, Barron AB, Devaud JM, Elger A, Lihoreau M. Environmental exposure to metallic pollution impairs honey bee brain development and cognition. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133218. [PMID: 38113738 DOI: 10.1016/j.jhazmat.2023.133218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 12/03/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023]
Abstract
Laboratory studies show detrimental effects of metallic pollutants on invertebrate behaviour and cognition, even at low levels. Here we report a field study on Western honey bees exposed to metal and metalloid pollution through dusts, food and water at a historic mining site. We analysed more than 1000 bees from five apiaries along a gradient of contamination within 11 km of a former gold mine in Southern France. Bees collected close to the mine exhibited olfactory learning performances lower by 36% and heads smaller by 4%. Three-dimensional scans of bee brains showed that the olfactory centres of insects sampled close to the mine were also 4% smaller, indicating neurodevelopmental issues. Our study raises serious concerns about the health of honey bee populations in areas polluted with potentially harmful elements, particularly with arsenic, and illustrates how standard cognitive tests can be used for risk assessment.
Collapse
Affiliation(s)
- Coline Monchanin
- CNRS, University Paul Sabatier, Toulouse III, France; Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), University Paul Sabatier, Toulouse III, France; Department of Biological Sciences, Macquarie University, NSW, Australia
| | - Erwann Drujont
- CNRS, University Paul Sabatier, Toulouse III, France; Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), University Paul Sabatier, Toulouse III, France
| | - Gaël Le Roux
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Philipp D Lösel
- Engineering Mathematics and Computing Lab (EMCL), Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Germany; Department of Materials Physics, Research School of Physics, The Australian National University, ACT, Australia
| | - Andrew B Barron
- Department of Biological Sciences, Macquarie University, NSW, Australia
| | - Jean-Marc Devaud
- CNRS, University Paul Sabatier, Toulouse III, France; Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), University Paul Sabatier, Toulouse III, France
| | - Arnaud Elger
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Mathieu Lihoreau
- CNRS, University Paul Sabatier, Toulouse III, France; Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), University Paul Sabatier, Toulouse III, France.
| |
Collapse
|
3
|
Althaus V, Exner G, von Hadeln J, Homberg U, Rosner R. Anatomical organization of the cerebrum of the praying mantis Hierodula membranacea. J Comp Neurol 2024; 532:e25607. [PMID: 38501930 DOI: 10.1002/cne.25607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/22/2024] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
Many predatory animals, such as the praying mantis, use vision for prey detection and capture. Mantises are known in particular for their capability to estimate distances to prey by stereoscopic vision. While the initial visual processing centers have been extensively documented, we lack knowledge on the architecture of central brain regions, pivotal for sensory motor transformation and higher brain functions. To close this gap, we provide a three-dimensional (3D) reconstruction of the central brain of the Asian mantis, Hierodula membranacea. The atlas facilitates in-depth analysis of neuron ramification regions and aides in elucidating potential neuronal pathways. We integrated seven 3D-reconstructed visual interneurons into the atlas. In total, 42 distinct neuropils of the cerebrum were reconstructed based on synapsin-immunolabeled whole-mount brains. Backfills from the antenna and maxillary palps, as well as immunolabeling of γ-aminobutyric acid (GABA) and tyrosine hydroxylase (TH), further substantiate the identification and boundaries of brain areas. The composition and internal organization of the neuropils were compared to the anatomical organization of the brain of the fruit fly (Drosophila melanogaster) and the two available brain atlases of Polyneoptera-the desert locust (Schistocerca gregaria) and the Madeira cockroach (Rhyparobia maderae). This study paves the way for detailed analyses of neuronal circuitry and promotes cross-species brain comparisons. We discuss differences in brain organization between holometabolous and polyneopteran insects. Identification of ramification sites of the visual neurons integrated into the atlas supports previous claims about homologous structures in the optic lobes of flies and mantises.
Collapse
Affiliation(s)
- Vanessa Althaus
- Department of Biology, Animal Physiology, Philipps-University of Marburg, Marburg, Germany
| | - Gesa Exner
- Department of Biology, Animal Physiology, Philipps-University of Marburg, Marburg, Germany
- Center for Mind Brain and Behavior (CMBB), University of Marburg and Justus Liebig University of Giessen, Marburg, Germany
| | - Joss von Hadeln
- Department of Biology, Animal Physiology, Philipps-University of Marburg, Marburg, Germany
| | - Uwe Homberg
- Department of Biology, Animal Physiology, Philipps-University of Marburg, Marburg, Germany
- Center for Mind Brain and Behavior (CMBB), University of Marburg and Justus Liebig University of Giessen, Marburg, Germany
| | - Ronny Rosner
- Department of Biology, Animal Physiology, Philipps-University of Marburg, Marburg, Germany
- Department of Biology, Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University of Mainz, Mainz, Germany
- Biosciences Institute, Henry Wellcome Building for Neuroecology, Newcastle University, Framlington Place, Newcastle upon Tyne, UK
| |
Collapse
|
4
|
Fu SJ, Yang EC. Neuroplasticity in honey bee brains: An enhanced micro-computed tomography protocol for precise mushroom body volume measurement. J Neurosci Methods 2024; 403:110040. [PMID: 38135123 DOI: 10.1016/j.jneumeth.2023.110040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/31/2023] [Accepted: 12/17/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND In insect brains, mushroom bodies are associated with memory and learning behavior. It has been demonstrated that the volume of the mushroom bodies in the brain of a worker honey bee changes during the adult stage. Changes in mushroom body volume imply high neuroplasticity in the brains and may be related to the age polyethism of honey bees. A suitable volume measurement method is needed to understand the correlation between behavioral changes and mushroom body volume changes in honey bees. NEW METHOD We developed a new protocol for insect micro-computed tomography by modifying a previously reported method. Permount™ mounting medium was used as the embedding medium for micro-computed tomography scanning. RESULTS This protocol can generate images with high contrast inside the brain and reduce the marked shape changes during specimen processing. From the resulting high-contrast images, we used freeware to generate a three-dimensional model and calculate the volumes of the mushroom bodies in honey bees. The measured volumes of the mushroom bodies were larger than the values reported in most previous studies. There was no significant difference between the left and right mushroom body volumes, but the volumes of honey bee mushroom bodies significantly increased with age. COMPARISON WITH EXISTING METHODS Previous protocols for micro-computed tomography using dried samples would cause brain shrinkage; protocols using ethanol-preserved or resin-embedded samples generated images with lower contrast. CONCLUSIONS The embedding protocol for micro-computed tomography is suitable for calculating volume of the mushroom bodies in honey bee brains.
Collapse
Affiliation(s)
- Shang-Jui Fu
- Department of Entomology, National Taiwan University, Taiwan
| | - En-Cheng Yang
- Department of Entomology, National Taiwan University, Taiwan.
| |
Collapse
|
5
|
Wainwright JB, Schofield C, Conway M, Phillips D, Martin-Silverstone E, Brodrick EA, Cicconardi F, How MJ, Roberts NW, Montgomery SH. Multiple axes of visual system diversity in Ithomiini, an ecologically diverse tribe of mimetic butterflies. J Exp Biol 2023; 226:jeb246423. [PMID: 37921078 PMCID: PMC10714147 DOI: 10.1242/jeb.246423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023]
Abstract
The striking structural variation seen in arthropod visual systems can be explained by the overall quantity and spatio-temporal structure of light within habitats coupled with developmental and physiological constraints. However, little is currently known about how fine-scale variation in visual structures arises across shorter evolutionary and ecological scales. In this study, we characterise patterns of interspecific (between species), intraspecific (between sexes) and intraindividual (between eye regions) variation in the visual system of four ithomiine butterfly species. These species are part of a diverse 26-million-year-old Neotropical radiation where changes in mimetic colouration are associated with fine-scale shifts in ecology, such as microhabitat preference. Using a combination of selection analyses on visual opsin sequences, in vivo ophthalmoscopy, micro-computed tomography (micro-CT), immunohistochemistry, confocal microscopy and neural tracing, we quantify and describe physiological, anatomical and molecular traits involved in visual processing. Using these data, we provide evidence of substantial variation within the visual systems of Ithomiini, including: (i) relaxed selection on visual opsins, perhaps mediated by habitat preference, (ii) interspecific shifts in visual system physiology and anatomy, and (iii) extensive sexual dimorphism, including the complete absence of a butterfly-specific optic neuropil in the males of some species. We conclude that considerable visual system variation can exist within diverse insect radiations, hinting at the evolutionary lability of these systems to rapidly develop specialisations to distinct visual ecologies, with selection acting at the perceptual, processing and molecular level.
Collapse
Affiliation(s)
- J. Benito Wainwright
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Corin Schofield
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Max Conway
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Daniel Phillips
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Elizabeth Martin-Silverstone
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Emelie A. Brodrick
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Francesco Cicconardi
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Martin J. How
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Nicholas W. Roberts
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Stephen H. Montgomery
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
6
|
Lösel PD, Monchanin C, Lebrun R, Jayme A, Relle JJ, Devaud JM, Heuveline V, Lihoreau M. Natural variability in bee brain size and symmetry revealed by micro-CT imaging and deep learning. PLoS Comput Biol 2023; 19:e1011529. [PMID: 37782674 PMCID: PMC10569549 DOI: 10.1371/journal.pcbi.1011529] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 10/12/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023] Open
Abstract
Analysing large numbers of brain samples can reveal minor, but statistically and biologically relevant variations in brain morphology that provide critical insights into animal behaviour, ecology and evolution. So far, however, such analyses have required extensive manual effort, which considerably limits the scope for comparative research. Here we used micro-CT imaging and deep learning to perform automated analyses of 3D image data from 187 honey bee and bumblebee brains. We revealed strong inter-individual variations in total brain size that are consistent across colonies and species, and may underpin behavioural variability central to complex social organisations. In addition, the bumblebee dataset showed a significant level of lateralization in optic and antennal lobes, providing a potential explanation for reported variations in visual and olfactory learning. Our fast, robust and user-friendly approach holds considerable promises for carrying out large-scale quantitative neuroanatomical comparisons across a wider range of animals. Ultimately, this will help address fundamental unresolved questions related to the evolution of animal brains and cognition.
Collapse
Affiliation(s)
- Philipp D. Lösel
- Engineering Mathematics and Computing Lab (EMCL), Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany
- Data Mining and Uncertainty Quantification (DMQ), Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
- Department of Materials Physics, Research School of Physics, The Australian National University, Canberra, Australia
| | - Coline Monchanin
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI); CNRS, University Paul Sabatier – Toulouse III, Toulouse, France
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| | - Renaud Lebrun
- Institut des Sciences de l’Evolution de Montpellier, CC64, Université de Montpellier, Montpellier, France
- BioCampus, Montpellier Ressources Imagerie, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Alejandra Jayme
- Engineering Mathematics and Computing Lab (EMCL), Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany
- Data Mining and Uncertainty Quantification (DMQ), Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
| | - Jacob J. Relle
- Engineering Mathematics and Computing Lab (EMCL), Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany
- Data Mining and Uncertainty Quantification (DMQ), Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
| | - Jean-Marc Devaud
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI); CNRS, University Paul Sabatier – Toulouse III, Toulouse, France
| | - Vincent Heuveline
- Engineering Mathematics and Computing Lab (EMCL), Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany
- Data Mining and Uncertainty Quantification (DMQ), Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
- Heidelberg University Computing Centre (URZ), Heidelberg, Germany
| | - Mathieu Lihoreau
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI); CNRS, University Paul Sabatier – Toulouse III, Toulouse, France
| |
Collapse
|
7
|
Alcalde Anton A, Young FJ, Melo-Flórez L, Couto A, Cross S, McMillan WO, Montgomery SH. Adult neurogenesis does not explain the extensive post-eclosion growth of Heliconius mushroom bodies. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230755. [PMID: 37885989 PMCID: PMC10598442 DOI: 10.1098/rsos.230755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023]
Abstract
Among butterflies, Heliconius have a unique behavioural profile, being the sole genus to actively feed on pollen. Heliconius learn the location of pollen resources, and have enhanced visual memories and expanded mushroom bodies, an insect learning and memory centre, relative to related genera. These structures also show extensive post-eclosion growth and developmental sensitivity to environmental conditions. However, whether this reflects plasticity in neurite growth, or an extension of neurogenesis into the adult stage, is unknown. Adult neurogenesis has been described in some Lepidoptera, and could provide one route to the increased neuron number observed in Heliconius. Here, we compare volumetric changes in the mushroom bodies of freshly eclosed and aged Heliconius erato and Dryas iulia, and estimate the number of intrinsic mushroom body neurons using a new and validated automated method to count nuclei. Despite extensive volumetric variation associated with age, our data show that neuron number is remarkably constant in both species, suggesting a lack of adult neurogenesis in the mushroom bodies. We support this conclusion with assays of mitotic cells, which reveal very low levels of post-eclosion cell division. Our analyses provide an insight into the evolution of neural plasticity, and can serve as a basis for continued exploration of the potential mechanisms behind brain development and maturation.
Collapse
Affiliation(s)
| | - Fletcher J. Young
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | | | - Antoine Couto
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Stephen Cross
- Wolfson Bioimaging Centre, University of Bristol, Bristol, UK
| | | | - Stephen H. Montgomery
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
- Smithsonian Tropical Research Institute, Gamboa, Panama
| |
Collapse
|
8
|
Homberg U, Kirchner M, Kowalewski K, Pitz V, Kinoshita M, Kern M, Seyfarth J. Comparative morphology of serotonin-immunoreactive neurons innervating the central complex in the brain of dicondylian insects. J Comp Neurol 2023. [PMID: 37478205 DOI: 10.1002/cne.25529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/28/2023] [Accepted: 07/08/2023] [Indexed: 07/23/2023]
Abstract
Serotonin (5-hydroxytryptamine) acts as a widespread neuromodulator in the nervous system of vertebrates and invertebrates. In insects, it promotes feeding, enhances olfactory sensitivity, modulates aggressive behavior, and, in the central complex of Drosophila, serves a role in sleep homeostasis. In addition to a role in sleep-wake regulation, the central complex has a prominent role in spatial orientation, goal-directed locomotion, and navigation vector memory. To further understand the role of serotonergic signaling in this brain area, we analyzed the distribution and identity of serotonin-immunoreactive neurons across a wide range of insect species. While one bilateral pair of tangential neurons innervating the central body was present in all species studied, a second type was labeled in all neopterans but not in dragonflies and firebrats. Both cell types show conserved major fiber trajectories but taxon-specific differences in dendritic targets outside the central body and axonal terminals in the central body, noduli, and lateral accessory lobes. In addition, numerous tangential neurons of the protocerebral bridge were labeled in all studied polyneopteran species except for Phasmatodea, but not in Holometabola. Lepidoptera and Diptera showed additional labeling of two bilateral pairs of neurons of a third type. The presence of serotonin in systems of columnar neurons apparently evolved independently in dragonflies and desert locusts. The data suggest distinct evolutionary changes in the composition of serotonin-immunolabeled neurons of the central complex and provides a promising basis for a phylogenetic study in a wider range of arthropod species.
Collapse
Affiliation(s)
- Uwe Homberg
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Michelle Kirchner
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, Marburg, Germany
| | - Kevin Kowalewski
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, Marburg, Germany
| | - Vanessa Pitz
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, Marburg, Germany
| | - Michiyo Kinoshita
- Laboratory of Neuroethology, SOKENDAI, The Graduate University for Advanced Studies, Hayama, Japan
| | - Martina Kern
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, Marburg, Germany
| | - Jutta Seyfarth
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
9
|
Ai H, Farina WM. In search of behavioral and brain processes involved in honey bee dance communication. Front Behav Neurosci 2023; 17:1140657. [PMID: 37456809 PMCID: PMC10342208 DOI: 10.3389/fnbeh.2023.1140657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
Honey bees represent an iconic model animal for studying the underlying mechanisms affecting advanced sensory and cognitive abilities during communication among colony mates. After von Frisch discovered the functional value of the waggle dance, this complex motor pattern led ethologists and neuroscientists to study its neural mechanism, behavioral significance, and implications for a collective organization. Recent studies have revealed some of the mechanisms involved in this symbolic form of communication by using conventional behavioral and pharmacological assays, neurobiological studies, comprehensive molecular and connectome analyses, and computational models. This review summarizes several critical behavioral and brain processes and mechanisms involved in waggle dance communication. We focus on the role of neuromodulators in the dancer and the recruited follower, the interneurons and their related processing in the first mechano-processing, and the computational navigation centers of insect brains.
Collapse
Affiliation(s)
- Hiroyuki Ai
- Department of Earth System Science, Fukuoka University, Fukuoka, Japan
| | - Walter M. Farina
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias, CONICET-UBA, Buenos Aires, Argentina
| |
Collapse
|
10
|
Gomez Ramirez WC, Thomas NK, Muktar IJ, Riabinina O. The neuroecology of olfaction in bees. CURRENT OPINION IN INSECT SCIENCE 2023; 56:101018. [PMID: 36842606 DOI: 10.1016/j.cois.2023.101018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/30/2022] [Accepted: 02/20/2023] [Indexed: 05/03/2023]
Abstract
The focus of bee neuroscience has for a long time been on only a handful of social honeybee and bumblebee species, out of thousands of bees species that have been described. On the other hand, information about the chemical ecology of bees is much more abundant. Here we attempted to compile the scarce information about olfactory systems of bees across species. We also review the major categories of intra- and inter-specific olfactory behaviors of bees, with specific focus on recent literature. We finish by discussing the most promising avenues for bee olfactory research in the near future.
Collapse
|
11
|
Immunohistochemical Distribution of Serotonin Transporter (SERT) in the Optic Lobe of the Honeybee, Apis mellifera. Animals (Basel) 2022; 12:ani12162032. [PMID: 36009622 PMCID: PMC9404419 DOI: 10.3390/ani12162032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Serotonin is ubiquitously expressed in vertebrates and invertebrates, where it regulates specific behavioural patterns. Though the specific effects of serotonin release in the optic lobe are not entirely known, increasing evidence associates the serotonergic system with optic lobe-mediated behaviours. In this study, the localization of serotonin transporter (SERT) was immunohistochemically analysed in the optic lobes of moderate, docile and aggressive worker honeybees. SERT-immunoreactive fibres were stratified in the optic lobe and distributed in the three visual neuropils: lamina, medulla and lobula. Interestingly, SERT immunoreactivity was inversely related to aggressive behaviour. The present study indicates that low levels of serotonin in the optic lobe are associated with aggressive behaviour. Abstract Visual information is processed in the optic lobes, which consist of three retinotopic neuropils. These are the lamina, the medulla and the lobula. Biogenic amines play a crucial role in the control of insect responsiveness, and serotonin is clearly related to aggressiveness in invertebrates. Previous studies suggest that serotonin modulates aggression-related behaviours, possibly via alterations in optic lobe activity. The aim of this investigation was to immunohistochemically localize the distribution of serotonin transporter (SERT) in the optic lobe of moderate, docile and aggressive worker honeybees. SERT-immunoreactive fibres showed a wide distribution in the lamina, medulla and lobula; interestingly, the highest percentage of SERT immunoreactivity was observed across all the visual neuropils of the docile group. Although future research is needed to determine the relationship between the distribution of serotonin fibres in the honeybee brain and aggressive behaviours, our immunohistochemical study provides an anatomical basis supporting the role of serotonin in aggressive behaviour in the honeybee.
Collapse
|
12
|
Menzel R. In Search for the Retrievable Memory Trace in an Insect Brain. Front Syst Neurosci 2022; 16:876376. [PMID: 35757095 PMCID: PMC9214861 DOI: 10.3389/fnsys.2022.876376] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/05/2022] [Indexed: 11/30/2022] Open
Abstract
The search strategy for the memory trace and its semantics is exemplified for the case of olfactory learning in the honeybee brain. The logic of associative learning is used to guide the experimental approach into the brain by identifying the anatomical and functional convergence sites of the conditioned stimulus and unconditioned stimulus pathways. Two of the several convergence sites are examined in detail, the antennal lobe as the first-order sensory coding area, and the input region of the mushroom body as a higher order integration center. The memory trace is identified as the pattern of associative changes on the level of synapses. The synapses are recruited, drop out, and change the transmission properties for both specifically associated stimulus and the non-associated stimulus. Several rules extracted from behavioral studies are found to be mirrored in the patterns of synaptic change. The strengths and the weaknesses of the honeybee as a model for the search for the memory trace are addressed in a comparison with Drosophila. The question is discussed whether the memory trace exists as a hidden pattern of change if it is not retrieved and whether an external reading of the content of the memory trace may ever be possible. Doubts are raised on the basis that the retrieval circuits are part of the memory trace. The concept of a memory trace existing beyond retrieval is defended by referring to two well-documented processes also in the honeybee, memory consolidation during sleep, and transfer of memory across brain areas.
Collapse
Affiliation(s)
- Randolf Menzel
- Institute Biology - Neurobiology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
13
|
Gatto E, Loukola OJ, Petrazzini MEM, Agrillo C, Cutini S. Illusional Perspective across Humans and Bees. Vision (Basel) 2022; 6:28. [PMID: 35737416 PMCID: PMC9231007 DOI: 10.3390/vision6020028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022] Open
Abstract
For two centuries, visual illusions have attracted the attention of neurobiologists and comparative psychologists, given the possibility of investigating the complexity of perceptual mechanisms by using relatively simple patterns. Animal models, such as primates, birds, and fish, have played a crucial role in understanding the physiological circuits involved in the susceptibility of visual illusions. However, the comprehension of such mechanisms is still a matter of debate. Despite their different neural architectures, recent studies have shown that some arthropods, primarily Hymenoptera and Diptera, experience illusions similar to those humans do, suggesting that perceptual mechanisms are evolutionarily conserved among species. Here, we review the current state of illusory perception in bees. First, we introduce bees' visual system and speculate which areas might make them susceptible to illusory scenes. Second, we review the current state of knowledge on misperception in bees (Apidae), focusing on the visual stimuli used in the literature. Finally, we discuss important aspects to be considered before claiming that a species shows higher cognitive ability while equally supporting alternative hypotheses. This growing evidence provides insights into the evolutionary origin of visual mechanisms across species.
Collapse
Affiliation(s)
- Elia Gatto
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Olli J. Loukola
- Ecology and Genetics Research Unit, University of Oulu, P.O. Box 3000, FI-90014 Oulu, Finland;
| | | | - Christian Agrillo
- Department of General Psychology, University of Padova, 35131 Padova, Italy; (M.E.M.P.); (C.A.)
- Department of Developmental and Social Psychology, University of Padova, 35131 Padova, Italy;
| | - Simone Cutini
- Department of Developmental and Social Psychology, University of Padova, 35131 Padova, Italy;
- Padua Neuroscience Center, University of Padova, 35129 Padova, Italy
| |
Collapse
|
14
|
Kaiser A, Hensgen R, Tschirner K, Beetz E, Wüstenberg H, Pfaff M, Mota T, Pfeiffer K. A three-dimensional atlas of the honeybee central complex, associated neuropils and peptidergic layers of the central body. J Comp Neurol 2022; 530:2416-2438. [PMID: 35593178 DOI: 10.1002/cne.25339] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/15/2022] [Accepted: 04/26/2022] [Indexed: 11/11/2022]
Abstract
The central complex (CX) in the brain of insects is a highly conserved group of midline-spanning neuropils consisting of the upper and lower division of the central body, the protocerebral bridge, and the paired noduli. These neuropils are the substrate for a number of behaviors, most prominently goal-oriented locomotion. Honeybees have been a model organism for sky-compass orientation for more than 70 years, but there is still very limited knowledge about the structure and function of their CX. To advance and facilitate research on this brain area, we created a high-resolution three-dimensional atlas of the honeybee's CX and associated neuropils, including the posterior optic tubercles, the bulbs, and the anterior optic tubercles. To this end, we developed a modified version of the iterative shape averaging technique, which allowed us to achieve high volumetric accuracy of the neuropil models. For a finer definition of spatial locations within the central body, we defined layers based on immunostaining against the neuropeptides locustatachykinin, FMRFamide, gastrin/cholecystokinin, and allatostatin and included them into the atlas by elastic registration. Our honeybee CX atlas provides a platform for future neuroanatomical work.
Collapse
Affiliation(s)
- Andreas Kaiser
- Department of Biology/Animal Physiology, Philipps-University Marburg, Marburg, Germany
| | - Ronja Hensgen
- Department of Biology/Animal Physiology, Philipps-University Marburg, Marburg, Germany
| | - Katja Tschirner
- Behavioural Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, Würzburg, Germany
| | - Evelyn Beetz
- Behavioural Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, Würzburg, Germany
| | - Hauke Wüstenberg
- Department of Biology/Animal Physiology, Philipps-University Marburg, Marburg, Germany
| | - Marcel Pfaff
- Behavioural Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, Würzburg, Germany
| | - Theo Mota
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Keram Pfeiffer
- Department of Biology/Animal Physiology, Philipps-University Marburg, Marburg, Germany.,Behavioural Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
15
|
Valadares L, Vieira BG, Santos do Nascimento F, Sandoz JC. Brain size and behavioral specialization in the jataí stingless bee (Tetragonisca angustula). J Comp Neurol 2022; 530:2304-2314. [PMID: 35513351 DOI: 10.1002/cne.25333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 11/08/2022]
Abstract
Social insects are instructive models for understanding the association between investment in brain size and behavioral variability because they show a relatively simple nervous system associated with a large set of complex behaviors. In the jataí stingless bee (Tetragonisca angustula), division of labor relies both on age and body size differences among workers. When young, both minors and soldiers engage in intranidal tasks and move to extranidal tasks as they age. Minors switch to foraging activities, while soldiers take over defensive roles. Nest defense performed by soldiers includes two different tasks: (1) hovering around the nest entrance for the detection and interception of heterospecific bees (a task relying mostly on vision) and (2) standing at the nest entrance tube for inspection of returning foragers and discrimination against conspecific non-nestmates based on olfactory cues. Here, using different-sized individuals (minors and soldiers) as well as same-sized individuals (hovering and standing soldiers) performing distinct tasks, we investigated the effects of both morphological and behavioral variability on brain size. We found a negative allometric growth between brain size and body size across jataí workers, meaning that minors had relatively larger brains than soldiers. Between soldier types, we found that hovering soldiers had larger brain compartments related to visual processing (the optic lobes) and learning (the mushroom bodies). Brain size differences between jataí soldiers thus correspond to behavioral specialization in defense (i.e., vision for hovering soldiers) and illustrate a functional neuroplasticity underpinning division of labor.
Collapse
Affiliation(s)
- Lohan Valadares
- Evolution, Genomes, Behavior, and Ecology (EGCE), Université Paris-Saclay, CNRS, IRD, Gif-sur-Yvette, France
| | - Bruno Gusmão Vieira
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Fabio Santos do Nascimento
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Jean-Christophe Sandoz
- Evolution, Genomes, Behavior, and Ecology (EGCE), Université Paris-Saclay, CNRS, IRD, Gif-sur-Yvette, France
| |
Collapse
|
16
|
Reitmayer CM, Girling RD, Jackson CW, Newman TA. Repeated short-term exposure to diesel exhaust reduces honey bee colony fitness. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118934. [PMID: 35114309 DOI: 10.1016/j.envpol.2022.118934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/21/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Production of insect-pollinated crops is often reliant on honey bee (Apis mellifera) pollination services. Colonies can be managed and moved to meet the demands of modern intensified monoculture farming systems. Increased colony mortalities have been observed, which are thought be caused by interacting factors including exposure to pesticides, parasites, viruses, agricultural intensification, and changes in global and regional climate. However, whilst common tropospheric air pollutants (e.g. NOx, particulate matter etc) are known to cause a range of negative effects on human health, there is little evidence of their impact on the health of A. mellifera. This study investigates the effects of exposure to diesel exhaust on A. mellifera, both at the level of individual foragers and on the whole colony. We exposed a series of colonies to diesel exhaust fumes for 2 h a day over the course of three weeks and contrasted their performance to a series of paired control colonies located at the same field site. We investigated markers of neuronal health in the brains of individual foragers and measured the prevalence of common viruses. Electronic counters monitored daily colony activity patterns and pollen samples from returning foragers were analysed to investigate plant species richness and diversity. The amounts of honey, brood and pollen in each colony were measured regularly. We demonstrated an upregulation of the synapse protein Neurexin 1 in forager brains repeatedly exposed to diesel exhaust. Furthermore, we found that colonies exposed to diesel exhaust lost colony weight after the exposure period until the end of the summer season, whereas control colonies gained weight towards the end of the season. Further investigations are required, but we hypothesise that such effects on both individual foragers and whole colony fitness parameters could ultimately contribute to winter losses of honey bee colonies, particularly in the presence of additional stressors.
Collapse
Affiliation(s)
| | - Robbie D Girling
- School of Agriculture, Policy and Development, University of Reading, Reading, RG6 6EU, UK; School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| | | | - Tracey A Newman
- Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
17
|
Arganda S, Arganda-Carreras I, Gordon DG, Hoadley AP, Pérez-Escudero A, Giurfa M, Traniello JFA. Statistical Atlases and Automatic Labeling Strategies to Accelerate the Analysis of Social Insect Brain Evolution. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2021.745707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Current methods used to quantify brain size and compartmental scaling relationships in studies of social insect brain evolution involve manual annotations of images from histological samples, confocal microscopy or other sources. This process is susceptible to human bias and error and requires time-consuming effort by expert annotators. Standardized brain atlases, constructed through 3D registration and automatic segmentation, surmount these issues while increasing throughput to robustly sample diverse morphological and behavioral phenotypes. Here we design and evaluate three strategies to construct statistical brain atlases, or templates, using ants as a model taxon. The first technique creates a template by registering multiple brains of the same species. Brain regions are manually annotated on the template, and the labels are transformed back to each individual brain to obtain an automatic annotation, or to any other brain aligned with the template. The second strategy also creates a template from multiple brain images but obtains labels as a consensus from multiple manual annotations of individual brains comprising the template. The third technique is based on a template comprising brains from multiple species and the consensus of their labels. We used volume similarity as a metric to evaluate the automatic segmentation produced by each method against the inter- and intra-individual variability of human expert annotators. We found that automatic and manual methods are equivalent in volume accuracy, making the template technique an extraordinary tool to accelerate data collection and reduce human bias in the study of the evolutionary neurobiology of ants and other insects.
Collapse
|
18
|
Avalos A, Traniello IM, Pérez Claudio E, Giray T. Parallel mechanisms of visual memory formation across distinct regions of the honey bee brain. J Exp Biol 2021; 224:jeb242292. [PMID: 34515309 PMCID: PMC10659034 DOI: 10.1242/jeb.242292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 09/02/2021] [Indexed: 01/29/2023]
Abstract
Visual learning is vital to the behavioral ecology of the Western honey bee (Apis mellifera). Honey bee workers forage for floral resources, a behavior that requires the learning and long-term memory of visual landmarks, but how these memories are mapped to the brain remains poorly understood. To address this gap in our understanding, we collected bees that successfully learned visual associations in a conditioned aversion paradigm and compared gene expression correlates of memory formation in the mushroom bodies, a higher-order sensory integration center classically thought to contribute to learning, as well as the optic lobes, the primary visual neuropil responsible for sensory transduction of visual information. We quantified expression of CREB and CaMKII, two classical genetic markers of learning, and fen-1, a gene specifically associated with punishment learning in vertebrates. As expected, we found substantial involvement of the mushroom bodies for all three markers but additionally report the involvement of the optic lobes across a similar time course. Our findings imply the molecular involvement of a sensory neuropil during visual associative learning parallel to a higher-order brain region, furthering our understanding of how a tiny brain processes environmental signals.
Collapse
Affiliation(s)
- Arián Avalos
- United States Department of Agriculture, Agricultural Research Service, Honey Bee Breeding, Genetics and Physiology Research, Baton Rouge, LA 70820, USA
| | - Ian M. Traniello
- Neuroscience Program, University of Illinois at Urbana-Champaign (UIUC), Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, UIUC, Urbana, IL 61801, USA
| | - Eddie Pérez Claudio
- Department of Biology, University of Puerto Rico (UPR), Rio Piedras Campus, San Juan, Puerto Rico00931
| | - Tugrul Giray
- Institute of Neurobiology, UPR, Medical Sciences Campus, San Juan, Puerto Rico00936
| |
Collapse
|
19
|
Heinze S, El Jundi B, Berg BG, Homberg U, Menzel R, Pfeiffer K, Hensgen R, Zittrell F, Dacke M, Warrant E, Pfuhl G, Rybak J, Tedore K. A unified platform to manage, share, and archive morphological and functional data in insect neuroscience. eLife 2021; 10:65376. [PMID: 34427185 PMCID: PMC8457822 DOI: 10.7554/elife.65376] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 08/21/2021] [Indexed: 01/08/2023] Open
Abstract
Insect neuroscience generates vast amounts of highly diverse data, of which only a small fraction are findable, accessible and reusable. To promote an open data culture, we have therefore developed the InsectBrainDatabase (IBdb), a free online platform for insect neuroanatomical and functional data. The IBdb facilitates biological insight by enabling effective cross-species comparisons, by linking neural structure with function, and by serving as general information hub for insect neuroscience. The IBdb allows users to not only effectively locate and visualize data, but to make them widely available for easy, automated reuse via an application programming interface. A unique private mode of the database expands the IBdb functionality beyond public data deposition, additionally providing the means for managing, visualizing, and sharing of unpublished data. This dual function creates an incentive for data contribution early in data management workflows and eliminates the additional effort normally associated with publicly depositing research data. Insect neuroscience, like any field in the natural sciences, generates vast amounts of data. Currently, only a fraction are publicly available, and even less are reusable. This is because insect neuroscience data come in many formats and from many species. Some experiments focus on what insect brains look like (morphology), while others focus on how insect brains work (function). Some data come in the form of high-speed video, while other data contain voltage traces from individual neurons. Sharing is not as simple as uploading the raw files to the internet. To get a clear picture of how insect brains work, researchers need a way to cross-reference and connect different experiments. But, as it stands, there is no dedicated place for insect neuroscientists to share and explore such a diverse body of work. The community needs an open data repository that can link different types of data across many species, and can evolve as more data become available. Above all, this repository needs to be easy for researchers to use. To meet these specifications, Heinze et al. developed the Insect Brain Database. The database organizes data into three categories: species, brain structures, and neuron types. Within these categories, each entry has its own profile page. These pages bring different experiments together under one heading, allowing researchers to combine and compare data of different types. As researchers add more experiments, the profile pages will grow and evolve. To make the data easy to navigate, Heinze et al. developed a visual search tool. A combination of 2D and 3D images allow users to explore the data by anatomical location, without the need for expert knowledge. Researchers also have the option to upload their work in private mode, allowing them to securely share unpublished data. The Insect Brain Database brings data together in a way that is accessible not only to researchers, but also to students, and non-scientists. It will help researchers to find related work, to reuse existing data, and to build an open data culture. This has the potential to drive new discoveries combining research across the whole of the insect neuroscience field.
Collapse
Affiliation(s)
- Stanley Heinze
- Department of Biology, Lund University, Lund, Sweden.,NanoLund, Lund University, Lund, Sweden
| | - Basil El Jundi
- Biocenter, Behavioral Physiology and Sociobiology, University of Würzburg, Würzburg, Germany
| | - Bente G Berg
- Department of Psychology, Chemosensory lab, Norwegian University of Science and Technology, Trondheim, Norway
| | - Uwe Homberg
- Fachbereich Biologie, Tierphysiologie, and Center for Mind Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Randolf Menzel
- Institut für Biologie - Neurobiologie, Free University, Berlin, Germany
| | - Keram Pfeiffer
- Biocenter, Behavioral Physiology and Sociobiology, University of Würzburg, Würzburg, Germany
| | - Ronja Hensgen
- Fachbereich Biologie, Tierphysiologie, and Center for Mind Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Frederick Zittrell
- Fachbereich Biologie, Tierphysiologie, and Center for Mind Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Marie Dacke
- Department of Biology, Lund University, Lund, Sweden
| | - Eric Warrant
- Research School of Biology, Australian National University, Canberra, Australia
| | - Gerit Pfuhl
- Department of Psychology, Chemosensory lab, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Psychology, UiT The Arctic University of Norway, Tromso, Norway
| | - Jürgen Rybak
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Kevin Tedore
- Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
20
|
Rother L, Kraft N, Smith DB, El Jundi B, Gill RJ, Pfeiffer K. A micro-CT-based standard brain atlas of the bumblebee. Cell Tissue Res 2021; 386:29-45. [PMID: 34181089 PMCID: PMC8526489 DOI: 10.1007/s00441-021-03482-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 06/03/2021] [Indexed: 02/07/2023]
Abstract
In recent years, bumblebees have become a prominent insect model organism for a variety of biological disciplines, particularly to investigate learning behaviors as well as visual performance. Understanding these behaviors and their underlying neurobiological principles requires a clear understanding of brain anatomy. Furthermore, to be able to compare neuronal branching patterns across individuals, a common framework is required, which has led to the development of 3D standard brain atlases in most of the neurobiological insect model species. Yet, no bumblebee 3D standard brain atlas has been generated. Here we present a brain atlas for the buff-tailed bumblebee Bombus terrestris using micro-computed tomography (micro-CT) scans as a source for the raw data sets, rather than traditional confocal microscopy, to produce the first ever micro-CT-based insect brain atlas. We illustrate the advantages of the micro-CT technique, namely, identical native resolution in the three cardinal planes and 3D structure being better preserved. Our Bombus terrestris brain atlas consists of 30 neuropils reconstructed from ten individual worker bees, with micro-CT allowing us to segment neuropils completely intact, including the lamina, which is a tissue structure often damaged when dissecting for immunolabeling. Our brain atlas can serve as a platform to facilitate future neuroscience studies in bumblebees and illustrates the advantages of micro-CT for specific applications in insect neuroanatomy.
Collapse
Affiliation(s)
- Lisa Rother
- Department of Behavioral Physiology and Sociobiology, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Nadine Kraft
- Department of Behavioral Physiology and Sociobiology, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Dylan B Smith
- Department of Life Sciences, Imperial College London, Silwood Park, Buckhurst Road, Ascot, Berkshire, SL5 7PY, UK
| | - Basil El Jundi
- Department of Behavioral Physiology and Sociobiology, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Richard J Gill
- Department of Life Sciences, Imperial College London, Silwood Park, Buckhurst Road, Ascot, Berkshire, SL5 7PY, UK
| | - Keram Pfeiffer
- Department of Behavioral Physiology and Sociobiology, Biocenter, University of Würzburg, 97074, Würzburg, Germany.
| |
Collapse
|
21
|
Baracchi D, Cabirol A, Devaud JM, Haase A, d'Ettorre P, Giurfa M. Pheromone components affect motivation and induce persistent modulation of associative learning and memory in honey bees. Commun Biol 2020; 3:447. [PMID: 32807870 PMCID: PMC7431541 DOI: 10.1038/s42003-020-01183-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/30/2020] [Indexed: 01/11/2023] Open
Abstract
Since their discovery in insects, pheromones are considered as ubiquitous and stereotyped chemical messengers acting in intraspecific animal communication. Here we studied the effect of pheromones in a different context as we investigated their capacity to induce persistent modulations of associative learning and memory. We used honey bees, Apis mellifera, and combined olfactory conditioning and pheromone preexposure with disruption of neural activity and two-photon imaging of olfactory brain circuits, to characterize the effect of pheromones on olfactory learning and memory. Geraniol, an attractive pheromone component, and 2-heptanone, an aversive pheromone, improved and impaired, respectively, olfactory learning and memory via a durable modulation of appetitive motivation, which left odor processing unaffected. Consistently, interfering with aminergic circuits mediating appetitive motivation rescued or diminished the cognitive effects induced by pheromone components. We thus show that these chemical messengers act as important modulators of motivational processes and influence thereby animal cognition.
Collapse
Affiliation(s)
- David Baracchi
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, 118 route de Narbonne, F-31062, Toulouse, Cedex 09, France.
- Department of Biology, University of Florence, Via Madonna del Piano, 6, 50019, Sesto Fiorentino, Italy.
| | - Amélie Cabirol
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Piazza Manifattura 1, I-38068, Rovereto, Italy
| | - Jean-Marc Devaud
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, 118 route de Narbonne, F-31062, Toulouse, Cedex 09, France
| | - Albrecht Haase
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Piazza Manifattura 1, I-38068, Rovereto, Italy
- Department of Physics, University of Trento, Via Sommarive 14, I-38123, Povo, Italy
| | - Patrizia d'Ettorre
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, 118 route de Narbonne, F-31062, Toulouse, Cedex 09, France
- Laboratory of Experimental and Comparative Ethology, University of Paris 13, F-93430, Sorbonne Paris Cité, France
- Institut Universitaire de France (IUF), Paris, France
| | - Martin Giurfa
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, 118 route de Narbonne, F-31062, Toulouse, Cedex 09, France.
- Institut Universitaire de France (IUF), Toulouse, France.
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
22
|
Fujiki K, Nagase M, Takaki K, Watanabe H, Yamawaki Y. Three-dimensional atlas of thoracic ganglia in the praying mantis, Tenodera aridifolia. J Comp Neurol 2020; 528:1599-1615. [PMID: 31846077 DOI: 10.1002/cne.24841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 11/06/2022]
Abstract
The praying mantis is a good model for the study of motor control, especially for investigating the transformation from sensory signals into motor commands. In insects, thoracic ganglia (TG) play an important role in motor control. To understand the functional organization of TG, an atlas is useful. However, except for the fruitfly, no three-dimensional atlas of TG has not been reported for insects. In this study, we generated a three-dimensional atlas of prothoracic, mesothoracic, and metathoracic ganglia in the praying mantis (Tenodera aridifolia). First, we observed serial sections of the prothoracic ganglion stained with hematoxylin and eosin to identify longitudinal tracts and transverse commissures. We then visualized neuropil areas by immunostaining whole-mount TG with an anti-synapsin antibody. Before labeling each neuropil area, standardization using the iterative shape averaging method was applied to images to make neuropil contours distinct. Neuropil areas in TG were defined based on their shape and relative position to tracts and commissures. Finally, a three-dimensional atlas was reconstructed from standardized images of the TG. The standard TG are available at the Comparative Neuroscience Platform website (cns.neuroinf.jp/modules/xoonips/detail.php?item_id=11946) and can be used as a common reference map to combine the anatomical data obtained from different individuals.
Collapse
Affiliation(s)
- Kentaro Fujiki
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Mihoko Nagase
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Keigo Takaki
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Hidehiro Watanabe
- Department of Earth System Science, Faculty of Science, Fukuoka University, Fukuoka, Japan
| | - Yoshifumi Yamawaki
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
23
|
Habenstein J, Amini E, Grübel K, el Jundi B, Rössler W. The brain of
Cataglyphis
ants: Neuronal organization and visual projections. J Comp Neurol 2020; 528:3479-3506. [DOI: 10.1002/cne.24934] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Jens Habenstein
- Biocenter, Behavioral Physiology and Sociobiology (Zoology II) University of Würzburg Würzburg Germany
| | - Emad Amini
- Biocenter, Neurobiology and Genetics University of Würzburg Würzburg Germany
| | - Kornelia Grübel
- Biocenter, Behavioral Physiology and Sociobiology (Zoology II) University of Würzburg Würzburg Germany
| | - Basil el Jundi
- Biocenter, Behavioral Physiology and Sociobiology (Zoology II) University of Würzburg Würzburg Germany
| | - Wolfgang Rössler
- Biocenter, Behavioral Physiology and Sociobiology (Zoology II) University of Würzburg Würzburg Germany
| |
Collapse
|
24
|
Hensgen R, England L, Homberg U, Pfeiffer K. Neuroarchitecture of the central complex in the brain of the honeybee: Neuronal cell types. J Comp Neurol 2020; 529:159-186. [PMID: 32374034 DOI: 10.1002/cne.24941] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 12/11/2022]
Abstract
The central complex (CX) in the insect brain is a higher order integration center that controls a number of behaviors, most prominently goal directed locomotion. The CX comprises the protocerebral bridge (PB), the upper division of the central body (CBU), the lower division of the central body (CBL), and the paired noduli (NO). Although spatial orientation has been extensively studied in honeybees at the behavioral level, most electrophysiological and anatomical analyses have been carried out in other insect species, leaving the morphology and physiology of neurons that constitute the CX in the honeybee mostly enigmatic. The goal of this study was to morphologically identify neuronal cell types of the CX in the honeybee Apis mellifera. By performing iontophoretic dye injections into the CX, we traced 16 subtypes of neuron that connect a subdivision of the CX with other regions in the bee's central brain, and eight subtypes that mainly interconnect different subdivisions of the CX. They establish extensive connections between the CX and the lateral complex, the superior protocerebrum and the posterior protocerebrum. Characterized neuron classes and subtypes are morphologically similar to those described in other insects, suggesting considerable conservation in the neural network relevant for orientation.
Collapse
Affiliation(s)
- Ronja Hensgen
- Animal Physiology, Department of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Laura England
- Animal Physiology, Department of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Uwe Homberg
- Animal Physiology, Department of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Keram Pfeiffer
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Würzburg, Germany
| |
Collapse
|
25
|
Paffhausen BH, Fuchs I, Duer A, Hillmer I, Dimitriou IM, Menzel R. Neural Correlates of Social Behavior in Mushroom Body Extrinsic Neurons of the Honeybee Apis mellifera. Front Behav Neurosci 2020; 14:62. [PMID: 32372927 PMCID: PMC7186758 DOI: 10.3389/fnbeh.2020.00062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/30/2020] [Indexed: 11/13/2022] Open
Abstract
The social behavior of honeybees (Apis mellifera) has been extensively investigated, but little is known about its neuronal correlates. We developed a method that allowed us to record extracellularly from mushroom body extrinsic neurons (MB ENs) in a freely moving bee within a small but functioning mini colony of approximately 1,000 bees. This study aimed to correlate the neuronal activity of multimodal high-order MB ENs with social behavior in a close to natural setting. The behavior of all bees in the colony was video recorded. The behavior of the recorded animal was compared with other hive mates and no significant differences were found. Changes in the spike rate appeared before, during or after social interactions. The time window of the strongest effect on spike rate changes ranged from 1 s to 2 s before and after the interaction, depending on the individual animal and recorded neuron. The highest spike rates occurred when the experimental animal was situated close to a hive mate. The variance of the spike rates was analyzed as a proxy for high order multi-unit processing. Comparing randomly selected time windows with those in which the recorded animal performed social interactions showed a significantly increased spike rate variance during social interactions. The experimental set-up employed for this study offers a powerful opportunity to correlate neuronal activity with intrinsically motivated behavior of socially interacting animals. We conclude that the recorded MB ENs are potentially involved in initiating and controlling social interactions in honeybees.
Collapse
Affiliation(s)
| | | | | | | | | | - Randolf Menzel
- Neurobiology, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
26
|
Bates AS, Manton JD, Jagannathan SR, Costa M, Schlegel P, Rohlfing T, Jefferis GSXE. The natverse, a versatile toolbox for combining and analysing neuroanatomical data. eLife 2020; 9:e53350. [PMID: 32286229 PMCID: PMC7242028 DOI: 10.7554/elife.53350] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/11/2020] [Indexed: 11/18/2022] Open
Abstract
To analyse neuron data at scale, neuroscientists expend substantial effort reading documentation, installing dependencies and moving between analysis and visualisation environments. To facilitate this, we have developed a suite of interoperable open-source R packages called the natverse. The natverse allows users to read local and remote data, perform popular analyses including visualisation and clustering and graph-theoretic analysis of neuronal branching. Unlike most tools, the natverse enables comparison across many neurons of morphology and connectivity after imaging or co-registration within a common template space. The natverse also enables transformations between different template spaces and imaging modalities. We demonstrate tools that integrate the vast majority of Drosophila neuroanatomical light microscopy and electron microscopy connectomic datasets. The natverse is an easy-to-use environment for neuroscientists to solve complex, large-scale analysis challenges as well as an open platform to create new code and packages to share with the community.
Collapse
Affiliation(s)
| | - James D Manton
- Neurobiology Division, MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Sridhar R Jagannathan
- Drosophila Connectomics Group, Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Marta Costa
- Neurobiology Division, MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
- Drosophila Connectomics Group, Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Philipp Schlegel
- Neurobiology Division, MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
- Drosophila Connectomics Group, Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Torsten Rohlfing
- SRI International, Neuroscience Program, Center for Health SciencesMenlo ParkUnited States
| | - Gregory SXE Jefferis
- Neurobiology Division, MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
- Drosophila Connectomics Group, Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
27
|
Paoli M, Nishino H, Couzin-Fuchs E, Galizia CG. Coding of odour and space in the hemimetabolous insect Periplaneta americana. J Exp Biol 2020; 223:jeb218032. [PMID: 31932303 DOI: 10.1242/jeb.218032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/06/2020] [Indexed: 11/20/2022]
Abstract
The general architecture of the olfactory system is highly conserved from insects to humans, but neuroanatomical and physiological differences can be observed across species. The American cockroach, inhabiting dark shelters with a rather stable olfactory landscape, is equipped with long antennae used for sampling the surrounding air-space for orientation and navigation. The antennae's exceptional length provides a wide spatial working range for odour detection; however, it is still largely unknown whether and how this is also used for mapping the structure of the olfactory environment. By selectively labelling antennal lobe projection neurons with a calcium-sensitive dye, we investigated the logic of olfactory coding in this hemimetabolous insect. We show that odour responses are stimulus specific and concentration dependent, and that structurally related odorants evoke physiologically similar responses. By using spatially confined stimuli, we show that proximal stimulations induce stronger and faster responses than distal ones. Spatially confined stimuli of the female pheromone periplanone B activate a subregion of the male macroglomerulus. Thus, we report that the combinatorial logic of odour coding deduced from holometabolous insects applies also to this hemimetabolous species. Furthermore, a fast decrease in sensitivity along the antenna, not supported by a proportionate decrease in sensillar density, suggests a neural architecture that strongly emphasizes neuronal inputs from the proximal portion of the antenna.
Collapse
Affiliation(s)
- Marco Paoli
- Department of Neuroscience, University of Konstanz, 78457 Konstanz, Germany
| | - Hiroshi Nishino
- Research Institute for Electronic Science, Hokkaido University, Sapporo 060-0812, Japan
| | - Einat Couzin-Fuchs
- Department of Neuroscience, University of Konstanz, 78457 Konstanz, Germany
| | - C Giovanni Galizia
- Department of Neuroscience, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
28
|
Chen Y, Liu Y, Tian H, Chen Y, Lin S, Mao Q, Zheng N, Zhao J, Gu X, Wei H. Distribution of Pheromone Biosynthesis-Activating Neuropeptide in the Central Nervous System of Plutella xylostella (Lepidoptera: Plutellidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:2638-2648. [PMID: 31310309 DOI: 10.1093/jee/toz192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Indexed: 06/10/2023]
Abstract
Insect neuropeptides in the pyrokinin/pheromone biosynthesis-activating neuropeptide (PBAN) family are actively involved in many essential endocrinal functions and serve as potential targets in the search for novel insect control agents. Here, we dissect the nervous system of larval, pupal, and adult Plutella xylostella (L.) (Lepidoptera: Plutellidae) and describe the ganglion morphology and localization of PBAN during different insect developmental stages. Our results show that the central nervous system (CNS) of this species consists of four types of ganglia: cerebral ganglia (brain), subesophageal ganglion (SEG), thoracic ganglia, and abdominal ganglia. A two-lobed brain is connected to the reniform SEG with a nerve cord in larvae and prepupae, whereas in the late pupae and adults, the brain and SEG are fused, forming a brain-SEG complex. The larvae and prepupae have eight abdominal ganglia each, whereas the late pupae and adults each have four abdominal ganglia. Furthermore, all life stages of P. xylostella had similar patterns of PBAN immunoreactivity in the CNS, and the accumulation of PBAN was similar during all life stages except in adult males. PBAN immunoreactive signals were observed in the brain and SEG, and fluorescence signals originating in the SEG extended the entire length of the ventral nerve cord, ending in the terminal abdominal ganglia. Our results provide morphological data that inform the development and evolution of the CNS. In addition, they indicate that the nervous system contains PBAN, which could be used to control P. xylostella populations.
Collapse
Affiliation(s)
- Yong Chen
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, China
- Fuzhou Scientific Observing and Experimental Station of Crop Pests of Ministry of Agriculture, Fuzhou, China
| | - Yuyan Liu
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Houjun Tian
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fuzhou Scientific Observing and Experimental Station of Crop Pests of Ministry of Agriculture, Fuzhou, China
| | - Yixin Chen
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fuzhou Scientific Observing and Experimental Station of Crop Pests of Ministry of Agriculture, Fuzhou, China
| | - Shuo Lin
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fuzhou Scientific Observing and Experimental Station of Crop Pests of Ministry of Agriculture, Fuzhou, China
| | - Qianzhuo Mao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Nan Zheng
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Jianwei Zhao
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fuzhou Scientific Observing and Experimental Station of Crop Pests of Ministry of Agriculture, Fuzhou, China
| | - Xiaojun Gu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hui Wei
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, China
- Fuzhou Scientific Observing and Experimental Station of Crop Pests of Ministry of Agriculture, Fuzhou, China
| |
Collapse
|
29
|
von Hadeln J, Hensgen R, Bockhorst T, Rosner R, Heidasch R, Pegel U, Quintero Pérez M, Homberg U. Neuroarchitecture of the central complex of the desert locust: Tangential neurons. J Comp Neurol 2019; 528:906-934. [PMID: 31625611 DOI: 10.1002/cne.24796] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/11/2022]
Abstract
The central complex (CX) comprises a group of midline neuropils in the insect brain, consisting of the protocerebral bridge (PB), the upper (CBU) and lower division (CBL) of the central body and a pair of globular noduli. It receives prominent input from the visual system and plays a major role in spatial orientation of the animals. Vertical slices and horizontal layers of the CX are formed by columnar, tangential, and pontine neurons. While pontine and columnar neurons have been analyzed in detail, especially in the fruit fly and desert locust, understanding of the organization of tangential cells is still rudimentary. As a basis for future functional studies, we have studied the morphologies of tangential neurons of the CX of the desert locust Schistocerca gregaria. Intracellular dye injections revealed 43 different types of tangential neuron, 8 of the PB, 5 of the CBL, 24 of the CBU, 2 of the noduli, and 4 innervating multiple substructures. Cell bodies of these neurons were located in 11 different clusters in the cell body rind. Judging from the presence of fine versus beaded terminals, the vast majority of these neurons provide input into the CX, especially from the lateral complex (LX), the superior protocerebrum, the posterior slope, and other surrounding brain areas, but not directly from the mushroom bodies. Connections are largely subunit- and partly layer-specific. No direct connections were found between the CBU and the CBL. Instead, both subdivisions are connected in parallel with the PB and distinct layers of the noduli.
Collapse
Affiliation(s)
- Joss von Hadeln
- Fachbereich Biologie, Tierphysiologie, and Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Ronja Hensgen
- Fachbereich Biologie, Tierphysiologie, and Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Tobias Bockhorst
- Fachbereich Biologie, Tierphysiologie, and Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Ronny Rosner
- Fachbereich Biologie, Tierphysiologie, and Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Ronny Heidasch
- Fachbereich Biologie, Tierphysiologie, and Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Uta Pegel
- Fachbereich Biologie, Tierphysiologie, and Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Manuel Quintero Pérez
- Fachbereich Biologie, Tierphysiologie, and Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Uwe Homberg
- Fachbereich Biologie, Tierphysiologie, and Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| |
Collapse
|
30
|
Characterization of the olfactory system of the giant honey bee, Apis dorsata. Cell Tissue Res 2019; 379:131-145. [PMID: 31410628 DOI: 10.1007/s00441-019-03078-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 07/03/2019] [Indexed: 12/21/2022]
Abstract
Apis dorsata is an open-nesting, undomesticated, giant honey bee found in southern Asia. We characterized a number of aspects of olfactory system of Apis dorsata and compared it with the well-characterized, western honeybee, Apis mellifera, a domesticated, cavity-nesting species. A. dorsata differs from A. mellifera in nesting behavior, foraging activity, and defense mechanisms. Hence, there can be different demands on its olfactory system. We elucidated the glomerular organization of A. dorsata by creating a digital atlas for the antennal lobe and visualized the antennal lobe tracts and localized their innervations. We showed that the neurites of Kenyon cells with cell bodies located in a neighborhood in calyx retain their relative neighborhoods in the pedunculus and the vertical lobe forming a columnar organization in the mushroom body. The vertical lobe and the calyx of the mushroom body were found to be innervated by extrinsic neurons with cell bodies in the lateral protocerebrum. We found that the species was amenable to olfactory conditioning and showed good learning and memory retention at 24 h after training. It was also amenable to massed and spaced conditioning and could distinguish trained odor from an untrained novel odor. We found that all the above mentioned features in A. dorsata are very similar to those in A. mellifera. We thereby establish A. dorsata as a good model system, strikingly similar to A. mellifera despite the differences in their nesting and foraging behavior.
Collapse
|
31
|
Xie GY, Ma BW, Liu XL, Chang YJ, Chen WB, Li GP, Feng HQ, Zhang YJ, Berg BG, Zhao XC. Brain Organization of Apolygus lucorum: A Hemipteran Species With Prominent Antennal Lobes. Front Neuroanat 2019; 13:70. [PMID: 31379518 PMCID: PMC6654032 DOI: 10.3389/fnana.2019.00070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/24/2019] [Indexed: 11/13/2022] Open
Abstract
The anatomical organization of distinct regions in the insect brain often reflects their functions. In the present study, the brain structure of Apolygus lucorum was examined by using immunolabeling and three-dimensional reconstruction. The results revealed the location and volume of prominent neuropils, such as the antennal lobes (AL), optic lobes (OL), anterior optic tubercles (AOTU), central body (CB), lateral accessory lobes (LAL), mushroom lobes, and distinct tritocerebral neuropils. As expected, this brain is similar to that of other insects. One exception, however, is that the antennal lobes were found to be the most prominent neuropils. Their size relative to the entire brain is the largest among all insect species studied so far. In contrast, the calyx, a region getting direct input from the antennal lobe, has a smaller size relative to the brain than that of other species. These findings may suggest that olfaction plays an essential role for A. lucorum.
Collapse
Affiliation(s)
- Gui-Ying Xie
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Bai-Wei Ma
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Xiao-Lan Liu
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Ya-Jun Chang
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Wen-Bo Chen
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Guo-Ping Li
- Institute of Plant Protection, Henan Academy of Agricultural Sciences (HAAS), Zhengzhou, China
| | - Hong-Qiang Feng
- Institute of Plant Protection, Henan Academy of Agricultural Sciences (HAAS), Zhengzhou, China
| | - Yong-Jun Zhang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bente G Berg
- Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Xin-Cheng Zhao
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
32
|
Groothuis J, Pfeiffer K, El Jundi B, Smid HM. The Jewel Wasp Standard Brain: Average shape atlas and morphology of the female Nasonia vitripennis brain. ARTHROPOD STRUCTURE & DEVELOPMENT 2019; 51:41-51. [PMID: 31357033 DOI: 10.1016/j.asd.2019.100878] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/25/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
Nasonia, a genus of parasitoid wasps, is a promising model system in the study of developmental and evolutionary genetics, as well as complex traits such as learning. Of these "jewel wasps", the species Nasonia vitripennis is widely spread and widely studied. To accelerate neuroscientific research in this model species, fundamental knowledge of its nervous system is needed. To this end, we present an average standard brain of recently eclosed naïve female N. vitripennis wasps obtained by the iterative shape averaging method. This "Jewel Wasp Standard Brain" includes the optic lobe (excluding the lamina), the anterior optic tubercle, the antennal lobe, the lateral horn, the mushroom body, the central complex, and the remaining unclassified neuropils in the central brain. Furthermore, we briefly describe these well-defined neuropils and their subregions in the N. vitripennis brain. A volumetric analysis of these neuropils is discussed in the context of brains of other insect species. The Jewel Wasp Standard Brain will provide a framework to integrate and consolidate the results of future neurobiological studies in N. vitripennis. In addition, the volumetric analysis provides a baseline for future work on age- and experience-dependent brain plasticity.
Collapse
Affiliation(s)
- Jitte Groothuis
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Keram Pfeiffer
- Behavioral Physiology and Sociobiology (Zoology II), University of Würzburg, Biocenter, Am Hubland, 97074, Würzburg, Germany
| | - Basil El Jundi
- Behavioral Physiology and Sociobiology (Zoology II), University of Würzburg, Biocenter, Am Hubland, 97074, Würzburg, Germany
| | - Hans M Smid
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands.
| |
Collapse
|
33
|
Pegel U, Pfeiffer K, Zittrell F, Scholtyssek C, Homberg U. Two Compasses in the Central Complex of the Locust Brain. J Neurosci 2019; 39:3070-3080. [PMID: 30755489 PMCID: PMC6468101 DOI: 10.1523/jneurosci.0940-18.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 01/10/2019] [Accepted: 01/29/2019] [Indexed: 11/21/2022] Open
Abstract
Many migratory insects rely on a celestial compass for spatial orientation. Several features of the daytime sky, all generated by the sun, can be exploited for navigation. Two of these are the position of the sun and the pattern of polarized skylight. Neurons of the central complex (CX), a group of neuropils in the central brain of insects, have been shown to encode sky compass cues. In desert locusts, the CX holds a topographic, compass-like representation of the plane of polarized light (E-vector) presented from dorsal direction. In addition, these neurons also encode the azimuth of an unpolarized light spot, likely representing the sun. Here, we investigate whether, in addition to E-vector orientation, the solar azimuth is represented topographically in the CX. We recorded intracellularly from eight types of CX neuron while stimulating animals of either sex with polarized blue light from zenithal direction and an unpolarized green light spot rotating around the animal's head at different elevations. CX neurons did not code for elevation of the unpolarized light spot. However, two types of columnar neuron showed a linear correlation between innervated slice in the CX and azimuth tuning to the unpolarized green light spot, consistent with an internal compass representation of solar azimuth. Columnar outputs of the CX also showed a topographic representation of zenithal E-vector orientation, but the two compasses were not linked to each other. Combined stimulation with unpolarized green and polarized blue light suggested that the two compasses interact in a nonlinear way.SIGNIFICANCE STATEMENT In the brain of the desert locust, neurons sensitive to the plane of celestial polarization are arranged like a compass in the slices of the central complex (CX). These neurons, in addition, code for the horizontal direction of an unpolarized light cue possibly representing the sun. We show here that horizontal directions are, in addition to E-vector orientations from the dorsal direction, represented in a compass-like manner across the slices of the CX. However, the two compasses are not linked to each other, but rather seem to interact in a cell-specific, nonlinear way. Our study confirms the role of the CX in signaling heading directions and shows that different cues are used for this task.
Collapse
Affiliation(s)
- Uta Pegel
- Animal Physiology, Department of Biology and Center for Mind, Brain and Behavior, Philipps-Universität Marburg, 35032 Marburg, Germany
| | - Keram Pfeiffer
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074 Würzburg, Germany, and
| | - Frederick Zittrell
- Animal Physiology, Department of Biology and Center for Mind, Brain and Behavior, Philipps-Universität Marburg, 35032 Marburg, Germany
| | - Christine Scholtyssek
- School of Experimental Psychology, University of Bristol, Bristol BS8 1TU, United Kingdom
| | - Uwe Homberg
- Animal Physiology, Department of Biology and Center for Mind, Brain and Behavior, Philipps-Universität Marburg, 35032 Marburg, Germany,
| |
Collapse
|
34
|
Ramesh D, Brockmann A. Mass Spectrometric Quantification of Arousal Associated Neurochemical Changes in Single Honey Bee Brains and Brain Regions. ACS Chem Neurosci 2019; 10:1950-1959. [PMID: 30346719 DOI: 10.1021/acschemneuro.8b00254] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Honey bee foragers show a strong diurnal rhythm of foraging activity, and such behavioral changes are likely under the control of specific neuromodulators. To identify and quantify neuromodulators involved in regulating rest and arousal in honey bees, we established a mass spectrometric method for quantifying 14 different neurochemicals and precursor molecules. We measured forager type and brain region specific differences in amine levels from individual honey bee brains and brain regions. The observed differences in amine levels between resting and aroused foragers resemble findings in other species indicating a conserved molecular mechanism by glutamate and GABA in regulating arousal. Subesophageal ganglion specific changes in the histaminergic system and global increases in aspartate during arousal suggest a possible role of histamine and aspartate in feeding and arousal, respectively. More aminergic systems were significantly affected due to arousal in nectar foragers than in pollen foragers, implying that forager phenotypes differ not only in their food preference but also in their neuromodulatory signaling systems (brain states). Finally, we found that neurotransmitter precursors were better at distinguishing brain states in the central brain, while their end products correlated with arousal associated changes in sensory regions like the optic and antennal lobes.
Collapse
Affiliation(s)
- Divya Ramesh
- National Centre for Biological Sciences, Bangalore 560065 Karnataka, India
| | - Axel Brockmann
- National Centre for Biological Sciences, Bangalore 560065 Karnataka, India
| |
Collapse
|
35
|
Hess A, Hinz R, Keliris GA, Boehm-Sturm P. On the Usage of Brain Atlases in Neuroimaging Research. Mol Imaging Biol 2019; 20:742-749. [PMID: 30094652 DOI: 10.1007/s11307-018-1259-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Brain atlases play a key role in modern neuroimaging analysis of brain structure and function. We review available atlas databases for humans and animals and illustrate common state-of-the-art workflows in neuroimaging research based on image registration. Advances in noninvasive imaging methods, 3D ex vivo microscopy, and image processing are summarized which will eventually close the current resolution gap between brain atlases based on conventional 2D histology and those based on 3D in vivo imaging.
Collapse
Affiliation(s)
- Andreas Hess
- Institute for Experimental Pharmacology, Friedrich Alexander University Erlangen Nuremberg, Fahrstraße 17, 91054, Erlangen, Germany.
| | - Rukun Hinz
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
| | | | - Philipp Boehm-Sturm
- Department of Experimental Neurology and Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany. .,NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
36
|
El Jundi B, Baird E, Byrne MJ, Dacke M. The brain behind straight-line orientation in dung beetles. ACTA ACUST UNITED AC 2019; 222:222/Suppl_1/jeb192450. [PMID: 30728239 DOI: 10.1242/jeb.192450] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
For many insects, celestial compass cues play an important role in keeping track of their directional headings. One well-investigated group of celestial orientating insects are the African ball-rolling dung beetles. After finding a dung pile, these insects detach a piece, form it into a ball and roll it away along a straight path while facing backwards. A brain region, termed the central complex, acts as an internal compass that constantly updates the ball-rolling dung beetle about its heading. In this review, we give insights into the compass network behind straight-line orientation in dung beetles and place it in the context of the orientation mechanisms and neural networks of other insects. We find that the neuronal network behind straight-line orientation in dung beetles has strong similarities to the ones described in path-integrating and migrating insects, with the central complex being the key control point for this behavior. We conclude that, despite substantial differences in behavior and navigational challenges, dung beetles encode compass information in a similar way to other insects.
Collapse
Affiliation(s)
- Basil El Jundi
- University of Wuerzburg, Biocenter, Zoology II, Emmy-Noether Group, 97074 Würzburg, Germany
| | - Emily Baird
- Stockholm University, Faculty of Science, Department of Zoology, Division of Functional Morphology, 10691 Stockholm, Sweden
| | - Marcus J Byrne
- University of the Witwatersrand, School of Animal, Plant and Environmental Sciences, Wits 2050, South Africa
| | - Marie Dacke
- University of the Witwatersrand, School of Animal, Plant and Environmental Sciences, Wits 2050, South Africa.,Lund University, Department of Biology, Lund Vision Group, 22362 Lund, Sweden
| |
Collapse
|
37
|
Polilov AA, Makarova AA, Kolesnikova UK. Cognitive abilities with a tiny brain: Neuronal structures and associative learning in the minute Nephanes titan (Coleoptera: Ptiliidae). ARTHROPOD STRUCTURE & DEVELOPMENT 2019; 48:98-102. [PMID: 30472324 DOI: 10.1016/j.asd.2018.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 06/09/2023]
Abstract
Revealing the effect of brain size on the cognitive abilities of animals is a major challenge in the study of brain evolution. Analysis of the effects of miniaturization on brain function in the smallest insects is especially important, as they are comparable in body size to some unicellular organisms and next to nothing is known about their cognitive abilities. We analyse for the first time the structure of the brain of the adult featherwing beetle Nephanes titan, one of the smallest insects, and results of the first ethological experiments on the capacity of learning in this species. N. titan is capable of associative learning, in spite of the structural modification in its nervous system and the greatly reduced number of neurons compared to the nervous systems of larger insects. Microinsects can become useful model organisms for neurobiology. On the one hand, the structural simplicity and extremely small size of their central nervous system make it possible to study it very efficiently. On the other hand, their learning capacity and retained principal cognitive abilities make them suitable objects for behavioural experiments.
Collapse
Affiliation(s)
- Alexey A Polilov
- Department of Entomology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.
| | - Anastasia A Makarova
- Department of Entomology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.
| | - Uliana K Kolesnikova
- Department of Entomology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
38
|
Schatton A, Agoro J, Mardink J, Leboulle G, Scharff C. Identification of the neurotransmitter profile of AmFoxP expressing neurons in the honeybee brain using double-label in situ hybridization. BMC Neurosci 2018; 19:69. [PMID: 30400853 PMCID: PMC6219247 DOI: 10.1186/s12868-018-0469-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/29/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND FoxP transcription factors play crucial roles for the development and function of vertebrate brains. In humans the neurally expressed FOXPs, FOXP1, FOXP2, and FOXP4 are implicated in cognition, including language. Neural FoxP expression is specific to particular brain regions but FoxP1, FoxP2 and FoxP4 are not limited to a particular neuron or neurotransmitter type. Motor- or sensory activity can regulate FoxP2 expression, e.g. in the striatal nucleus Area X of songbirds and in the auditory thalamus of mice. The DNA-binding domain of FoxP proteins is highly conserved within metazoa, raising the possibility that cellular functions were preserved across deep evolutionary time. We have previously shown in bee brains that FoxP is expressed in eleven specific neuron populations, seven tightly packed clusters and four loosely arranged groups. RESULTS The present study examined the co-expression of honeybee FoxP (AmFoxP) with markers for glutamatergic, GABAergic, cholinergic and monoaminergic transmission. We found that AmFoxP could co-occur with any one of those markers. Interestingly, AmFoxP clusters and AmFoxP groups differed with respect to homogeneity of marker co-expression; within a cluster, all neurons co-expressed the same neurotransmitter marker, within a group co-expression varied. We also assessed qualitatively whether age or housing conditions providing different sensory and motor experiences affected the AmFoxP neuron populations, but found no differences. CONCLUSIONS Based on the neurotransmitter homogeneity we conclude that AmFoxP neurons within the clusters might have a common projection and function whereas the AmFoxP groups are more diverse and could be further sub-divided. The obtained information about the neurotransmitters co-expressed in the AmFoxP neuron populations facilitated the search of similar neurons described in the literature. These comparisons revealed e.g. a possible function of AmFoxP neurons in the central complex. Our findings provide opportunities to focus future functional studies on invertebrate FoxP expressing neurons. In a broader context, our data will contribute to the ongoing efforts to discern in which cases relationships between molecular and phenotypic signatures are linked evolutionary.
Collapse
Affiliation(s)
- Adriana Schatton
- Department of Animal Behavior, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | - Julia Agoro
- Department of Animal Behavior, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
- Department of Neurobiology, Freie Universität Berlin, Königin-Luise-Straße 28-30, 14195 Berlin, Germany
| | - Janis Mardink
- Department of Animal Behavior, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | - Gérard Leboulle
- Department of Neurobiology, Freie Universität Berlin, Königin-Luise-Straße 28-30, 14195 Berlin, Germany
| | - Constance Scharff
- Department of Animal Behavior, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| |
Collapse
|
39
|
El Jundi B, Warrant EJ, Pfeiffer K, Dacke M. Neuroarchitecture of the dung beetle central complex. J Comp Neurol 2018; 526:2612-2630. [PMID: 30136721 DOI: 10.1002/cne.24520] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/12/2018] [Accepted: 08/15/2018] [Indexed: 01/09/2023]
Abstract
Despite their tiny brains, insects show impressive abilities when navigating over short distances during path integration or during migration over thousands of kilometers across entire continents. Celestial compass cues often play an important role as references during navigation. In contrast to many other insects, South African dung beetles rely exclusively on celestial cues for visual reference during orientation. After finding a dung pile, these animals cut off a piece of dung from the pat, shape it into a ball and roll it away along a straight path until a suitable place for underground consumption is found. To maintain a constant bearing, a brain region in the beetle's brain, called the central complex, is crucially involved in the processing of skylight cues, similar to what has already been shown for path-integrating and migrating insects. In this study, we characterized the neuroanatomy of the sky-compass network and the central complex in the dung beetle brain in detail. Using tracer injections, combined with imaging and 3D modeling, we describe the anatomy of the possible sky-compass network in the central brain. We used a quantitative approach to study the central-complex network and found that several types of neuron exhibit a highly organized connectivity pattern. The architecture of the sky-compass network and central complex is similar to that described in insects that perform path integration or are migratory. This suggests that, despite their different orientation behaviors, this neural circuitry for compass orientation is highly conserved among the insects.
Collapse
Affiliation(s)
- Basil El Jundi
- Biocenter, Zoology II, Emmy Noether Animal Navigation Group, University of Würzburg, Germany
| | - Eric J Warrant
- Vision Group, Department of Biology, Lund University, Lund, Sweden
| | | | - Marie Dacke
- Vision Group, Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
40
|
von Hadeln J, Althaus V, Häger L, Homberg U. Anatomical organization of the cerebrum of the desert locust Schistocerca gregaria. Cell Tissue Res 2018; 374:39-62. [DOI: 10.1007/s00441-018-2844-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 04/17/2018] [Indexed: 11/27/2022]
|
41
|
Pichat J, Iglesias JE, Yousry T, Ourselin S, Modat M. A Survey of Methods for 3D Histology Reconstruction. Med Image Anal 2018; 46:73-105. [DOI: 10.1016/j.media.2018.02.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 02/02/2018] [Accepted: 02/14/2018] [Indexed: 02/08/2023]
|
42
|
Kumaraswamy A, Kai K, Ai H, Ikeno H, Wachtler T. Spatial registration of neuron morphologies based on maximization of volume overlap. BMC Bioinformatics 2018; 19:143. [PMID: 29669537 PMCID: PMC5907365 DOI: 10.1186/s12859-018-2136-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 03/26/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Morphological features are widely used in the study of neuronal function and pathology. Invertebrate neurons are often structurally stereotypical, showing little variance in gross spatial features but larger variance in their fine features. Such variability can be quantified using detailed spatial analysis, which however requires the morphologies to be registered to a common frame of reference. RESULTS We outline here new algorithms - Reg-MaxS and Reg-MaxS-N - for co-registering pairs and groups of morphologies, respectively. Reg-MaxS applies a sequence of translation, rotation and scaling transformations, estimating at each step the transformation parameters that maximize spatial overlap between the volumes occupied by the morphologies. We test this algorithm with synthetic morphologies, showing that it can account for a wide range of transformation differences and is robust to noise. Reg-MaxS-N co-registers groups of more than two morphologies by iteratively calculating an average volume and registering all morphologies to this average using Reg-MaxS. We test Reg-MaxS-N using five groups of morphologies from the Droshophila melanogaster brain and identify the cases for which it outperforms existing algorithms and produce morphologies very similar to those obtained from registration to a standard brain atlas. CONCLUSIONS We have described and tested algorithms for co-registering pairs and groups of neuron morphologies. We have demonstrated their application to spatial comparison of stereotypic morphologies and calculation of dendritic density profiles, showing how our algorithms for registering neuron morphologies can enable new approaches in comparative morphological analyses and visualization.
Collapse
Affiliation(s)
- Ajayrama Kumaraswamy
- Department of Biology II, Ludwig-Maximilians-Universität München, Grosshadernerstr, 2, Planegg-Martinsried, 82152, Germany.
| | - Kazuki Kai
- Department of Earth System Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka-shi, Fukuoka, 814-0180, Japan
| | - Hiroyuki Ai
- Department of Earth System Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka-shi, Fukuoka, 814-0180, Japan
| | - Hidetoshi Ikeno
- School of Human Science and Environment, University of Hyogo, 1-1-12 Shinazaike-Honcho, Himeji, 670-0092, Hyogo, Japan
| | - Thomas Wachtler
- Department of Biology II, Ludwig-Maximilians-Universität München, Grosshadernerstr, 2, Planegg-Martinsried, 82152, Germany
| |
Collapse
|
43
|
Schatton A, Mendoza E, Grube K, Scharff C. FoxP in bees: A comparative study on the developmental and adult expression pattern in three bee species considering isoforms and circuitry. J Comp Neurol 2018. [PMID: 29536541 DOI: 10.1002/cne.24430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Mutations in the transcription factors FOXP1, FOXP2, and FOXP4 affect human cognition, including language. The FoxP gene locus is evolutionarily ancient and highly conserved in its DNA-binding domain. In Drosophila melanogaster FoxP has been implicated in courtship behavior, decision making, and specific types of motor-learning. Because honeybees (Apis mellifera, Am) excel at navigation and symbolic dance communication, they are a particularly suitable insect species to investigate a potential link between neural FoxP expression and cognition. We characterized two AmFoxP isoforms and mapped their expression in the brain during development and in adult foragers. Using a custom-made antiserum and in situ hybridization, we describe 11 AmFoxP expressing neuron populations. FoxP was expressed in equivalent patterns in two other representatives of Apidae; a closely related dwarf bee and a bumblebee species. Neural tracing revealed that the largest FoxP expressing neuron cluster in honeybees projects into a posterior tract that connects the optic lobe to the posterior lateral protocerebrum, predicting a function in visual processing. Our data provide an entry point for future experiments assessing the function of FoxP in eusocial Hymenoptera.
Collapse
Affiliation(s)
- Adriana Schatton
- Institute for Animal Behavior, Freie Universität Berlin, Berlin, 14195, Germany
| | - Ezequiel Mendoza
- Institute for Animal Behavior, Freie Universität Berlin, Berlin, 14195, Germany
| | - Kathrin Grube
- Institute for Animal Behavior, Freie Universität Berlin, Berlin, 14195, Germany
| | - Constance Scharff
- Institute for Animal Behavior, Freie Universität Berlin, Berlin, 14195, Germany
| |
Collapse
|
44
|
Arganda-Carreras I, Manoliu T, Mazuras N, Schulze F, Iglesias JE, Bühler K, Jenett A, Rouyer F, Andrey P. A Statistically Representative Atlas for Mapping Neuronal Circuits in the Drosophila Adult Brain. Front Neuroinform 2018; 12:13. [PMID: 29628885 PMCID: PMC5876320 DOI: 10.3389/fninf.2018.00013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/01/2018] [Indexed: 11/13/2022] Open
Abstract
Imaging the expression patterns of reporter constructs is a powerful tool to dissect the neuronal circuits of perception and behavior in the adult brain of Drosophila, one of the major models for studying brain functions. To date, several Drosophila brain templates and digital atlases have been built to automatically analyze and compare collections of expression pattern images. However, there has been no systematic comparison of performances between alternative atlasing strategies and registration algorithms. Here, we objectively evaluated the performance of different strategies for building adult Drosophila brain templates and atlases. In addition, we used state-of-the-art registration algorithms to generate a new group-wise inter-sex atlas. Our results highlight the benefit of statistical atlases over individual ones and show that the newly proposed inter-sex atlas outperformed existing solutions for automated registration and annotation of expression patterns. Over 3,000 images from the Janelia Farm FlyLight collection were registered using the proposed strategy. These registered expression patterns can be searched and compared with a new version of the BrainBaseWeb system and BrainGazer software. We illustrate the validity of our methodology and brain atlas with registration-based predictions of expression patterns in a subset of clock neurons. The described registration framework should benefit to brain studies in Drosophila and other insect species.
Collapse
Affiliation(s)
- Ignacio Arganda-Carreras
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain.,Donostia International Physics Center, Donostia-San Sebastian, Spain
| | - Tudor Manoliu
- Institut des Neurosciences Paris-Saclay, Université Paris Sud, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Nicolas Mazuras
- Institut des Neurosciences Paris-Saclay, Université Paris Sud, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Florian Schulze
- VRVis Zentrum für Virtual Reality und Visualisierung Forschungs-GmbH, Vienna, Austria
| | - Juan E Iglesias
- Basque Center on Cognition, Brain and Language, Donostia-San Sebastian, Spain
| | - Katja Bühler
- VRVis Zentrum für Virtual Reality und Visualisierung Forschungs-GmbH, Vienna, Austria
| | - Arnim Jenett
- Tefor Core Facility, Institut des Neurosciences Paris-Saclay, Université Paris Sud, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - François Rouyer
- Institut des Neurosciences Paris-Saclay, Université Paris Sud, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Philippe Andrey
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| |
Collapse
|
45
|
Strube-Bloss MF, Rössler W. Multimodal integration and stimulus categorization in putative mushroom body output neurons of the honeybee. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171785. [PMID: 29515886 PMCID: PMC5830775 DOI: 10.1098/rsos.171785] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/15/2018] [Indexed: 06/11/2023]
Abstract
Flowers attract pollinating insects like honeybees by sophisticated compositions of olfactory and visual cues. Using honeybees as a model to study olfactory-visual integration at the neuronal level, we focused on mushroom body (MB) output neurons (MBON). From a neuronal circuit perspective, MBONs represent a prominent level of sensory-modality convergence in the insect brain. We established an experimental design allowing electrophysiological characterization of olfactory, visual, as well as olfactory-visual induced activation of individual MBONs. Despite the obvious convergence of olfactory and visual pathways in the MB, we found numerous unimodal MBONs. However, a substantial proportion of MBONs (32%) responded to both modalities and thus integrated olfactory-visual information across MB input layers. In these neurons, representation of the olfactory-visual compound was significantly increased compared with that of single components, suggesting an additive, but nonlinear integration. Population analyses of olfactory-visual MBONs revealed three categories: (i) olfactory, (ii) visual and (iii) olfactory-visual compound stimuli. Interestingly, no significant differentiation was apparent regarding different stimulus qualities within these categories. We conclude that encoding of stimulus quality within a modality is largely completed at the level of MB input, and information at the MB output is integrated across modalities to efficiently categorize sensory information for downstream behavioural decision processing.
Collapse
|
46
|
Sinakevitch IT, Daskalova SM, Smith BH. The Biogenic Amine Tyramine and its Receptor (AmTyr1) in Olfactory Neuropils in the Honey Bee ( Apis mellifera) Brain. Front Syst Neurosci 2017; 11:77. [PMID: 29114209 PMCID: PMC5660842 DOI: 10.3389/fnsys.2017.00077] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 10/02/2017] [Indexed: 11/13/2022] Open
Abstract
This article describes the cellular sources for tyramine and the cellular targets of tyramine via the Tyramine Receptor 1 (AmTyr1) in the olfactory learning and memory neuropils of the honey bee brain. Clusters of approximately 160 tyramine immunoreactive neurons are the source of tyraminergic fibers with small varicosities in the optic lobes, antennal lobes, lateral protocerebrum, mushroom body (calyces and gamma lobes), tritocerebrum and subesophageal ganglion (SEG). Our tyramine mapping study shows that the primary sources of tyramine in the antennal lobe and calyx of the mushroom body are from at least two Ventral Unpaired Median neurons (VUMmd and VUMmx) with cell bodies in the SEG. To reveal AmTyr1 receptors in the brain, we used newly characterized anti-AmTyr1 antibodies. Immunolocalization studies in the antennal lobe with anti-AmTyr1 antibodies showed that the AmTyr1 expression pattern is mostly in the presynaptic sites of olfactory receptor neurons (ORNs). In the mushroom body calyx, anti-AmTyr1 mapped the presynaptic sites of uniglomerular Projection Neurons (PNs) located primarily in the microglomeruli of the lip and basal ring calyx area. Release of tyramine/octopamine from VUM (md and mx) neurons in the antennal lobe and mushroom body calyx would target AmTyr1 expressed on ORN and uniglomerular PN presynaptic terminals. The presynaptic location of AmTyr1, its structural similarity with vertebrate alpha-2 adrenergic receptors, and previous pharmacological evidence suggests that it has an important role in the presynaptic inhibitory control of neurotransmitter release.
Collapse
Affiliation(s)
| | - Sasha M Daskalova
- Biodesign Center for BioEnergetics, Arizona State University, Tempe, AZ, United States
| | - Brian H Smith
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
47
|
Han B, Fang Y, Feng M, Hu H, Hao Y, Ma C, Huo X, Meng L, Zhang X, Wu F, Li J. Brain Membrane Proteome and Phosphoproteome Reveal Molecular Basis Associating with Nursing and Foraging Behaviors of Honeybee Workers. J Proteome Res 2017; 16:3646-3663. [DOI: 10.1021/acs.jproteome.7b00371] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Bin Han
- Institute of Apicultural
Research/Key Laboratory of Pollinating Insect Biology, Ministry of
Agriculture, Chinese Academy of Agricultural Science, Beijing, China
| | - Yu Fang
- Institute of Apicultural
Research/Key Laboratory of Pollinating Insect Biology, Ministry of
Agriculture, Chinese Academy of Agricultural Science, Beijing, China
| | - Mao Feng
- Institute of Apicultural
Research/Key Laboratory of Pollinating Insect Biology, Ministry of
Agriculture, Chinese Academy of Agricultural Science, Beijing, China
| | - Han Hu
- Institute of Apicultural
Research/Key Laboratory of Pollinating Insect Biology, Ministry of
Agriculture, Chinese Academy of Agricultural Science, Beijing, China
| | - Yue Hao
- Institute of Apicultural
Research/Key Laboratory of Pollinating Insect Biology, Ministry of
Agriculture, Chinese Academy of Agricultural Science, Beijing, China
| | - Chuan Ma
- Institute of Apicultural
Research/Key Laboratory of Pollinating Insect Biology, Ministry of
Agriculture, Chinese Academy of Agricultural Science, Beijing, China
| | - Xinmei Huo
- Institute of Apicultural
Research/Key Laboratory of Pollinating Insect Biology, Ministry of
Agriculture, Chinese Academy of Agricultural Science, Beijing, China
| | - Lifeng Meng
- Institute of Apicultural
Research/Key Laboratory of Pollinating Insect Biology, Ministry of
Agriculture, Chinese Academy of Agricultural Science, Beijing, China
| | - Xufeng Zhang
- Institute of Apicultural
Research/Key Laboratory of Pollinating Insect Biology, Ministry of
Agriculture, Chinese Academy of Agricultural Science, Beijing, China
| | - Fan Wu
- Institute of Apicultural
Research/Key Laboratory of Pollinating Insect Biology, Ministry of
Agriculture, Chinese Academy of Agricultural Science, Beijing, China
| | - Jianke Li
- Institute of Apicultural
Research/Key Laboratory of Pollinating Insect Biology, Ministry of
Agriculture, Chinese Academy of Agricultural Science, Beijing, China
| |
Collapse
|
48
|
de Vries L, Pfeiffer K, Trebels B, Adden AK, Green K, Warrant E, Heinze S. Comparison of Navigation-Related Brain Regions in Migratory versus Non-Migratory Noctuid Moths. Front Behav Neurosci 2017; 11:158. [PMID: 28928641 PMCID: PMC5591330 DOI: 10.3389/fnbeh.2017.00158] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/15/2017] [Indexed: 11/13/2022] Open
Abstract
Brain structure and function are tightly correlated across all animals. While these relations are ultimately manifestations of differently wired neurons, many changes in neural circuit architecture lead to larger-scale alterations visible already at the level of brain regions. Locating such differences has served as a beacon for identifying brain areas that are strongly associated with the ecological needs of a species-thus guiding the way towards more detailed investigations of how brains underlie species-specific behaviors. Particularly in relation to sensory requirements, volume-differences in neural tissue between closely related species reflect evolutionary investments that correspond to sensory abilities. Likewise, memory-demands imposed by lifestyle have revealed similar adaptations in regions associated with learning. Whether this is also the case for species that differ in their navigational strategy is currently unknown. While the brain regions associated with navigational control in insects have been identified (central complex (CX), lateral complex (LX) and anterior optic tubercles (AOTU)), it remains unknown in what way evolutionary investments have been made to accommodate particularly demanding navigational strategies. We have thus generated average-shape atlases of navigation-related brain regions of a migratory and a non-migratory noctuid moth and used volumetric analysis to identify differences. We further compared the results to identical data from Monarch butterflies. Whereas we found differences in the size of the nodular unit of the AOTU, the LX and the protocerebral bridge (PB) between the two moths, these did not unambiguously reflect migratory behavior across all three species. We conclude that navigational strategy, at least in the case of long-distance migration in lepidopteran insects, is not easily deductible from overall neuropil anatomy. This suggests that the adaptations needed to ensure successful migratory behavior are found in the detailed wiring characteristics of the neural circuits underlying navigation-differences that are only accessible through detailed physiological and ultrastructural investigations. The presented results aid this task in two ways. First, the identified differences in neuropil volumes serve as promising initial targets for electrophysiology. Second, the new standard atlases provide an anatomical reference frame for embedding all functional data obtained from the brains of the Bogong and the Turnip moth.
Collapse
Affiliation(s)
- Liv de Vries
- Lund Vision Group, Department of Biology, Lund UniversityLund, Sweden
| | - Keram Pfeiffer
- Department of Biology, Marburg UniversityMarburg, Germany
| | - Björn Trebels
- Department of Biology, Marburg UniversityMarburg, Germany
| | - Andrea K Adden
- Lund Vision Group, Department of Biology, Lund UniversityLund, Sweden
| | - Ken Green
- New South Wales National Parks and Wildlife ServiceJindabyne, NSW, Australia
| | - Eric Warrant
- Lund Vision Group, Department of Biology, Lund UniversityLund, Sweden
| | - Stanley Heinze
- Lund Vision Group, Department of Biology, Lund UniversityLund, Sweden
| |
Collapse
|
49
|
Maximized complexity in miniaturized brains: morphology and distribution of octopaminergic, dopaminergic and serotonergic neurons in the parasitic wasp, Trichogramma evanescens. Cell Tissue Res 2017; 369:477-496. [PMID: 28597098 PMCID: PMC5579201 DOI: 10.1007/s00441-017-2642-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 05/02/2017] [Indexed: 11/13/2022]
Abstract
The parasitic wasp, Trichogramma evanescens, is an extremely small insect, with a body length as small as 0.3 mm. To facilitate this miniaturization, their brains may have evolved to contain smaller neural components and/or reduced neural complexity than larger insects. Here, we study whether the size and number of neurons are reduced in the miniaturized brain of T. evanescens, focusing on neurons that express serotonin (5HT), octopamine (OA) and dopamine (DA). We provide the first description of the distribution, projection patterns and number of 5HT-, OA- and DA-like immunoreactive cell bodies in T. evanescens and compare our observations with descriptions of much larger insects. The brains of T. evanescens contain comparable numbers of monoaminergic neurons to those of larger insects. Serotonergic neurons appear to be especially conserved; most of the clusters contain a similar number of neurons to those described in Apis mellifera and Drosophila melanogaster. This maintained complexity may have been facilitated by miniaturization of neuron size. However, many dopaminergic and some octopaminergic neuron clusters in T. evanescens contain fewer neurons than in larger insects. Modification of the complexity of these monoaminergic systems may have been necessary to maintain neuron functionality during brain miniaturization in T. evanescens. Our results reveal some of the evolutionary adaptations that may enable behavioural and cognitive complexity with respect to miniaturized brains.
Collapse
|
50
|
Rosner R, von Hadeln J, Salden T, Homberg U. Anatomy of the lobula complex in the brain of the praying mantis compared to the lobula complexes of the locust and cockroach. J Comp Neurol 2017; 525:2343-2357. [PMID: 28295329 PMCID: PMC5435961 DOI: 10.1002/cne.24208] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/08/2017] [Accepted: 03/09/2017] [Indexed: 12/30/2022]
Abstract
The praying mantis is an insect which relies on vision for capturing prey, avoiding being eaten and for spatial orientation. It is well known for its ability to use stereopsis for estimating the distance of objects. The neuronal substrate mediating visually driven behaviors, however, is not very well investigated. To provide a basis for future functional studies, we analyzed the anatomical organization of visual neuropils in the brain of the praying mantis Hierodula membranacea and provide supporting evidence from a second species, Rhombodera basalis, with particular focus on the lobula complex (LOX). Neuropils were three‐dimensionally reconstructed from synapsin‐immunostained whole mount brains. The neuropil organization and the pattern of γ‐aminobutyric acid immunostaining of the medulla and LOX were compared between the praying mantis and two related polyneopteran species, the Madeira cockroach and the desert locust. The investigated visual neuropils of the praying mantis are highly structured. Unlike in most insects the LOX of the praying mantis consists of five nested neuropils with at least one neuropil not present in the cockroach or locust. Overall, the mantis LOX is more similar to the LOX of the locust than the more closely related cockroach suggesting that the sensory ecology plays a stronger role than the phylogenetic distance of the three species in structuring this center of visual information processing.
Collapse
Affiliation(s)
- Ronny Rosner
- Institute of Neuroscience, Henry Wellcome Building for Neuroecology, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, United Kingdom
| | - Joss von Hadeln
- Department of Biology, Animal Physiology, Philipps-University, 35032, Marburg, Germany
| | - Tobias Salden
- Department of Biology, Animal Physiology, Philipps-University, 35032, Marburg, Germany
| | - Uwe Homberg
- Department of Biology, Animal Physiology, Philipps-University, 35032, Marburg, Germany
| |
Collapse
|