1
|
Baez-Jurado E, Hidalgo-Lanussa O, Guio-Vega G, Ashraf GM, Echeverria V, Aliev G, Barreto GE. Conditioned Medium of Human Adipose Mesenchymal Stem Cells Increases Wound Closure and Protects Human Astrocytes Following Scratch Assay In Vitro. Mol Neurobiol 2017; 55:5377-5392. [PMID: 28936798 DOI: 10.1007/s12035-017-0771-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/11/2017] [Indexed: 12/16/2022]
Abstract
Astrocytes perform essential functions in the preservation of neural tissue. For this reason, these cells can respond with changes in gene expression, hypertrophy, and proliferation upon a traumatic brain injury event (TBI). Different therapeutic strategies may be focused on preserving astrocyte functions and favor a non-generalized and non-sustained protective response over time post-injury. A recent strategy has been the use of the conditioned medium of human adipose mesenchymal stem cells (CM-hMSCA) as a therapeutic strategy for the treatment of various neuropathologies. However, although there is a lot of information about its effect on neuronal protection, studies on astrocytes are scarce and its specific action in glial cells is not well explored. In the present study, the effects of CM-hMSCA on human astrocytes subjected to scratch assay were assessed. Our findings indicated that CM-hMSCA improved cell viability, reduced nuclear fragmentation, and preserved mitochondrial membrane potential. These effects were accompanied by morphological changes and an increased polarity index thus reflecting the ability of astrocytes to migrate to the wound stimulated by CM-hMSCA. In conclusion, CM-hMSCA may be considered as a promising therapeutic strategy for the protection of astrocyte function in brain pathologies.
Collapse
Affiliation(s)
- Eliana Baez-Jurado
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, D.C., Colombia
| | - Oscar Hidalgo-Lanussa
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, D.C., Colombia
| | - Gina Guio-Vega
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, D.C., Colombia
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Valentina Echeverria
- Research & Development Service, Bay Pines VA Healthcare System, Bay Pines, FL, 33744, USA.,Fac. Cs de la Salud, Universidad San Sebastián, Lientur 1457, 4080871, Concepción, Chile
| | - Gjumrakch Aliev
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, Moscow Region, 142432, Russia.,GALLY International Biomedical Research Consulting LLC, San Antonio, TX, 78229, USA.,School of Health Science and Healthcare Administration, University of Atlanta, Johns Creek, GA, 30097, USA
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, D.C., Colombia. .,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile.
| |
Collapse
|
2
|
Ritter-Makinson SL, Paquet M, Bogenpohl JW, Rodin RE, Chris Yun C, Weinman EJ, Smith Y, Hall RA. Group II metabotropic glutamate receptor interactions with NHERF scaffold proteins: Implications for receptor localization in brain. Neuroscience 2017; 353:58-75. [PMID: 28392297 DOI: 10.1016/j.neuroscience.2017.03.060] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 03/29/2017] [Accepted: 03/29/2017] [Indexed: 12/13/2022]
Abstract
The group II metabotropic glutamate receptors mGluR2 and mGluR3 are key modulators of glutamatergic neurotransmission. In order to identify novel Group II metabotropic glutamate receptor (mGluR)-interacting partners, we screened the C-termini of mGluR2 and mGluR3 for interactions with an array of PDZ domains. These screens identified the Na+/H+ exchanger regulatory factors 1 and 2 (NHERF-1 & -2) as candidate interacting partners. Follow-up co-immunoprecipitation studies demonstrated that both mGluR2 and mGluR3 can associate with NHERF-1 and NHERF-2 in a cellular context. Functional studies revealed that disruption of PDZ interactions with mGluR2 enhanced receptor signaling to Akt. However, further studies of mGluR2 and mGluR3 signaling in astrocytes in which NHERF expression was reduced by gene knockout (KO) and/or siRNA knockdown techniques revealed that the observed differences in signaling between WT and mutant mGluR2 were likely not due to disruption of interactions with the NHERF proteins. Electron microscopic analyses revealed that Group II mGluRs were primarily expressed in glia and unmyelinated axons in WT, NHERF-1 and NHERF-2 KO mice, but the relative proportion of labeled axons over glial processes was higher in NHERF-2 KO mice than in controls and NHERF-1 KO mice. Interestingly, our anatomical studies also revealed that loss of either NHERF protein results in ventriculomegaly, which may be related to the high incidence of hydrocephaly that has previously been observed in NHERF-1 KO mice. Together, these studies support a role for NHERF-1 and NHERF-2 in regulating the distribution of Group II mGluRs in the murine brain, while conversely the effects of the mGluR2/3 PDZ-binding motifs on receptor signaling are likely mediated by interactions with other PDZ scaffold proteins beyond the NHERF proteins.
Collapse
Affiliation(s)
| | - Maryse Paquet
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - James W Bogenpohl
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Rachel E Rodin
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - C Chris Yun
- Department of Medicine, Division of Digestive Diseases, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Edward J Weinman
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yoland Smith
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Randy A Hall
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
3
|
Lee HJ, Kwon MH, Lee S, Hall RA, Yun CC, Choi I. Systematic family-wide analysis of sodium bicarbonate cotransporter NBCn1/SLC4A7 interactions with PDZ scaffold proteins. Physiol Rep 2014; 2:2/5/e12016. [PMID: 24844638 PMCID: PMC4098744 DOI: 10.14814/phy2.12016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
NBCn1 (SLC4A7) plays a role in transepithelial HCO3 (-) movement and intracellular pH maintenance in many tissues. In this study, we searched PDZ proteins capable of binding to NBCn1. We screened a protein array membrane, on which 96 different class I PDZ protein peptides were blotted, with the C-terminal domain of NBCn1 fused to GST. Thirteen proteins were identified in these screens: MAGI-3, NHERF-1, NHERF-2, PSD-95, chapsyn-110, ERBIN, MALS-1, densin-180, syntrophins α1, β2, γ2, MUPP1, and PDZK1. After determining these binding partners, we analyzed the database of known and predicted protein interactions to obtain an NBCn1 interaction network. The network shows NBCn1 being physically and functionally associated with a variety of membrane and cytosolic proteins via the binding partners. We then focused on syntrophin γ2 to examine the molecular and functional interaction between NBCn1 and one of the identified binding partners in the Xenopus oocyte expression system. GST/NBCn1 pulled down syntrophin γ2 and conversely GST/syntrophin γ2 pulled down NBCn1. Moreover, syntrophin γ2 increased intracellular pH recovery, from acidification, mediated by NBCn1's Na/HCO3 cotransport. Syntrophin γ2 also increased an ionic conductance produced by NBCn1 channel-like activity. Thus, syntrophin γ2 regulates NBCn1 activity. In conclusion, this study demonstrates that NBCn1 binds to many PDZ proteins, which in turn may allow the transporter to associate with other physiologically important proteins.
Collapse
Affiliation(s)
- Hye Jeong Lee
- Department of Pediatrics, Division of Hematology and Oncology, Vanderbilt University, Nashville, Tennessee, USA
| | - Min Hyung Kwon
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Soojung Lee
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Randy A Hall
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - C Chris Yun
- Department of Medicine, Division of Digestive Disease, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Inyeong Choi
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Funa K, Sasahara M. The roles of PDGF in development and during neurogenesis in the normal and diseased nervous system. J Neuroimmune Pharmacol 2013; 9:168-81. [PMID: 23771592 PMCID: PMC3955130 DOI: 10.1007/s11481-013-9479-z] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 05/23/2013] [Indexed: 12/13/2022]
Abstract
The four platelet-derived growth factor (PDGF) ligands and PDGF receptors (PDGFRs), α and β (PDGFRA, PDGFRB), are essential proteins that are expressed during embryonic and mature nervous systems, i.e., in neural progenitors, neurons, astrocytes, oligodendrocytes, and vascular cells. PDGF exerts essential roles from the gastrulation period to adult neuronal maintenance by contributing to the regulation of development of preplacodal progenitors, placodal ectoderm, and neural crest cells to adult neural progenitors, in coordinating with other factors. In adulthood, PDGF plays critical roles for maintenance of many specific cell types in the nervous system together with vascular cells through controlling the blood brain barrier homeostasis. At injury or various stresses, PDGF modulates neuronal excitability through adjusting various ion channels, and affecting synaptic plasticity and function. Furthermore, PDGF stimulates survival signals, majorly PI3-K/Akt pathway but also other ways, rescuing cells from apoptosis. Studies imply an involvement of PDGF in dendrite spine morphology, being critical for memory in the developing brain. Recent studies suggest association of PDGF genes with neuropsychiatric disorders. In this review, we will describe the roles of PDGF in the nervous system, from the discovery to recent findings, in order to understand the broad spectrum of PDGF in the nervous system. Recent development of pharmacological and replacement therapies targeting the PDGF system is discussed.
Collapse
Affiliation(s)
- Keiko Funa
- Sahlgrenska Cancer Center, University of Gothenburg, Box 425, SE 405 30, Gothenburg, Sweden,
| | | |
Collapse
|
5
|
Shioda N, Moriguchi S, Oya T, Ishii Y, Shen J, Matsushima T, Nishijo H, Sasahara M, Fukunaga K. Aberrant hippocampal spine morphology and impaired memory formation in neuronal platelet-derived growth factor beta-receptor lacking mice. Hippocampus 2011; 22:1371-8. [DOI: 10.1002/hipo.20973] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2011] [Indexed: 02/03/2023]
|
6
|
Majumdar D, Bevensee MO. Na-coupled bicarbonate transporters of the solute carrier 4 family in the nervous system: function, localization, and relevance to neurologic function. Neuroscience 2010; 171:951-72. [PMID: 20884330 DOI: 10.1016/j.neuroscience.2010.09.037] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 09/03/2010] [Accepted: 09/14/2010] [Indexed: 12/26/2022]
Abstract
Many cellular processes including neuronal activity are sensitive to changes in intracellular and/or extracellular pH-both of which are regulated by acid-base transporter activity. HCO(3)(-)-dependent transporters are particularly potent regulators of intracellular pH in neurons and astrocytes, and also contribute to the composition of the cerebrospinal fluid (CSF). The molecular physiology of HCO(3)(-) transporters has advanced considerably over the past ∼14 years as investigators have cloned and characterized the function and localization of many Na-Coupled Bicarbonate Transporters of the solute carrier 4 (Slc4) family (NCBTs). In this review, we provide an updated overview of the function and localization of NCBTs in the nervous system. Multiple NCBTs are expressed in neurons and astrocytes in various brain regions, as well as in epithelial cells of the choroid plexus. Characteristics of human patients with SLC4 gene mutations/deletions and results from recent studies on mice with Slc4 gene disruptions highlight the functional importance of NCBTs in neuronal activity, somatosensory function, and CSF production. Furthermore, energy-deficient states (e.g., hypoxia and ischemia) lead to altered expression and activity of NCBTs. Thus, recent studies expand our understanding of the role of NCBTs in regulating the pH and ionic composition of the nervous system that can modulate neuronal activity.
Collapse
Affiliation(s)
- D Majumdar
- Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | |
Collapse
|
7
|
The scaffold protein NHERF2 determines the coupling of P2Y1 nucleotide and mGluR5 glutamate receptor to different ion channels in neurons. J Neurosci 2010; 30:11068-72. [PMID: 20720114 DOI: 10.1523/jneurosci.2597-10.2010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Expressed metabotropic group 1 glutamate mGluR5 receptors and nucleotide P2Y1 receptors (P2Y1Rs) show promiscuous ion channel coupling in sympathetic neurons: their stimulation inhibits M-type [Kv7, K(M)] potassium currents and N-type (Ca(V)2.2) calcium currents (Kammermeier and Ikeda, 1999; Brown et al., 2000). These effects are mediated by G(q) and G(i/o) G-proteins, respectively. Via their C-terminal tetrapeptide, these receptors also bind to the PDZ domain of the scaffold protein NHERF2, which enhances their coupling to G(q)-mediated Ca(2+) signaling (Fam et al., 2005; Paquet et al., 2006b). We investigated whether NHERF2 could modulate coupling to neuronal ion channels. We find that coexpression of NHERF2 in sympathetic neurons (by intranuclear cDNA injections) does not affect the extent of M-type potassium current inhibition produced by either receptor but strongly reduced Ca(V)2.2 inhibition by both P2Y1R and mGluR5 activation. NHERF2 expression had no significant effect on Ca(V)2.2 inhibition by norepinephrine (via alpha(2)-adrenoceptors, which do not bind NHERF2), nor on Ca(V)2.2 inhibition produced by an expressed P2Y1R lacking the NHERF2-binding DTSL motif. Thus, NHERF2 selectively restricts downstream coupling of mGluR5 and P2Y1Rs in neurons to G(q)-mediated responses such as M-current inhibition. Differential distribution of NHERF2 in neurons may therefore determine coupling of mGluR5 receptors and P2Y1 receptors to calcium channels.
Collapse
|
8
|
Volpicelli-Daley LA, Lucast L, Gong LW, Liu L, Sasaki J, Sasaki T, Abrams CS, Kanaho Y, De Camilli P. Phosphatidylinositol-4-phosphate 5-kinases and phosphatidylinositol 4,5-bisphosphate synthesis in the brain. J Biol Chem 2010; 285:28708-14. [PMID: 20622009 PMCID: PMC2937898 DOI: 10.1074/jbc.m110.132191] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The predominant pathway for phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P(2)) synthesis is thought to be phosphorylation of phosphatidylinositol 4-phosphate at the 5 position of the inositol ring by type I phosphatidylinositol phosphate kinases (PIPK): PIPKIalpha, PIPKIbeta, and PIPKIgamma. PIPKIgamma has been shown to play a role in PI(4,5)P(2) synthesis in brain, and the absence of PIPKIgamma is incompatible with postnatal life. Conversely, mice lacking PIPKIalpha or PIPKIbeta (isoforms are referred to according to the nomenclature of human PIPKIs) live to adulthood, although functional effects in specific cell types are observed. To determine the contribution of PIPKIalpha and PIPKIbeta to PI(4,5)P(2) synthesis in brain, we investigated the impact of disrupting multiple PIPKI genes. Our results show that a single allele of PIPKIgamma, in the absence of both PIPKIalpha and PIPKIbeta, can support life to adulthood. In addition, PIPKIalpha alone, but not PIPKIbeta alone, can support prenatal development, indicating an essential and partially overlapping function of PIPKIalpha and PIPKIgamma during embryogenesis. This is consistent with early embryonic expression of PIPKIalpha and PIPKIgamma but not of PIPKIbeta. PIPKIbeta expression in brain correlates with neuronal differentiation. The absence of PIPKIbeta does not impact embryonic development in the PIPKIgamma knock-out (KO) background but worsens the early postnatal phenotype of the PIPKIgamma KO (death occurs within minutes rather than hours). Analysis of PIP(2) in brain reveals that only the absence of PIPKIgamma significantly impacts its levels. Collectively, our results provide new evidence for the dominant importance of PIPKIgamma in mammals and imply that PIPKIalpha and PIPKIbeta function in the generation of specific PI(4,5)P(2) pools that, at least in brain, do not have a major impact on overall PI(4,5)P(2) levels.
Collapse
Affiliation(s)
- Laura A Volpicelli-Daley
- Department of Cell Biology, Program in Cellular Neuroscience, Neurodegeneration and Repair, the Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
GLAST stability and activity are enhanced by interaction with the PDZ scaffold NHERF-2. Neurosci Lett 2010; 487:3-7. [PMID: 20430067 DOI: 10.1016/j.neulet.2010.04.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 04/17/2010] [Accepted: 04/19/2010] [Indexed: 01/18/2023]
Abstract
The astrocytic glutamate transporter GLAST (also known as EAAT1) is a key regulator of extracellular glutamate levels in many regions of vertebrate brains. To identify novel interacting partners that might regulate the localization and function of GLAST in astrocytes, we screened the transporter's C-terminus (GLAST-CT) against a proteomic array of 96 different PDZ domains. The GLAST-CT robustly and specifically interacted with PDZ domains from two related scaffolding proteins, the Na(+)/H(+) exchanger regulatory factors 1 and 2 (NHERF-1 and NHERF-2). Studies on cultured rat cortical astrocytes revealed that these cells are highly enriched in NHERF-2 relative to NHERF-1. Endogenous GLAST and NHERF-2 from cultured astrocytes were found to robustly co-immunoprecipitate, and further co-immunoprecipitation studies on mutant versions of GLAST expressed in transfected cells revealed the GLAST/NHERF-2 interaction to be dependent on the last amino acid of the GLAST-CT. Knockdown of endogenous NHERF-2 in astrocytes via siRNA treatment resulted in a significant reduction in GLAST activity, which corresponded to significantly reduced total expression of GLAST protein and reduced half-life of GLAST, as assessed in pulse-chase metabolic labeling studies. These findings reveal that NHERF-2 can interact with GLAST in astrocytes to enhance GLAST stability and activity.
Collapse
|
10
|
Kruger WA, Yun CC, Monteith GR, Poronnik P. Muscarinic-induced recruitment of plasma membrane Ca2+-ATPase involves PSD-95/Dlg/Zo-1-mediated interactions. J Biol Chem 2008; 284:1820-30. [PMID: 19017653 DOI: 10.1074/jbc.m804590200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Efflux of cytosolic Ca2+ mediated by plasma membrane Ca2+-ATPases (PMCA) plays a key role in fine tuning the magnitude and duration of Ca2+ signaling following activation of G-protein-coupled receptors. However, the molecular mechanisms that underpin the trafficking of PMCA to the membrane during Ca2+ signaling remain largely unexplored in native cell models. One potential mechanism for the recruitment of proteins to the plasma membrane involves PDZ interactions. In this context, we investigated the role of PMCA interactions with the Na+/H+ exchanger regulatory factor 2 (NHERF-2) during muscarinic-induced Ca2+ mobilization in the HT-29 epithelial cell line. GST pull-downs in HT-29 cell lysates showed that the PDZ2 module of NHERF-2 bound to the PDZ binding motif on the C terminus of PMCA. Co-immunoprecipitations confirmed that PMCA1b and NHERF-2 associated under normal conditions in HT-29 cells. Cell surface biotinylations revealed significant increases in membrane-associated NHERF-2 and PMCA within 60 s following muscarinic activation, accompanied by increased association of the two proteins as seen by confocal microscopy. The recruitment of NHERF-2 to the membrane preceded that of PMCA, suggesting that NHERF-2 was involved in nucleating an efflux complex at the membrane. The muscarinic-mediated translocation of PMCA was abolished when NHERF-2 was silenced, and the rate of relative Ca2+ efflux was also reduced. These experiments also uncovered a NHERF-2-independent PMCA retrieval mechanism. Our findings describe rapid agonist-induced translocation of PMCA in a native cell model and suggest that NHERF-2 plays a key role in scaffolding and maintaining PMCA at the cell membrane.
Collapse
Affiliation(s)
- Wade A Kruger
- School of Biomedical Sciences and School of Pharmacy, The University of Queensland, Brisbane QLD 4072, Australia
| | | | | | | |
Collapse
|
11
|
LEE AVEN, RAYFIELD ANDREW, HRYCIW DEANNEH, MA THEINGIAUNG, WANG DONGSHENG, POW DAVID, BROER STEFAN, YUN CHRIS, PORONNIK PHILIP. Na+-H+ exchanger regulatory factor 1 is a PDZ scaffold for the astroglial glutamate transporter GLAST. Glia 2007; 55:119-29. [PMID: 17048262 PMCID: PMC2773615 DOI: 10.1002/glia.20439] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Glutamate is a key neurotransmitter and its levels in the synaptic cleft are tightly regulated by reuptake mechanisms that primarily involve transporters in astrocytes. This requires that the glutamate transporters be spatially constrained to effect maximum glutamate transport. GLAST (EAAT1) is the predominant astroglial transporter and contains a class I PDZ-binding consensus (ETKM) in its C-terminus. The epithelial Na(+)/H(+) exchanger regulatory factors NHERF1 and NHERF2 are PDZ proteins that contain two tandem PDZ domains and a C-terminal domain that binds members of the ERM (ezrin-radixin-moesin) family of membrane-cytoskeletal adaptors. NHERF proteins have been extensively characterized in renal epithelia and their expression in brain has recently been reported; however, their function in the brain remains unknown. The aims of the current study were to (1) determine the distribution of NHERF1/2 in the rodent brain and (2) investigate whether GLAST was a physiological ligand for NHERF1/2. Immunohistochemistry revealed that NHERF1 expression was widespread in rat brain (abundant in cerebellum, cerebral cortex, hippocampus, and thalamus) and primarily restricted to astrocytes whereas NHERF2 expression was primarily restricted to endothelial cells of blood vessels and capillaries. Importantly, NHERF1 distribution closely matched that of GLAST and confocal imaging demonstrated co-localization of the two proteins. Co-immunoprecipitation demonstrated that GLAST, NHERF1, and ezrin associate in vivo. In vitro binding assays showed that GLAST bound directly to the PDZ1 domain of NHERF1 via the C-terminal ETKM motif of GLAST. These findings implicate the GLAST-NHERF1 complex in the regulation of glutamate homeostasis in astrocytes.
Collapse
Affiliation(s)
- AVEN LEE
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - ANDREW RAYFIELD
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - DEANNE H. HRYCIW
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - THEINGI AUNG MA
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - DONGSHENG WANG
- Department of Medicine, Emory University, Atlanta, Georgia 30322
| | - DAVID POW
- School of Biomedical Sciences and HMRI, University of Newcastle, New South Wales 2308, Australia
| | - STEFAN BROER
- Division of Biochemistry and Molecular Biology, Faculty of Science, Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - CHRIS YUN
- Department of Medicine, Emory University, Atlanta, Georgia 30322
| | - PHILIP PORONNIK
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
- Correspondence to: Philip Poronnik, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
12
|
Paquet M, Asay MJ, Fam SR, Inuzuka H, Castleberry AM, Oller H, Smith Y, Yun CC, Traynelis SF, Hall RA. The PDZ scaffold NHERF-2 interacts with mGluR5 and regulates receptor activity. J Biol Chem 2006; 281:29949-61. [PMID: 16891310 PMCID: PMC4670778 DOI: 10.1074/jbc.m602262200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The two members of the group I metabotropic glutamate receptor family, mGluR1 and mGluR5, both couple to G(q) to mediate rises in intracellular calcium. The alternatively spliced C termini (CT) of mGluRs1 and 5are known to be critical for regulating receptor activity and to terminate in motifs suggestive of potential interactions with PDZ domains. We therefore screened the CTs of both mGluR1a and mGluR5 against a PDZ domain proteomic array. Out of 96 PDZ domains examined, the domain that bound most strongly to mGluR5-CT was the second PDZ domain of the Na(+)/H(+) exchanger regulatory factor 2 (NHERF-2). This interaction was confirmed by reverse overlay, and a single point mutation to the mGluR5-CT was found to completely disrupt the interaction. Full-length mGluR5 robustly associated with full-length NHERF-2 in cells, as assessed by co-immunoprecipitation and confocal microscopy experiments. In contrast, mGluR1a was found to bind NHERF-2 in vitro with a weaker affinity than mGluR5, and furthermore mGluR1a did not detectably associate with NHERF-2 in a cellular context. Immunohistochemical experiments revealed that NHERF-2 and mGluR5 exhibit overlapping patterns of expression in mouse brain, being found most abundantly in astrocytic processes and postsynaptic neuronal elements. In functional experiments, the interaction of NHERF-2 with mGluR5 in cells was found to prolong mGluR5-mediated calcium mobilization and to also potentiate mGluR5-mediated cell death, whereas coexpression of mGluR1a with NHERF-2 had no evident effects on mGluR1a functional activity. These observations reveal that NHERF-2 can selectively modulate mGluR5 signaling, which may contribute to cell-specific regulation of mGluR5 activity.
Collapse
Affiliation(s)
- Maryse Paquet
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Matthew J. Asay
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Sami R. Fam
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Hiroyuki Inuzuka
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Amanda M. Castleberry
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Heide Oller
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Yoland Smith
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia 30322
- Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, Georgia 30322
| | - C. Chris Yun
- Division of Digestive Disease, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Stephen F. Traynelis
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Randy A. Hall
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322
- To whom correspondence should be addressed: Dept. of Pharmacology, Emory University School of Medicine, 5113 Rollins Research Center, 1510 Clifton Rd., Atlanta, GA 30322. Tel.: 404-727-3699; Fax: 404-727-0365;
| |
Collapse
|