1
|
Ibrahim BA, Shinagawa Y, Douglas A, Xiao G, Asilador AR, Llano DA. Microprism-based two-photon imaging of the mouse inferior colliculus reveals novel organizational principles of the auditory midbrain. eLife 2025; 12:RP93063. [PMID: 40085494 PMCID: PMC11908782 DOI: 10.7554/elife.93063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025] Open
Abstract
To navigate real-world listening conditions, the auditory system relies on the integration of multiple sources of information. However, to avoid inappropriate cross-talk between inputs, highly connected neural systems need to strike a balance between integration and segregation. Here, we develop a novel approach to examine how repeated neurochemical modules in the mouse inferior colliculus lateral cortex (LC) allow controlled integration of its multimodal inputs. The LC had been impossible to study via imaging because it is buried in a sulcus. Therefore, we coupled two-photon microscopy with the use of a microprism to reveal the first-ever sagittal views of the LC to examine neuronal responses with respect to its neurochemical motifs under anesthetized and awake conditions. This approach revealed marked differences in the acoustic response properties of LC and neighboring non-lemniscal portions of the inferior colliculus. In addition, we observed that the module and matrix cellular motifs of the LC displayed distinct somatosensory and auditory responses. Specifically, neurons in modules demonstrated primarily offset responses to acoustic stimuli with enhancement in responses to bimodal stimuli, whereas matrix neurons showed onset response to acoustic stimuli and suppressed responses to bimodal stimulation. Thus, this new approach revealed that the repeated structural motifs of the LC permit functional integration of multimodal inputs while retaining distinct response properties.
Collapse
Affiliation(s)
- Baher A Ibrahim
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana ChampaignUrbanaUnited States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana ChampaignUrbanaUnited States
| | - Yoshitaka Shinagawa
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana ChampaignUrbanaUnited States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana ChampaignUrbanaUnited States
| | - Austin Douglas
- School of Molecular & Cell Biology, University of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Gang Xiao
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana ChampaignUrbanaUnited States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana ChampaignUrbanaUnited States
- Neuroscience Program, University of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Alexander R Asilador
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana ChampaignUrbanaUnited States
- School of Molecular & Cell Biology, University of Illinois at Urbana-ChampaignUrbanaUnited States
- Neuroscience Program, University of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Daniel A Llano
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana ChampaignUrbanaUnited States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana ChampaignUrbanaUnited States
- School of Molecular & Cell Biology, University of Illinois at Urbana-ChampaignUrbanaUnited States
- Neuroscience Program, University of Illinois at Urbana-ChampaignUrbanaUnited States
- Carle Illinois College of Medicine, University of Illinois at Urbana-ChampaignUrbanaUnited States
| |
Collapse
|
2
|
Huey EL, Turecek J, Delisle MM, Mazor O, Romero GE, Dua M, Sarafis ZK, Hobble A, Booth KT, Goodrich LV, Corey DP, Ginty DD. The auditory midbrain mediates tactile vibration sensing. Cell 2025; 188:104-120.e18. [PMID: 39701100 PMCID: PMC11724753 DOI: 10.1016/j.cell.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 10/03/2024] [Accepted: 11/12/2024] [Indexed: 12/21/2024]
Abstract
Vibrations are ubiquitous in nature, shaping behavior across the animal kingdom. For mammals, mechanical vibrations acting on the body are detected by mechanoreceptors of the skin and deep tissues and processed by the somatosensory system, while sound waves traveling through air are captured by the cochlea and encoded in the auditory system. Here, we report that mechanical vibrations detected by the body's Pacinian corpuscle neurons, which are distinguished by their ability to entrain to high-frequency (40-1,000 Hz) environmental vibrations, are prominently encoded by neurons in the lateral cortex of the inferior colliculus (LCIC) of the midbrain. Remarkably, most LCIC neurons receive convergent Pacinian and auditory input and respond more strongly to coincident tactile-auditory stimulation than to either modality alone. Moreover, the LCIC is required for behavioral responses to high-frequency mechanical vibrations. Thus, environmental vibrations captured by Pacinian corpuscles are encoded in the auditory midbrain to mediate behavior.
Collapse
Affiliation(s)
- Erica L Huey
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Josef Turecek
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Michelle M Delisle
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Ofer Mazor
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Gabriel E Romero
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Malvika Dua
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Zoe K Sarafis
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Alexis Hobble
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Kevin T Booth
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Lisa V Goodrich
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - David P Corey
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - David D Ginty
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Boffi JC, Bathellier B, Asari H, Prevedel R. Noisy neuronal populations effectively encode sound localization in the dorsal inferior colliculus of awake mice. eLife 2024; 13:RP97598. [PMID: 39585736 PMCID: PMC11588337 DOI: 10.7554/elife.97598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024] Open
Abstract
Sound location coding has been extensively studied at the central nucleus of the mammalian inferior colliculus (CNIC), supporting a population code. However, this population code has not been extensively characterized on the single-trial level with simultaneous recordings or at other anatomical regions like the dorsal cortex of inferior colliculus (DCIC), which is relevant for learning-induced experience dependent plasticity. To address these knowledge gaps, here we made in two complementary ways large-scale recordings of DCIC populations from awake mice in response to sounds delivered from 13 different frontal horizontal locations (azimuths): volumetric two-photon calcium imaging with ~700 cells simultaneously recorded at a relatively low temporal resolution, and high-density single-unit extracellular recordings with ~20 cells simultaneously recorded at a high temporal resolution. Independent of the method, the recorded DCIC population responses revealed substantial trial-to-trial variation (neuronal noise) which was significantly correlated across pairs of neurons (noise correlations) in the passively listening condition. Nevertheless, decoding analysis supported that these noisy response patterns encode sound location on the single-trial basis, reaching errors that match the discrimination ability of mice. The detected noise correlations contributed to minimize the error of the DCIC population code of sound azimuth. Altogether these findings point out that DCIC can encode sound location in a similar format to what has been proposed for CNIC, opening exciting questions about how noise correlations could shape this code in the context of cortico-collicular input and experience-dependent plasticity.
Collapse
Affiliation(s)
- Juan Carlos Boffi
- Cell Biology and Biophysics Unit, European Molecular Biology LaboratoryHeidelbergGermany
- Epigenetics and Neurobiology Unit, European Molecular Biology LaboratoryMonterotondoItaly
| | - Brice Bathellier
- Université Paris Cité, Institut Pasteur, AP-HP, Inserm, Fondation Pour l'Audition, Institut de l’Audition, IHU reConnectParisFrance
| | - Hiroki Asari
- Epigenetics and Neurobiology Unit, European Molecular Biology LaboratoryMonterotondoItaly
| | - Robert Prevedel
- Cell Biology and Biophysics Unit, European Molecular Biology LaboratoryHeidelbergGermany
- Epigenetics and Neurobiology Unit, European Molecular Biology LaboratoryMonterotondoItaly
- Developmental Biology Unit, European Molecular Biology LaboratoryHeidelbergGermany
- Molecular Medicine Partnership Unit, European Molecular Biology LaboratoryHeidelbergGermany
- Interdisciplinary Center for Neurosciences, Heidelberg UniversityHeidelbergGermany
| |
Collapse
|
4
|
Huey EL, Turecek J, Delisle MM, Mazor O, Romero GE, Dua M, Sarafis ZK, Hobble A, Booth KT, Goodrich LV, Corey DP, Ginty DD. The auditory midbrain mediates tactile vibration sensing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.584077. [PMID: 38496510 PMCID: PMC10942453 DOI: 10.1101/2024.03.08.584077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Vibrations are ubiquitous in nature, shaping behavior across the animal kingdom. For mammals, mechanical vibrations acting on the body are detected by mechanoreceptors of the skin and deep tissues and processed by the somatosensory system, while sound waves traveling through air are captured by the cochlea and encoded in the auditory system. Here, we report that mechanical vibrations detected by the body's Pacinian corpuscle neurons, which are unique in their ability to entrain to high frequency (40-1000 Hz) environmental vibrations, are prominently encoded by neurons in the lateral cortex of the inferior colliculus (LCIC) of the midbrain. Remarkably, most LCIC neurons receive convergent Pacinian and auditory input and respond more strongly to coincident tactile-auditory stimulation than to either modality alone. Moreover, the LCIC is required for behavioral responses to high frequency mechanical vibrations. Thus, environmental vibrations captured by Pacinian corpuscles are encoded in the auditory midbrain to mediate behavior.
Collapse
|
5
|
Liu M, Wang Y, Jiang L, Zhang X, Wang C, Zhang T. Research progress of the inferior colliculus: from Neuron, neural circuit to auditory disease. Brain Res 2024; 1828:148775. [PMID: 38244755 DOI: 10.1016/j.brainres.2024.148775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
The auditory midbrain, also known as the inferior colliculus (IC), serves as a crucial hub in the auditory pathway. Comprising diverse cell types, the IC plays a pivotal role in various auditory functions, including sound localization, auditory plasticity, sound detection, and sound-induced behaviors. Notably, the IC is implicated in several auditory central disorders, such as tinnitus, age-related hearing loss, autism and Fragile X syndrome. Accurate classification of IC neurons is vital for comprehending both normal and dysfunctional aspects of IC function. Various parameters, including dendritic morphology, neurotransmitter synthesis, potassium currents, biomarkers, and axonal targets, have been employed to identify distinct neuron types within the IC. However, the challenge persists in effectively classifying IC neurons into functional categories due to the limited clustering capabilities of most parameters. Recent studies utilizing advanced neuroscience technologies have begun to shed light on biomarker-based approaches in the IC, providing insights into specific cellular properties and offering a potential avenue for understanding IC functions. This review focuses on recent advancements in IC research, spanning from neurons and neural circuits to aspects related to auditory diseases.
Collapse
Affiliation(s)
- Mengting Liu
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Yuyao Wang
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Li Jiang
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Xiaopeng Zhang
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Chunrui Wang
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Tianhong Zhang
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China.
| |
Collapse
|
6
|
Michiels S. Somatosensory Tinnitus: Recent Developments in Diagnosis and Treatment. J Assoc Res Otolaryngol 2023; 24:465-472. [PMID: 37794291 PMCID: PMC10695899 DOI: 10.1007/s10162-023-00912-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/11/2023] [Indexed: 10/06/2023] Open
Abstract
Somatosensory tinnitus (ST) is a type of tinnitus where changes in somatosensory input from the head-neck area are one of the influencing factors of a patient's tinnitus. As there are often several influencing factors, identifying a clear somatosensory influence on an individual patient's tinnitus is often a challenge. Therefore, a decision tree using four clinical criteria has been proposed that can help diagnose ST with an accuracy of 82.2%, a sensitivity of 82.5%, and a specificity of 79%. Once correctly diagnosed, patients can be successfully treated using a musculoskeletal physical therapy treatment. This type of treatment can either be directed at cervical spine dysfunctions, temporomandibular disorders, or both and consists of a combination of counseling, exercises, and manual techniques to restore normal function of the cervical spine and temporomandibular area. Other techniques have been suggested but need further investigation in larger RCTs. In most cases, ST treatment shows a decrease in tinnitus severity or loudness, but in rare cases, total remission of the tinnitus is achieved.
Collapse
Affiliation(s)
- Sarah Michiels
- REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Hasselt, BE, Belgium.
- Department of Otorhinolaryngology and Head and Neck Surgery, Antwerp University Hospital, Antwerp, Belgium.
| |
Collapse
|
7
|
Quass GL, Rogalla MM, Ford AN, Apostolides PF. Mixed representations of sound and action in the auditory midbrain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.19.558449. [PMID: 37786676 PMCID: PMC10541616 DOI: 10.1101/2023.09.19.558449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Linking sensory input and its consequences is a fundamental brain operation. Accordingly, neural activity of neo-cortical and limbic systems often reflects dynamic combinations of sensory and behaviorally relevant variables, and these "mixed representations" are suggested to be important for perception, learning, and plasticity. However, the extent to which such integrative computations might occur in brain regions upstream of the forebrain is less clear. Here, we conduct cellular-resolution 2-photon Ca2+ imaging in the superficial "shell" layers of the inferior colliculus (IC), as head-fixed mice of either sex perform a reward-based psychometric auditory task. We find that the activity of individual shell IC neurons jointly reflects auditory cues and mice's actions, such that trajectories of neural population activity diverge depending on mice's behavioral choice. Consequently, simple classifier models trained on shell IC neuron activity can predict trial-by-trial outcomes, even when training data are restricted to neural activity occurring prior to mice's instrumental actions. Thus in behaving animals, auditory midbrain neurons transmit a population code that reflects a joint representation of sound and action.
Collapse
Affiliation(s)
- GL Quass
- Kresge Hearing Research Institute, Department of Otolaryngology – Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - MM Rogalla
- Kresge Hearing Research Institute, Department of Otolaryngology – Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - AN Ford
- Kresge Hearing Research Institute, Department of Otolaryngology – Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - PF Apostolides
- Kresge Hearing Research Institute, Department of Otolaryngology – Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
8
|
Tureček R, Melichar A, Králíková M, Hrušková B. The role of GABA B receptors in the subcortical pathways of the mammalian auditory system. Front Endocrinol (Lausanne) 2023; 14:1195038. [PMID: 37635966 PMCID: PMC10456889 DOI: 10.3389/fendo.2023.1195038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
GABAB receptors are G-protein coupled receptors for the inhibitory neurotransmitter GABA. Functional GABAB receptors are formed as heteromers of GABAB1 and GABAB2 subunits, which further associate with various regulatory and signaling proteins to provide receptor complexes with distinct pharmacological and physiological properties. GABAB receptors are widely distributed in nervous tissue, where they are involved in a number of processes and in turn are subject to a number of regulatory mechanisms. In this review, we summarize current knowledge of the cellular distribution and function of the receptors in the inner ear and auditory pathway of the mammalian brainstem and midbrain. The findings suggest that in these regions, GABAB receptors are involved in processes essential for proper auditory function, such as cochlear amplifier modulation, regulation of spontaneous activity, binaural and temporal information processing, and predictive coding. Since impaired GABAergic inhibition has been found to be associated with various forms of hearing loss, GABAB dysfunction could also play a role in some pathologies of the auditory system.
Collapse
Affiliation(s)
- Rostislav Tureček
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Adolf Melichar
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czechia
- Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Michaela Králíková
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Bohdana Hrušková
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czechia
| |
Collapse
|
9
|
Ryugo DK, Milinkeviciute G. Differential projections from the cochlear nucleus to the inferior colliculus in the mouse. Front Neural Circuits 2023; 17:1229746. [PMID: 37554670 PMCID: PMC10405501 DOI: 10.3389/fncir.2023.1229746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/26/2023] [Indexed: 08/10/2023] Open
Abstract
The cochlear nucleus (CN) is often regarded as the gateway to the central auditory system because it initiates all ascending pathways. The CN consists of dorsal and ventral divisions (DCN and VCN, respectively), and whereas the DCN functions in the analysis of spectral cues, circuitry in VCN is part of the pathway focused on processing binaural information necessary for sound localization in horizontal plane. Both structures project to the inferior colliculus (IC), which serves as a hub for the auditory system because pathways ascending to the forebrain and descending from the cerebral cortex converge there to integrate auditory, motor, and other sensory information. DCN and VCN terminations in the IC are thought to overlap but given the differences in VCN and DCN architecture, neuronal properties, and functions in behavior, we aimed to investigate the pattern of CN connections in the IC in more detail. This study used electrophysiological recordings to establish the frequency sensitivity at the site of the anterograde dye injection for the VCN and DCN of the CBA/CaH mouse. We examined their contralateral projections that terminate in the IC. The VCN projections form a topographic sheet in the central nucleus (CNIC). The DCN projections form a tripartite set of laminar sheets; the lamina in the CNIC extends into the dorsal cortex (DC), whereas the sheets to the lateral cortex (LC) and ventrolateral cortex (VLC) are obliquely angled away. These fields in the IC are topographic with low frequencies situated dorsally and progressively higher frequencies lying more ventrally and/or laterally; the laminae nestle into the underlying higher frequency fields. The DCN projections are complementary to the somatosensory modules of layer II of the LC but both auditory and spinal trigeminal terminations converge in the VLC. While there remains much to be learned about these circuits, these new data on auditory circuits can be considered in the context of multimodal networks that facilitate auditory stream segregation, signal processing, and species survival.
Collapse
Affiliation(s)
- David K. Ryugo
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- School of Biomedical Sciences, University of New South Wales, Kensington, NSW, Australia
- Department of Otolaryngology, Head and Neck and Skull Base Surgery, St. Vincent’s Hospital, Darlinghurst, NSW, Australia
| | - Giedre Milinkeviciute
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- School of Biomedical Sciences, University of New South Wales, Kensington, NSW, Australia
| |
Collapse
|
10
|
Brunelle DL, Llano DA. Role of auditory-somatosensory corticothalamic circuit integration in analgesia. Cell Calcium 2023; 111:102717. [PMID: 36931195 PMCID: PMC10755628 DOI: 10.1016/j.ceca.2023.102717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023]
Abstract
Our sensory environment is permeated by a diverse array of auditory and somatosensory stimuli. The pairing of acoustic signals with concurrent or forthcoming tactile cues are abundant in everyday life and various survival contexts across species, thus deeming the ability to integrate sensory inputs arising from the combination of these stimuli as crucial. The corticothalamic system plays a critical role in orchestrating the construction, integration and distribution of the information extracted from these sensory modalities. In this mini-review, we provide a circuit-level description of the auditory corticothalamic pathway in conjunction with adjacent corticothalamic somatosensory projections. Although the extent of the functional interactions shared by these pathways is not entirely elucidated, activation of each of these systems appears to modulate sensory perception in the complementary domain. Several specific issues are reviewed. Under certain environmental noise conditions, the spectral information of a sound could induce modulations in nociception and even induce analgesia. We begin by discussing recent findings by Zhou et al. (2022) implicating the corticothalamic system in mediating sound-induced analgesia. Next, we describe relevant components of the corticothalamic pathway's functional organization. Additionally, we describe an emerging body of literature pointing to intrathalamic circuitry being optimal for controlling and selecting sensory signals across modalities, with the thalamic reticular nucleus being a candidate mechanism for directing cross-modal interactions. Finally, Ca2+ bursting in thalamic neurons evoked by the thalamic reticular nucleus is explored.
Collapse
Affiliation(s)
- Dimitri L Brunelle
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Daniel A Llano
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America; Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America.
| |
Collapse
|
11
|
Yang L, Li Y, Pang X, Li D, Wu Y, Chen X, Peng B. Anterior Cervical Decompression and Fusion Surgery for Cervical Spondylosis with Concomitant Tinnitus: A Multicenter Prospective Cohort Study. Orthop Surg 2023; 15:133-140. [PMID: 36394075 PMCID: PMC9837213 DOI: 10.1111/os.13578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Cervical spondylosis is often accompanied by tinnitus. Up to now, there is a lack of large samples and prospective studies to investigate the effect of anterior cervical decompression and fusion (ACDF) on tinnitus associate with cervical spondylosis. To this end, we performed a prospective cohort study to assess the effectiveness of ACDF on the relief of tinnitus. METHODS This was a multicenter, prospective, cohort clinical study. Between August 2017 and August 2018, 174 patients with cervical spondylosis accompanied by tinnitus were enrolled, with a follow-up of 12 months. Among the 174 patients, 142 received anterior cervical surgery (surgery group) and 32 received conservative treatment (conservative group). The primary end point was the mean change in scores on the tinnitus functional index (TFI). The secondary end points included tinnitus loudness, modified Japanese orthopaedic association scores (mJOA) for spinal cord function, and visual analogue scale (VAS) for neck pain. All the above indexes were measured before treatments and at 1, 3, 6, and 12 months after treatments. One-way analysis of variance and paired samples t-test was adopted for statistical analysis. RESULTS The TFI score was reduced immediately after cervical decompression surgery (from 54.7 ± 15.6 to 32.3 ± 12.5, P < 0.001) and this was sustained at 12 months (P < 0.001). The TFI score of the conservative group also decreased (from 53.9 ± 16.8 to 45.2 ± 13.6, P < 0.001), but the effect was not maintained at 12 months (P = 0.069). There was a significant improvement in tinnitus loudness (from 5.2 ± 1.6 to 2.6 ± 1.9, P < 0.001), mJOA (from 12.0 ± 1.6 to 14.2 ± 1.6, P < 0.001), and VAS for neck pain (from 58.5 ± 9.6 to 22.0 ± 16.4, P < 0.001) in the surgical group. Improvements in the surgical group were statistically significantly greater than that in the conservative group (P < 0.001). CONCLUSION This study indicates that anterior cervical surgery can relieve tinnitus in patients with cervical spondylosis and that tinnitus is an accompanying manifestation of cervical spondylosis.
Collapse
Affiliation(s)
- Liang Yang
- Department of OrthopaedicsFeatured Medical Center of Chinese People's Armed Police ForcesTianjingChina
- Department of OrthopaedicsThe Third Medical Center of Chinese PLA General HospitalBeijingChina
| | - Yongchao Li
- Department of OrthopaedicsThe Third Medical Center of Chinese PLA General HospitalBeijingChina
| | - Xiaodong Pang
- Department of OrthopaedicsThe Third Medical Center of Chinese PLA General HospitalBeijingChina
| | - Duanming Li
- Department of OrthopaedicsThe Third Medical Center of Chinese PLA General HospitalBeijingChina
| | - Ye Wu
- Department of OrthopaedicsBeijing 304th HospitalBeijingChina
| | - Xiongsheng Chen
- Spine Center, Department of OrthopaedicsShanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Baogan Peng
- Department of OrthopaedicsThe Third Medical Center of Chinese PLA General HospitalBeijingChina
| |
Collapse
|
12
|
Weakley JM, Kavusak EK, Carroll JB, Gabriele ML. Segregation of Multimodal Inputs Into Discrete Midbrain Compartments During an Early Critical Period. Front Neural Circuits 2022; 16:882485. [PMID: 35463204 PMCID: PMC9021614 DOI: 10.3389/fncir.2022.882485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/18/2022] [Indexed: 11/28/2022] Open
Abstract
The lateral cortex of the inferior colliculus (LCIC) is a multimodal subdivision of the midbrain inferior colliculus (IC) that plays a key role in sensory integration. The LCIC is compartmentally-organized, exhibiting a series of discontinuous patches or modules surrounded by an extramodular matrix. In adult mice, somatosensory afferents target LCIC modular zones, while auditory afferents terminate throughout the encompassing matrix. Recently, we defined an early LCIC critical period (birth: postnatal day 0 to P12) based upon the concurrent emergence of its neurochemical compartments (modules: glutamic acid decarboxylase, GAD+; matrix: calretinin, CR+), matching Eph-ephrin guidance patterns, and specificity of auditory inputs for its matrix. Currently lacking are analogous experiments that address somatosensory afferent shaping and the construction of discrete LCIC multisensory maps. Combining living slice tract-tracing and immunocytochemical approaches in a developmental series of GAD67-GFP knock-in mice, the present study characterizes: (1) the targeting of somatosensory terminals for emerging LCIC modular fields; and (2) the relative separation of somatosensory and auditory inputs over the course of its established critical period. Results indicate a similar time course and progression of LCIC projection shaping for both somatosensory (corticocollicular) and auditory (intracollicular) inputs. While somewhat sparse and intermingling at birth, modality-specific projection patterns soon emerge (P4–P8), coincident with peak guidance expression and the appearance of LCIC compartments. By P12, an adult-like arrangement is in place, with fully segregated multimodal afferent arrays. Quantitative measures confirm increasingly distinct input maps, exhibiting less projection overlap with age. Potential mechanisms whereby multisensory LCIC afferent systems recognize and interface with its emerging modular-matrix framework are discussed.
Collapse
|
13
|
Hirsch D, Kohl A, Wang Y, Sela-Donenfeld D. Axonal Projection Patterns of the Dorsal Interneuron Populations in the Embryonic Hindbrain. Front Neuroanat 2022; 15:793161. [PMID: 35002640 PMCID: PMC8738170 DOI: 10.3389/fnana.2021.793161] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Unraveling the inner workings of neural circuits entails understanding the cellular origin and axonal pathfinding of various neuronal groups during development. In the embryonic hindbrain, different subtypes of dorsal interneurons (dINs) evolve along the dorsal-ventral (DV) axis of rhombomeres and are imperative for the assembly of central brainstem circuits. dINs are divided into two classes, class A and class B, each containing four neuronal subgroups (dA1-4 and dB1-4) that are born in well-defined DV positions. While all interneurons belonging to class A express the transcription factor Olig3 and become excitatory, all class B interneurons express the transcription factor Lbx1 but are diverse in their excitatory or inhibitory fate. Moreover, within every class, each interneuron subtype displays its own specification genes and axonal projection patterns which are required to govern the stage-by-stage assembly of their connectivity toward their target sites. Remarkably, despite the similar genetic landmark of each dINs subgroup along the anterior-posterior (AP) axis of the hindbrain, genetic fate maps of some dA/dB neuronal subtypes uncovered their contribution to different nuclei centers in relation to their rhombomeric origin. Thus, DV and AP positional information has to be orchestrated in each dA/dB subpopulation to form distinct neuronal circuits in the hindbrain. Over the span of several decades, different axonal routes have been well-documented to dynamically emerge and grow throughout the hindbrain DV and AP positions. Yet, the genetic link between these distinct axonal bundles and their neuronal origin is not fully clear. In this study, we reviewed the available data regarding the association between the specification of early-born dorsal interneuron subpopulations in the hindbrain and their axonal circuitry development and fate, as well as the present existing knowledge on molecular effectors underlying the process of axonal growth.
Collapse
Affiliation(s)
- Dana Hirsch
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.,Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Ayelet Kohl
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yuan Wang
- Department of Biomedical Sciences, Program in Neuroscience, College of Medicine, Florida State University, Tallahassee, FL, United States
| | - Dalit Sela-Donenfeld
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
14
|
Ansorge J, Wu C, Shore SE, Krieger P. Audiotactile interactions in the mouse cochlear nucleus. Sci Rep 2021; 11:6887. [PMID: 33767295 PMCID: PMC7994829 DOI: 10.1038/s41598-021-86236-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/11/2021] [Indexed: 11/15/2022] Open
Abstract
Multisensory integration of auditory and tactile information occurs already at the level of the cochlear nucleus. Rodents use their whiskers for tactile perception to guide them in their exploration of the world. As nocturnal animals with relatively poor vision, audiotactile interactions are of great importance for this species. Here, the influence of whisker deflections on sound-evoked spiking in the cochlear nucleus was investigated in vivo in anesthetized mice. Multichannel, silicon-probe electrophysiological recordings were obtained from both the dorsal and ventral cochlear nucleus. Whisker deflections evoked an increased spiking activity in fusiform cells of the dorsal cochlear nucleus and t-stellate cells in ventral cochlear nucleus, whereas bushy cells in the ventral cochlear nucleus showed a more variable response. The response to broadband noise stimulation increased in fusiform cells and primary-like bushy cells when the sound stimulation was preceded (~ 20 ms) by whisker stimulation. Multi-sensory integration of auditory and whisker input can thus occur already in this early brainstem nucleus, emphasizing the importance of early integration of auditory and somatosensory information.
Collapse
Affiliation(s)
- Josephine Ansorge
- Department of Systems Neuroscience, Faculty of Medicine, Ruhr University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Calvin Wu
- Department of Otolaryngology, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI, USA
| | - Susan E Shore
- Department of Otolaryngology, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI, USA.,Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.,Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Patrik Krieger
- Department of Systems Neuroscience, Faculty of Medicine, Ruhr University Bochum, Universitätsstraße 150, 44780, Bochum, Germany.
| |
Collapse
|
15
|
Riffle TL, Martel DT, Jones GR, Shore SE. Bimodal Auditory Electrical Stimulation for the Treatment of Tinnitus: Preclinical and Clinical Studies. Curr Top Behav Neurosci 2021; 51:295-323. [PMID: 33083999 PMCID: PMC8058117 DOI: 10.1007/7854_2020_180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tinnitus, or the phantom perception of sound, arises from pathological neural activity. Neurophysiological research has shown increased spontaneous firing rates and synchronization along the auditory pathway correlate strongly with behavioral measures of tinnitus. Auditory neurons are plastic, enabling external stimuli to be utilized to elicit long-term changes to spontaneous firing and synchrony. Pathological plasticity can thus be reversed using bimodal auditory plus nonauditory stimulation to reduce tinnitus. This chapter discusses preclinical and clinical evidence for efficacy of bimodal stimulation treatments of tinnitus, with highlights on sham-controlled, double-blinded clinical trials. The results from these studies have shown some efficacy in reducing the severity of tinnitus, based on subjective and objective outcome measures including tinnitus questionnaires and psychophysical tinnitus measurements. While results of some studies have been positive, the degree of benefit and the populations that respond to treatment vary across the studies. Directions and implications of future studies are discussed.
Collapse
Affiliation(s)
- Travis L Riffle
- Department of Otolaryngology, University of Michigan, Ann Arbor, MI, USA
| | - David T Martel
- Department of Otolaryngology, University of Michigan, Ann Arbor, MI, USA
| | - Gerilyn R Jones
- Department of Otolaryngology, University of Michigan, Ann Arbor, MI, USA
| | - Susan E Shore
- Department of Otolaryngology, University of Michigan, Ann Arbor, MI, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Departments of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
- Kresge Hearing Research Institute, Ann Arbor, MI, USA.
| |
Collapse
|
16
|
Bordia T, Zahr NM. The Inferior Colliculus in Alcoholism and Beyond. Front Syst Neurosci 2020; 14:606345. [PMID: 33362482 PMCID: PMC7759542 DOI: 10.3389/fnsys.2020.606345] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/02/2020] [Indexed: 12/28/2022] Open
Abstract
Post-mortem neuropathological and in vivo neuroimaging methods have demonstrated the vulnerability of the inferior colliculus to the sequelae of thiamine deficiency as occurs in Wernicke-Korsakoff Syndrome (WKS). A rich literature in animal models ranging from mice to monkeys-including our neuroimaging studies in rats-has shown involvement of the inferior colliculi in the neural response to thiamine depletion, frequently accomplished with pyrithiamine, an inhibitor of thiamine metabolism. In uncomplicated alcoholism (i.e., absent diagnosable neurological concomitants), the literature citing involvement of the inferior colliculus is scarce, has nearly all been accomplished in preclinical models, and is predominately discussed in the context of ethanol withdrawal. Our recent work using novel, voxel-based analysis of structural Magnetic Resonance Imaging (MRI) has demonstrated significant, persistent shrinkage of the inferior colliculus using acute and chronic ethanol exposure paradigms in two strains of rats. We speculate that these consistent findings should be considered from the perspective of the inferior colliculi having a relatively high CNS metabolic rate. As such, they are especially vulnerable to hypoxic injury and may be provide a common anatomical link among a variety of disparate insults. An argument will be made that the inferior colliculi have functions, possibly related to auditory gating, necessary for awareness of the external environment. Multimodal imaging including diffusion methods to provide more accurate in vivo visualization and quantification of the inferior colliculi may clarify the roles of brain stem nuclei such as the inferior colliculi in alcoholism and other neuropathologies marked by altered metabolism.
Collapse
Affiliation(s)
- Tanuja Bordia
- Neuroscience Program, SRI International, Menlo Park, CA, United States
| | - Natalie M. Zahr
- Neuroscience Program, SRI International, Menlo Park, CA, United States
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
17
|
|
18
|
Belekhova MG, Kenigfest NB, Chmykhova NM. Evolutionary Formation and Functional
Significance
of the Core–Belt Pattern of Neural Organization of Rostral Auditory
Centers in Vertebrates. J EVOL BIOCHEM PHYS+ 2020. [DOI: 10.1134/s0022093020040018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
19
|
Loutit AJ, Vickery RM, Potas JR. Functional organization and connectivity of the dorsal column nuclei complex reveals a sensorimotor integration and distribution hub. J Comp Neurol 2020; 529:187-220. [PMID: 32374027 DOI: 10.1002/cne.24942] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 12/12/2022]
Abstract
The dorsal column nuclei complex (DCN-complex) includes the dorsal column nuclei (DCN, referring to the gracile and cuneate nuclei collectively), external cuneate, X, and Z nuclei, and the median accessory nucleus. The DCN are organized by both somatotopy and modality, and have a diverse range of afferent inputs and projection targets. The functional organization and connectivity of the DCN implicate them in a variety of sensorimotor functions, beyond their commonly accepted role in processing and transmitting somatosensory information to the thalamus, yet this is largely underappreciated in the literature. To consolidate insights into their sensorimotor functions, this review examines the morphology, organization, and connectivity of the DCN and their associated nuclei. First, we briefly discuss the receptors, afferent fibers, and pathways involved in conveying tactile and proprioceptive information to the DCN. Next, we review the modality and somatotopic arrangements of the remaining constituents of the DCN-complex. Finally, we examine and discuss the functional implications of the myriad of DCN-complex projection targets throughout the diencephalon, midbrain, and hindbrain, in addition to their modulatory inputs from the cortex. The organization and connectivity of the DCN-complex suggest that these nuclei should be considered a complex integration and distribution hub for sensorimotor information.
Collapse
Affiliation(s)
- Alastair J Loutit
- School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia.,The Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Richard M Vickery
- School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Jason R Potas
- School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia.,The Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
20
|
Cheng YF, Xirasagar S, Yang TH, Wu CS, Kao YW, Shia BC, Lin HC. Increased risk of tinnitus following a trigeminal neuralgia diagnosis: a one-year follow-up study. J Headache Pain 2020; 21:46. [PMID: 32375642 PMCID: PMC7203585 DOI: 10.1186/s10194-020-01121-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 04/28/2020] [Indexed: 02/04/2023] Open
Abstract
Background Tinnitus due to hyperactivity across neuronal ensembles along the auditory pathway is reported. We hypothesized that trigeminal neuralgia patients may subsequently suffer from tinnitus. Using nationwide, population-based data and a retrospective cohort study design, we investigated the risk of tinnitus within 1 year following trigeminal neuralgia. Methods We used the Taiwan National Health Insurance Research Dataset, a claims database, to identify all patients diagnosed with trigeminal neuralgia from January 2001 to December 2014, 12,587 patients. From the remaining patients, we identified 12,587 comparison patients without trigeminal neuralgia by propensity score matching, using sex, age, monthly income, geographic region, residential urbanization level, and tinnitus-relevant comorbidities (hyperlipidemia, diabetes, coronary heart disease, hypertension, cervical spondylosis, temporomandibular joint disorders and injury to head and neck and index year). All study patients (n = 25,174) were tracked for a one-year period to identify those with a subsequent diagnosis of tinnitus over 1-year follow-up. Results Among total 25,174 sample patients, the incidence of tinnitus was 18.21 per 100 person-years (95% CI = 17.66 ~ 18.77), the rate being 23.57 (95% CI = 22.68 ~ 24.49) among patients with trigeminal neuralgia and 13.17 (95% CI = 12.53 ~ 13.84) among comparison patients. Furthermore, the adjusted Cox proportional hazard ratio for tinnitus in the trigeminal neuralgia group was 1.68 (95% CI = 1.58 ~ 1.80) relative to the comparison cohort. Conclusions We found a significantly increased risk of tinnitus within 1 year of trigeminal neuralgia diagnosis compared to those without the diagnosis. Further studies in other countries and ethnicities are needed to explore the relationship between trigeminal neuralgia and subsequent tinnitus.
Collapse
Affiliation(s)
- Yen-Fu Cheng
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Otolaryngology-Head and Neck Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Speech, Language and Audiology, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan.,Research Center of Sleep Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Sudha Xirasagar
- Department of Health Services Policy and Management, Arnold School of Public Health, University of South Carolina, Columbia, USA
| | - Tzong-Han Yang
- Department of Speech, Language and Audiology, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan.,Department of Otolaryngology, Taipei City Hospital, Taipei, Taiwan
| | - Chuan-Song Wu
- Department of Otolaryngology, Taipei City Hospital, Taipei, Taiwan
| | - Yi-Wei Kao
- Big Data Research Center, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Business Administration, College of Management, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Ben-Chang Shia
- Big Data Research Center, Taipei Medical University, Taipei, Taiwan
| | - Herng-Ching Lin
- Department of Health Care Administration, Taipei Medical University, 250 Wu-Hsing St, Taipei, 110, Taiwan. .,Sleep Research Center, Taipei Medical University Hospital, Taipei, Taiwan.
| |
Collapse
|
21
|
Kunelskaya NL, Levina YV, Baibakova EV, Shurpo VI. [Tinnitus - current trends and prospects]. Vestn Otorinolaringol 2020; 84:54-60. [PMID: 32027324 DOI: 10.17116/otorino20198406154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Tinnitus is described as the perception of any sound or noise in the absence of real acoustic stimulation. Numerous investigations have been tried for this potentially debilitating, heterogeneous symptom. The authors overview the current concepts of the management of the suffering tinnitus patients. The review contains modern views on the mechanisms of generation, etiology and pathogenesis of tinnitus. Classifications for practical management of patients are presented. The review of medical and physical methods of therapy and rehabilitation of a tinnitus patients given. The review includes the most clinically reliable and common methods of treatment and rehabilitation.
Collapse
Affiliation(s)
- N L Kunelskaya
- L.I. Sverzhevskiy Research Institute of Clinical Otorhinolaryngology, Moscow Health Department, Moscow, Russia, 117152; Department of Otorhinolaryngology N.I.Pirogov Russian National Research Medical University, Moscow, Russia,117997
| | - Yu V Levina
- L.I. Sverzhevskiy Research Institute of Clinical Otorhinolaryngology, Moscow Health Department, Moscow, Russia, 117152; Department of Otorhinolaryngology N.I.Pirogov Russian National Research Medical University, Moscow, Russia,117997
| | - E V Baibakova
- L.I. Sverzhevskiy Research Institute of Clinical Otorhinolaryngology, Moscow Health Department, Moscow, Russia, 117152
| | - V I Shurpo
- L.I. Sverzhevskiy Research Institute of Clinical Otorhinolaryngology, Moscow Health Department, Moscow, Russia, 117152
| |
Collapse
|
22
|
Yang Y, Lee J, Kim G. Integration of locomotion and auditory signals in the mouse inferior colliculus. eLife 2020; 9:52228. [PMID: 31987070 PMCID: PMC7004561 DOI: 10.7554/elife.52228] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/16/2020] [Indexed: 01/10/2023] Open
Abstract
The inferior colliculus (IC) is the major midbrain auditory integration center, where virtually all ascending auditory inputs converge. Although the IC has been extensively studied for sound processing, little is known about the neural activity of the IC in moving subjects, as frequently happens in natural hearing conditions. Here, by recording neural activity in walking mice, we show that the activity of IC neurons is strongly modulated by locomotion, even in the absence of sound stimuli. Similar modulation was also found in hearing-impaired mice, demonstrating that IC neurons receive non-auditory, locomotion-related neural signals. Sound-evoked activity was attenuated during locomotion, and this attenuation increased frequency selectivity across the neuronal population, while maintaining preferred frequencies. Our results suggest that during behavior, integrating movement-related and auditory information is an essential aspect of sound processing in the IC.
Collapse
Affiliation(s)
- Yoonsun Yang
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, Republic of Korea.,Department of Physiology, School of Medicine, Sungkyunkwan University, Suwon, Republic of Korea
| | - Joonyeol Lee
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, Republic of Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Gunsoo Kim
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, Republic of Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
23
|
Shore SE, Wu C. Mechanisms of Noise-Induced Tinnitus: Insights from Cellular Studies. Neuron 2019; 103:8-20. [PMID: 31271756 DOI: 10.1016/j.neuron.2019.05.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/25/2019] [Accepted: 05/03/2019] [Indexed: 01/21/2023]
Abstract
Tinnitus, sound perception in the absence of physical stimuli, occurs in 15% of the population and is the top-reported disability for soldiers after combat. Noise overexposure is a major factor associated with tinnitus but does not always lead to tinnitus. Furthermore, people with normal audiograms can get tinnitus. In animal models, equivalent cochlear damage occurs in animals with and without behavioral evidence of tinnitus. But cochlear-nerve-recipient neurons in the brainstem demonstrate distinct, synchronized spontaneous firing patterns only in animals that develop tinnitus, driving activity in central brain regions and ultimately giving rise to phantom perception. Examining tinnitus-specific changes in single-cell populations enables us to begin to distinguish neural changes due to tinnitus from those that are due to hearing loss.
Collapse
Affiliation(s)
- Susan E Shore
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, Ann Arbor, MI 48109, USA; Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Calvin Wu
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
24
|
Wong AB, Borst JGG. Tonotopic and non-auditory organization of the mouse dorsal inferior colliculus revealed by two-photon imaging. eLife 2019; 8:49091. [PMID: 31612853 PMCID: PMC6834370 DOI: 10.7554/elife.49091] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/13/2019] [Indexed: 12/17/2022] Open
Abstract
The dorsal (DCIC) and lateral cortices (LCIC) of the inferior colliculus are major targets of the auditory and non-auditory cortical areas, suggesting a role in complex multimodal information processing. However, relatively little is known about their functional organization. We utilized in vivo two-photon Ca2+ imaging in awake mice expressing GCaMP6s in GABAergic or non-GABAergic neurons in the IC to investigate their spatial organization. We found different classes of temporal responses, which we confirmed with simultaneous juxtacellular electrophysiology. Both GABAergic and non-GABAergic neurons showed spatial microheterogeneity in their temporal responses. In contrast, a robust, double rostromedial-caudolateral gradient of frequency tuning was conserved between the two groups, and even among the subclasses. This, together with the existence of a subset of neurons sensitive to spontaneous movements, provides functional evidence for redefining the border between DCIC and LCIC.
Collapse
Affiliation(s)
- Aaron Benson Wong
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - J Gerard G Borst
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
25
|
Han KH, Mun SK, Sohn S, Piao XY, Park I, Chang M. Axonal sprouting in the dorsal cochlear nucleus affects gap‑prepulse inhibition following noise exposure. Int J Mol Med 2019; 44:1473-1483. [PMID: 31432095 PMCID: PMC6713418 DOI: 10.3892/ijmm.2019.4316] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 07/18/2019] [Indexed: 11/16/2022] Open
Abstract
One of the primary theories of the pathogenesis of tinnitus involves maladaptive auditory-somatosensory plasticity in the dorsal cochlear nucleus (DCN), which is assumed to be due to axonal sprouting. Although a disrupted balance between auditory and somatosensory inputs may occur following hearing damage and may induce tinnitus, examination of this phenomenon employed a model of hearing damage that does not account for the causal relationship between these changes and tinnitus. The present study aimed to investigate changes in auditory-somatosensory innervation and the role that axonal sprouting serves in this process by comparing results between animals with and without tinnitus. Rats were exposed to a noise-inducing temporary threshold shift and were subsequently divided into tinnitus and non-tinnitus groups based on the results of gap prepulse inhibition of the acoustic startle reflex. DCNs were collected from rats divided into three sub-groups according to the number of weeks (1, 2 or 3) following noise exposure, and the protein levels of vesicular glutamate transporter 1 (VGLUT1), which is associated with auditory input to the DCN, and VGLUT2, which is in turn primarily associated with somatosensory inputs, were assessed. In addition, factors related to axonal sprouting, including growth-associated protein 43 (GAP43), postsynaptic density protein 95, synaptophysin, α-thalassemia/mental retardation syndrome X-linked homolog (ATRX), growth differentiation factor 10 (GDF10), and leucine-rich repeat and immunoglobulin domain-containing 1, were measured by western blot analyses. Compared to the non-tinnitus group, the tinnitus group exhibited a significant decrease in VGLUT1 at 1 week and a significant increase in VGLUT2 at 3 weeks post-exposure. In addition, rats in the tinnitus group exhibited significant increases in GAP43 and GDF10 protein expression levels in their DCN at 3 weeks following noise exposure. Results from the present study provided further evidence that changes in the neural input distribution to the DCN may cause tinnitus and that axonal sprouting underlies these alterations.
Collapse
Affiliation(s)
- Kyu-Hee Han
- Department of Otorhinolaryngology, National Medical Center, Seoul 04564, Republic of Korea
| | - Seog-Kyun Mun
- Department of Otorhinolaryngology‑Head and Neck Surgery, Chung‑Ang University College of Medicine, Seoul 06974, Republic of Korea
| | - Seonyong Sohn
- Department of Otorhinolaryngology‑Head and Neck Surgery, Chung‑Ang University College of Medicine, Seoul 06974, Republic of Korea
| | - Xian-Yu Piao
- Department of Otorhinolaryngology‑Head and Neck Surgery, Chung‑Ang University College of Medicine, Seoul 06974, Republic of Korea
| | - Ilyong Park
- Department of Biomedical Engineering, Dankook University College of Medicine, Cheonan 31116, Republic of Korea
| | - Munyoung Chang
- Department of Otorhinolaryngology‑Head and Neck Surgery, Chung‑Ang University College of Medicine, Seoul 06974, Republic of Korea
| |
Collapse
|
26
|
Theodoroff SM, Kaltenbach JA. The Role of the Brainstem in Generating and Modulating Tinnitus. Am J Audiol 2019; 28:225-238. [PMID: 31022358 DOI: 10.1044/2018_aja-ttr17-18-0035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Purpose The purpose of this work is to present a perspective article summarizing ideas pertaining to the brainstem's role in generating and modulating tinnitus. It is organized in 4 sections: Part 1, the role of the brainstem as a tinnitus generator; Part 2, the role of the brainstem in modulating tinnitus; Part 3, the role of the brainstem in nonauditory comorbid conditions associated with tinnitus; and Part 4, clinical implications. In Part 1, well-established neurophysiological models are discussed providing the framework of evidence that auditory brainstem nuclei play a role in generating tinnitus. In Part 2, ideas are presented explaining modulatory effects on tinnitus related to underlying pathways originating from or projecting to brainstem auditory and nonauditory nuclei. This section addresses multiple phenomena including somatic-related, attention-mediated, and emotion-mediated changes in the tinnitus percept. In Part 3, the role of the brainstem in common nonauditory comorbidities that occur in patients with tinnitus is discussed. Part 4 presents clinical implications of these new ideas related to the brainstem's involvement in generating and modulating tinnitus. Impact Knowledge of the brainstem's involvement in generating and modulating tinnitus provides a context for health care professionals to understand the temporal relationship between tinnitus and common nonauditory comorbid conditions.
Collapse
Affiliation(s)
- Sarah M. Theodoroff
- VA RR&D, National Center for Rehabilitative Auditory Research, VA Portland Health Care System, Portland, OR
- Department of Otolaryngology, Head & Neck Surgery, Oregon Health & Science University, Portland
| | - James A. Kaltenbach
- Department of Neurosciences, Lerner Research Institute/Head and Neck Institute, Cleveland Clinic, OH
| |
Collapse
|
27
|
Tzounopoulos T, Balaban C, Zitelli L, Palmer C. Towards a Mechanistic-Driven Precision Medicine Approach for Tinnitus. J Assoc Res Otolaryngol 2019; 20:115-131. [PMID: 30825037 PMCID: PMC6453992 DOI: 10.1007/s10162-018-00709-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 12/18/2018] [Indexed: 12/17/2022] Open
Abstract
In this position review, we propose to establish a path for replacing the empirical classification of tinnitus with a taxonomy from precision medicine. The goal of a classification system is to understand the inherent heterogeneity of individuals experiencing and suffering from tinnitus and to identify what differentiates potential subgroups. Identification of different patient subgroups with distinct audiological, psychophysical, and neurophysiological characteristics will facilitate the management of patients with tinnitus as well as the design and execution of drug development and clinical trials, which, for the most part, have not yielded conclusive results. An alternative outcome of a precision medicine approach in tinnitus would be that additional mechanistic phenotyping might not lead to the identification of distinct drivers in each individual, but instead, it might reveal that each individual may display a quantitative blend of causal factors. Therefore, a precision medicine approach towards identifying these causal factors might not lead to subtyping these patients but may instead highlight causal pathways that can be manipulated for therapeutic gain. These two outcomes are not mutually exclusive, and no matter what the final outcome is, a mechanistic-driven precision medicine approach is a win-win approach for advancing tinnitus research and treatment. Although there are several controversies and inconsistencies in the tinnitus field, which will not be discussed here, we will give a few examples, as to how the field can move forward by exploring the major neurophysiological tinnitus models, mostly by taking advantage of the common features supported by all of the models. Our position stems from the central concept that, as a field, we can and must do more to bring studies of mechanisms into the realm of neuroscience.
Collapse
Affiliation(s)
- Thanos Tzounopoulos
- Pittsburgh Hearing Research Center and Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| | - Carey Balaban
- Pittsburgh Hearing Research Center and Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Lori Zitelli
- Pittsburgh Hearing Research Center and Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Catherine Palmer
- Pittsburgh Hearing Research Center and Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| |
Collapse
|
28
|
Noreña AJ, Fournier P, Londero A, Ponsot D, Charpentier N. An Integrative Model Accounting for the Symptom Cluster Triggered After an Acoustic Shock. Trends Hear 2019; 22:2331216518801725. [PMID: 30249168 PMCID: PMC6156190 DOI: 10.1177/2331216518801725] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Acoustic shocks and traumas sometimes result in a cluster of debilitating symptoms, including tinnitus, hyperacusis, ear fullness and tension, dizziness, and pain in and outside the ear. The mechanisms underlying this large variety of symptoms remain elusive. In this article, we elaborate on the hypothesis that the tensor tympani muscle (TTM), the trigeminal nerve (TGN), and the trigeminal cervical complex (TCC) play a central role in generating these symptoms. We argue that TTM overuse (due to the acoustic shock), TTM overload (due to muscle tension), and ultimately, TTM injury (due to hypoxia and "energy crisis") lead to inflammation, thereby activating the TGN, TCC, and cortex. The TCC is a crossroad structure integrating sensory inputs coming from the head-neck complex (including the middle ear) and projecting back to it. The multimodal integration of the TCC may then account for referred pain outside the ear when the middle ear is inflamed and activates the TGN. We believe that our model proposes a synthetic and explanatory framework to explain the phenomena occurring postacoustic shock and potentially also after other nonauditory causes. Indeed, due to the bidirectional properties of the TCC, musculoskeletal disorders in the region of the head-neck complex, including neck injury due to whiplash or temporomandibular disorders, may impact the middle ear, thereby leading to otic symptoms. This previously unavailable model type is experimentally testable and must be taken as a starting point for identifying the mechanisms responsible for this particular subtype of tinnitus and its associated symptoms.
Collapse
Affiliation(s)
- Arnaud J Noreña
- 1 Aix-Marseille Université, UMR CNRS 7260, Laboratoire Neurosciences Intégratives et Adaptatives-Centre Saint-Charles, Marseille, France
| | - Philippe Fournier
- 1 Aix-Marseille Université, UMR CNRS 7260, Laboratoire Neurosciences Intégratives et Adaptatives-Centre Saint-Charles, Marseille, France
| | - Alain Londero
- 2 Service ORL et CCF, Hôpital Européen G. Pompidou, Paris, France
| | - Damien Ponsot
- 3 Académie de Lyon-Lycée Germaine Tillion, Sain-Bel, France
| | | |
Collapse
|
29
|
Gay SM, Brett CA, Stinson JPC, Gabriele ML. Alignment of EphA4 and ephrin-B2 expression patterns with developing modularity in the lateral cortex of the inferior colliculus. J Comp Neurol 2018; 526:2706-2721. [PMID: 30156295 DOI: 10.1002/cne.24525] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/31/2018] [Accepted: 08/21/2018] [Indexed: 01/26/2023]
Abstract
In the multimodal lateral cortex of the inferior colliculus (LCIC), there are two neurochemically and connectionally distinct compartments, termed modular and extramodular zones. Modular fields span LCIC layer 2 and are recipients of somatosensory afferents, while encompassing extramodular domains receive auditory inputs. Recently, in developing mice, we identified several markers (among them glutamic acid decarboxylase, GAD) that consistently label the same modular set, and a reliable extramodular marker, calretinin, (CR). Previous reports from our lab show similar modular-extramodular patterns for certain Eph-ephrin guidance members, although their precise alignment with the developing LCIC neurochemical framework has yet to be addressed. Here we confirm in the nascent LCIC complementary GAD/CR-positive compartments, and characterize the registry of EphA4 and ephrin-B2 expression patterns with respect to its emerging modular-extramodular organization. Immunocytochemical approaches in GAD67-GFP knock-in mice reveal patchy EphA4 and ephrin-B2 domains that precisely align with GAD-positive LCIC modules, and are complementary to CR-defined extramodular zones. Such patterning was detectable neonatally, yielding discrete compartments prior to hearing onset. A dense plexus of EphA4-positive fibers filled modules, surrounding labeled ephrin-B2 and GAD cell populations. The majority of observed GABAergic neurons within modular boundaries were also positive for ephrin-B2. These results suggest an early compartmentalization of the LCIC that is likely instructed in part through Eph-ephrin guidance mechanisms. The overlap of developing LCIC neurochemical and guidance patterns is discussed in the context of its seemingly segregated multimodal input-output streams.
Collapse
Affiliation(s)
- Sean M Gay
- Department of Biology, James Madison University, Harrisonburg, Virginia
| | - Cooper A Brett
- Department of Biology, James Madison University, Harrisonburg, Virginia
| | | | - Mark L Gabriele
- Department of Biology, James Madison University, Harrisonburg, Virginia
| |
Collapse
|
30
|
Keesom SM, Morningstar MD, Sandlain R, Wise BM, Hurley LM. Social isolation reduces serotonergic fiber density in the inferior colliculus of female, but not male, mice. Brain Res 2018; 1694:94-103. [DOI: 10.1016/j.brainres.2018.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 04/15/2018] [Accepted: 05/11/2018] [Indexed: 12/26/2022]
|
31
|
Mun SK, Han KH, Baek JT, Ahn SW, Cho HS, Chang MY. Losartan Prevents Maladaptive Auditory-Somatosensory Plasticity After Hearing Loss via Transforming Growth Factor-β Signaling Suppression. Clin Exp Otorhinolaryngol 2018; 12:33-39. [PMID: 30021416 PMCID: PMC6315212 DOI: 10.21053/ceo.2018.00542] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 05/30/2018] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES Hearing loss disrupts the balance of auditory-somatosensory inputs in the cochlear nucleus (CN) of the brainstem, which has been suggested to be a mechanism of tinnitus. This disruption results from maladaptive auditory-somatosensory plasticity, which is a form of axonal sprouting. Axonal sprouting is promoted by transforming growth factor (TGF)-β signaling, which can be inhibited by losartan. We investigated whether losartan prevents maladaptive auditory-somatosensory plasticity after hearing loss. METHODS The study consisted of two stages: determining the time course of auditory-somatosensory plasticity following hearing loss and preventing auditory-somatosensory plasticity using losartan. In the first stage, rats were randomly divided into two groups: a control group that underwent a sham operation and a deaf group that underwent cochlea ablation on the left side. CNs were harvested 1 and 2 weeks after surgery. In the second stage, rats were randomly divided into either a saline group that underwent cochlear ablation on the left side and received normal saline or a losartan group that underwent cochlear ablation on the left side and received losartan. CNs were harvested 2 weeks after surgery. Hearing was estimated with auditory brainstem responses (ABRs). Western blotting was performed for vesicular glutamate transporter 1 (VGLUT1), reflecting auditory input; vesicular glutamate transporter 2 (VGLUT2), reflecting somatosensory input; growth-associated protein 43 (GAP-43), reflecting axonal sprouting; and p-Smad2/3. RESULTS Baseline ABR thresholds before surgery ranged from 20 to 35 dB sound pressure level. After cochlear ablation, ABR thresholds were higher than 80 dB. In the first experiment, VGLUT2/VGLUT1 ratios did not differ significantly between the control and deaf groups 1 week after surgery. At 2 weeks after surgery, the deaf group had a significantly higher VGLUT2/VGLUT1 ratio compared to the control group. In the second experiment, the losartan group had a significantly lower VGLUT2/VGLUT1 ratio along with significantly lower p-Smad3 and GAP-43 levels compared to the saline group. CONCLUSION Losartan might prevent axonal sprouting after hearing loss by blocking TGF-β signaling thereby preventing maladaptive auditory-somatosensory plasticity.
Collapse
Affiliation(s)
- Seog-Kyun Mun
- Department of Otorhinolaryngology-Head and Neck Surgery, Chung-Ang University College of Medicine, Seoul, Korea
| | - Kyu-Hee Han
- Department of Otorhinolaryngology, National Medical Center, Seoul, Korea
| | - Jong Tae Baek
- Department of Otorhinolaryngology, National Medical Center, Seoul, Korea
| | - Suk-Won Ahn
- Department of Neurology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Hyun Sang Cho
- Department of Otorhinolaryngology-Head and Neck Surgery, Veterans Health Service Medical Center, Seoul, Korea
| | - Mun Young Chang
- Department of Otorhinolaryngology-Head and Neck Surgery, Chung-Ang University College of Medicine, Seoul, Korea.,Biomedical Research Institute, Chung-Ang University Hospital, Seoul, Korea
| |
Collapse
|
32
|
Chen C, Cheng M, Ito T, Song S. Neuronal Organization in the Inferior Colliculus Revisited with Cell-Type-Dependent Monosynaptic Tracing. J Neurosci 2018; 38:3318-3332. [PMID: 29483283 PMCID: PMC6596054 DOI: 10.1523/jneurosci.2173-17.2018] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 02/02/2018] [Accepted: 02/07/2018] [Indexed: 01/19/2023] Open
Abstract
The inferior colliculus (IC) is a critical integration center in the auditory pathway. However, because the inputs to the IC have typically been studied by the use of conventional anterograde and retrograde tracers, the neuronal organization and cell-type-specific connections in the IC are poorly understood. Here, we used monosynaptic rabies tracing and in situ hybridization combined with excitatory and inhibitory Cre transgenic mouse lines of both sexes to characterize the brainwide and cell-type-specific inputs to specific neuron types within the lemniscal IC core and nonlemniscal IC shell. We observed that both excitatory and inhibitory neurons of the IC shell predominantly received ascending inputs rather than descending or core inputs. Correlation and clustering analyses revealed two groups of excitatory neurons in the shell: one received inputs from a combination of ascending nuclei, and the other received inputs from a combination of descending nuclei, neuromodulatory nuclei, and the contralateral IC. In contrast, inhibitory neurons in the core received inputs from the same combination of all nuclei. After normalizing the extrinsic inputs, we found that core inhibitory neurons received a higher proportion of inhibitory inputs from the ventral nucleus of the lateral lemniscus than excitatory neurons. Furthermore, the inhibitory neurons preferentially received inhibitory inputs from the contralateral IC shell. Because IC inhibitory neurons innervate the thalamus and contralateral IC, the inhibitory inputs we uncovered here suggest two long-range disinhibitory circuits. In summary, we found: (1) dominant ascending inputs to the shell, (2) two subpopulations of shell excitatory neurons, and (3) two disinhibitory circuits.SIGNIFICANCE STATEMENT Sound undergoes extensive processing in the brainstem. The inferior colliculus (IC) core is classically viewed as the integration center for ascending auditory information, whereas the IC shell integrates descending feedback information. Here, we demonstrate that ascending inputs predominated in the IC shell but appeared to be separated from the descending inputs. The presence of inhibitory projection neurons is a unique feature of the auditory ascending pathways, but the connections of these neurons are poorly understood. Interestingly, we also found that inhibitory neurons in the IC core and shell preferentially received inhibitory inputs from ascending nuclei and contralateral IC, respectively. Therefore, our results suggest a bipartite domain in the IC shell and disinhibitory circuits in the IC.
Collapse
Affiliation(s)
- Chenggang Chen
- Tsinghua Laboratory of Brain and Intelligence and Department of Biomedical Engineering, Beijing Innovation Center for Future Chip, Center for Brain-Inspired Computing Research, McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Mingxiu Cheng
- Tsinghua Laboratory of Brain and Intelligence and Department of Biomedical Engineering, Beijing Innovation Center for Future Chip, Center for Brain-Inspired Computing Research, McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
- National Institute of Biological Sciences, Beijing, 102206, China, and
| | - Tetsufumi Ito
- Anatomy II, School of Medicine, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| | - Sen Song
- Tsinghua Laboratory of Brain and Intelligence and Department of Biomedical Engineering, Beijing Innovation Center for Future Chip, Center for Brain-Inspired Computing Research, McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China,
| |
Collapse
|
33
|
Marks KL, Martel DT, Wu C, Basura GJ, Roberts LE, Schvartz-Leyzac KC, Shore SE. Auditory-somatosensory bimodal stimulation desynchronizes brain circuitry to reduce tinnitus in guinea pigs and humans. Sci Transl Med 2018; 10:eaal3175. [PMID: 29298868 PMCID: PMC5863907 DOI: 10.1126/scitranslmed.aal3175] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 03/16/2017] [Accepted: 09/07/2017] [Indexed: 01/01/2023]
Abstract
The dorsal cochlear nucleus is the first site of multisensory convergence in mammalian auditory pathways. Principal output neurons, the fusiform cells, integrate auditory nerve inputs from the cochlea with somatosensory inputs from the head and neck. In previous work, we developed a guinea pig model of tinnitus induced by noise exposure and showed that the fusiform cells in these animals exhibited increased spontaneous activity and cross-unit synchrony, which are physiological correlates of tinnitus. We delivered repeated bimodal auditory-somatosensory stimulation to the dorsal cochlear nucleus of guinea pigs with tinnitus, choosing a stimulus interval known to induce long-term depression (LTD). Twenty minutes per day of LTD-inducing bimodal (but not unimodal) stimulation reduced physiological and behavioral evidence of tinnitus in the guinea pigs after 25 days. Next, we applied the same bimodal treatment to 20 human subjects with tinnitus using a double-blinded, sham-controlled, crossover study. Twenty-eight days of LTD-inducing bimodal stimulation reduced tinnitus loudness and intrusiveness. Unimodal auditory stimulation did not deliver either benefit. Bimodal auditory-somatosensory stimulation that induces LTD in the dorsal cochlear nucleus may hold promise for suppressing chronic tinnitus, which reduces quality of life for millions of tinnitus sufferers worldwide.
Collapse
Affiliation(s)
- Kendra L Marks
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, Ann Arbor, MI 48109, USA
| | - David T Martel
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Calvin Wu
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gregory J Basura
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Larry E Roberts
- Department of Psychology, Neuroscience and Behavior McMaster University, Hamilton, Ontario, Canada
| | - Kara C Schvartz-Leyzac
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Susan E Shore
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, Ann Arbor, MI 48109, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
34
|
Dillingham CH, Gay SM, Behrooz R, Gabriele ML. Modular-extramodular organization in developing multisensory shell regions of the mouse inferior colliculus. J Comp Neurol 2017; 525:3742-3756. [PMID: 28786102 DOI: 10.1002/cne.24300] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/07/2017] [Accepted: 07/28/2017] [Indexed: 11/07/2022]
Abstract
The complex neuroanatomical connections of the inferior colliculus (IC) and its major subdivisions offer a juxtaposition of segregated processing streams with distinct organizational features. While the tonotopically layered central nucleus is well-documented, less is known about functional compartments in the neighboring lateral cortex (LCIC). In addition to a laminar framework, LCIC afferent-efferent patterns suggest a multimodal mosaic, consisting of a patchy modular network with surrounding extramodular domains. This study utilizes several neurochemical markers that reveal an emerging LCIC modular-extramodular microarchitecture. In newborn and post-hearing C57BL/6J and CBA/CaJ mice, histochemical and immunocytochemical stains were performed for acetylcholinesterase (AChE), nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d), glutamic acid decarboxylase (GAD), cytochrome oxidase (CO), and calretinin (CR). Discontinuous layer 2 modules are positive for AChE, NADPH-d, GAD, and CO throughout the rostrocaudal LCIC. While not readily apparent at birth, discrete cell clusters emerge over the first postnatal week, yielding an identifiable modular network prior to hearing onset. Modular boundaries continue to become increasingly distinct with age, as surrounding extramodular fields remain largely negative for each marker. Alignment of modular markers in serial sections suggests each highlight the same periodic patchy network throughout the nascent LCIC. In contrast, CR patterns appear complementary, preferentially staining extramodular LCIC zones. Double-labeling experiments confirm that NADPH-d, the most consistent developmental modular marker, and CR label separate, nonoverlapping LCIC compartments. Determining how this emerging modularity may align with similar LCIC patch-matrix-like Eph/ephrin guidance patterns, and how each interface with, and potentially influence developing multimodal LCIC projection configurations is discussed.
Collapse
Affiliation(s)
| | - Sean M Gay
- Department of Biology, James Madison University, Harrisonburg, Virginia
| | - Roxana Behrooz
- Department of Biology, James Madison University, Harrisonburg, Virginia
| | - Mark L Gabriele
- Department of Biology, James Madison University, Harrisonburg, Virginia
| |
Collapse
|
35
|
Connectional Modularity of Top-Down and Bottom-Up Multimodal Inputs to the Lateral Cortex of the Mouse Inferior Colliculus. J Neurosci 2017; 36:11037-11050. [PMID: 27798184 DOI: 10.1523/jneurosci.4134-15.2016] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 09/04/2016] [Indexed: 12/14/2022] Open
Abstract
The lateral cortex of the inferior colliculus receives information from both auditory and somatosensory structures and is thought to play a role in multisensory integration. Previous studies in the rat have shown that this nucleus contains a series of distinct anatomical modules that stain for GAD-67 as well as other neurochemical markers. In the present study, we sought to better characterize these modules in the mouse inferior colliculus and determine whether the connectivity of other neural structures with the lateral cortex is spatially related to the distribution of these neurochemical modules. Staining for GAD-67 and other markers revealed a single modular network throughout the rostrocaudal extent of the mouse lateral cortex. Somatosensory inputs from the somatosensory cortex and dorsal column nuclei were found to terminate almost exclusively within these modular zones. However, projections from the auditory cortex and central nucleus of the inferior colliculus formed patches that interdigitate with the GAD-67-positive modules. These results suggest that the lateral cortex of the mouse inferior colliculus exhibits connectional as well as neurochemical modularity and may contain multiple segregated processing streams. This finding is discussed in the context of other brain structures in which neuroanatomical and connectional modularity have functional consequences. SIGNIFICANCE STATEMENT Many brain regions contain subnuclear microarchitectures, such as the matrix-striosome organization of the basal ganglia or the patch-interpatch organization of the visual cortex, that shed light on circuit complexities. In the present study, we demonstrate the presence of one such micro-organization in the rodent inferior colliculus. While this structure is typically viewed as an auditory integration center, its lateral cortex appears to be involved in multisensory operations and receives input from somatosensory brain regions. We show here that the lateral cortex can be further subdivided into multiple processing streams: modular regions, which are targeted by somatosensory inputs, and extramodular zones that receive auditory information.
Collapse
|
36
|
Ralli M, Greco A, Turchetta R, Altissimi G, de Vincentiis M, Cianfrone G. Somatosensory tinnitus: Current evidence and future perspectives. J Int Med Res 2017; 45:933-947. [PMID: 28553764 PMCID: PMC5536427 DOI: 10.1177/0300060517707673] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/10/2017] [Indexed: 11/15/2022] Open
Abstract
In some individuals, tinnitus can be modulated by specific maneuvers of the temporomandibular joint, head and neck, eyes, and limbs. Neuroplasticity seems to play a central role in this capacity for modulation, suggesting that abnormal interactions between the sensory modalities, sensorimotor systems, and neurocognitive and neuroemotional networks may contribute to the development of somatosensory tinnitus. Current evidence supports a link between somatic disorders and higher modulation of tinnitus, especially in patients with a normal hearing threshold. Patients with tinnitus who have somatic disorders seems to have a higher chance of modulating their tinnitus with somatic maneuvers; consistent improvements in tinnitus symptoms have been observed in patients with temporomandibular joint disease following targeted therapy for temporomandibular disorders. Somatosensory tinnitus is often overlooked by otolaryngologists and not fully investigated during the diagnostic process. Somatic disorders, when identified and treated, can be a valid therapeutic target for tinnitus; however, somatic screening of subjects for somatosensory tinnitus is imperative for correct selection of patients who would benefit from a multidisciplinary somatic approach.
Collapse
Affiliation(s)
- Massimo Ralli
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, Italy
| | - Antonio Greco
- Department of Sense Organs, Sapienza University of Rome, Italy
| | | | | | | | | |
Collapse
|
37
|
Cservenák M, Keller D, Kis V, Fazekas EA, Öllös H, Lékó AH, Szabó ÉR, Renner É, Usdin TB, Palkovits M, Dobolyi Á. A Thalamo-Hypothalamic Pathway That Activates Oxytocin Neurons in Social Contexts in Female Rats. Endocrinology 2017; 158:335-348. [PMID: 27841935 PMCID: PMC5413079 DOI: 10.1210/en.2016-1645] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/07/2016] [Indexed: 12/17/2022]
Abstract
Oxytocin is released from neurons in the paraventricular hypothalamic nucleus (PVN) in mothers upon suckling and during adult social interactions. However, neuronal pathways that activate oxytocin neurons in social contexts are not yet established. Neurons in the posterior intralaminar complex of the thalamus (PIL), which contain tuberoinfundibular peptide 39 (TIP39) and are activated by pup exposure in lactating mothers, provide a candidate projection. Innervation of oxytocin neurons by TIP39 neurons was examined by double labeling in combination with electron microscopy and retrograde tract-tracing. Potential classic neurotransmitters in TIP39 neurons were investigated by in situ hybridization histochemistry. Neurons activated after encounter with a familiar conspecific female in a familiar environment were mapped with the c-Fos technique. PVN and the supraoptic nucleus oxytocin neurons were closely apposed by an average of 2.0 and 0.4 TIP39 terminals, respectively. Asymmetric (presumed excitatory) synapses were found between TIP39 terminals and cell bodies of oxytocin neurons. In lactating rats, PIL TIP39 neurons were retrogradely labeled from the PVN. TIP39 neurons expressed vesicular glutamate transporter 2 but not glutamic acid decarboxylase 67. PIL contained a markedly increased number of c-Fos-positive neurons in response to social encounter with a familiar conspecific female. Furthermore, the PIL received ascending input from the spinal cord and the inferior colliculus. Thus, TIP39 neurons in the PIL may receive sensory input in response to social interactions and project to the PVN to innervate and excite oxytocin neurons, suggesting that the PIL-PVN projection contributes to the activation of oxytocin neurons in social contexts.
Collapse
Affiliation(s)
- Melinda Cservenák
- MTA-ELTE NAP B Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary
- Laboratory of Neuromorphology, Department of Anatomy, Cell and Developmental Biology, Institute of Biology, Eötvös Loránd University, Budapest , Hungary
| | - Dávid Keller
- MTA-ELTE NAP B Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary
- Laboratory of Neuromorphology, Department of Anatomy, Cell and Developmental Biology, Institute of Biology, Eötvös Loránd University, Budapest , Hungary
| | - Viktor Kis
- MTA-ELTE NAP B Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary
- Department of Anatomy, Cell and Developmental Biology, Institute of Biology, Eötvös Loránd University, Budapest , Hungary
| | - Emese A Fazekas
- MTA-ELTE NAP B Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary
| | - Hanna Öllös
- MTA-ELTE NAP B Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary
| | - András H Lékó
- Laboratory of Neuromorphology, Department of Anatomy, Cell and Developmental Biology, Institute of Biology, Eötvös Loránd University, Budapest , Hungary
| | - Éva R Szabó
- MTA-ELTE NAP B Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary
- Laboratory of Neuromorphology, Department of Anatomy, Cell and Developmental Biology, Institute of Biology, Eötvös Loránd University, Budapest , Hungary
| | - Éva Renner
- MTA-SE NAP Human Brain Tissue Bank Microdissection Laboratory, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Ted B Usdin
- Section on Fundamental Neuroscience, National Institute of Mental Health, Bethesda, Maryland
| | - Miklós Palkovits
- MTA-SE NAP Human Brain Tissue Bank Microdissection Laboratory, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Árpád Dobolyi
- MTA-ELTE NAP B Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary
- Laboratory of Neuromorphology, Department of Anatomy, Cell and Developmental Biology, Institute of Biology, Eötvös Loránd University, Budapest , Hungary
| |
Collapse
|
38
|
Wallace MM, Harris JA, Brubaker DQ, Klotz CA, Gabriele ML. Graded and discontinuous EphA-ephrinB expression patterns in the developing auditory brainstem. Hear Res 2016; 335:64-75. [PMID: 26906676 DOI: 10.1016/j.heares.2016.02.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 02/02/2016] [Accepted: 02/18/2016] [Indexed: 01/06/2023]
Abstract
Eph-ephrin interactions guide topographic mapping and pattern formation in a variety of systems. In contrast to other sensory pathways, their precise role in the assembly of central auditory circuits remains poorly understood. The auditory midbrain, or inferior colliculus (IC) is an intriguing structure for exploring guidance of patterned projections as adjacent subdivisions exhibit distinct organizational features. The central nucleus of the IC (CNIC) and deep aspects of its neighboring lateral cortex (LCIC, Layer 3) are tonotopically-organized and receive layered inputs from primarily downstream auditory sources. While less is known about more superficial aspects of the LCIC, its inputs are multimodal, lack a clear tonotopic order, and appear discontinuous, terminating in modular, patch/matrix-like distributions. Here we utilize X-Gal staining approaches in lacZ mutant mice (ephrin-B2, -B3, and EphA4) to reveal EphA-ephrinB expression patterns in the nascent IC during the period of projection shaping that precedes hearing onset. We also report early postnatal protein expression in the cochlear nuclei, the superior olivary complex, the nuclei of the lateral lemniscus, and relevant midline structures. Continuous ephrin-B2 and EphA4 expression gradients exist along frequency axes of the CNIC and LCIC Layer 3. In contrast, more superficial LCIC localization is not graded, but confined to a series of discrete ephrin-B2 and EphA4-positive Layer 2 modules. While heavily expressed in the midline, much of the auditory brainstem is devoid of ephrin-B3, including the CNIC, LCIC Layer 2 modular fields, the dorsal nucleus of the lateral lemniscus (DNLL), as well as much of the superior olivary complex and cochlear nuclei. Ephrin-B3 LCIC expression appears complementary to that of ephrin-B2 and EphA4, with protein most concentrated in presumptive extramodular zones. Described tonotopic gradients and seemingly complementary modular/extramodular patterns suggest Eph-ephrin guidance in establishing juxtaposed continuous and discrete neural maps in the developing IC prior to experience.
Collapse
Affiliation(s)
- Matthew M Wallace
- James Madison University, Department of Biology, Harrisonburg, VA 22807, USA
| | - J Aaron Harris
- James Madison University, Department of Biology, Harrisonburg, VA 22807, USA
| | - Donald Q Brubaker
- James Madison University, Department of Biology, Harrisonburg, VA 22807, USA
| | - Caitlyn A Klotz
- James Madison University, Department of Biology, Harrisonburg, VA 22807, USA
| | - Mark L Gabriele
- James Madison University, Department of Biology, Harrisonburg, VA 22807, USA.
| |
Collapse
|
39
|
Abstract
Tinnitus is a phantom auditory sensation that reduces quality of life for millions of people worldwide, and for which there is no medical cure. Most cases of tinnitus are associated with hearing loss caused by ageing or noise exposure. Exposure to loud recreational sound is common among the young, and this group are at increasing risk of developing tinnitus. Head or neck injuries can also trigger the development of tinnitus, as altered somatosensory input can affect auditory pathways and lead to tinnitus or modulate its intensity. Emotional and attentional state could be involved in the development and maintenance of tinnitus via top-down mechanisms. Thus, military personnel in combat are particularly at risk owing to combined risk factors (hearing loss, somatosensory system disturbances and emotional stress). Animal model studies have identified tinnitus-associated neural changes that commence at the cochlear nucleus and extend to the auditory cortex and other brain regions. Maladaptive neural plasticity seems to underlie these changes: it results in increased spontaneous firing rates and synchrony among neurons in central auditory structures, possibly generating the phantom percept. This Review highlights the links between animal and human studies, and discusses several therapeutic approaches that have been developed to target the neuroplastic changes underlying tinnitus.
Collapse
|
40
|
Basura GJ, Koehler SD, Shore SE. Bimodal stimulus timing-dependent plasticity in primary auditory cortex is altered after noise exposure with and without tinnitus. J Neurophysiol 2015; 114:3064-75. [PMID: 26289461 DOI: 10.1152/jn.00319.2015] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 08/18/2015] [Indexed: 01/08/2023] Open
Abstract
Central auditory circuits are influenced by the somatosensory system, a relationship that may underlie tinnitus generation. In the guinea pig dorsal cochlear nucleus (DCN), pairing spinal trigeminal nucleus (Sp5) stimulation with tones at specific intervals and orders facilitated or suppressed subsequent tone-evoked neural responses, reflecting spike timing-dependent plasticity (STDP). Furthermore, after noise-induced tinnitus, bimodal responses in DCN were shifted from Hebbian to anti-Hebbian timing rules with less discrete temporal windows, suggesting a role for bimodal plasticity in tinnitus. Here, we aimed to determine if multisensory STDP principles like those in DCN also exist in primary auditory cortex (A1), and whether they change following noise-induced tinnitus. Tone-evoked and spontaneous neural responses were recorded before and 15 min after bimodal stimulation in which the intervals and orders of auditory-somatosensory stimuli were randomized. Tone-evoked and spontaneous firing rates were influenced by the interval and order of the bimodal stimuli, and in sham-controls Hebbian-like timing rules predominated as was seen in DCN. In noise-exposed animals with and without tinnitus, timing rules shifted away from those found in sham-controls to more anti-Hebbian rules. Only those animals with evidence of tinnitus showed increased spontaneous firing rates, a purported neurophysiological correlate of tinnitus in A1. Together, these findings suggest that bimodal plasticity is also evident in A1 following noise damage and may have implications for tinnitus generation and therapeutic intervention across the central auditory circuit.
Collapse
Affiliation(s)
- Gregory J Basura
- Department of Otolaryngology/Head and Neck Surgery, Kresge Hearing Research Institute, The University of Michigan, Ann Arbor, Michigan;
| | - Seth D Koehler
- Department of Biomedical Engineering, The University of Michigan, Ann Arbor, Michigan; and
| | - Susan E Shore
- Department of Otolaryngology/Head and Neck Surgery, Kresge Hearing Research Institute, The University of Michigan, Ann Arbor, Michigan; Department of Biomedical Engineering, The University of Michigan, Ann Arbor, Michigan; and Molecular and Integrative Physiology, The University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
41
|
Wu C, Stefanescu RA, Martel DT, Shore SE. Listening to another sense: somatosensory integration in the auditory system. Cell Tissue Res 2015; 361:233-50. [PMID: 25526698 PMCID: PMC4475675 DOI: 10.1007/s00441-014-2074-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/18/2014] [Indexed: 12/19/2022]
Abstract
Conventionally, sensory systems are viewed as separate entities, each with its own physiological process serving a different purpose. However, many functions require integrative inputs from multiple sensory systems and sensory intersection and convergence occur throughout the central nervous system. The neural processes for hearing perception undergo significant modulation by the two other major sensory systems, vision and somatosensation. This synthesis occurs at every level of the ascending auditory pathway: the cochlear nucleus, inferior colliculus, medial geniculate body and the auditory cortex. In this review, we explore the process of multisensory integration from (1) anatomical (inputs and connections), (2) physiological (cellular responses), (3) functional and (4) pathological aspects. We focus on the convergence between auditory and somatosensory inputs in each ascending auditory station. This review highlights the intricacy of sensory processing and offers a multisensory perspective regarding the understanding of sensory disorders.
Collapse
Affiliation(s)
- Calvin Wu
- Department of Otolaryngology, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | | | | |
Collapse
|
42
|
Wu C, Stefanescu RA, Martel DT, Shore SE. Tinnitus: Maladaptive auditory-somatosensory plasticity. Hear Res 2015; 334:20-9. [PMID: 26074307 DOI: 10.1016/j.heares.2015.06.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/25/2015] [Accepted: 06/02/2015] [Indexed: 01/05/2023]
Abstract
Tinnitus, the phantom perception of sound, is physiologically characterized by an increase in spontaneous neural activity in the central auditory system. However, as tinnitus is often associated with hearing impairment, it is unclear how a decrease of afferent drive can result in central hyperactivity. In this review, we first assess methods for tinnitus induction and objective measures of the tinnitus percept in animal models. From animal studies, we discuss evidence that tinnitus originates in the cochlear nucleus (CN), and hypothesize mechanisms whereby hyperactivity may develop in the CN after peripheral auditory nerve damage. We elaborate how this process is likely mediated by plasticity of auditory-somatosensory integration in the CN: the circuitry in normal circumstances maintains a balance of auditory and somatosensory activities, and loss of auditory inputs alters the balance of auditory somatosensory integration in a stimulus timing dependent manner, which propels the circuit towards hyperactivity. Understanding the mechanisms underlying tinnitus generation is essential for its prevention and treatment. This article is part of a Special Issue entitled <Tinnitus>.
Collapse
Affiliation(s)
- Calvin Wu
- Department of Otolaryngology, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI, USA
| | - Roxana A Stefanescu
- Department of Otolaryngology, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI, USA
| | - David T Martel
- Department of Otolaryngology, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI, USA
| | - Susan E Shore
- Department of Otolaryngology, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
43
|
Berger JI, Coomber B. Tinnitus-related changes in the inferior colliculus. Front Neurol 2015; 6:61. [PMID: 25870582 PMCID: PMC4378364 DOI: 10.3389/fneur.2015.00061] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/09/2015] [Indexed: 12/21/2022] Open
Abstract
Tinnitus is highly complex, diverse, and difficult to treat, in part due to the fact that the underlying causes and mechanisms remain elusive. Tinnitus is generated within the auditory brain; however, consolidating our understanding of tinnitus pathophysiology is difficult due to the diversity of reported effects and the variety of implicated brain nuclei. Here, we focus on the inferior colliculus (IC), a midbrain structure that integrates the vast majority of ascending auditory information and projects via the thalamus to the auditory cortex. The IC is also a point of convergence for corticofugal input and input originating outside the auditory pathway. We review the evidence, from both studies with human subjects and from animal models, for the contribution the IC makes to tinnitus. Changes in the IC, caused by either noise exposure or drug administration, involve fundamental, heterogeneous alterations in the balance of excitation and inhibition. However, differences between hearing loss-induced pathology and tinnitus-related pathology are not well understood. Moreover, variability in tinnitus induction methodology has a significant impact on subsequent neural and behavioral changes, which could explain some of the seemingly contradictory data. Nonetheless, the IC is likely involved in the generation and persistence of tinnitus perception.
Collapse
Affiliation(s)
- Joel I Berger
- Medical Research Council Institute of Hearing Research, University of Nottingham , Nottingham , UK
| | - Ben Coomber
- Medical Research Council Institute of Hearing Research, University of Nottingham , Nottingham , UK
| |
Collapse
|
44
|
Restuccia D, Coppola G. Auditory stimulation enhances thalamic somatosensory high-frequency oscillations in healthy humans: a neurophysiological marker of cross-sensory sensitization? Eur J Neurosci 2015; 41:1079-85. [PMID: 25784489 DOI: 10.1111/ejn.12873] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 02/11/2015] [Accepted: 02/12/2015] [Indexed: 12/13/2022]
Abstract
Electrical stimulation of upper limb nerves evokes a train of high-frequency wavelets (high-frequency oscillations, HFOs) on the human scalp. These HFOs are related to the influence of arousal-promoting structures on somatosensory input processing, and are generated in the primary somatosensory cortex (post-synaptic HFOs) and the terminal tracts of thalamocortical radiations (pre-synaptic HFOs). We previously reported that HFOs do not undergo habituation to repeated stimulations; here, we verified whether HFOs could be modulated by external sensitizing stimuli. We recorded somatosensory evoked potentials (SSEPs) in 15 healthy volunteers before and after sensitization training with an auditory stimulus. Pre-synaptic HFO amplitudes, reflecting somatosensory thalamic/thalamocortical activity, significantly increased after the sensitizing acoustic stimulation, whereas both the low-frequency N20 SSEP component and post-synaptic HFOs were unaffected. Cross-talk between subcortical arousal-related structures is a probable mechanism for the pre-synaptic HFO effect observed in this study. We propose that part of the ascending somatosensory input encoded in HFOs is specifically able to convey sensitized inputs. This preferential involvement in sensitization mechanisms suggests that HFOs play a critical role in the detection of potentially relevant stimuli, and act at very early stages of somatosensory input processing.
Collapse
Affiliation(s)
- Domenico Restuccia
- Department of Neurosciences, Catholic University, Largo A. Gemelli 8, Rome, 00168, Italy
| | | |
Collapse
|
45
|
Cianfrone G, Mazzei F, Salviati M, Turchetta R, Orlando MP, Testugini V, Carchiolo L, Cianfrone F, Altissimi G. Tinnitus Holistic Simplified Classification (THoSC): A New Assessment for Subjective Tinnitus, With Diagnostic and Therapeutic Implications. Ann Otol Rhinol Laryngol 2015; 124:550-60. [PMID: 25725038 DOI: 10.1177/0003489415570931] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE One of the most debated topics in tinnitus is its standard and practical classification. The most popular classification distinguishes subjective from objective tinnitus. Other classifications are based on different features. On the whole, they seem incomplete, and the diagnostic and therapeutic algorithms are often difficult for practical purposes. The aim of this work is to develop a new diagnostic and therapeutic algorithm. METHODS Our model is based on 10 years of experience. In particular, the starting point is the data retrieved from 212 consecutive patients in our Tinnitus Unit between May and December 2013: We found a clear auditory disorder in 74.5% of the population, muscolo-skeletal disorders and/or trigeminal disease in 57.1%, and psychiatric comorbidities in 43.8%. Different features coexisted in 59.9% of the population. RESULTS Following such data we propose the Tinnitus Holistic Simplified Classification, which takes into account the different tinnitogenic mechanisms and the interactions between them. It differentiates tinnitus that arises from: (1) auditory alterations (Auditory Tinnitus), (2) complex auditory-somatosensory interactions (Somatosensory Tinnitus), (3) psychopathological-auditory interactions (Psychopathology-related Tinnitus), and (4) 2 or all of the previous mechanisms (Combined Tinnitus). CONCLUSIONS In our opinion this classification provides an accurate and easy tailored path to manage tinnitus patients.
Collapse
Affiliation(s)
- Giancarlo Cianfrone
- Department of Otorhinolayngology, Audiology and Ophtalmology, Unit of Audiology, Sapienza University of Rome, Rome, Italy
| | - Filippo Mazzei
- Department of Otorhinolayngology, Audiology and Ophtalmology, Unit of Audiology, Sapienza University of Rome, Rome, Italy
| | - Massimo Salviati
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Rosaria Turchetta
- Department of Otorhinolayngology, Audiology and Ophtalmology, Unit of Audiology, Sapienza University of Rome, Rome, Italy
| | - Maria Patrizia Orlando
- Department of Otorhinolayngology, Audiology and Ophtalmology, Unit of Audiology, Sapienza University of Rome, Rome, Italy
| | - Valeria Testugini
- A.I.R.S. Italian Association for the Research on Deafness, Rome, Italy
| | - Laura Carchiolo
- A.I.R.S. Italian Association for the Research on Deafness, Rome, Italy
| | | | - Giancarlo Altissimi
- Department of Otorhinolayngology, Audiology and Ophtalmology, Unit of Audiology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
46
|
Laramée ME, Boire D. Visual cortical areas of the mouse: comparison of parcellation and network structure with primates. Front Neural Circuits 2015; 8:149. [PMID: 25620914 PMCID: PMC4286719 DOI: 10.3389/fncir.2014.00149] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 12/09/2014] [Indexed: 12/27/2022] Open
Abstract
Brains have evolved to optimize sensory processing. In primates, complex cognitive tasks must be executed and evolution led to the development of large brains with many cortical areas. Rodents do not accomplish cognitive tasks of the same level of complexity as primates and remain with small brains both in relative and absolute terms. But is a small brain necessarily a simple brain? In this review, several aspects of the visual cortical networks have been compared between rodents and primates. The visual system has been used as a model to evaluate the level of complexity of the cortical circuits at the anatomical and functional levels. The evolutionary constraints are first presented in order to appreciate the rules for the development of the brain and its underlying circuits. The organization of sensory pathways, with their parallel and cross-modal circuits, is also examined. Other features of brain networks, often considered as imposing constraints on the development of underlying circuitry, are also discussed and their effect on the complexity of the mouse and primate brain are inspected. In this review, we discuss the common features of cortical circuits in mice and primates and see how these can be useful in understanding visual processing in these animals.
Collapse
Affiliation(s)
- Marie-Eve Laramée
- Laboratory of Neuroplasticity and Neuroproteomics, Department of Biology, KU Leuven-University of Leuven Leuven, Belgium
| | - Denis Boire
- Département d'anatomie, Université du Québec à Trois-Rivières Trois-Rivières, QC, Canada
| |
Collapse
|
47
|
Cramer KS, Gabriele ML. Axon guidance in the auditory system: multiple functions of Eph receptors. Neuroscience 2014; 277:152-62. [PMID: 25010398 DOI: 10.1016/j.neuroscience.2014.06.068] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/05/2014] [Accepted: 06/28/2014] [Indexed: 11/29/2022]
Abstract
The neural pathways of the auditory system underlie our ability to detect sounds and to transform amplitude and frequency information into rich and meaningful perception. While it shares some organizational features with other sensory systems, the auditory system has some unique functions that impose special demands on precision in circuit assembly. In particular, the cochlear epithelium creates a frequency map rather than a space map, and specialized pathways extract information on interaural time and intensity differences to permit sound source localization. The assembly of auditory circuitry requires the coordinated function of multiple molecular cues. Eph receptors and their ephrin ligands constitute a large family of axon guidance molecules with developmentally regulated expression throughout the auditory system. Functional studies of Eph/ephrin signaling have revealed important roles at multiple levels of the auditory pathway, from the cochlea to the auditory cortex. These proteins provide graded cues used in establishing tonotopically ordered connections between auditory areas, as well as discrete cues that enable axons to form connections with appropriate postsynaptic partners within a target area. Throughout the auditory system, Eph proteins help to establish patterning in neural pathways during early development. This early targeting, which is further refined with neuronal activity, establishes the precision needed for auditory perception.
Collapse
Affiliation(s)
- K S Cramer
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, United States.
| | - M L Gabriele
- Department of Biology, James Madison University, Harrisonburg, VA 22807, United States
| |
Collapse
|
48
|
Chandrasekaran L, Xiao Y, Sivaramakrishnan S. Functional architecture of the inferior colliculus revealed with voltage-sensitive dyes. Front Neural Circuits 2013; 7:41. [PMID: 23518906 PMCID: PMC3602642 DOI: 10.3389/fncir.2013.00041] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 02/28/2013] [Indexed: 11/22/2022] Open
Abstract
We used optical imaging with voltage-sensitive dyes to investigate the spatio-temporal dynamics of synaptically evoked activity in brain slices of the inferior colliculus (IC). Responses in transverse slices which preserve cross-frequency connections and in modified sagittal slices that preserve connections within frequency laminae were evoked by activating the lateral lemniscal tract. Comparing activity between small and large populations of cells revealed response areas in the central nucleus of the IC that were similar in magnitude but graded temporally. In transverse sections, these response areas are summed to generate a topographic response profile. Activity through the commissure to the contralateral IC required an excitation threshold that was reached when GABAergic inhibition was blocked. Within laminae, module interaction created temporal homeostasis. Diffuse activity evoked by a single lemniscal shock re-organized into distinct spatial and temporal compartments when stimulus trains were used, and generated a directional activity profile within the lamina. Using different stimulus patterns to activate subsets of microcircuits in the central nucleus of the IC, we found that localized responses evoked by low-frequency stimulus trains spread extensively when train frequency was increased, suggesting recruitment of silent microcircuits. Long stimulus trains activated a circuit specific to post-inhibitory rebound neurons. Rebound microcircuits were defined by a focal point of initiation that spread to an annular ring that oscillated between inhibition and excitation. We propose that much of the computing power of the IC is derived from local circuits, some of which are cell-type specific. These circuits organize activity within and across frequency laminae, and are critical in determining the stimulus-selectivity of auditory coding.
Collapse
Affiliation(s)
- Lakshmi Chandrasekaran
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University Rootstown, OH, USA
| | | | | |
Collapse
|
49
|
Morcinek K, Köhler C, Götz J, Schröder H. Pattern of tau hyperphosphorylation and neurotransmitter markers in the brainstem of senescent tau filament forming transgenic mice. Brain Res 2013; 1497:73-84. [DOI: 10.1016/j.brainres.2012.12.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 12/10/2012] [Accepted: 12/12/2012] [Indexed: 11/24/2022]
|
50
|
Gruters KG, Groh JM. Sounds and beyond: multisensory and other non-auditory signals in the inferior colliculus. Front Neural Circuits 2012; 6:96. [PMID: 23248584 PMCID: PMC3518932 DOI: 10.3389/fncir.2012.00096] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 11/15/2012] [Indexed: 11/20/2022] Open
Abstract
The inferior colliculus (IC) is a major processing center situated mid-way along both the ascending and descending auditory pathways of the brain stem. Although it is fundamentally an auditory area, the IC also receives anatomical input from non-auditory sources. Neurophysiological studies corroborate that non-auditory stimuli can modulate auditory processing in the IC and even elicit responses independent of coincident auditory stimulation. In this article, we review anatomical and physiological evidence for multisensory and other non-auditory processing in the IC. Specifically, the contributions of signals related to vision, eye movements and position, somatosensation, and behavioral context to neural activity in the IC will be described. These signals are potentially important for localizing sound sources, attending to salient stimuli, distinguishing environmental from self-generated sounds, and perceiving and generating communication sounds. They suggest that the IC should be thought of as a node in a highly interconnected sensory, motor, and cognitive network dedicated to synthesizing a higher-order auditory percept rather than simply reporting patterns of air pressure detected by the cochlea. We highlight some of the potential pitfalls that can arise from experimental manipulations that may disrupt the normal function of this network, such as the use of anesthesia or the severing of connections from cortical structures that project to the IC. Finally, we note that the presence of these signals in the IC has implications for our understanding not just of the IC but also of the multitude of other regions within and beyond the auditory system that are dependent on signals that pass through the IC. Whatever the IC “hears” would seem to be passed both “upward” to thalamus and thence to auditory cortex and beyond, as well as “downward” via centrifugal connections to earlier areas of the auditory pathway such as the cochlear nucleus.
Collapse
Affiliation(s)
- Kurtis G Gruters
- Department of Psychology and Neuroscience, Duke University Durham, NC, USA
| | | |
Collapse
|