1
|
Wang B, Arbuckle RK, Davoli KA, Clinger OD, Brown R, Sahel JA, Chen Y, Pi S. Compensation of inner retina to early-stage photoreceptor degeneration in a Rho P23H/+ mouse model of retinitis pigmentosa. Exp Eye Res 2024; 240:109826. [PMID: 38340947 PMCID: PMC10940204 DOI: 10.1016/j.exer.2024.109826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Retinitis pigmentosa (RP) is an inherited retinal disorder characterized by the degeneration of photoreceptors. RhoP23H/+ mice, which carry a Pro23His mutation in the RHODOPSIN (Rho) gene, are one of the most studied animal models for RP. However, except for the photoreceptors, other retinal neural cells have not been fully investigated in this model. Here, we record the temporal changes of the retina by optical coherence tomography (OCT) imaging of the RhoP23H/+ mice, from early to mid-phase of retinal degeneration. Based on thickness analysis, we identified a natural retinal thickness adaption in wild-type mice during early adulthood and observed morphological compensation of the inner retina layer to photoreceptor degeneration in the RhoP23H/+ mice, primarily on the inner nuclear layer (INL). RhoP23H/+ mice findings were further validated via: histology showing the negative correlation of INL and ONL thicknesses; as well as electroretinogram (ERG) showing an increased b-wave to a-wave ratio. These results unravel the sequential morphologic events in this model and suggest a better understanding of retinal degeneration of RP for future studies.
Collapse
Affiliation(s)
- Bingjie Wang
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; UPMC Vision Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Riley K Arbuckle
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; UPMC Vision Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, 15213, USA
| | - Katherine A Davoli
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; UPMC Vision Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Owen D Clinger
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; UPMC Vision Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Richard Brown
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; UPMC Vision Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - José-Alain Sahel
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; UPMC Vision Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Yuanyuan Chen
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; UPMC Vision Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| | - Shaohua Pi
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; UPMC Vision Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
2
|
Zhang L, Liu W, Wang HY, Qiang W, Wang R, Cui ZL, Zhang ZM. The temporal progression of retinal degeneration and early-stage idebenone treatment in the Pde6b rd1/rd1 mouse model of retinal dystrophy. Sci Rep 2024; 14:2019. [PMID: 38263197 PMCID: PMC10805728 DOI: 10.1038/s41598-024-52391-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/18/2024] [Indexed: 01/25/2024] Open
Abstract
Photoreceptor cell death, primarily through apoptosis, related to retinal disorders like retinitis pigmentosa (RP), would result in vision loss. The pathological processes and crucial mutant conditions preceding photoreceptor cell demise are not well understood. This study aims to conduct an in-depth examination of early-stage changes in the widely utilized Pde6brd1/rd1 (rd1) mouse model, which has Pde6b gene mutations representing autosomal recessive RP disorder. We investigated the morphology and ultrastructure of retinal cells, including second-order neurons, during the initial phase of disease progression. Our findings revealed that mitochondrial alterations in rod photoreceptors were present as a predeath mutant state as early as postnatal day 3 (P3). The bipolar and horizontal cells from the rd1 mouse retina exhibited significant morphological changes in response to loss of photoreceptor cells, indicating that second-order neurons rely on these cells for their structures. Subsequent oral administration of idebenone, a mitochondria-protective agent, enhanced retinal function and promoted both photoreceptor cell survival and inner retinal second-order synaptogenesis in rd1 mice at P14. Our findings offer a mechanistic framework, suggesting that mitochondrial damage acts as an early driver for photoreceptor cell death in retinal degeneration.
Collapse
Affiliation(s)
- Lei Zhang
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, 710004, China
- Xi'an Key Laboratory of Digital Medical Technology of Ophthalmologic Imaging, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, 710004, China
| | - Wei Liu
- Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
| | - Hai-Yan Wang
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, 710004, China.
- Xi'an Key Laboratory of Digital Medical Technology of Ophthalmologic Imaging, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, 710004, China.
| | - Wei Qiang
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, 710004, China
- Xi'an Key Laboratory of Digital Medical Technology of Ophthalmologic Imaging, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, 710004, China
| | - Ru Wang
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, 710004, China
- Xi'an Key Laboratory of Digital Medical Technology of Ophthalmologic Imaging, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, 710004, China
| | - Zhi-Li Cui
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, 710004, China
- Xi'an Key Laboratory of Digital Medical Technology of Ophthalmologic Imaging, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, 710004, China
| | - Zuo-Ming Zhang
- Department of Clinical Medicine, Faculty of Aerospace Medicine, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China.
| |
Collapse
|
3
|
Schilardi G, Kralik J, Kleinlogel S. Selective Block of Upregulated Kv1.3 Potassium Channels in ON-Bipolar Cells of the Blind Retina Enhances Optogenetically Restored Signaling. Int J Mol Sci 2023; 24:14207. [PMID: 37762510 PMCID: PMC10531754 DOI: 10.3390/ijms241814207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/13/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Loss of photoreceptors in retinal degenerative diseases also impacts the inner retina: bipolar cell dendrites retract, neurons rewire, and protein expression changes. ON-bipolar cells (OBCs) represent an attractive target for optogenetic vision restoration. However, the above-described maladaptations may negatively impact the quality of restored vision. To investigate this question, we employed human post-mortem retinas and transgenic rd1_Opto-mGluR6 mice expressing the optogenetic construct Opto-mGluR6 in OBCs and carrying the retinal degeneration rd1 mutation. We found significant changes in delayed rectifier potassium channel expression in OBCs of degenerative retinas. In particular, we found an increase in Kv1.3 expression already in early stages of degeneration. Immunohistochemistry localized Kv1.3 channels specifically to OBC axons. In whole-cell patch-clamp experiments, OBCs in the degenerated murine retina were less responsive, which could be reversed by application of the specific Kv1.3 antagonist Psora-4. Notably, Kv1.3 block significantly increased the amplitude and kinetics of Opto-mGluR6-mediated light responses in OBCs of the blind retina and increased the signal-to-noise ratio of light-triggered responses in retinal ganglion cells. We propose that reduction in Kv1.3 activity in the degenerated retina, either by pharmacological block or by KCNA3 gene silencing, could improve the quality of restored vision.
Collapse
|
4
|
Reynisson H, Kalloniatis M, Fletcher EL, Shivdasani MN, Nivison-Smith L. Loss of Müller cell glutamine synthetase immunoreactivity is associated with neuronal changes in late-stage retinal degeneration. Front Neuroanat 2023; 17:997722. [PMID: 36960036 PMCID: PMC10029270 DOI: 10.3389/fnana.2023.997722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/31/2023] [Indexed: 03/09/2023] Open
Abstract
Introduction A hallmark of photoreceptor degenerations is progressive, aberrant remodeling of the surviving retinal neurons and glia following photoreceptor loss. The exact relationship between neurons and glia remodeling in this late stage of retinal degeneration, however, is unclear. This study assessed this by examining Müller cell dysfunction via glutamine synthetase immunoreactivity and its spatial association with retinal neuron subpopulations through various cell markers. Methods Aged Rd1 mice retinae (P150 - P536, n = minimum 5 per age) and control heterozygous rd1 mice retinae (P536, n = 5) were isolated, fixed and cryosectioned. Fluorescent immunolabeling of glutamine synthetase was performed and retinal areas quantified as having low glutamine synthetase immunoreactivity if proportion of labeled pixels in an area was less than two standard deviations of the mean of the total retina. Other Müller cell markers such as Sox9 and Glial fibrillary acidic protein along with neuronal cell markers Calbindin, Calretinin, recoverin, Protein kinase C-α, Glutamic acid decarboxylase 67, and Islet-1 were then quantified within areas of low and normal synthetase immunoreactivity. Results Glutamine synthetase immunoreactivity was lost as a function of age in the rd1 mouse retina (P150 - P536). Immunoreactivity of other Müller cell markers, however, were unaffected suggesting Müller cells were still present in these low glutamine synthetase immunoreactive regions. Glutamine synthetase immunoreactivity loss affected specific neuronal populations: Type 2, Type 8 cone, and rod bipolar cells, as well as AII amacrine cells based on reduced recoverin, protein kinase Ca and parvalbumin immunoreactivity, respectively. The number of cell nuclei within regions of low glutamine synthetase immunoreactivity was also reduced suggesting possible neuronal loss rather than reduced cell marker immunoreactivity. Conclusion These findings further support a strong interplay between glia-neuronal alterations in late-stage degeneration and highlight a need for future studies and consideration in intervention development.
Collapse
Affiliation(s)
- Hallur Reynisson
- School of Optometry and Vision Science, UNSW Sydney, Sydney, NSW, Australia
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia
| | - Michael Kalloniatis
- School of Optometry and Vision Science, UNSW Sydney, Sydney, NSW, Australia
- Faculty of Medicine (Optometry), Deakin University, Waurn Ponds, VIC, Australia
| | - Erica L. Fletcher
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - Mohit N. Shivdasani
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia
- Bionics and Bio-robotics, Tyree Foundation Institute of Health Engineering, Kensington, NSW, Australia
| | - Lisa Nivison-Smith
- School of Optometry and Vision Science, UNSW Sydney, Sydney, NSW, Australia
- *Correspondence: Lisa Nivison-Smith,
| |
Collapse
|
5
|
Pfeiffer RL, Jones BW. Current perspective on retinal remodeling: Implications for therapeutics. Front Neuroanat 2022; 16:1099348. [PMID: 36620193 PMCID: PMC9813390 DOI: 10.3389/fnana.2022.1099348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
The retinal degenerative diseases retinitis pigmentosa and age-related macular degeneration are a leading cause of irreversible vision loss. Both present with progressive photoreceptor degeneration that is further complicated by processes of retinal remodeling. In this perspective, we discuss the current state of the field of retinal remodeling and its implications for vision-restoring therapeutics currently in development. Here, we discuss the challenges and pitfalls retinal remodeling poses for each therapeutic strategy under the premise that understanding the features of retinal remodeling in totality will provide a basic framework with which therapeutics can interface. Additionally, we discuss the potential for approaching therapeutics using a combined strategy of using diffusible molecules in tandem with other vision-restoring therapeutics. We end by discussing the potential of the retina and retinal remodeling as a model system for more broadly understanding the progression of neurodegeneration across the central nervous system.
Collapse
|
6
|
Rotov AY, Firsov ML. Optogenetic Prosthetization of Retinal Bipolar Cells. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022060011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract
Although the experience of optogenetic retinal prosthetics
in animal models dates back to more than 16 years, the first results
obtained on humans have only been reported in the last year. Over this
period, the main challenges of prosthetics became clear and the
approaches to their solution were proposed. In this review, we aim
to present the achievements in the field of optogenetic prosthetization
of retinal bipolar cells with a focus mainly on relatively recent
publications. The review addresses the advantages and disadvantages
of bipolar cell prosthetics as compared to the alternative target,
retinal ganglion cells, and provides a comparative analysis of the
effectiveness of ionotropic light-sensitive proteins (channelrhodopsins)
or metabotropic receptors (rhodopsins) as prosthetic tools.
Collapse
|
7
|
Schilardi G, Kleinlogel S. Two Functional Classes of Rod Bipolar Cells in the Healthy and Degenerated Optogenetically Treated Murine Retina. Front Cell Neurosci 2022; 15:809531. [PMID: 35095426 PMCID: PMC8793500 DOI: 10.3389/fncel.2021.809531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/20/2021] [Indexed: 11/25/2022] Open
Abstract
Bipolar cells have become successful targets for optogenetic gene therapies that restore vision after photoreceptor degeneration. However, degeneration was shown to cause changes in neuronal connectivity and protein expression, which may impact the quality of synthetically restored signaling. Further, the expression of an optogenetic protein may alter passive membrane properties of bipolar cells affecting signal propagation. We here investigated the passive membrane properties of rod bipolar cells in three different systems, the healthy retina, the degenerated retina, and the degenerated retina expressing the optogenetic actuator Opto-mGluR6. We found that, based on the shape of their current-voltage relations, rod bipolar cells in healthy and degenerated retinas form two clear functional groups (type 1 and type 2 cells). Depolarizing the membrane potential changed recorded current-voltage curves from type 1 to type 2, confirming a single cell identity with two functional states. Expression of Opto-mGluR6 did not alter the passive properties of the rod bipolar cell. With progressing degeneration, dominant outward rectifying currents recorded in type 2 rod bipolar cells decreased significantly. We demonstrate that this is caused by a downregulation of BK channel expression in the degenerated retina. Since this BK conductance will normally recover the membrane potential after RBCs are excited by open TRPM1 channels, a loss in BK will decrease high-pass filtering at the rod bipolar cell level. A better understanding of the changes of bipolar cell physiology during retinal degeneration may pave the way to optimize future treatment strategies of blindness.
Collapse
|
8
|
Zhang J, Gao F, Ma Y, Xue T, Shen Y. Identification of early-onset photoreceptor degeneration in transgenic mouse models of Alzheimer's disease. iScience 2021; 24:103327. [PMID: 34805789 PMCID: PMC8581578 DOI: 10.1016/j.isci.2021.103327] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/23/2021] [Accepted: 10/19/2021] [Indexed: 12/20/2022] Open
Abstract
Light sensitivity of the vertebrate retina relies on the integrity of photoreceptors, including rods and cones. Research in patients with Alzheimer's disease (AD) and in AD transgenic mice reports that accumulated amyloid-β (Aβ) plaques in the retina are toxic to retinal neurons. Moreover, Aβ plaques are deposited around the rods and cones, yet photoreceptor anomalies remain unclear in AD. Here, we identify the progressive degeneration of rods and cones characterized by impaired expression of phototransduction proteins, morphological alterations, functional deficits, and even cell loss. Furthermore, we demonstrate that cell senescence and necroptosis were involved in rod degeneration. Importantly, using in vivo scotopic electroretinogram, we detected rod degeneration in early-stage AD transgenic mice before Aβ plaques were observed in the brain. Moreover, we demonstrate that rod degeneration was among the earliest AD retinal manifestations compared with other types of retinal neurons. Overall, our study is the first to identify and detect in vivo, early-onset photoreceptor degeneration in AD. Progressive rod degeneration has been identified in AD transgenic mice Cell senescence and necroptosis were involved in rod degeneration Rod degeneration can be detected by in vivo scotopic electroretinogram Rod degeneration has earlier onset than amyloid-β plaques in the brain
Collapse
Affiliation(s)
- Jie Zhang
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Science, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230026, China
- Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei 230026, China
| | - Feng Gao
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Science, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230026, China
- Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei 230026, China
| | - Yuqian Ma
- Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei 230026, China
- Eye Center at The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Tian Xue
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Science, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230026, China
- Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei 230026, China
- Eye Center at The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230026, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yong Shen
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Science, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230026, China
- Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei 230026, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Corresponding author
| |
Collapse
|
9
|
Al Mouiee D, Meijering E, Kalloniatis M, Nivison-Smith L, Williams RA, Nayagam DAX, Spencer TC, Luu CD, McGowan C, Epp SB, Shivdasani MN. Classifying Retinal Degeneration in Histological Sections Using Deep Learning. Transl Vis Sci Technol 2021; 10:9. [PMID: 34110385 PMCID: PMC8196406 DOI: 10.1167/tvst.10.7.9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Purpose Artificial intelligence (AI) techniques are increasingly being used to classify retinal diseases. In this study we investigated the ability of a convolutional neural network (CNN) in categorizing histological images into different classes of retinal degeneration. Methods Images were obtained from a chemically induced feline model of monocular retinal dystrophy and split into training and testing sets. The training set was graded for the level of retinal degeneration and used to train various CNN architectures. The testing set was evaluated through the best architecture and graded by six observers. Comparisons between model and observer classifications, and interobserver variability were measured. Finally, the effects of using less training images or images containing half the presentable context were investigated. Results The best model gave weighted-F1 scores in the range 85% to 90%. Cohen kappa scores reached up to 0.86, indicating high agreement between the model and observers. Interobserver variability was consistent with the model-observer variability in the model's ability to match predictions with the observers. Image context restriction resulted in model performance reduction by up to 6% and at least one training set size resulted in a model performance reduction of 10% compared to the original size. Conclusions Detecting the presence and severity of up to three classes of retinal degeneration in histological data can be reliably achieved with a deep learning classifier. Translational Relevance This work lays the foundations for future AI models which could aid in the evaluation of more intricate changes occurring in retinal degeneration, particularly in other types of clinically derived image data.
Collapse
Affiliation(s)
- Daniel Al Mouiee
- Graduate School of Biomedical Engineering, University of New South Wales, Kensington, NSW, Australia.,School of Computer Science and Engineering, University of New South Wales, Kensington, NSW, Australia.,School of Biotechnology and Biomolecular Science, University of New South Wales, Kensington, NSW, Australia
| | - Erik Meijering
- Graduate School of Biomedical Engineering, University of New South Wales, Kensington, NSW, Australia.,School of Computer Science and Engineering, University of New South Wales, Kensington, NSW, Australia
| | - Michael Kalloniatis
- School of Optometry and Vision Sciences, University of New South Wales, Kensington, NSW, Australia
| | - Lisa Nivison-Smith
- School of Optometry and Vision Sciences, University of New South Wales, Kensington, NSW, Australia
| | - Richard A Williams
- Department of Pathology, University of Melbourne, Parkville, VIC, Australia
| | - David A X Nayagam
- Department of Pathology, University of Melbourne, Parkville, VIC, Australia.,The Bionics Institute of Australia, East Melbourne, VIC, Australia
| | - Thomas C Spencer
- The Bionics Institute of Australia, East Melbourne, VIC, Australia.,Department of Biomedical Engineering, University of Melbourne, Parkville, VIC, Australia
| | - Chi D Luu
- Ophthalmology, Department of Surgery, University of Melbourne, Parkville, VIC, Australia.,Centre for Eye Research Australia, Royal Victorian Eye & Ear Hospital, East Melbourne, VIC, Australia
| | - Ceara McGowan
- The Bionics Institute of Australia, East Melbourne, VIC, Australia
| | - Stephanie B Epp
- The Bionics Institute of Australia, East Melbourne, VIC, Australia
| | - Mohit N Shivdasani
- Graduate School of Biomedical Engineering, University of New South Wales, Kensington, NSW, Australia.,The Bionics Institute of Australia, East Melbourne, VIC, Australia
| |
Collapse
|
10
|
Fletcher EL. Advances in understanding the mechanisms of retinal degenerations. Clin Exp Optom 2021; 103:723-732. [PMID: 33090561 DOI: 10.1111/cxo.13146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/21/2020] [Accepted: 08/23/2020] [Indexed: 01/13/2023] Open
Abstract
Photoreceptor death is an important contributor to irreversible vision loss worldwide. In this review, I outline our work examining the role that purines, such as adenosine triphosphate (ATP), have in normal retinal function and in retinal disease. Our work shows that the actions of ATP, mediated by P2X receptors, are expressed in various retinal layers including photoreceptor terminals, and when stimulated by excessive levels of ATP is associated with rapid death of neurons. Treatment with a compound that blocks the action of P2X and some P2Y receptors reduces photoreceptor death in a mouse model of retinal degeneration. Our observations not only provide a means for developing a potential treatment for reducing photoreceptor death, but also provides a novel way of studying the neural plasticity effects that develop in the inner retina following photoreceptor death. There are a range of inner retinal changes that could influence the effectiveness of retinal prostheses. Indeed, using an ATP-induced degeneration model, we established that the amount of electrical stimulation required to elicit a response in the visual cortex was affected by the level of glial scarring. However, changes in P2X7 receptor expression by OFF ganglion cells during retinal degeneration can also be exploited by photoswitches to restore light sensitivity to degenerated retinae. Finally, our work has also considered how P2X7 expression by innate immune cells, and its role as a scavenger receptor, contributes to age-related macular degeneration (AMD). Our results show that loss of P2X7 function is associated with thickening of Bruch's membrane as well as increased risk of advanced disease in people with AMD. Overall, our work over the last 20 years highlights the importance of purinergic signalling in normal retinal function and retinal disease and suggest that developing therapies that target P2X7 function could be of benefit for these diseases.
Collapse
Affiliation(s)
- Erica L Fletcher
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
11
|
Kalloniatis M, Loh CS, Acosta ML, Tomisich G, Zhu Y, Nivison‐smith L, Fletcher EL, Chua J, Sun D, Arunthavasothy N. Retinal amino acid neurochemistry in health and disease. Clin Exp Optom 2021; 96:310-32. [DOI: 10.1111/cxo.12015] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 07/01/2012] [Accepted: 07/17/2012] [Indexed: 12/25/2022] Open
Affiliation(s)
- Michael Kalloniatis
- Centre for Eye Health, University of New South Wales, Sydney, New South Wales, Australia,
- School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia,
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia,
- Department of Optometry and Vision Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand,
| | - Chee Seang Loh
- Department of Optometry and Vision Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand,
| | - Monica L Acosta
- Department of Optometry and Vision Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand,
| | - Guido Tomisich
- Department of Optometry and Vision Science, The University of Melbourne, Parkville, Victoria, Australia,
| | - Yuan Zhu
- School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia,
| | - Lisa Nivison‐smith
- School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia,
| | - Erica L Fletcher
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia,
| | - Jacqueline Chua
- Department of Optometry and Vision Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand,
| | - Daniel Sun
- Department of Optometry and Vision Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand,
| | - Niru Arunthavasothy
- Department of Optometry and Vision Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand,
| |
Collapse
|
12
|
Gehlen J, Esser S, Schaffrath K, Johnen S, Walter P, Müller F. Blockade of Retinal Oscillations by Benzodiazepines Improves Efficiency of Electrical Stimulation in the Mouse Model of RP, rd10. Invest Ophthalmol Vis Sci 2020; 61:37. [PMID: 33252632 PMCID: PMC7705397 DOI: 10.1167/iovs.61.13.37] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Purpose In RP, photoreceptors degenerate. Retinal prostheses are considered a suitable strategy to restore vision. In animal models of RP, a pathologic rhythmic activity seems to compromise the efficiency of retinal ganglion cell stimulation by an electrical prosthesis. We, therefore, strove to eliminate this pathologic activity. Methods Electrophysiologic recordings of local field potentials and spike activity of retinal ganglion cells were obtained in vitro from retinae of wild-type and rd10 mice using multielectrode arrays. Retinae were stimulated electrically. Results The efficiency of electrical stimulation was lower in rd10 retina than in wild-type retina and this was highly correlated with the presence of oscillations in retinal activity. Glycine and GABA, as well as the benzodiazepines diazepam, lorazepam, and flunitrazepam, abolished retinal oscillations and, most important, increased the efficiency of electrical stimulation to values similar to those in wild-type retina. Conclusions Treatment of patients with these benzodiazepines may offer a way to improve the performance of retinal implants in cases with poor implant proficiency. This study may open the way to a therapy that supports electrical stimulation by prostheses with pharmacologic treatment.
Collapse
Affiliation(s)
- Jana Gehlen
- Institute of Biological Information Processing, Molecular and Cellular Physiology, IBI-1, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Stefan Esser
- Institute of Biological Information Processing, Molecular and Cellular Physiology, IBI-1, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Kim Schaffrath
- Department of Ophthalmology, RWTH Aachen University, Aachen, Germany
| | - Sandra Johnen
- Department of Ophthalmology, RWTH Aachen University, Aachen, Germany
| | - Peter Walter
- Department of Ophthalmology, RWTH Aachen University, Aachen, Germany
| | - Frank Müller
- Institute of Biological Information Processing, Molecular and Cellular Physiology, IBI-1, Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
13
|
Procyk CA, Allen AE, Martial FP, Lucas RJ. Visual responses in the dorsal lateral geniculate nucleus at early stages of retinal degeneration in rd1 PDE6β mice. J Neurophysiol 2019; 122:1753-1764. [PMID: 31461375 DOI: 10.1152/jn.00231.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Inherited retinal degenerations encompass a wide range of diseases that result in the death of rod and cone photoreceptors, eventually leading to irreversible blindness. Low vision survives at early stages of degeneration, at which point it could rely on residual populations of rod/cone photoreceptors as well as the inner retinal photoreceptor, melanopsin. To date, the impact of partial retinal degeneration on visual responses in the primary visual thalamus (dorsal lateral geniculate nucleus, dLGN) remains unknown, as does their relative reliance on surviving rod and cone photoreceptors vs. melanopsin. To answer these questions, we recorded visually evoked responses in the dLGN of anesthetized rd1 mice using in vivo electrophysiology at an age (3-5 wk) at which cones are partially degenerate and rods are absent. We found that excitatory (ON) responses to light had lower amplitude and longer latency in rd1 mice compared with age-matched visually intact controls; however, contrast sensitivity and spatial receptive field size were largely unaffected at this early stage of degeneration. Responses were retained when those wavelengths to which melanopsin is most sensitive were depleted, indicating that they were driven primarily by surviving cones. Inhibitory responses appeared absent in the rd1 thalamus, as did light-evoked gamma oscillations in firing. This description of fundamental features of the dLGN visual response at this intermediate stage of retinal degeneration provides a context for emerging attempts to restore vision by introducing ectopic photoreception to the degenerate retina.NEW & NOTEWORTHY This study provides new therapeutically relevant insights to visual responses in the dorsal lateral geniculate nucleus during progressive retinal degeneration. Using in vivo electrophysiology, we demonstrate that visual responses have lower amplitude and longer latency during degeneration, but contrast sensitivity and spatial receptive fields remain unaffected. Such visual responses are driven predominantly by surviving cones rather than melanopsin photoreceptors. The functional integrity of this visual pathway is encouraging for emerging attempts at visual restoration.
Collapse
Affiliation(s)
- Christopher A Procyk
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Annette E Allen
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Franck P Martial
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Robert J Lucas
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
14
|
Activation of Rod Input in a Model of Retinal Degeneration Reverses Retinal Remodeling and Induces Formation of Functional Synapses and Recovery of Visual Signaling in the Adult Retina. J Neurosci 2019; 39:6798-6810. [PMID: 31285302 DOI: 10.1523/jneurosci.2902-18.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 05/28/2019] [Accepted: 06/18/2019] [Indexed: 12/31/2022] Open
Abstract
A major cause of human blindness is the death of rod photoreceptors. As rods degenerate, synaptic structures between rod and rod bipolar cells disappear and the rod bipolar cells extend their dendrites and occasionally make aberrant contacts. Such changes are broadly observed in blinding disorders caused by photoreceptor cell death and are thought to occur in response to deafferentation. How the remodeled retinal circuit affects visual processing following rod rescue is not known. To address this question, we generated male and female transgenic mice wherein a disrupted cGMP-gated channel (CNG) gene can be repaired at the endogenous locus and at different stages of degeneration by tamoxifen-inducible cre-mediated recombination. In normal rods, light-induced closure of CNG channels leads to hyperpolarization of the cell, reducing neurotransmitter release at the synapse. Similarly, rods lacking CNG channels exhibit a resting membrane potential that was ~10 mV hyperpolarized compared to WT rods, indicating diminished glutamate release. Retinas from these mice undergo stereotypic retinal remodeling as a consequence of rod malfunction and degeneration. Upon tamoxifen-induced expression of CNG channels, rods recovered their structure and exhibited normal light responses. Moreover, we show that the adult mouse retina displays a surprising degree of plasticity upon activation of rod input. Wayward bipolar cell dendrites establish contact with rods to support normal synaptic transmission, which is propagated to the retinal ganglion cells. These findings demonstrate remarkable plasticity extending beyond the developmental period and support efforts to repair or replace defective rods in patients blinded by rod degeneration.SIGNIFICANCE STATEMENT Current strategies for treatment of neurodegenerative disorders are focused on the repair of the primary affected cell type. However, the defective neurons function within a complex neural circuitry, which also becomes degraded during disease. It is not known whether rescued neurons and the remodeled circuit will establish communication to regain normal function. We show that the adult mammalian neural retina exhibits a surprising degree of plasticity following rescue of rod photoreceptors. The wayward dendrites of rod bipolar cells re-establish contact with rods to support normal synaptic transmission, which is propagated to the retinal ganglion cells. These findings support efforts to repair or replace defective rods in patients blinded by rod cell loss.
Collapse
|
15
|
Black JM, Jacobs RJ, Phillips JR, Acosta ML. The changing scope of Optometry in New Zealand: historical perspectives, current practice and research advances. J R Soc N Z 2019. [DOI: 10.1080/03036758.2019.1587476] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Joanna M. Black
- School of Optometry and Vision Science, The University of Auckland, Auckland, New Zealand
| | - Robert J. Jacobs
- School of Optometry and Vision Science, The University of Auckland, Auckland, New Zealand
| | - John R. Phillips
- School of Optometry and Vision Science, The University of Auckland, Auckland, New Zealand
| | - Monica L. Acosta
- School of Optometry and Vision Science, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
16
|
Yee CW, Ivanova E, Toychiev AH, Willis DE, Sagdullaev BT. Atypical Expression and Activation of GluN2A- and GluN2B-Containing NMDA Receptors at Ganglion Cells during Retinal Degeneration. Neuroscience 2018; 393:61-72. [PMID: 30312782 DOI: 10.1016/j.neuroscience.2018.09.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/21/2018] [Accepted: 09/30/2018] [Indexed: 11/26/2022]
Abstract
Cellular communication through chemical synapses is determined by the nature of the neurotransmitter and the composition of postsynaptic receptors. In the excitatory synapse between bipolar and ganglion cells of the retina, postsynaptic AMPA receptors mediate resting activity. During evoked response, however, more abundant and sustained levels of glutamate also activate GluN2B-containing NMDA receptors (NMDARs). This phasic recruitment of distinct glutamate receptors is essential for visual discrimination; however, the fidelity of this basic mechanism under elevated glutamate levels due to aberrant activity, a common pathophysiology, is not known. Here, in both male and female mice with retinal degeneration (rd10), a condition associated with elevated synaptic activity, we reveal that changes in synaptic input to ganglion cells altered both composition and activation of NMDARs. We found that, in contrast to wild type, the spontaneous activity of rd10 cells was largely NMDAR-dependent. Surprisingly, this activity was driven primarily by atypical activation of GluN2A -containing NMDARs, not GluN2B-NMDARs. Indeed, immunohistochemical analyses and Western blot showed greater levels of the GluN2A-NMDAR subunit expression in rd10 retina compared to wild type. Overall, these results demonstrate how aberrant signaling leads to pathway-specific alterations in NMDAR expression and function.
Collapse
Affiliation(s)
- Christopher W Yee
- Weill Cornell Medicine at Burke Neurological Institute, White Plains, NY 10605, United States
| | - Elena Ivanova
- Weill Cornell Medicine at Burke Neurological Institute, White Plains, NY 10605, United States
| | - Abduqodir H Toychiev
- Weill Cornell Medicine at Burke Neurological Institute, White Plains, NY 10605, United States
| | - Dianna E Willis
- Weill Cornell Medicine at Burke Neurological Institute, White Plains, NY 10605, United States
| | - Botir T Sagdullaev
- Weill Cornell Medicine at Burke Neurological Institute, White Plains, NY 10605, United States.
| |
Collapse
|
17
|
Haq W, Dietter J, Zrenner E. Electrical activation of degenerated photoreceptors in blind mouse retina elicited network-mediated responses in different types of ganglion cells. Sci Rep 2018; 8:16998. [PMID: 30451928 PMCID: PMC6243018 DOI: 10.1038/s41598-018-35296-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 11/02/2018] [Indexed: 01/21/2023] Open
Abstract
Electrical (e-) stimulation is explored in schemes to rescue the vision of blind people, e.g. those affected by Retinitis Pigmentosa (RP). We e-activated subretinally the surviving degenerated photoreceptors (d-Phrs) of the rd1 mouse (RP model) and evoked visual responses in the blind retina. The e-stimulation was applied with a single platinum/iridium electrode. The d-Phrs (calcium-imaging) and ganglion cells (GC) activity (MEA-recording) were recorded in simultaneous multilayer recordings. The findings of this study confirm that the d-Phrs responded to e-stimulation and modulated the retinal network-activity. The application of blockers revealed that the synaptic interactions were dependent on voltage-gated calcium channels and mediated by the transmitters glutamate and GABA. Moreover, the gap junctions coupled networks promoted the lateral-spread of the e-evoked activity in the outer (~60 µm) and inner (~120 µm) retina. The activated GCs were identified as subtypes of the ON, OFF and ON-OFF classes. In conclusion, d-Phrs are the ideal interface partners for implants to elicit enhanced visual responses at higher temporal and spatial resolution. Furthermore, the retina's intact circuity at the onset of complete blindness makes it a tempting target when considering the implantation of implants into young patients to provide a seamless transition from blinding to chip-aided vision.
Collapse
Affiliation(s)
- Wadood Haq
- Centre for Ophthalmology, Institute for Ophthalmic Research University of Tübingen, Elfriede-Aulhorn-Str. 5-7, D-72076, Tübingen, Germany.
| | - Johannes Dietter
- Centre for Ophthalmology, Institute for Ophthalmic Research University of Tübingen, Elfriede-Aulhorn-Str. 5-7, D-72076, Tübingen, Germany
| | - Eberhart Zrenner
- Centre for Ophthalmology, Institute for Ophthalmic Research University of Tübingen, Elfriede-Aulhorn-Str. 5-7, D-72076, Tübingen, Germany
| |
Collapse
|
18
|
Xiang Z, Bao Y, Zhang J, Liu C, Xu D, Liu F, Chen H, He L, Ramakrishna S, Zhang Z, Vardi N, Xu Y. Inhibition of non-NMDA ionotropic glutamate receptors delays the retinal degeneration in rd10 mouse. Neuropharmacology 2018; 139:137-149. [DOI: 10.1016/j.neuropharm.2018.06.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 06/13/2018] [Accepted: 06/21/2018] [Indexed: 11/26/2022]
|
19
|
Liu F, Zhang J, Xiang Z, Xu D, So KF, Vardi N, Xu Y. Lycium Barbarum Polysaccharides Protect Retina in rd1 Mice During Photoreceptor Degeneration. Invest Ophthalmol Vis Sci 2018; 59:597-611. [PMID: 29372259 PMCID: PMC6623178 DOI: 10.1167/iovs.17-22881] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose As an active component in wolfberry, lycium barbarum polysaccharides (LBP) are capable of protecting retinal neurons in several animal disease models. Here, we asked whether LBP rescues the retinal morphology and function in rd1 mouse, a photoreceptor fast-degenerating animal model of retinitis pigmentosa, and in particular focused on LBP's effects on the function of retinal ganglion cells (RGCs) during photoreceptor degeneration. Methods An equal volume of LBP or control vehicle was daily intraperitoneal (i.p.) injected in rd1 mice from postnatal day 4 (P4) to P14, P20, or P24 when photoreceptors completely degenerate. Immunostaining, electroretinogram (ERG), visual behavior tests and multielectrode array (MEA) recordings were assessed to determine the structure and function of the treated retina. Results LBP treatment greatly promoted photoreceptor survival, enhanced ERG responses, and improved visual behaviors in rd1 mice. MEA data showed that LBP treatment in general decreased the abnormally high spontaneous spiking that occurs in rd1 mice, and increased the percentage of light-responsive RGCs as well as their light-evoked response, light sensitivity, signal-to-noise ratio, and response speed. Interestingly, LBP treatment affected ON and OFF responses differently. Conclusions LBP improves retinal morphology and function in rd1 mice, and delays the functional decay of RGCs during photoreceptor degeneration. This is the first study that has examined in detail the effects of LBP on RGC responses. Our data suggest that LBP may help extend the effective time window before more invasive RP therapeutic approaches such as retinoprosthesis are applied.
Collapse
Affiliation(s)
- Feng Liu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Jia Zhang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Zongqin Xiang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Di Xu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Kwok-Fai So
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China.,Changsha Academician Expert Workstation, Aier Eye Hospital Group, Changsha, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Jiangsu, China
| | - Noga Vardi
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Ying Xu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China.,Changsha Academician Expert Workstation, Aier Eye Hospital Group, Changsha, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Jiangsu, China
| |
Collapse
|
20
|
Kim HS, Vargas A, Eom YS, Li J, Yamamoto KL, Craft CM, Lee EJ. Tissue inhibitor of metalloproteinases 1 enhances rod survival in the rd1 mouse retina. PLoS One 2018; 13:e0197322. [PMID: 29742163 PMCID: PMC5942829 DOI: 10.1371/journal.pone.0197322] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/29/2018] [Indexed: 01/06/2023] Open
Abstract
Retinitis pigmentosa (RP), an inherited retinal degenerative disease, is characterized by a progressive loss of rod photoreceptors followed by loss of cone photoreceptors. Previously, when tissue inhibitor of metalloproteinase 1 (TIMP1), a key extracellular matrix (ECM) regulator that binds to and inhibits activation of Matrix metallopeptidase 9 (MMP9) was intravitreal injected into eyes of a transgenic rhodopsin rat model of RP, S334ter-line3, we discovered cone outer segments are partially protected. In parallel, we reported that a specific MMP9 and MMP2 inhibitor, SB-3CT, interferes with mechanisms leading to rod photoreceptor cell death in an MMP9 dependent manner. Here, we extend our initial rat studies to examine the potential of TIMP1 as a treatment in retinal degeneration by investigating neuroprotective effects in a classic mouse retinal degeneration model, rdPde6b-/- (rd1). The results clearly demonstrate that intravitreal injections of TIMP1 produce extended protection to delay rod photoreceptor cell death. The mean total number of rods in whole-mount retinas was significantly greater in TIMP-treated rd1 retinas (postnatal (P) 30, P35 (P<0.0001) and P45 (P<0.05) than in saline-treated rd1 retinas. In contrast, SB-3CT did not delay rod cell death, leading us to further investigate alternative pathways that do not involve MMPs. In addition to inducing phosphorylated ERK1/2, TIMP1 significantly reduces BAX activity and delays attenuation of the outer nuclear layer (ONL). Physiological responses using scotopic electroretinograms (ERG) reveal b-wave amplitudes from TIMP1-treated retinas are significantly greater than from saline-treated rd1 retinas (P<0.05). In later degenerative stages of rd1 retinas, photopic b-wave amplitudes from TIMP1-treated rd1 retinas are significantly larger than from saline-treated rd1 retinas (P<0.05). Our findings demonstrate that TIMP1 delays photoreceptor cell death. Furthermore, this study provides new insights into how TIMP1 works in the mouse animal model of RP.
Collapse
Affiliation(s)
- Hwa Sun Kim
- MDA Vision Research, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
| | - Andrew Vargas
- MDA Vision Research, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
| | - Yun Sung Eom
- MDA Vision Research, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
| | - Justin Li
- MDA Vision Research, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
| | - Kyra L. Yamamoto
- MDA Vision Research, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
| | - Cheryl Mae Craft
- MDA Vision Research, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
- Department of Integrative Anatomical Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
| | - Eun-Jin Lee
- MDA Vision Research, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
21
|
Vinpocetine protects inner retinal neurons with functional NMDA glutamate receptors against retinal ischemia. Exp Eye Res 2018; 167:1-13. [DOI: 10.1016/j.exer.2017.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/31/2017] [Accepted: 10/08/2017] [Indexed: 11/21/2022]
|
22
|
Nivison-Smith L, Khoo P, Acosta ML, Kalloniatis M. Pre-treatment with vinpocetine protects against retinal ischemia. Exp Eye Res 2016; 154:126-138. [PMID: 27899287 DOI: 10.1016/j.exer.2016.11.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/17/2016] [Accepted: 11/22/2016] [Indexed: 01/15/2023]
Abstract
Vinpocetine has been shown to have beneficial effects for tissues of the central nervous system subjected to ischemia and other related metabolic insults. We recently showed vinpocetine promotes glucose availability, prevents unregulated cation channel permeability and regulates glial reactivity when present during retinal ischemia. Less is known however about the ability of vinpocetine to protect against future ischemic insults. This study explores the effect of vinpocetine when used as a pre-treatment in an ex vivo model for retinal ischemia using cation channel permeability of agmatine (AGB) combined with immunohistochemistry as a measure for cell functionality. We found that vinpocetine pre-treatment reduced cation channel permeability and apoptotic marker immunoreactivity in the GCL and increased parvalbumin immunoreactivity of inner retinal neurons in the inner nuclear layer following ischemic insult. Vinpocetine pre-treatment also reduced Müller cell reactivity following ischemic insults of up to 120 min compared to untreated controls. Many of vinpocetine's effects however were transient in nature suggesting the drug can protect retinal neurons against future ischemic damage but may have limited long-term applications.
Collapse
Affiliation(s)
- Lisa Nivison-Smith
- Centre for Eye Health, University of New South Wales, Sydney, 2052, Australia; School of Optometry and Vision Science, University of New South Wales, Sydney, 2052, Australia.
| | - Pauline Khoo
- School of Optometry and Vision Science, University of New South Wales, Sydney, 2052, Australia
| | - Monica L Acosta
- School of Optometry and Vision Science, University of Auckland, New Zealand; New Zealand National Eye Centre, University of Auckland, New Zealand
| | - Michael Kalloniatis
- Centre for Eye Health, University of New South Wales, Sydney, 2052, Australia; School of Optometry and Vision Science, University of New South Wales, Sydney, 2052, Australia; School of Optometry and Vision Science, University of Auckland, New Zealand; New Zealand National Eye Centre, University of Auckland, New Zealand
| |
Collapse
|
23
|
Lerch MM, Hansen MJ, van Dam GM, Szymanski W, Feringa BL. Emerging Targets in Photopharmacology. Angew Chem Int Ed Engl 2016; 55:10978-99. [DOI: 10.1002/anie.201601931] [Citation(s) in RCA: 413] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/29/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Michael M. Lerch
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Mickel J. Hansen
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
- Zernike Institute for Advanced Materials; University of Groningen; Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Gooitzen M. van Dam
- Department of Surgery, Nuclear Medicine and Molecular Imaging and Intensive Care, University of Groningen; University Medical Center Groningen; Hanzeplein 1, P.O. Box 30001 9700 RB Groningen The Netherlands
| | - Wiktor Szymanski
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
- Department of Radiology, University of Groningen; University Medical Center Groningen; Hanzeplein 1, P.O. Box 30001 9700 RB Groningen The Netherlands
| | - Ben L. Feringa
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
- Zernike Institute for Advanced Materials; University of Groningen; Nijenborgh 7 9747 AG Groningen The Netherlands
- Department of Radiology, University of Groningen; University Medical Center Groningen; Hanzeplein 1, P.O. Box 30001 9700 RB Groningen The Netherlands
| |
Collapse
|
24
|
Lerch MM, Hansen MJ, van Dam GM, Szymanski W, Feringa BL. Neue Ziele für die Photopharmakologie. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601931] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Michael M. Lerch
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen Niederlande
| | - Mickel J. Hansen
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen Niederlande
- Zernike Institute for Advanced Materials; University of Groningen; Nijenborgh 7 9747 AG Groningen Niederlande
| | - Gooitzen M. van Dam
- Department of Surgery, Nuclear Medicine and Molecular Imaging and Intensive Care, University of Groningen; University Medical Center Groningen; Hanzeplein 1, P.O. Box 30001 9700 RB Groningen Niederlande
| | - Wiktor Szymanski
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen Niederlande
- Department of Radiology, University of Groningen; University Medical Center Groningen; Hanzeplein 1, P.O. Box 30001 9700 RB Groningen Niederlande
| | - Ben L. Feringa
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen Niederlande
- Zernike Institute for Advanced Materials; University of Groningen; Nijenborgh 7 9747 AG Groningen Niederlande
- Department of Radiology, University of Groningen; University Medical Center Groningen; Hanzeplein 1, P.O. Box 30001 9700 RB Groningen Niederlande
| |
Collapse
|
25
|
Krishnamoorthy V, Cherukuri P, Poria D, Goel M, Dagar S, Dhingra NK. Retinal Remodeling: Concerns, Emerging Remedies and Future Prospects. Front Cell Neurosci 2016; 10:38. [PMID: 26924962 PMCID: PMC4756099 DOI: 10.3389/fncel.2016.00038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 02/01/2016] [Indexed: 12/21/2022] Open
Abstract
Deafferentation results not only in sensory loss, but also in a variety of alterations in the postsynaptic circuitry. These alterations may have detrimental impact on potential treatment strategies. Progressive loss of photoreceptors in retinal degenerative diseases, such as retinitis pigmentosa and age-related macular degeneration, leads to several changes in the remnant retinal circuitry. Müller glial cells undergo hypertrophy and form a glial seal. The second- and third-order retinal neurons undergo morphological, biochemical and physiological alterations. A result of these alterations is that retinal ganglion cells (RGCs), the output neurons of the retina, become hyperactive and exhibit spontaneous, oscillatory bursts of spikes. This aberrant electrical activity degrades the signal-to-noise ratio in RGC responses, and thus the quality of information they transmit to the brain. These changes in the remnant retina, collectively termed “retinal remodeling”, pose challenges for genetic, cellular and bionic approaches to restore vision. It is therefore crucial to understand the nature of retinal remodeling, how it affects the ability of remnant retina to respond to novel therapeutic strategies, and how to ameliorate its effects. In this article, we discuss these topics, and suggest that the pathological state of the retinal output following photoreceptor loss is reversible, and therefore, amenable to restorative strategies.
Collapse
Affiliation(s)
| | - Pitchaiah Cherukuri
- Developmental Neurobiology Laboratory, European Neuroscience Institute Göttingen Göttingen, Germany
| | - Deepak Poria
- National Brain Research Centre Manesar, Haryana, India
| | - Manvi Goel
- National Brain Research Centre Manesar, Haryana, India
| | - Sushma Dagar
- Institute of Neuro- and Sensory Physiology, Heinrich-Heine University Düsseldorf, Germany
| | | |
Collapse
|
26
|
Laprell L, Hüll K, Stawski P, Schön C, Michalakis S, Biel M, Sumser MP, Trauner D. Restoring Light Sensitivity in Blind Retinae Using a Photochromic AMPA Receptor Agonist. ACS Chem Neurosci 2016; 7:15-20. [PMID: 26495755 PMCID: PMC4722500 DOI: 10.1021/acschemneuro.5b00234] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 10/23/2015] [Indexed: 12/15/2022] Open
Abstract
Retinal degenerative diseases can have many possible causes and are currently difficult to treat. As an alternative to therapies that require genetic manipulation or the implantation of electronic devices, photopharmacology has emerged as a viable approach to restore visual responses. Here, we present a new photopharmacological strategy that relies on a photoswitchable excitatory amino acid, ATA. This freely diffusible molecule selectively activates AMPA receptors in a light-dependent fashion. It primarily acts on amacrine and retinal ganglion cells, although a minor effect on bipolar cells has been observed. As such, it complements previous pharmacological approaches based on photochromic channel blockers and increases the potential of photopharmacology in vision restoration.
Collapse
Affiliation(s)
- L. Laprell
- Center
of Integrated Protein Science Munich (CIPSM) at the Department of
Chemistry Ludwig-Maximilians-Universität
München, Munich 81377, Germany
| | - K. Hüll
- Center
of Integrated Protein Science Munich (CIPSM) at the Department of
Chemistry Ludwig-Maximilians-Universität
München, Munich 81377, Germany
| | - P. Stawski
- Center
of Integrated Protein Science Munich (CIPSM) at the Department of
Chemistry Ludwig-Maximilians-Universität
München, Munich 81377, Germany
| | - C. Schön
- Center
for Integrated Protein Science Munich (CIPSM) at the Department of
Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität
München, Munich 81377, Germany
| | - S. Michalakis
- Center
for Integrated Protein Science Munich (CIPSM) at the Department of
Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität
München, Munich 81377, Germany
| | - M Biel
- Center
for Integrated Protein Science Munich (CIPSM) at the Department of
Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität
München, Munich 81377, Germany
| | - M. P. Sumser
- Center
of Integrated Protein Science Munich (CIPSM) at the Department of
Chemistry Ludwig-Maximilians-Universität
München, Munich 81377, Germany
| | - D. Trauner
- Center
of Integrated Protein Science Munich (CIPSM) at the Department of
Chemistry Ludwig-Maximilians-Universität
München, Munich 81377, Germany
| |
Collapse
|
27
|
Goo YS, Park DJ, Ahn JR, Senok SS. Spontaneous Oscillatory Rhythms in the Degenerating Mouse Retina Modulate Retinal Ganglion Cell Responses to Electrical Stimulation. Front Cell Neurosci 2016; 9:512. [PMID: 26793063 PMCID: PMC4709854 DOI: 10.3389/fncel.2015.00512] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/21/2015] [Indexed: 11/22/2022] Open
Abstract
Characterization of the electrical activity of the retina in the animal models of retinal degeneration has been carried out in part to understand the progression of retinal degenerative diseases like age-related macular degeneration (AMD) and retinitis pigmentosa (RP), but also to determine optimum stimulus paradigms for use with retinal prosthetic devices. The models most studied in this regard have been the two lines of mice deficient in the β-subunit of phosphodiesterase (rd1 and rd10 mice), where the degenerating retinas exhibit characteristic spontaneous hyperactivity and oscillatory local field potentials (LFPs). Additionally, there is a robust ~10 Hz rhythmic burst of retinal ganglion cell (RGC) spikes on the trough of the oscillatory LFP. In rd1 mice, the rhythmic burst of RGC spikes is always phase-locked with the oscillatory LFP and this phase-locking property is preserved regardless of postnatal ages. However, in rd10 mice, the frequency of the oscillatory rhythm changes according to postnatal age, suggesting that this rhythm might be a marker of the stage of degeneration. Furthermore when a biphasic current stimulus is applied to rd10 mice degenerate retina, distinct RGC response patterns that correlate with the stage of degeneration emerge. This review also considers the significance of these response properties.
Collapse
Affiliation(s)
- Yong Sook Goo
- Department of Physiology, Chungbuk National University School of MedicineCheongju, South Korea; Nano Artificial Vision Research Center, Seoul National University HospitalSeoul, South Korea
| | - Dae Jin Park
- Department of Physiology, Chungbuk National University School of MedicineCheongju, South Korea; Nano Artificial Vision Research Center, Seoul National University HospitalSeoul, South Korea
| | - Jung Ryul Ahn
- Department of Physiology, Chungbuk National University School of MedicineCheongju, South Korea; Nano Artificial Vision Research Center, Seoul National University HospitalSeoul, South Korea
| | - Solomon S Senok
- Neuroscience Division, Alfaisal University College of Medicine Riyadh, Saudi Arabia
| |
Collapse
|
28
|
de Souza CF, Nivison-Smith L, Christie DL, Polkinghorne P, McGhee C, Kalloniatis M, Acosta ML. Macromolecular markers in normal human retina and applications to human retinal disease. Exp Eye Res 2016; 150:135-48. [PMID: 26769220 DOI: 10.1016/j.exer.2016.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 12/23/2015] [Accepted: 01/04/2016] [Indexed: 01/04/2023]
Abstract
Macromolecular cell markers are essential for the classification and characterization of the highly complex and cellularly diverse vertebrate retina. Although a plethora of markers are described in the current literature, the immunoreactivity of these markers in normal human tissue has not been fully determined. This is problematic as they are quintessential to the characterization of morphological changes associated with human retinal disease. This review provides an overview of the macromolecular markers currently available to assess human retinal cell types. We draw on immunohistochemical studies conducted in our laboratories to describe marker immunoreactivity in human retina alongside comparative descriptions in non-human tissues. Considering the growing number of eye banks services offering healthy and diseased human retinal tissue, this review provides a point of reference for future human retina studies and highlights key species specific disease applications of some macromolecular markers.
Collapse
Affiliation(s)
- Clairton F de Souza
- School of Optometry and Vision Science, University of Auckland, Auckland, 1023, New Zealand; Department of Ophthalmology, University of Auckland, Auckland, 1023, New Zealand
| | - Lisa Nivison-Smith
- Centre for Eye Health, University of New South Wales, Sydney, 2052, Australia; School of Optometry and Vision Science, University of New South Wales, Sydney, 2052, Australia
| | - David L Christie
- School of Biological Sciences, University of Auckland, Auckland, 1023, New Zealand
| | - Phillip Polkinghorne
- Department of Ophthalmology, University of Auckland, Auckland, 1023, New Zealand; New Zealand National Eye Centre, University of Auckland, Auckland, 1023, New Zealand
| | - Charles McGhee
- Department of Ophthalmology, University of Auckland, Auckland, 1023, New Zealand; New Zealand National Eye Centre, University of Auckland, Auckland, 1023, New Zealand
| | - Michael Kalloniatis
- School of Optometry and Vision Science, University of Auckland, Auckland, 1023, New Zealand; Centre for Eye Health, University of New South Wales, Sydney, 2052, Australia; School of Optometry and Vision Science, University of New South Wales, Sydney, 2052, Australia
| | - Monica L Acosta
- School of Optometry and Vision Science, University of Auckland, Auckland, 1023, New Zealand; New Zealand National Eye Centre, University of Auckland, Auckland, 1023, New Zealand.
| |
Collapse
|
29
|
Jensen R. Effects of Dopamine D2-Like Receptor Antagonists on Light Responses of Ganglion Cells in Wild-Type and P23H Rat Retinas. PLoS One 2015; 10:e0146154. [PMID: 26717015 PMCID: PMC4696741 DOI: 10.1371/journal.pone.0146154] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 12/14/2015] [Indexed: 12/04/2022] Open
Abstract
In animal models of retinitis pigmentosa the dopaminergic system in the retina appears to be dysfunctional, which may contribute to the debilitated sight experienced by retinitis pigmentosa patients. Since dopamine D2-like receptors are known to modulate the activity of dopaminergic neurons, I examined the effects of dopamine D2-like receptor antagonists on the light responses of retinal ganglion cells (RGCs) in the P23H rat model of retinitis pigmentosa. Extracellular electrical recordings were made from RGCs in isolated transgenic P23H rat retinas and wild-type Sprague-Dawley rat retinas. Intensity-response curves to flashes of light were evaluated prior to and during bath application of a dopamine D2-like receptor antagonist. The dopamine D2/D3 receptor antagonists sulpiride and eticlopride and the D4 receptor antagonist L-745,870 increased light sensitivity of P23H rat RGCs but decreased light sensitivity in Sprague-Dawley rat RGCs. In addition, L-745,870, but not sulpiride or eticlopride, reduced the maximum peak responses of Sprague-Dawley rat RGCs. I describe for the first time ON-center RGCs in P23H rats that exhibit an abnormally long-latency (>200 ms) response to the onset of a small spot of light. Both sulpiride and eticlopride, but not L-745,870, reduced this ON response and brought out a short-latency OFF response, suggesting that these cells are in actuality OFF-center cells. Overall, the results show that the altered dopaminergic system in degenerate retinas contributes to the deteriorated light responses of RGCs.
Collapse
Affiliation(s)
- Ralph Jensen
- VA Boston Healthcare System, Mail Stop 151E, 150 South Huntington Avenue, Boston, Massachusetts 02130, United States of America
- * E-mail:
| |
Collapse
|
30
|
Gayet-Primo J, Puthussery T. Alterations in Kainate Receptor and TRPM1 Localization in Bipolar Cells after Retinal Photoreceptor Degeneration. Front Cell Neurosci 2015; 9:486. [PMID: 26733812 PMCID: PMC4686838 DOI: 10.3389/fncel.2015.00486] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 11/30/2015] [Indexed: 11/21/2022] Open
Abstract
Photoreceptor degeneration differentially impacts glutamatergic signaling in downstream On and Off bipolar cells. In rodent models, photoreceptor degeneration leads to loss of glutamatergic signaling in On bipolar cells, whereas Off bipolar cells appear to retain glutamate sensitivity, even after extensive photoreceptor loss. The localization and identity of the receptors that mediate these residual glutamate responses in Off bipolar cells have not been determined. Recent studies show that macaque and mouse Off bipolar cells receive glutamatergic input primarily through kainate-type glutamate receptors. Here, we studied the impact of photoreceptor degeneration on glutamate receptor and their associated proteins in Off and On bipolar cells. We show that the kainate receptor subunit, GluK1, persists in remodeled Off bipolar cell dendrites of the rd10 mouse retina. However, the pattern of expression is altered and the intensity of staining is reduced compared to wild-type retina. The kainate receptor auxiliary subunit, Neto1, also remains in Off bipolar cell dendrites after extensive photoreceptor degeneration. Similar preservation of kainate receptor subunits was evident in human retina in which photoreceptors had degenerated due to serous retinal detachment. In contrast, photoreceptor degeneration leads to loss of synaptic expression of TRPM1 in mouse and human On bipolar cells, but strong somatic expression remains. These findings demonstrate that Off bipolar cells retain dendritic glutamate receptors during retinal degeneration and could thus serve as a conduit for signal transmission from transplanted or optogenetically restored photoreceptors.
Collapse
Affiliation(s)
- Jacqueline Gayet-Primo
- Casey Eye Institute, Department of Ophthalmology, Oregon Health and Science University, Portland OR, USA
| | - Theresa Puthussery
- Casey Eye Institute, Department of Ophthalmology, Oregon Health and Science University, Portland OR, USA
| |
Collapse
|
31
|
Kalloniatis M, Nivison-Smith L, Chua J, Acosta ML, Fletcher EL. Using the rd1 mouse to understand functional and anatomical retinal remodelling and treatment implications in retinitis pigmentosa: A review. Exp Eye Res 2015; 150:106-21. [PMID: 26521764 DOI: 10.1016/j.exer.2015.10.019] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/22/2015] [Accepted: 10/23/2015] [Indexed: 12/31/2022]
Abstract
Retinitis Pigmentosa (RP) reflects a range of inherited retinal disorders which involve photoreceptor degeneration and retinal pigmented epithelium dysfunction. Despite the multitude of genetic mutations being associated with the RP phenotype, the clinical and functional manifestations of the disease remain the same: nyctalopia, visual field constriction (tunnel vision), photopsias and pigment proliferation. In this review, we describe the typical clinical phenotype of human RP and review the anatomical and functional remodelling which occurs in RP determined from studies in the rd/rd (rd1) mouse. We also review studies that report a slowing down or show an acceleration of retinal degeneration and finally we provide insights on the impact retinal remodelling may have in vision restoration strategies.
Collapse
Affiliation(s)
- M Kalloniatis
- Centre for Eye Health, University of New South Wales, Kensington, NSW, Australia; School of Optometry and Vision Science, University of New South Wales, Kensington, NSW, Australia; School of Optometry and Vision Science, University of Auckland, Auckland, New Zealand; Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia.
| | - L Nivison-Smith
- Centre for Eye Health, University of New South Wales, Kensington, NSW, Australia; School of Optometry and Vision Science, University of New South Wales, Kensington, NSW, Australia
| | - J Chua
- School of Optometry and Vision Science, University of Auckland, Auckland, New Zealand
| | - M L Acosta
- School of Optometry and Vision Science, University of Auckland, Auckland, New Zealand
| | - E L Fletcher
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
32
|
Ivanova E, Yee CW, Sagdullaev BT. Increased phosphorylation of Cx36 gap junctions in the AII amacrine cells of RD retina. Front Cell Neurosci 2015; 9:390. [PMID: 26483638 PMCID: PMC4589668 DOI: 10.3389/fncel.2015.00390] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 09/18/2015] [Indexed: 11/24/2022] Open
Abstract
Retinal degeneration (RD) encompasses a family of diseases that lead to photoreceptor death and visual impairment. Visual decline due to photoreceptor cell loss is further compromised by emerging spontaneous hyperactivity in inner retinal cells. This aberrant activity acts as a barrier to signals from the remaining photoreceptors, hindering therapeutic strategies to restore light sensitivity in RD. Gap junctions, particularly those expressed in AII amacrine cells, have been shown to be integral to the generation of aberrant activity. It is unclear whether gap junction expression and coupling are altered in RD. To test this, we evaluated the expression and phosphorylation state of connexin36 (Cx36), the gap junction subunit predominantly expressed in AII amacrine cells, in two mouse models of RD, rd10 (slow degeneration) and rd1 (fast degeneration). Using Ser293-P antibody, which recognizes a phosphorylated form of connexin36, we found that phosphorylation of connexin36 in both slow and fast RD models was significantly greater than in wildtype controls. This elevated phosphorylation may underlie the increased gap junction coupling of AII amacrine cells exhibited by RD retina.
Collapse
Affiliation(s)
- Elena Ivanova
- Departments of Ophthalmology and Neurology, Burke Medical Research Institute, Weill Medical College of Cornell University White Plains, NY, USA
| | - Christopher W Yee
- Departments of Ophthalmology and Neurology, Burke Medical Research Institute, Weill Medical College of Cornell University White Plains, NY, USA
| | - Botir T Sagdullaev
- Departments of Ophthalmology and Neurology, Burke Medical Research Institute, Weill Medical College of Cornell University White Plains, NY, USA
| |
Collapse
|
33
|
Svetozarskiy SN, Kopishinskaya SV, Gustov AV, Radyuk MA, Antonova VA, Smetankin IG, Svetozarskiy SN, Kopishinskaya SV, Gustov AV, Radyuk MA, Antonova VA, Smetankin IG. [Ophthalmic manifestations of Huntington's disease]. Vestn Oftalmol 2015; 131:82-86. [PMID: 26845877 DOI: 10.17116/oftalma2015131582-86] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by a mutation in the huntingtin gene. The whole nervous system, including visual analyzer, is involved in the pathogenesis of the disease. Various ocular sings can be found in both preclinical and clinical stages of HD. Specific retinal damage, namely, abnormal proteins formation, photoreceptor degeneration and retinal remodeling, has been studied in animal models. Functional changes in occipital lobe activity and its atrophy as well as degeneration of visual pathways can already be present in the early stages of the disease. Oculomotor symptoms of HD include disturbed visual fixation, slower tracking eye movements and saccades, and suppressed vestibulo-ocular reflex. Visual perceptual disorders, such as visuospatial difficulties, problems of stimulus identification and motion perception, along with decreased contrast sensitivity, have also been described. The possibility of using certain ophthalmic parameters as biomarkers of HD is being discussed.
Collapse
Affiliation(s)
- S N Svetozarskiy
- Nizhny Novgorod State Medical Academy, Ministry of Health of the Russian Federation, 10/1 Minina Sq., Nizhny Novgorod, Russian Federation, 603005
| | - S V Kopishinskaya
- Nizhny Novgorod State Medical Academy, Ministry of Health of the Russian Federation, 10/1 Minina Sq., Nizhny Novgorod, Russian Federation, 603005
| | - A V Gustov
- Nizhny Novgorod State Medical Academy, Ministry of Health of the Russian Federation, 10/1 Minina Sq., Nizhny Novgorod, Russian Federation, 603005
| | - M A Radyuk
- Volgograd State Medical University, Ministry of Health of the Russian Federation, 1 Pavshikh Bortsov Sq., Volgograd, Russian Federation, 400131
| | - V A Antonova
- Nizhny Novgorod State Medical Academy, Ministry of Health of the Russian Federation, 10/1 Minina Sq., Nizhny Novgorod, Russian Federation, 603005
| | - I G Smetankin
- Nizhny Novgorod State Medical Academy, Ministry of Health of the Russian Federation, 10/1 Minina Sq., Nizhny Novgorod, Russian Federation, 603005
| | - S N Svetozarskiy
- Nizhny Novgorod State Medical Academy, Ministry of Health of the Russian Federation, 10/1 Minina Sq., Nizhny Novgorod, Russian Federation, 603005
| | - S V Kopishinskaya
- Nizhny Novgorod State Medical Academy, Ministry of Health of the Russian Federation, 10/1 Minina Sq., Nizhny Novgorod, Russian Federation, 603005
| | - A V Gustov
- Nizhny Novgorod State Medical Academy, Ministry of Health of the Russian Federation, 10/1 Minina Sq., Nizhny Novgorod, Russian Federation, 603005
| | - M A Radyuk
- Volgograd State Medical University, Ministry of Health of the Russian Federation, 1 Pavshikh Bortsov Sq., Volgograd, Russian Federation, 400131
| | - V A Antonova
- Nizhny Novgorod State Medical Academy, Ministry of Health of the Russian Federation, 10/1 Minina Sq., Nizhny Novgorod, Russian Federation, 603005
| | - I G Smetankin
- Nizhny Novgorod State Medical Academy, Ministry of Health of the Russian Federation, 10/1 Minina Sq., Nizhny Novgorod, Russian Federation, 603005
| |
Collapse
|
34
|
Greferath U, Anderson EE, Jobling AI, Vessey KA, Martinez G, de Iongh RU, Kalloniatis M, Fletcher EL. Inner retinal change in a novel rd1-FTL mouse model of retinal degeneration. Front Cell Neurosci 2015; 9:293. [PMID: 26283925 PMCID: PMC4518195 DOI: 10.3389/fncel.2015.00293] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 07/16/2015] [Indexed: 11/13/2022] Open
Abstract
While photoreceptor loss is the most devastating result of inherited retinal degenerations such as retinitis pigmentosa, inner retinal neurons also undergo significant alteration. Detailing these changes has become important as many vision restorative therapies target the remaining neurons. In this study, the rd1-Fos-Tau-LacZ (rd1-FTL) mouse model was used to explore inner retinal change at a late stage of retinal degeneration, after the loss of photoreceptor nuclei. The rd1-FTL model carries a mutation in the phosphodiesterase gene, Pde6b, and an axonally targeted transgenic beta galactosidase reporter system under the control of the c-fos promoter. Retinae of transgenic rd1-FTL mice and control FTL animals aged 2-12 months were processed for indirect fluorescence immunocytochemistry. At 2 months of age, a time when the majority of photoreceptor nuclei are lost, there was negligible c-fos reporter (FTL) expression, however, from 4 months, reporter expression was observed to increase within subpopulations of amacrine and ganglion cells within the central retina. These areas of inner retinal FTL expression coincided with regions that contained aberrant Müller cells. Specifically, these cells exhibited reduced glutamine synthetase and Kir4.1 immunolabelling, whilst showing evidence of proliferative gliosis (increased cyclinD1 and glial fibrillary acidic protein expression). These changes were limited to distinct regions where cone photoreceptor terminals were absent. Overall, these results highlight that distinct areas of the rd1-FTL central retina undergo significant glial alterations after cone photoreceptor loss. These areas coincide with up-regulation of the c-fos reporter in the inner retina, which may represent a change in neuronal function/plasticity. The rd1-FTL mouse is a useful model system to probe changes that occur in the inner retina at later stages of retinal degeneration.
Collapse
Affiliation(s)
- Ursula Greferath
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, VIC Australia
| | - Emily E Anderson
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, VIC Australia
| | - Andrew I Jobling
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, VIC Australia
| | - Kirstan A Vessey
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, VIC Australia
| | - Gemma Martinez
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, VIC Australia
| | - Robb U de Iongh
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, VIC Australia
| | - Michael Kalloniatis
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, VIC Australia ; Centre for Eye Health and School of Optometry and Vision Science, University of New South Wales, Sydney, NSW Australia
| | - Erica L Fletcher
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, VIC Australia
| |
Collapse
|
35
|
Schubert T, Wissinger B. Restoration of synaptic function in sight for degenerative retinal disease. J Clin Invest 2015; 125:2572-5. [PMID: 26098210 DOI: 10.1172/jci82577] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Synaptic disorganization is a prominent feature of many neurological diseases of the CNS, including Parkinson's disease, intellectual development disorders, and autism. Although synaptic plasticity is critical for learning and memory, it is unclear whether this innate property helps restore synaptic function in disease once the primary cause of disease is abrogated. An answer to this question may come from a recent investigation in X-linked retinoschisis, a currently untreatable retinopathy. In this issue of the JCI, Ou, Vijayasarathy, and colleagues showed progressive disorganization of key functional elements of the synapse between photoreceptors and ON-bipolar cells in a retinoschisin-deficient mouse model. Moreover, they demonstrated that adeno-associated virus-mediated (AAV-mediated) delivery of the retinoschisin gene restores structure and function to the photoreceptor to ON-bipolar cell synapse in mouse models, even in adults at advanced stages of the disease. The results of this study hold promise that AAV-based supplemental gene therapy will benefit patients with X-linked retinoschisis in a forthcoming clinical trial.
Collapse
|
36
|
Haq W, Arango-Gonzalez B, Zrenner E, Euler T, Schubert T. Synaptic remodeling generates synchronous oscillations in the degenerated outer mouse retina. Front Neural Circuits 2014; 8:108. [PMID: 25249942 PMCID: PMC4155782 DOI: 10.3389/fncir.2014.00108] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 08/19/2014] [Indexed: 11/28/2022] Open
Abstract
During neuronal degenerative diseases, neuronal microcircuits undergo severe structural alterations, leading to remodeling of synaptic connectivity. The functional consequences of such remodeling are mostly unknown. For instance, in mutant rd1 mouse retina, a common model for Retinitis Pigmentosa, rod bipolar cells (RBCs) establish contacts with remnant cone photoreceptors (cones) as a consequence of rod photoreceptor cell death and the resulting lack of presynaptic input. To assess the functional connectivity in the remodeled, light-insensitive outer rd1 retina, we recorded spontaneous population activity in retinal wholemounts using Ca(2+) imaging and identified the participating cell types. Focusing on cones, RBCs and horizontal cells (HCs), we found that these cell types display spontaneous oscillatory activity and form synchronously active clusters. Overall activity was modulated by GABAergic inhibition from interneurons such as HCs and/or possibly interplexiform cells. Many of the activity clusters comprised both cones and RBCs. Opposite to what is expected from the intact (wild-type) cone-ON bipolar cell pathway, cone and RBC activity was positively correlated and, at least partially, mediated by glutamate transporters expressed on RBCs. Deletion of gap junctional coupling between cones reduced the number of clusters, indicating that electrical cone coupling plays a crucial role for generating the observed synchronized oscillations. In conclusion, degeneration-induced synaptic remodeling of the rd1 retina results in a complex self-sustained outer retinal oscillatory network, that complements (and potentially modulates) the recently described inner retinal oscillatory network consisting of amacrine, bipolar and ganglion cells.
Collapse
Affiliation(s)
- Wadood Haq
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of TübingenTübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience (CIN), University of TübingenTübingen, Germany
- Bernstein Center for Computational Neuroscience Tübingen, University of TübingenTübingen, Germany
| | - Blanca Arango-Gonzalez
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of TübingenTübingen, Germany
| | - Eberhart Zrenner
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of TübingenTübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience (CIN), University of TübingenTübingen, Germany
- Bernstein Center for Computational Neuroscience Tübingen, University of TübingenTübingen, Germany
| | - Thomas Euler
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of TübingenTübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience (CIN), University of TübingenTübingen, Germany
- Bernstein Center for Computational Neuroscience Tübingen, University of TübingenTübingen, Germany
| | - Timm Schubert
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of TübingenTübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience (CIN), University of TübingenTübingen, Germany
| |
Collapse
|
37
|
D'Orazi FD, Suzuki SC, Wong RO. Neuronal remodeling in retinal circuit assembly, disassembly, and reassembly. Trends Neurosci 2014; 37:594-603. [PMID: 25156327 DOI: 10.1016/j.tins.2014.07.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/03/2014] [Accepted: 07/27/2014] [Indexed: 10/24/2022]
Abstract
Developing neuronal circuits often undergo a period of refinement to eliminate aberrant synaptic connections. Inappropriate connections can also form among surviving neurons during neuronal degeneration. The laminar organization of the vertebrate retina enables synaptic reorganization to be readily identified. Synaptic rearrangements are shown to help sculpt developing retinal circuits, although the mechanisms involved remain debated. Structural changes in retinal diseases can also lead to functional rewiring. This poses a major challenge to retinal repair because it may be necessary to untangle the miswired connections before reconnecting with proper synaptic partners. Here, we review our current understanding of the mechanisms that underlie circuit remodeling during retinal development, and discuss how alterations in connectivity during damage could impede circuit repair.
Collapse
Affiliation(s)
- Florence D D'Orazi
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Sachihiro C Suzuki
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Rachel O Wong
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA.
| |
Collapse
|
38
|
Yee CW, Toychiev AH, Ivanova E, Sagdullaev BT. Aberrant synaptic input to retinal ganglion cells varies with morphology in a mouse model of retinal degeneration. J Comp Neurol 2014; 522:4085-99. [PMID: 25099614 DOI: 10.1002/cne.23660] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/23/2014] [Accepted: 08/04/2014] [Indexed: 11/10/2022]
Abstract
Retinal degeneration describes a group of disorders which lead to progressive photoreceptor cell death, resulting in blindness. As this occurs, retinal ganglion cells (RGCs) begin to develop oscillatory physiological activity. Here we studied the morphological and physiological properties of RGCs in rd1 mice, aged 30-60 days, to determine how this aberrant activity correlates with morphology. Patch-clamp recordings of excitatory and inhibitory currents were performed, then dendritic structures were visualized by infusion of fluorescent dye. Only RGCs with oscillatory activity were selected for further analysis. Oscillatory frequency and power were calculated using power spectral density analysis of recorded currents. Dendritic arbor stratification, total length, and area were measured from confocal microscope image stacks. These measurements were used to sort RGCs by cluster analysis using Ward's Method. This resulted in a total of 10 clusters, with monostratified and bistratified cells having five clusters each. Both populations exhibited correlations between arbor stratification and aberrant inhibitory input, while excitatory input did not vary with arbor distribution. These findings illustrate the relationship between aberrant activity and RGC morphology at early stages of retinal degeneration.
Collapse
Affiliation(s)
- Christopher W Yee
- Departments of Ophthalmology and Neurology, Weill Medical College of Cornell University, Burke Medical Research Institute, White Plains, NY, 10605
| | | | | | | |
Collapse
|
39
|
Biswas S, Haselier C, Mataruga A, Thumann G, Walter P, Müller F. Pharmacological analysis of intrinsic neuronal oscillations in rd10 retina. PLoS One 2014; 9:e99075. [PMID: 24918437 PMCID: PMC4053359 DOI: 10.1371/journal.pone.0099075] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 05/11/2014] [Indexed: 12/30/2022] Open
Abstract
In the widely used mouse model of retinal degeneration, rd1, the loss of photoreceptors leads to rhythmic electrical activity of around 10-16 Hz in the remaining retinal network. Recent studies suggest that this oscillation is formed within the electrically coupled network of AII amacrine cells and ON-bipolar cells. A second mouse model, rd10, displays a delayed onset and slower progression of degeneration, making this mouse strain a better model for human retinitis pigmentosa. In rd10, oscillations occur at a frequency of 3-7 Hz, raising the question whether oscillations have the same origin in the two mouse models. As rd10 is increasingly being used as a model to develop experimental therapies, it is important to understand the mechanisms underlying the spontaneous rhythmic activity. To study the properties of oscillations in rd10 retina we combined multi electrode recordings with pharmacological manipulation of the retinal network. Oscillations were abolished by blockers for ionotropic glutamate receptors and gap junctions. Frequency and amplitude of oscillations were modulated strongly by blockers of inhibitory receptors and to a lesser extent by blockers of HCN channels. In summary, although we found certain differences in the pharmacological modulation of rhythmic activity in rd10 compared to rd1, the overall pattern looked similar. This suggests that the generation of rhythmic activity may underlie similar mechanisms in rd1 and rd10 retina.
Collapse
Affiliation(s)
- Sonia Biswas
- Institute of Complex Systems, Cellular Biophysics, ICS-4, Forschungszentrum Jülich GmbH, Jülich, Germany
| | | | - Anja Mataruga
- Institute of Complex Systems, Cellular Biophysics, ICS-4, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Gabriele Thumann
- Department of Ophthalmology, RWTH Aachen University, Aachen, Germany
| | - Peter Walter
- Department of Ophthalmology, RWTH Aachen University, Aachen, Germany
| | - Frank Müller
- Institute of Complex Systems, Cellular Biophysics, ICS-4, Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
40
|
Singh RK, Kolandaivelu S, Ramamurthy V. Early alteration of retinal neurons in Aipl1-/- animals. Invest Ophthalmol Vis Sci 2014; 55:3081-92. [PMID: 24736053 DOI: 10.1167/iovs.13-13728] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Mutations in the photoreceptor cell-specific gene encoding aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1) lead to Leber congenital amaurosis (LCA4), retinitis pigmentosa, and cone-rod dystrophy. Gene therapy appears to be promising in the treatment for AIPL1-mediated vision loss in humans. Prior to initiating these treatments, however, it is crucial to understand how the retinal neurons remodel themselves in response to photoreceptor cell degeneration. In this study, using an animal model for AIPL1-LCA, Aipl1(-/-) mice, we investigate the changes in postreceptoral retinal neurons during the course of photoreceptor cell loss. METHODS Morphology of the Aipl1(-/-) retina from postnatal day 8 to 150 was compared to that of age-matched, wild-type C57Bl6/J retina (WT) by immunocytochemistry using cell-specific markers. RESULTS Expression of postsynaptic proteins in bipolar cells is reduced prior to photoreceptor cell degeneration at postnatal day 8. Bipolar and horizontal cells retract their dendrites. Cell bodies and axons of bipolar and horizontal cells are disorganized during the course of degeneration. Müller cell processes become hypertrophic and form a dense fibrotic layer outside the inner nuclear layer. CONCLUSIONS An early defect in photoreceptor cells in the AIPL1-LCA mouse model affects the expression of postsynaptic markers, suggesting abnormal development of bipolar synapses. Once degeneration of photoreceptor cells is initiated, remodeling of retinal neurons in the Aipl1(-/-) animal is rapid.
Collapse
Affiliation(s)
- Ratnesh Kumar Singh
- Departments of Ophthalmology and Biochemistry, Center for Neuroscience, West Virginia University, Morgantown, West Virginia, United States
| | - Saravanan Kolandaivelu
- Departments of Ophthalmology and Biochemistry, Center for Neuroscience, West Virginia University, Morgantown, West Virginia, United States
| | - Visvanathan Ramamurthy
- Departments of Ophthalmology and Biochemistry, Center for Neuroscience, West Virginia University, Morgantown, West Virginia, United States
| |
Collapse
|
41
|
Dagar S, Nagar S, Goel M, Cherukuri P, Dhingra NK. Loss of photoreceptors results in upregulation of synaptic proteins in bipolar cells and amacrine cells. PLoS One 2014; 9:e90250. [PMID: 24595229 PMCID: PMC3942420 DOI: 10.1371/journal.pone.0090250] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 01/30/2014] [Indexed: 01/19/2023] Open
Abstract
Deafferentation is known to cause significant changes in the postsynaptic neurons in the central nervous system. Loss of photoreceptors, for instance, results in remarkable morphological and physiological changes in bipolar cells and horizontal cells. Retinal ganglion cells (RGCs), which send visual information to the brain, are relatively preserved, but show aberrant firing patterns, including spontaneous bursts of spikes in the absence of photoreceptors. To understand how loss of photoreceptors affects the circuitry presynaptic to the ganglion cells, we measured specific synaptic proteins in two mouse models of retinal degeneration. We found that despite the nearly total loss of photoreceptors, the synaptophysin protein and mRNA levels in retina were largely unaltered. Interestingly, the levels of synaptophysin in the inner plexiform layer (IPL) were higher, implying that photoreceptor loss results in increased synaptophysin in bipolar and/or amacrine cells. The levels of SV2B, a synaptic protein expressed by photoreceptors and bipolar cells, were reduced in whole retina, but increased in the IPL of rd1 mouse. Similarly, the levels of syntaxin-I and synapsin-I, synaptic proteins expressed selectively by amacrine cells, were higher after loss of photoreceptors. The upregulation of syntaxin-I was evident as early as one day after the onset of photoreceptor loss, suggesting that it did not require any massive or structural remodeling, and therefore is possibly reversible. Together, these data show that loss of photoreceptors results in increased synaptic protein levels in bipolar and amacrine cells. Combined with previous reports of increased excitatory and inhibitory synaptic currents in RGCs, these results provide clues to understand the mechanism underlying the aberrant spiking in RGCs.
Collapse
Affiliation(s)
- Sushma Dagar
- National Brain Research Centre, Manesar (Gurgaon) Haryana, India
| | - Saumya Nagar
- National Brain Research Centre, Manesar (Gurgaon) Haryana, India
| | - Manvi Goel
- National Brain Research Centre, Manesar (Gurgaon) Haryana, India
| | | | | |
Collapse
|
42
|
Vinpocetine regulates cation channel permeability of inner retinal neurons in the ischaemic retina. Neurochem Int 2014; 66:1-14. [DOI: 10.1016/j.neuint.2014.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/09/2013] [Accepted: 01/04/2014] [Indexed: 11/23/2022]
|
43
|
Gibson R, Fletcher EL, Vingrys AJ, Zhu Y, Vessey KA, Kalloniatis M. Functional and neurochemical development in the normal and degenerating mouse retina. J Comp Neurol 2013; 521:1251-67. [PMID: 23238927 DOI: 10.1002/cne.23284] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 11/14/2012] [Accepted: 12/11/2012] [Indexed: 12/11/2022]
Abstract
The rd1 mouse is a well-established animal model for human retinitis pigmentosa (RP). We used electroretinography (ERG) to evaluate retinal function and postembedding immunocytochemistry to determine the changes in cellular amino acid expression in the normal (C57Bl6) and degenerating mouse retina (rd1), as a function of age during development and the onset of degeneration. In the normal mouse retina, photoreceptoral and post-photoreceptoral ERG responses improved simultaneously from eye-opening until adult levels were achieved at approximately postnatal day (P) 30. Maturation of amino acid neurochemistry preceded the development of retinal function in the normal retina. Amino acid levels increased immediately from birth and reached stable levels by eye-opening. In contrast, in the rd1 mouse, both rod and cone pathway function rapidly reduced from eye-opening and by P21 became undetectable. Interestingly, at P18 cone responses were still comparable between the normal and degenerating retina. Before eye opening, the pattern of amino acid immunoreactivity in the rd1 retina was similar to the normal retina. Alterations in neurochemistry were observed after the onset of rod photoreceptor cell death. The most obvious change was the reduction in neurotransmitter immunoreactivity within the synaptic layers and some cell classes of the rd1 retina. Reduction of glutamine and glutamate was observed in Müller cells before established gliosis markers. Overall, these results suggest the rapid maturation of neurochemistry by eye opening followed by functional maturation by P30 in the normal retina. The dystrophic retina displays similar neurochemistry to control retina before eye opening but a subsequent decline.
Collapse
Affiliation(s)
- Riki Gibson
- Department of Optometry and Vision Sciences, University of Melbourne, Melbourne, Australia
| | | | | | | | | | | |
Collapse
|
44
|
Shepherd RK, Shivdasani MN, Nayagam DAX, Williams CE, Blamey PJ. Visual prostheses for the blind. Trends Biotechnol 2013; 31:562-71. [PMID: 23953722 DOI: 10.1016/j.tibtech.2013.07.001] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 07/04/2013] [Accepted: 07/05/2013] [Indexed: 10/26/2022]
Abstract
After more than 40 years of research, visual prostheses are moving from the laboratory into the clinic. These devices are designed to provide prosthetic vision to the blind by stimulating localized neural populations in one of the retinotopically organized structures of the visual pathway - typically the retina or visual cortex. The long gestation of this research reflects the many significant technical challenges encountered including surgical access, mechanical stability, hardware miniaturization, hermetic encapsulation, high-density electrode arrays, and signal processing. This review provides an introduction to the pathophysiology of blindness; an overview of existing visual prostheses, their advantages and drawbacks; the perceptual effects evoked by electrical stimulation; as well as the role played by plasticity and training in clinical outcomes.
Collapse
Affiliation(s)
- Robert K Shepherd
- Bionics Institute, 384-388 Albert St East Melbourne, 3002, Victoria, Australia; Medical Bionics Department, University of Melbourne, 384-388 Albert St East Melbourne, 3002, Victoria, Australia.
| | | | | | | | | |
Collapse
|
45
|
Lin B, Peng EB. Retinal ganglion cells are resistant to photoreceptor loss in retinal degeneration. PLoS One 2013; 8:e68084. [PMID: 23840814 PMCID: PMC3695938 DOI: 10.1371/journal.pone.0068084] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 05/24/2013] [Indexed: 01/19/2023] Open
Abstract
The rapid and massive degeneration of photoreceptors in retinal degeneration might have a dramatic negative effect on retinal circuits downstream of photoreceptors. However, the impact of photoreceptor loss on the morphology and function of retinal ganglion cells (RGCs) is not fully understood, precluding the rational design of therapeutic interventions that can reverse the progressive loss of retinal function. The present study investigated the morphological changes in several identified RGCs in the retinal degeneration rd1 mouse model of retinitis pigmentosa (RP), using a combination of viral transfection, microinjection of neurobiotin and confocal microscopy. Individual RGCs were visualized with a high degree of detail using an adeno-associated virus (AAV) vector carrying the gene for enhanced green fluorescent protein (EGFP), allowed for large-scale surveys of the morphology of RGCs over a wide age range. Interestingly, we found that the RGCs of nine different types we encountered were especially resistant to photoreceptor degeneration, and retained their fine dendritic geometry well beyond the complete death of photoreceptors. In addition, the RGC-specific markers revealed a remarkable degree of stability in both morphology and numbers of two identified types of RGCs for up to 18 months of age. Collectively, our data suggest that ganglion cells, the only output cells of the retina, are well preserved morphologically, indicating the ganglion cell population might be an attractive target for treating vision loss.
Collapse
Affiliation(s)
- Bin Lin
- Department of Anatomy, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Pokfulam, Hong Kong.
| | | |
Collapse
|
46
|
Chua J, Nivison-Smith L, Fletcher EL, Trenholm S, Awatramani GB, Kalloniatis M. Early remodeling of müller cells in therd/rdmouse model of retinal dystrophy. J Comp Neurol 2013; 521:2439-53. [DOI: 10.1002/cne.23307] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 12/11/2012] [Accepted: 01/17/2013] [Indexed: 12/13/2022]
|
47
|
Mapping cation entry in photoreceptors and inner retinal neurons during early degeneration in the P23H-3 rat retina. Vis Neurosci 2013; 30:65-75. [PMID: 23557623 DOI: 10.1017/s0952523813000047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The proline-23-histidine line 3 (P23H-3) transgenic rat carries a human opsin gene mutation leading to progressive photoreceptor loss characteristic of human autosomal dominant retinitis pigmentosa. The aim of the present study was to evaluate neurochemical modifications in the P23H-3 retina as a function of development and degeneration. Specifically, we investigated the ion channel permeability of photoreceptors by tracking an organic cation, agmatine (1-amino-4-guanidobutane, AGB), which permeates through nonspecific cation channels. We also investigated the activity of ionotropic glutamate receptors in distinct populations of bipolar, amacrine, and ganglion cells using AGB tracking in combination with macromolecular markers. We found elevated cation channel permeation in photoreceptors as early as postnatal day 12 (P12) suggesting that AGB labeling is an early indicator of impending photoreceptor degeneration. However, bipolar, amacrine, or ganglion cells displayed normal responses secondary to ionotropic glutamate receptor activation even at P138 when about one half of the photoreceptor layer was lost and apoptosis and gliosis were observed. These results suggest that possible therapeutic windows as downstream neurons in inner retina appear to retain normal function with regard to AGB permeation when photoreceptors are significantly reduced but not lost.
Collapse
|
48
|
Abstract
The P23H-1 transgenic rat carries a mutated mouse opsin gene, in addition to endogenous opsin genes, and undergoes progressive photoreceptor loss that is generally characteristic of human autosomal dominant retinitis pigmentosa (RP). Here, we examined morphological changes correlated with visual function that is comparable to clinical application in the pigmented P23H-1 rat retina as photoreceptor degeneration progressed. We found that rod function was compromised as early as postnatal day 28 and was a good indicator for tracking retinal degeneration. Cone function was normal and did not change until the thickness of the photoreceptor layer was reduced by 75%. Similar to the threshold versus intensity curves used to evaluate vision of RP patients, light-adaptation curves showed that cone thresholds depended on the number of remaining functioning cones, but not on its length of outer segments (OS). By 1 year of age, both rod and cone functions were significantly compromised. Correlating with early abnormal rod function, rods and related secondary neurons also underwent progressive degeneration, including shortening of inner and OS of photoreceptors, loss of rod bipolar and horizontal cell dendrites, thickening of the outer Müller cell processes, and reduced density of pre- and postsynaptic markers. Similar early morphological modifications were also observed in cones and their related secondary neurons. However, cone function was maintained at nearly normal level for a long period. The dramatic loss of rods at late stage of degeneration may contribute to the dysfunction of cones. Attention has to be focused on preserving cone function and identifying factors that damage cones when therapeutic regimes are applied to treat retinal degeneration. As such, these findings provide a foundation for future studies involving treatments to counter photoreceptor loss.
Collapse
|
49
|
Chen M, Wang K, Lin B. Development and degeneration of cone bipolar cells are independent of cone photoreceptors in a mouse model of retinitis pigmentosa. PLoS One 2012; 7:e44036. [PMID: 22952865 PMCID: PMC3432094 DOI: 10.1371/journal.pone.0044036] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 08/01/2012] [Indexed: 01/08/2023] Open
Abstract
Retinal photoreceptors die during retinal synaptogenesis in a portion of retinal degeneration. Whether cone bipolar cells establish regular retinal mosaics and mature morphologies, and resist degeneration are not completely understood. To explore these issues, we backcrossed a transgenic mouse expressing enhanced green fluorescent protein (EGFP) in one subset of cone bipolar cells (type 7) into rd1 mice, a classic mouse model of retinal degeneration, to examine the development and survival of cone bipolar cells in a background of retinal degeneration. Our data revealed that both the development and degeneration of cone bipolar cells are independent of the normal activity of cone photoreceptors. We found that type 7 cone bipolar cells achieved a uniform tiling of the retinal surface and developed normal dendritic and axonal arbors without the influence of cone photoreceptor innervation. On the other hand, degeneration of type 7 cone bipolar cells, contrary to our belief of central-to-peripheral progression, was spatially uniform across the retina independent of the spatiotemporal pattern of cone degeneration. The results have important implications for the design of more effective therapies to restore vision in retinal degeneration.
Collapse
Affiliation(s)
- Miao Chen
- Department of Anatomy, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Pokfulam, Hong Kong, People's Republic of China
| | - Ke Wang
- Department of Anatomy, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Pokfulam, Hong Kong, People's Republic of China
| | - Bin Lin
- Department of Anatomy, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Pokfulam, Hong Kong, People's Republic of China
- Eye Institute, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Pokfulam, Hong Kong, People's Republic of China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Pokfulam, Hong Kong, People's Republic of China
- * E-mail:
| |
Collapse
|
50
|
Abstract
Retinal photoreceptor degeneration takes many forms. Mutations in rhodopsin genes or disorders of the retinal pigment epithelium, defects in the adenosine triphosphate binding cassette transporter, ABCR gene defects, receptor tyrosine kinase defects, ciliopathies and transport defects, defects in both transducin and arrestin, defects in rod cyclic guanosine 3',5'-monophosphate phosphodiesterase, peripherin defects, defects in metabotropic glutamate receptors, synthetic enzymatic defects, defects in genes associated with signaling, and many more can all result in retinal degenerative disease like retinitis pigmentosa (RP) or RP-like disorders. Age-related macular degeneration (AMD) and AMD-like disorders are possibly due to a constellation of potential gene targets and gene/gene interactions, while other defects result in diabetic retinopathy or glaucoma. However, all of these insults as well as traumatic insults to the retina result in retinal remodeling. Retinal remodeling is a universal finding subsequent to retinal degenerative disease that results in deafferentation of the neural retina from photoreceptor input as downstream neuronal elements respond to loss of input with negative plasticity. This negative plasticity is not passive in the face of photoreceptor degeneration, with a phased revision of retinal structure and function found at the molecular, synaptic, cell, and tissue levels involving all cell classes in the retina, including neurons and glia. Retinal remodeling has direct implications for the rescue of vision loss through bionic or biological approaches, as circuit revision in the retina corrupts any potential surrogate photoreceptor input to a remnant neural retina. However, there are a number of potential opportunities for intervention that are revealed through the study of retinal remodeling, including therapies that are designed to slow down photoreceptor loss, interventions that are designed to limit or arrest remodeling events, and optogenetic approaches that target appropriate classes of neurons in the remnant neural retina.
Collapse
|