1
|
Ghouli MR, Binder DK. Neuroglia in epilepsy. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:69-86. [PMID: 40148058 DOI: 10.1016/b978-0-443-19102-2.00016-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Epilepsy is a group of neurologic diseases characterized by spontaneous, repetitive disruption to neuronal activity. Neurons have been at the core of epilepsy research efforts, and pharmacotherapies historically have been generated by targeting neuronal mechanisms. As a result, most currently available antiseizure drugs (ASDs) work to either decrease excitatory glutamatergic neurotransmission or to increase inhibitory GABAergic neurotransmission. However, ASDs may have undesirable side effects on cognition and also fail to control seizures in approximately 30% of epilepsy patients. In recent years, glia have surfaced as essential modulators of neuronal function in health and disease. The redirection of focus onto neuroglia provides new perspectives and opportunities to generate novel therapeutic targets that may treat refractory epilepsy and diminish the unwanted side effect profile of current treatments. In this chapter, we discuss the contribution of astroglia, oligodendroglia, and microglia to the genesis, development, and progression of epilepsy, and we highlight key enzymes, receptors, transporters, and channels that may be pursued as nonneuronal targets for novel ASDs.
Collapse
Affiliation(s)
- Manolia R Ghouli
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States; Center for Glial-Neuronal Interactions, University of California, Riverside, Riverside, CA, United States
| | - Devin K Binder
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States; Center for Glial-Neuronal Interactions, University of California, Riverside, Riverside, CA, United States.
| |
Collapse
|
2
|
Zhang D, Hua Z, Li Z. The role of glutamate and glutamine metabolism and related transporters in nerve cells. CNS Neurosci Ther 2024; 30:e14617. [PMID: 38358002 PMCID: PMC10867874 DOI: 10.1111/cns.14617] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/15/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Glutamate and glutamine are the most abundant amino acids in the blood and play a crucial role in cell survival in the nervous system. Various transporters found in cell and mitochondrial membranes, such as the solute carriers (SLCs) superfamily, are responsible for maintaining the balance of glutamate and glutamine in the synaptic cleft and within cells. This balance affects the metabolism of glutamate and glutamine as non-essential amino acids. AIMS This review aims to provide an overview of the transporters and enzymes associated with glutamate and glutamine in neuronal cells. DISCUSSION We delve into the function of glutamate and glutamine in the nervous system by discussing the transporters involved in the glutamate-glutamine cycle and the key enzymes responsible for their mutual conversion. Additionally, we highlight the role of glutamate and glutamine as carbon and nitrogen donors, as well as their significance as precursors for the synthesis of reduced glutathione (GSH). CONCLUSION Glutamate and glutamine play a crucial role in the brain due to their special effects. It is essential to focus on understanding glutamate and glutamine metabolism to comprehend the physiological behavior of nerve cells and to treat nervous system disorders and cancer.
Collapse
Affiliation(s)
- Dongyang Zhang
- Department of PediatricsShengjing Hospital of China Medical UniversityShenyangLiaoningChina
- Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environment and Metabolic DiseasesShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Zhongyan Hua
- Department of PediatricsShengjing Hospital of China Medical UniversityShenyangLiaoningChina
- Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environment and Metabolic DiseasesShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Zhijie Li
- Department of PediatricsShengjing Hospital of China Medical UniversityShenyangLiaoningChina
- Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environment and Metabolic DiseasesShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| |
Collapse
|
3
|
Cuellar-Santoyo AO, Ruiz-Rodríguez VM, Mares-Barbosa TB, Patrón-Soberano A, Howe AG, Portales-Pérez DP, Miquelajáuregui Graf A, Estrada-Sánchez AM. Revealing the contribution of astrocytes to glutamatergic neuronal transmission. Front Cell Neurosci 2023; 16:1037641. [PMID: 36744061 PMCID: PMC9893894 DOI: 10.3389/fncel.2022.1037641] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/20/2022] [Indexed: 01/20/2023] Open
Abstract
Research on glutamatergic neurotransmission has focused mainly on the function of presynaptic and postsynaptic neurons, leaving astrocytes with a secondary role only to ensure successful neurotransmission. However, recent evidence indicates that astrocytes contribute actively and even regulate neuronal transmission at different levels. This review establishes a framework by comparing glutamatergic components between neurons and astrocytes to examine how astrocytes modulate or otherwise influence neuronal transmission. We have included the most recent findings about the role of astrocytes in neurotransmission, allowing us to understand the complex network of neuron-astrocyte interactions. However, despite the knowledge of synaptic modulation by astrocytes, their contribution to specific physiological and pathological conditions remains to be elucidated. A full understanding of the astrocyte's role in neuronal processing could open fruitful new frontiers in the development of therapeutic applications.
Collapse
Affiliation(s)
- Ares Orlando Cuellar-Santoyo
- División de Biología Molecular, Laboratorio de Neurobiología, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, Mexico
| | - Victor Manuel Ruiz-Rodríguez
- División de Biología Molecular, Laboratorio de Neurobiología, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, Mexico
| | - Teresa Belem Mares-Barbosa
- División de Biología Molecular, Laboratorio de Neurobiología, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, Mexico
- Translational and Molecular Medicine Laboratory, Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, San Luis Potosí, Mexico
| | - Araceli Patrón-Soberano
- División de Biología Molecular, Laboratorio de Neurobiología, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, Mexico
| | - Andrew G. Howe
- Intelligent Systems Laboratory, HRL Laboratories, LLC, Malibu, CA, United States
| | - Diana Patricia Portales-Pérez
- Translational and Molecular Medicine Laboratory, Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, San Luis Potosí, Mexico
| | | | - Ana María Estrada-Sánchez
- División de Biología Molecular, Laboratorio de Neurobiología, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, Mexico
| |
Collapse
|
4
|
Rǎdulescu AR, Todd GC, Williams CL, Bennink BA, Lemus AA, Chesbro HE, Bourgeois JR, Kopec AM, Zuloaga DG, Scimemi A. Estimating the glutamate transporter surface density in distinct sub-cellular compartments of mouse hippocampal astrocytes. PLoS Comput Biol 2022; 18:e1009845. [PMID: 35120128 PMCID: PMC8849624 DOI: 10.1371/journal.pcbi.1009845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 02/16/2022] [Accepted: 01/18/2022] [Indexed: 11/19/2022] Open
Abstract
Glutamate transporters preserve the spatial specificity of synaptic transmission by limiting glutamate diffusion away from the synaptic cleft, and prevent excitotoxicity by keeping the extracellular concentration of glutamate at low nanomolar levels. Glutamate transporters are abundantly expressed in astrocytes, and previous estimates have been obtained about their surface expression in astrocytes of the rat hippocampus and cerebellum. Analogous estimates for the mouse hippocampus are currently not available. In this work, we derive the surface density of astrocytic glutamate transporters in mice of different ages via quantitative dot blot. We find that the surface density of glial glutamate transporters is similar in 7-8 week old mice and rats. In mice, the levels of glutamate transporters increase until about 6 months of age and then begin to decline slowly. Our data, obtained from a combination of experimental and modeling approaches, point to the existence of stark differences in the density of expression of glutamate transporters across different sub-cellular compartments, indicating that the extent to which astrocytes limit extrasynaptic glutamate diffusion depends not only on their level of synaptic coverage, but also on the identity of the astrocyte compartment in contact with the synapse. Together, these findings provide information on how heterogeneity in the spatial distribution of glutamate transporters in the plasma membrane of hippocampal astrocytes my alter glutamate receptor activation out of the synaptic cleft.
Collapse
Affiliation(s)
- Anca R. Rǎdulescu
- Department of Mathematics, State University of New York at New Paltz, New Paltz, New York, United States of America
| | - Gabrielle C. Todd
- Department of Biology, State University of New York at Albany, Albany, New York, United States of America
| | - Cassandra L. Williams
- Department of Mathematics, State University of New York at New Paltz, New Paltz, New York, United States of America
| | - Benjamin A. Bennink
- Department of Biology, State University of New York at Albany, Albany, New York, United States of America
| | - Alex A. Lemus
- Department of Biology, State University of New York at Albany, Albany, New York, United States of America
| | - Haley E. Chesbro
- Department of Biology, State University of New York at Albany, Albany, New York, United States of America
| | - Justin R. Bourgeois
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, United States of America
| | - Ashley M. Kopec
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, United States of America
| | - Damian G. Zuloaga
- Department of Psychology, State University of New York at Albany, Albany, New York, United States of America
| | - Annalisa Scimemi
- Department of Biology, State University of New York at Albany, Albany, New York, United States of America
| |
Collapse
|
5
|
Kovermann P, Kolobkova Y, Franzen A, Fahlke C. Mutations associated with epileptic encephalopathy modify EAAT2 anion channel function. Epilepsia 2021; 63:388-401. [PMID: 34961934 DOI: 10.1111/epi.17154] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Mutations in the gene solute carrier family member 1A2 (SLC1A2) encoding the excitatory amino acid transporter 2 (EAAT2) are associated with severe forms of epileptic encephalopathy. EAAT2 is expressed in glial cells and presynaptic nerve terminals and represents the main l-glutamate uptake carrier in the mammalian brain. It does not only function as a secondary active glutamate transporter, but also as an anion channel. How naturally occurring mutations affect these two transport functions of EAAT2 and how such alterations cause epilepsy is insufficiently understood. METHODS Here we studied the functional consequences of three disease-associated mutations, which predict amino acid exchanges p.Gly82Arg (G82R), p.Leu85Pro (L85P), and p.Pro289Arg (P289R), by heterologous expression in mammalian cells, biochemistry, confocal imaging, and whole-cell patch-clamp recordings of EAAT2 l-glutamate transport and anion current. RESULTS G82R and L85P exchange amino acid residues contribute to the formation of the EAAT anion pore. They enlarge the pore diameter sufficiently to permit the passage of l-glutamate and thus function as l-glutamate efflux pathways. The mutation P289R decreases l-glutamate uptake, but increases anion currents despite a lower membrane expression. SIGNIFICANCE l-glutamate permeability of the EAAT anion pore is an unexpected functional consequence of naturally occurring single amino acid substitutions. l-glutamate efflux through mutant EAAT2 anion channels will cause glutamate excitotoxicity and neuronal hyperexcitability in affected patients. Antagonists that selectively suppress the EAAT anion channel function could serve as therapeutic agents in the future.
Collapse
Affiliation(s)
- Peter Kovermann
- Molekular- und Zellphysiologie (IBI-1) Forschungszentrum Jülich, Institute of Biological Information Processing, Jülich, Germany
| | - Yulia Kolobkova
- Molekular- und Zellphysiologie (IBI-1) Forschungszentrum Jülich, Institute of Biological Information Processing, Jülich, Germany
| | - Arne Franzen
- Molekular- und Zellphysiologie (IBI-1) Forschungszentrum Jülich, Institute of Biological Information Processing, Jülich, Germany
| | - Christoph Fahlke
- Molekular- und Zellphysiologie (IBI-1) Forschungszentrum Jülich, Institute of Biological Information Processing, Jülich, Germany
| |
Collapse
|
6
|
Zisis E, Keller D, Kanari L, Arnaudon A, Gevaert M, Delemontex T, Coste B, Foni A, Abdellah M, Calì C, Hess K, Magistretti PJ, Schürmann F, Markram H. Digital Reconstruction of the Neuro-Glia-Vascular Architecture. Cereb Cortex 2021; 31:5686-5703. [PMID: 34387659 PMCID: PMC8568010 DOI: 10.1093/cercor/bhab254] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 01/21/2023] Open
Abstract
Astrocytes connect the vasculature to neurons mediating the supply of nutrients and biochemicals. They are involved in a growing number of physiological and pathophysiological processes that result from biophysical, physiological, and molecular interactions in this neuro-glia-vascular ensemble (NGV). The lack of a detailed cytoarchitecture severely restricts the understanding of how they support brain function. To address this problem, we used data from multiple sources to create a data-driven digital reconstruction of the NGV at micrometer anatomical resolution. We reconstructed 0.2 mm3 of the rat somatosensory cortex with 16 000 morphologically detailed neurons, 2500 protoplasmic astrocytes, and its microvasculature. The consistency of the reconstruction with a wide array of experimental measurements allows novel predictions of the NGV organization, allowing the anatomical reconstruction of overlapping astrocytic microdomains and the quantification of endfeet connecting each astrocyte to the vasculature, as well as the extent to which they cover the latter. Structural analysis showed that astrocytes optimize their positions to provide uniform vascular coverage for trophic support and signaling. However, this optimal organization rapidly declines as their density increases. The NGV digital reconstruction is a resource that will enable a better understanding of the anatomical principles and geometric constraints, which govern how astrocytes support brain function.
Collapse
Affiliation(s)
- Eleftherios Zisis
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva 1202, Switzerland
| | - Daniel Keller
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva 1202, Switzerland
| | - Lida Kanari
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva 1202, Switzerland
| | - Alexis Arnaudon
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva 1202, Switzerland
| | - Michael Gevaert
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva 1202, Switzerland
| | - Thomas Delemontex
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva 1202, Switzerland
| | - Benoît Coste
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva 1202, Switzerland
| | - Alessandro Foni
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva 1202, Switzerland
| | - Marwan Abdellah
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva 1202, Switzerland
| | - Corrado Calì
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Turin 10043, Italy
- Department of Neuroscience, University of Torino, Torino 10126, Italy
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Kathryn Hess
- Laboratory for Topology and Neuroscience, Brain Mind Institute, École polytechnique fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Pierre Julius Magistretti
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Felix Schürmann
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva 1202, Switzerland
| | - Henry Markram
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva 1202, Switzerland
| |
Collapse
|
7
|
Uchida M, Noda Y, Hasegawa S, Hida H, Taniguchi M, Mouri A, Yoshimi A, Nabeshima T, Yamada K, Aida T, Tanaka K, Ozaki N. Early postnatal inhibition of GLAST causes abnormalities of psychobehaviors and neuronal morphology in adult mice. Neurochem Int 2021; 150:105177. [PMID: 34481039 DOI: 10.1016/j.neuint.2021.105177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/17/2021] [Accepted: 08/31/2021] [Indexed: 11/26/2022]
Abstract
The importance of glutamate transporters in learning, memory, and emotion remains poorly understood; hence, in the present study, we investigated whether deficiency of pharmacological GLAST in neurodevelopmental processes affects cognitive and/or emotional behaviors in mice. The mice were injected with a glutamate transporter inhibitor, dl-threo-β-benzyloxyaspartate (dl-TBOA), during the early postnatal period. At 8 weeks of age, they showed impairments in cognitive or emotional behaviors; dysfunction of glutamatergic neurotransmission (increased expressions of GLAST, GLT-1, or GFAP protein, and decreased ability of glutamate release) in the cortex or hippocampus; morphological changes (decreased cell size in the cortex and thickness of the pyramidal neuronal layer of the CA1 area in the hippocampus). Such behavioral and morphological changes were not observed in adult mice injected with dl-TBOA. These results suggest that GLAST plays an important role in the regulation of cognitive and emotional behaviors. Early postnatal glutamatergic facilitation by GLAST dysfunction leads to cognitive and emotional abnormalities due to neurodevelopmental abnormalities such as morphological changes.
Collapse
Affiliation(s)
- Mizuki Uchida
- Division of Clinical Sciences and Neuropsychopharmacology, Faculty and Graduate School of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, 468-8503, Japan
| | - Yukihiro Noda
- Division of Clinical Sciences and Neuropsychopharmacology, Faculty and Graduate School of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, 468-8503, Japan; Department of Neuropsychopharmacology and Hospital Pharmacy, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan.
| | - Sho Hasegawa
- Division of Clinical Sciences and Neuropsychopharmacology, Faculty and Graduate School of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, 468-8503, Japan
| | - Hirotake Hida
- Division of Clinical Sciences and Neuropsychopharmacology, Faculty and Graduate School of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, 468-8503, Japan; Department of Neuropsychopharmacology and Hospital Pharmacy, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan
| | - Masayuki Taniguchi
- Division of Clinical Sciences and Neuropsychopharmacology, Faculty and Graduate School of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, 468-8503, Japan
| | - Akihiro Mouri
- Division of Clinical Sciences and Neuropsychopharmacology, Faculty and Graduate School of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, 468-8503, Japan
| | - Akira Yoshimi
- Division of Clinical Sciences and Neuropsychopharmacology, Faculty and Graduate School of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, 468-8503, Japan
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Graduate School of Health Sciences, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan
| | - Tomomi Aida
- Laboratory of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kohichi Tanaka
- Laboratory of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan
| |
Collapse
|
8
|
Peterson AR, Garcia TA, Cullion K, Tiwari-Woodruff SK, Pedapati EV, Binder DK. Targeted overexpression of glutamate transporter-1 reduces seizures and attenuates pathological changes in a mouse model of epilepsy. Neurobiol Dis 2021; 157:105443. [PMID: 34246771 DOI: 10.1016/j.nbd.2021.105443] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 01/06/2023] Open
Abstract
Astrocytic glutamate transporters are crucial for glutamate homeostasis in the brain, and dysregulation of these transporters can contribute to the development of epilepsy. Glutamate transporter-1 (GLT-1) is responsible for the majority of glutamate uptake in the dorsal forebrain and has been shown to be reduced at epileptic foci in patients and preclinical models of temporal lobe epilepsy (TLE). Current antiepileptic drugs (AEDs) work primarily by targeting neurons directly through suppression of excitatory neurotransmission or enhancement of inhibitory neurotransmission, which can lead to both behavioral and psychiatric side effects. This study investigates the therapeutic capacity of astrocyte-specific AAV-mediated GLT-1 expression in the intrahippocampal kainic acid (IHKA) model of TLE. In this study, we used Western blot analysis, immunohistochemistry, and long-term-video EEG monitoring to demonstrate that cell-type-specific upregulation of GLT-1 in astrocytes is neuroprotective at early time points during epileptogenesis, reduces seizure frequency and total time spent in seizures, and eliminates large behavioral seizures in the IHKA model of epilepsy. Our findings suggest that targeting glutamate uptake is a promising therapeutic strategy for the treatment of epilepsy.
Collapse
Affiliation(s)
- Allison R Peterson
- Division of Biomedical Sciences, Center for Glial-Neuronal Interactions, School of Medicine, University of California, Riverside, CA, USA
| | - Terese A Garcia
- Division of Biomedical Sciences, Center for Glial-Neuronal Interactions, School of Medicine, University of California, Riverside, CA, USA
| | - Kyle Cullion
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Seema K Tiwari-Woodruff
- Division of Biomedical Sciences, Center for Glial-Neuronal Interactions, School of Medicine, University of California, Riverside, CA, USA
| | - Ernest V Pedapati
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Devin K Binder
- Division of Biomedical Sciences, Center for Glial-Neuronal Interactions, School of Medicine, University of California, Riverside, CA, USA.
| |
Collapse
|
9
|
Hippocampal astrocytic neogenin regulating glutamate uptake, a critical pathway for preventing epileptic response. Proc Natl Acad Sci U S A 2021; 118:2022921118. [PMID: 33850017 DOI: 10.1073/pnas.2022921118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epilepsy, a common neurological disorder, is featured with recurrent seizures. Its underlying pathological mechanisms remain elusive. Here, we provide evidence for loss of neogenin (NEO1), a coreceptor for multiple ligands, including netrins and bone morphological proteins, in the development of epilepsy. NEO1 is reduced in hippocampi from patients with epilepsy based on transcriptome and proteomic analyses. Neo1 knocking out (KO) in mouse brains displays elevated epileptiform spikes and seizure susceptibility. These phenotypes were undetectable in mice, with selectively depleted NEO1 in excitatory (NeuroD6-Cre+) or inhibitory (parvalbumin+) neurons, but present in mice with specific hippocampal astrocytic Neo1 KO. Additionally, neurons in hippocampal dentate gyrus, a vulnerable region in epilepsy, in mice with astrocyte-specific Neo1 KO show reductions in inhibitory synaptic vesicles and the frequency of miniature inhibitory postsynaptic current(mIPSC), but increase of the duration of miniature excitatory postsynaptic current and tonic NMDA receptor currents, suggesting impairments in both GABAergic transmission and extracellular glutamate clearance. Further proteomic and cell biological analyses of cell-surface proteins identified GLAST, a glutamate-aspartate transporter that is marked reduced in Neo1 KO astrocytes and the hippocampus. NEO1 interacts with GLAST and promotes GLAST surface distribution in astrocytes. Expressing NEO1 or GLAST in Neo1 KO astrocytes in the hippocampus abolishes the epileptic phenotype. Taken together, these results uncover an unrecognized pathway of NEO1-GLAST in hippocampal GFAP+ astrocytes, which is critical for GLAST surface distribution and function, and GABAergic transmission, unveiling NEO1 as a valuable therapeutic target to protect the brain from epilepsy.
Collapse
|
10
|
Stephan J, Eitelmann S, Zhou M. Approaches to Study Gap Junctional Coupling. Front Cell Neurosci 2021; 15:640406. [PMID: 33776652 PMCID: PMC7987795 DOI: 10.3389/fncel.2021.640406] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/03/2021] [Indexed: 12/17/2022] Open
Abstract
Astrocytes and oligodendrocytes are main players in the brain to ensure ion and neurotransmitter homeostasis, metabolic supply, and fast action potential propagation in axons. These functions are fostered by the formation of large syncytia in which mainly astrocytes and oligodendrocytes are directly coupled. Panglial networks constitute on connexin-based gap junctions in the membranes of neighboring cells that allow the passage of ions, metabolites, and currents. However, these networks are not uniform but exhibit a brain region-dependent heterogeneous connectivity influencing electrical communication and intercellular ion spread. Here, we describe different approaches to analyze gap junctional communication in acute tissue slices that can be implemented easily in most electrophysiology and imaging laboratories. These approaches include paired recordings, determination of syncytial isopotentiality, tracer coupling followed by analysis of network topography, and wide field imaging of ion sensitive dyes. These approaches are capable to reveal cellular heterogeneity causing electrical isolation of functional circuits, reduced ion-transfer between different cell types, and anisotropy of tracer coupling. With a selective or combinatory use of these methods, the results will shed light on cellular properties of glial cells and their contribution to neuronal function.
Collapse
Affiliation(s)
- Jonathan Stephan
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sara Eitelmann
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Min Zhou
- Department of Neuroscience, Wexner Medical Center, Ohio State University, Columbus, OH, United States
| |
Collapse
|
11
|
Perez C, Felix L, Durry S, Rose CR, Ullah G. On the origin of ultraslow spontaneous Na + fluctuations in neurons of the neonatal forebrain. J Neurophysiol 2021; 125:408-425. [PMID: 33236936 PMCID: PMC7948148 DOI: 10.1152/jn.00373.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 11/22/2022] Open
Abstract
Spontaneous neuronal and astrocytic activity in the neonate forebrain is believed to drive the maturation of individual cells and their integration into complex brain-region-specific networks. The previously reported forms include bursts of electrical activity and oscillations in intracellular Ca2+ concentration. Here, we use ratiometric Na+ imaging to demonstrate spontaneous fluctuations in the intracellular Na+ concentration of CA1 pyramidal neurons and astrocytes in tissue slices obtained from the hippocampus of mice at postnatal days 2-4 (P2-4). These occur at very low frequency (∼2/h), can last minutes with amplitudes up to several millimolar, and mostly disappear after the first postnatal week. To further investigate their mechanisms, we model a network consisting of pyramidal neurons and interneurons. Experimentally observed Na+ fluctuations are mimicked when GABAergic inhibition in the simulated network is made depolarizing. Both our experiments and computational model show that blocking voltage-gated Na+ channels or GABAergic signaling significantly diminish the neuronal Na+ fluctuations. On the other hand, blocking a variety of other ion channels, receptors, or transporters including glutamatergic pathways does not have significant effects. Our model also shows that the amplitude and duration of Na+ fluctuations decrease as we increase the strength of glial K+ uptake. Furthermore, neurons with smaller somatic volumes exhibit fluctuations with higher frequency and amplitude. As opposed to this, larger extracellular to intracellular volume ratio observed in neonatal brain exerts a dampening effect. Finally, our model predicts that these periods of spontaneous Na+ influx leave neonatal neuronal networks more vulnerable to seizure-like states when compared with mature brain.NEW & NOTEWORTHY Spontaneous activity in the neonate forebrain plays a key role in cell maturation and brain development. We report spontaneous, ultraslow, asynchronous fluctuations in the intracellular Na+ concentration of neurons and astrocytes. We show that this activity is not correlated with the previously reported synchronous neuronal population bursting or Ca2+ oscillations, both of which occur at much faster timescales. Furthermore, extracellular K+ concentration remains nearly constant. The spontaneous Na+ fluctuations disappear after the first postnatal week.
Collapse
Affiliation(s)
- Carlos Perez
- Department of Physics, University of South Florida, Tampa, Florida
| | - Lisa Felix
- Faculty of Mathematics and Natural Sciences, Institute of Neurobiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Simone Durry
- Faculty of Mathematics and Natural Sciences, Institute of Neurobiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christine R Rose
- Faculty of Mathematics and Natural Sciences, Institute of Neurobiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ghanim Ullah
- Department of Physics, University of South Florida, Tampa, Florida
| |
Collapse
|
12
|
Borggrewe M, Grit C, Vainchtein ID, Brouwer N, Wesseling EM, Laman JD, Eggen BJL, Kooistra SM, Boddeke EWGM. Regionally diverse astrocyte subtypes and their heterogeneous response to EAE. Glia 2020; 69:1140-1154. [PMID: 33332631 PMCID: PMC7985878 DOI: 10.1002/glia.23954] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 12/20/2022]
Abstract
Astrocytes fulfil many functions in the central nervous system (CNS), including contribution to the blood brain barrier, synapse formation, and trophic support. In addition, they can mount an inflammatory response and are heterogeneous in morphology and function. To extensively characterize astrocyte subtypes, we FACS‐isolated and gene expression profiled distinct astrocyte subtypes from three central nervous system regions; forebrain, hindbrain and spinal cord. Astrocyte subpopulations were separated based on GLAST/SLC1A3 and ACSA‐2/ATP1B2 cell surface expression. The local brain environment proved key in establishing different transcriptional programs in astrocyte subtypes. Transcriptional differences between subtypes were also apparent in experimental autoimmune encephalomyelitis (EAE) mice, where these astrocyte subtypes showed distinct responses. While gene expression signatures associated with blood–brain barrier maintenance were lost, signatures involved in neuroinflammation and neurotoxicity were increased in spinal cord astrocytes, especially during acute disease stages. In chronic stages of EAE, this reactive astrocyte signature was slightly decreased, while obtaining a more proliferative profile, which might be relevant for glia scar formation and tissue regeneration. Morphological heterogeneity of astrocytes previously indicated the presence of astrocyte subtypes, and here we show diversity based on transcriptome variation associated with brain regions and differential responsiveness to a neuroinflammatory insult (EAE).
Collapse
Affiliation(s)
- Malte Borggrewe
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Corien Grit
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ilia D Vainchtein
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| | - Nieske Brouwer
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Evelyn M Wesseling
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jon D Laman
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bart J L Eggen
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Susanne M Kooistra
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Erik W G M Boddeke
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Center for Healthy Ageing, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Peterson AR, Binder DK. Astrocyte Glutamate Uptake and Signaling as Novel Targets for Antiepileptogenic Therapy. Front Neurol 2020; 11:1006. [PMID: 33013665 PMCID: PMC7505989 DOI: 10.3389/fneur.2020.01006] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022] Open
Abstract
Astrocytes regulate and respond to extracellular glutamate levels in the central nervous system (CNS) via the Na+-dependent glutamate transporters glutamate transporter-1 (GLT-1) and glutamate aspartate transporter (GLAST) and the metabotropic glutamate receptors (mGluR) 3 and mGluR5. Both impaired astrocytic glutamate clearance and changes in metabotropic glutamate signaling could contribute to the development of epilepsy. Dysregulation of astrocytic glutamate transporters, GLT-1 and GLAST, is a common finding across patients and preclinical seizure models. Astrocytic metabotropic glutamate receptors, particularly mGluR5, have been shown to be dysregulated in both humans and animal models of temporal lobe epilepsy (TLE). In this review, we synthesize the available evidence regarding astrocytic glutamate homeostasis and astrocytic mGluRs in the development of epilepsy. Modulation of astrocyte glutamate uptake and/or mGluR activation could lead to novel glial therapeutics for epilepsy.
Collapse
Affiliation(s)
- Allison R Peterson
- Division of Biomedical Sciences, Center for Glial-Neuronal Interactions, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Devin K Binder
- Division of Biomedical Sciences, Center for Glial-Neuronal Interactions, School of Medicine, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
14
|
Felix L, Stephan J, Rose CR. Astrocytes of the early postnatal brain. Eur J Neurosci 2020; 54:5649-5672. [PMID: 32406559 DOI: 10.1111/ejn.14780] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 12/21/2022]
Abstract
In the rodent forebrain, the majority of astrocytes are generated during the early postnatal phase. Following differentiation, astrocytes undergo maturation which accompanies the development of the neuronal network. Neonate astrocytes exhibit a distinct morphology and domain size which differs to their mature counterparts. Moreover, many of the plasma membrane proteins prototypical for fully developed astrocytes are only expressed at low levels at neonatal stages. These include connexins and Kir4.1, which define the low membrane resistance and highly negative membrane potential of mature astrocytes. Newborn astrocytes moreover express only low amounts of GLT-1, a glutamate transporter critical later in development. Furthermore, they show specific differences in the properties and spatio-temporal pattern of intracellular calcium signals, resulting from differences in their repertoire of receptors and signalling pathways. Therefore, roles fulfilled by mature astrocytes, including ion and transmitter homeostasis, are underdeveloped in the young brain. Similarly, astrocytic ion signalling in response to neuronal activity, a process central to neuron-glia interaction, differs between the neonate and mature brain. This review describes the unique functional properties of astrocytes in the first weeks after birth and compares them to later stages of development. We conclude that with an immature neuronal network and wider extracellular space, astrocytic support might not be as demanding and critical compared to the mature brain. The delayed differentiation and maturation of astrocytes in the first postnatal weeks might thus reflect a reduced need for active, energy-consuming regulation of the extracellular space and a less tight control of glial feedback onto synaptic transmission.
Collapse
Affiliation(s)
- Lisa Felix
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Jonathan Stephan
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
15
|
Kovermann P, Untiet V, Kolobkova Y, Engels M, Baader S, Schilling K, Fahlke C. Increased glutamate transporter-associated anion currents cause glial apoptosis in episodic ataxia 6. Brain Commun 2020; 2:fcaa022. [PMID: 32954283 PMCID: PMC7425361 DOI: 10.1093/braincomms/fcaa022] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 01/24/2020] [Accepted: 02/02/2020] [Indexed: 01/08/2023] Open
Abstract
Episodic ataxia type 6 is an inherited neurological condition characterized by combined ataxia and epilepsy. A severe form of this disease with episodes combining ataxia, epilepsy and hemiplegia was recently associated with a proline to arginine substitution at position 290 of the excitatory amino acid transporter 1 in a heterozygous patient. The excitatory amino acid transporter 1 is the predominant glial glutamate transporter in the cerebellum. However, this glutamate transporter also functions as an anion channel and earlier work in heterologous expression systems demonstrated that the mutation impairs the glutamate transport rate, while increasing channel activity. To understand how these changes cause ataxia, we developed a constitutive transgenic mouse model. Transgenic mice display epilepsy, ataxia and cerebellar atrophy and, thus, closely resemble the human disease. We observed increased glutamate-activated chloride efflux in Bergmann glia that triggers the apoptosis of these cells during infancy. The loss of Bergmann glia results in reduced glutamate uptake and impaired neural network formation in the cerebellar cortex. This study shows how gain-of-function of glutamate transporter-associated anion channels causes ataxia through modifying cerebellar development.
Collapse
Affiliation(s)
- Peter Kovermann
- Institut für Biologische Informationsprozesse, Molekular- und Zellphysiologie (IBI-1), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Verena Untiet
- Institut für Biologische Informationsprozesse, Molekular- und Zellphysiologie (IBI-1), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Yulia Kolobkova
- Institut für Biologische Informationsprozesse, Molekular- und Zellphysiologie (IBI-1), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Miriam Engels
- Institut für Biologische Informationsprozesse, Molekular- und Zellphysiologie (IBI-1), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Stephan Baader
- Anatomisches Institut, Anatomie und Zellbiologie, Rheinische Friedrich-Wilhelm Universität Bonn, 53115 Bonn, Germany
| | - Karl Schilling
- Anatomisches Institut, Anatomie und Zellbiologie, Rheinische Friedrich-Wilhelm Universität Bonn, 53115 Bonn, Germany
| | - Christoph Fahlke
- Institut für Biologische Informationsprozesse, Molekular- und Zellphysiologie (IBI-1), Forschungszentrum Jülich, 52428 Jülich, Germany
| |
Collapse
|
16
|
Spontaneous Ultraslow Na + Fluctuations in the Neonatal Mouse Brain. Cells 2019; 9:cells9010102. [PMID: 31906100 PMCID: PMC7016939 DOI: 10.3390/cells9010102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/18/2019] [Accepted: 12/24/2019] [Indexed: 12/12/2022] Open
Abstract
In the neonate forebrain, network formation is driven by the spontaneous synchronized activity of pyramidal cells and interneurons, consisting of bursts of electrical activity and intracellular Ca2+ oscillations. By employing ratiometric Na+ imaging in tissue slices obtained from animals at postnatal day 2-4 (P2-4), we found that 20% of pyramidal neurons and 44% of astrocytes in neonatal mouse hippocampus also exhibit transient fluctuations in intracellular Na+. These occurred at very low frequencies (~2/h), were exceptionally long (~8 min), and strongly declined after the first postnatal week. Similar Na+ fluctuations were also observed in the neonate neocortex. In the hippocampus, Na+ elevations in both cell types were diminished when blocking action potential generation with tetrodotoxin. Neuronal Na+ fluctuations were significantly reduced by bicuculline, suggesting the involvement of GABAA-receptors in their generation. Astrocytic signals, by contrast, were neither blocked by inhibition of receptors and/or transporters for different transmitters including GABA and glutamate, nor of various Na+-dependent transporters or Na+-permeable channels. In summary, our results demonstrate for the first time that neonatal astrocytes and neurons display spontaneous ultraslow Na+ fluctuations. While neuronal Na+ signals apparently largely rely on suprathreshold GABAergic excitation, astrocytic Na+ signals, albeit being dependent on neuronal action potentials, appear to have a separate trigger and mechanism, the source of which remains unclear at present.
Collapse
|
17
|
Malik AR, Willnow TE. Excitatory Amino Acid Transporters in Physiology and Disorders of the Central Nervous System. Int J Mol Sci 2019; 20:ijms20225671. [PMID: 31726793 PMCID: PMC6888459 DOI: 10.3390/ijms20225671] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 12/12/2022] Open
Abstract
Excitatory amino acid transporters (EAATs) encompass a class of five transporters with distinct expression in neurons and glia of the central nervous system (CNS). EAATs are mainly recognized for their role in uptake of the amino acid glutamate, the major excitatory neurotransmitter. EAATs-mediated clearance of glutamate released by neurons is vital to maintain proper glutamatergic signalling and to prevent toxic accumulation of this amino acid in the extracellular space. In addition, some EAATs also act as chloride channels or mediate the uptake of cysteine, required to produce the reactive oxygen speciesscavenger glutathione. Given their central role in glutamate homeostasis in the brain, as well as their additional activities, it comes as no surprise that EAAT dysfunctions have been implicated in numerous acute or chronic diseases of the CNS, including ischemic stroke and epilepsy, cerebellar ataxias, amyotrophic lateral sclerosis, Alzheimer’s disease and Huntington’s disease. Here we review the studies in cellular and animal models, as well as in humans that highlight the roles of EAATs in the pathogenesis of these devastating disorders. We also discuss the mechanisms regulating EAATs expression and intracellular trafficking and new exciting possibilities to modulate EAATs and to provide neuroprotection in course of pathologies affecting the CNS.
Collapse
Affiliation(s)
- Anna R. Malik
- Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
- Correspondence:
| | | |
Collapse
|
18
|
Delsing L, Kallur T, Zetterberg H, Hicks R, Synnergren J. Enhanced xeno-free differentiation of hiPSC-derived astroglia applied in a blood-brain barrier model. Fluids Barriers CNS 2019; 16:27. [PMID: 31462266 PMCID: PMC6714544 DOI: 10.1186/s12987-019-0147-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 07/30/2019] [Indexed: 12/20/2022] Open
Abstract
Background Human induced pluripotent stem cells (hiPSC) hold great promise for use in cell therapy applications and for improved in vitro models of human disease. So far, most hiPSC differentiation protocols to astroglia use undefined, animal-containing culture matrices. Laminins, which play an essential role in the regulation of cell behavior, offer a source of defined, animal-free culture matrix. Methods In order to understand how laminins affect astroglia differentiation, recombinant human laminin-521 (LN521), was compared to a murine Engelbreth-Holm-Swarm sarcoma derived laminin (L2020). Astroglia expression of protein and mRNA together with glutamate uptake and protein secretion function, were evaluated. Finally, these astroglia were evaluated in a coculture model of the blood–brain barrier (BBB). Results Astroglia of good quality were generated from hiPSC on both LN521 and L2020. However, astroglia differentiated on human LN521 showed higher expression of several astroglia specific mRNAs and proteins such as GFAP, S100B, Angiopoietin-1, and EAAT1, compared to astroglia differentiated on murine L2020. In addition, glutamate uptake and ability to induce expression of junction proteins in endothelial cells were affected by the culture matrix for differentiation. Conclusion Our results suggest that astroglia differentiated on LN521 display an improved phenotype and are suitable for coculture in a hiPSC-derived BBB model. This provides a starting point for a more defined and robust derivation of astroglia for use in BBB coculture models. Electronic supplementary material The online version of this article (10.1186/s12987-019-0147-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Louise Delsing
- Department of Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Göteborg, Sweden. .,Systems Biology Research Center, School of Bioscience, University of Skövde, Högskolevägen, Box 408, 541 28, Skövde, Sweden. .,Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Mölndal, Sweden.
| | | | - Henrik Zetterberg
- Department of Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Göteborg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Ryan Hicks
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Mölndal, Sweden
| | - Jane Synnergren
- Systems Biology Research Center, School of Bioscience, University of Skövde, Högskolevägen, Box 408, 541 28, Skövde, Sweden
| |
Collapse
|
19
|
Peterson AR, Binder DK. Post-translational Regulation of GLT-1 in Neurological Diseases and Its Potential as an Effective Therapeutic Target. Front Mol Neurosci 2019; 12:164. [PMID: 31338020 PMCID: PMC6629900 DOI: 10.3389/fnmol.2019.00164] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/14/2019] [Indexed: 12/12/2022] Open
Abstract
Glutamate transporter-1 (GLT-1) is a Na+-dependent transporter that plays a key role in glutamate homeostasis by removing excess glutamate in the central nervous system (CNS). GLT-1 dysregulation occurs in various neurological diseases including Huntington's disease (HD), Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and epilepsy. Downregulation or dysfunction of GLT-1 has been a common finding across these diseases but how this occurs is still under investigation. This review aims to highlight post-translational regulation of GLT-1 which leads to its downregulation including sumoylation, palmitoylation, nitrosylation, ubiquitination, and subcellular localization. Various therapeutic interventions to restore GLT-1, their proposed mechanism of action and functional effects will be examined as potential treatments to attenuate the neurological symptoms associated with loss or downregulation of GLT-1.
Collapse
Affiliation(s)
- Allison R Peterson
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Devin K Binder
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
20
|
Peterson AR, Binder DK. Regulation of Synaptosomal GLT-1 and GLAST during Epileptogenesis. Neuroscience 2019; 411:185-201. [PMID: 31158434 DOI: 10.1016/j.neuroscience.2019.05.048] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 10/26/2022]
Abstract
Astrocytes regulate extracellular glutamate homeostasis in the central nervous system through the Na+-dependent glutamate transporters glutamate transporter-1 (GLT-1) and glutamate aspartate transporter (GLAST). Impaired astrocyte glutamate uptake could contribute to the development of epilepsy but the regulation of glutamate transporters in epilepsy is not well understood. In this study, we investigate the expression of GLT-1 and GLAST in the mouse intrahippocampal kainic acid (IHKA) model of temporal lobe epilepsy (TLE). We used immunohistochemistry, synaptosomal fractionation and Western blot analysis at 1, 3, 7 and 30 days post-IHKA induced status epilepticus (SE) to examine changes in GLT-1 and GLAST immunoreactivity and synaptosomal expression during the development of epilepsy. We found a significant upregulation in GLT-1 immunoreactivity at 1 and 3 days post-IHKA in the ipsilateral dorsal hippocampus. However, GLT-1 immunoreactivity and synaptosomal protein levels were significantly downregulated at 7 days post-IHKA in the ipsilateral hippocampus, a time point corresponding to the onset of spontaneous seizures in this model. GLAST immunoreactivity was increased in specific layers at 1 and 3 days post-IHKA in the ipsilateral hippocampus. GLAST synaptosomal protein levels were significantly elevated at 30 days compared to 7 days post-IHKA in the ipsilateral hippocampus. Our findings suggest that astrocytic glutamate transporter dysregulation could contribute to the development of epilepsy.
Collapse
Affiliation(s)
- Allison R Peterson
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Devin K Binder
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA.
| |
Collapse
|
21
|
Mahmoud S, Gharagozloo M, Simard C, Gris D. Astrocytes Maintain Glutamate Homeostasis in the CNS by Controlling the Balance between Glutamate Uptake and Release. Cells 2019; 8:E184. [PMID: 30791579 PMCID: PMC6406900 DOI: 10.3390/cells8020184] [Citation(s) in RCA: 399] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 01/26/2023] Open
Abstract
Glutamate is one of the most prevalent neurotransmitters released by excitatory neurons in the central nervous system (CNS); however, residual glutamate in the extracellular space is, potentially, neurotoxic. It is now well-established that one of the fundamental functions of astrocytes is to uptake most of the synaptically-released glutamate, which optimizes neuronal functions and prevents glutamate excitotoxicity. In the CNS, glutamate clearance is mediated by glutamate uptake transporters expressed, principally, by astrocytes. Interestingly, recent studies demonstrate that extracellular glutamate stimulates Ca2+ release from the astrocytes' intracellular stores, which triggers glutamate release from astrocytes to the adjacent neurons, mostly by an exocytotic mechanism. This released glutamate is believed to coordinate neuronal firing and mediate their excitatory or inhibitory activity. Therefore, astrocytes contribute to glutamate homeostasis in the CNS, by maintaining the balance between their opposing functions of glutamate uptake and release. This dual function of astrocytes represents a potential therapeutic target for CNS diseases associated with glutamate excitotoxicity. In this regard, we summarize the molecular mechanisms of glutamate uptake and release, their regulation, and the significance of both processes in the CNS. Also, we review the main features of glutamate metabolism and glutamate excitotoxicity and its implication in CNS diseases.
Collapse
Affiliation(s)
- Shaimaa Mahmoud
- Program of Immunology, Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Marjan Gharagozloo
- Program of Immunology, Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Camille Simard
- Program of Immunology, Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Denis Gris
- Program of Immunology, Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| |
Collapse
|
22
|
Heterogeneity of Activity-Induced Sodium Transients between Astrocytes of the Mouse Hippocampus and Neocortex: Mechanisms and Consequences. J Neurosci 2019; 39:2620-2634. [PMID: 30737311 DOI: 10.1523/jneurosci.2029-18.2019] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 01/07/2019] [Accepted: 01/23/2019] [Indexed: 01/09/2023] Open
Abstract
Activity-related sodium transients induced by glutamate uptake represent a special form of astrocyte excitability. Astrocytes of the neocortex, as opposed to the hippocampus proper, also express ionotropic glutamate receptors, which might provide additional sodium influx. We compared glutamate-related sodium transients in astrocytes and neurons in slices of the neocortex and hippocampus of juvenile mice of both sexes, using widefield and multiphoton imaging. Stimulation of glutamatergic afferents or glutamate application induced sodium transients that were twice as large in neocortical as in hippocampal astrocytes, despite similar neuronal responses. Astrocyte sodium transients were reduced by ∼50% upon blocking NMDA receptors in the neocortex, but not hippocampus. Neocortical, but not hippocampal, astrocytes exhibited marked sodium increases in response to NMDA. These key differences in sodium signaling were also observed in neonates and in adults. NMDA application evoked local calcium transients in processes of neocortical astrocytes, which were dampened upon blocking sodium/calcium exchange (NCX) with KB-R7943 or SEA0400. Mathematical computation based on our data predict that NMDA-induced sodium increases drive the NCX into reverse mode, resulting in calcium influx. Together, our study reveals a considerable regional heterogeneity in astrocyte sodium transients, which persists throughout postnatal development. Neocortical astrocytes respond with much larger sodium elevations to glutamatergic activity than hippocampal astrocytes. Moreover, neocortical astrocytes experience NMDA-receptor-mediated sodium influx, which hippocampal astrocytes lack, and which drives calcium import through reverse NCX. This pathway thereby links sodium to calcium signaling and represents a new mechanism for the generation of local calcium influx in neocortical astrocytes.SIGNIFICANCE STATEMENT Astrocyte calcium signals play a central role in neuron-glia interaction. Moreover, activity-related sodium transients may represent a new form of astrocyte excitability. Here we show that activation of NMDA receptors results in prominent sodium transients in neocortical, but not hippocampal, astrocytes in the mouse brain. NMDA receptor activation is accompanied by local calcium signaling in processes of neocortical astrocytes, which is augmented by sodium-driven reversal of the sodium/calcium exchanger. Our data demonstrate a significant regional heterogeneity in the magnitude and mechanisms of astrocyte sodium transients. They also suggest a close interrelation between NMDA-receptor-mediated sodium influx and calcium signaling through the reversal of sodium/calcium exchanger, thereby establishing a new pathway for the generation of local calcium signaling in astrocyte processes.
Collapse
|
23
|
Lerchundi R, Kafitz KW, Winkler U, Färfers M, Hirrlinger J, Rose CR. FRET-based imaging of intracellular ATP in organotypic brain slices. J Neurosci Res 2018; 97:933-945. [PMID: 30506574 DOI: 10.1002/jnr.24361] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/29/2018] [Accepted: 11/13/2018] [Indexed: 12/24/2022]
Abstract
Active neurons require a substantial amount of adenosine triphosphate (ATP) to re-establish ion gradients degraded by ion flux across their plasma membranes. Despite this fact, neurons, in contrast to astrocytes, do not contain any significant stores of energy substrates. Recent work has provided evidence for a neuro-metabolic coupling between both cell types, in which increased glycolysis and lactate production in astrocytes support neuronal metabolism. Here, we established the cell type-specific expression of the Förster resonance energy transfer (FRET) based nanosensor ATeam1.03YEMK ("Ateam") for dynamic measurement of changes in intracellular ATP levels in organotypic brain tissue slices. To this end, adeno-associated viral vectors coding for Ateam, driven by either the synapsin- or glial fibrillary acidic protein (GFAP) promoter were employed for specific transduction of neurons or astrocytes, respectively. Chemical ischemia, induced by perfusion of tissue slices with metabolic inhibitors of cellular glycolysis and mitochondrial respiration, resulted in a rapid decrease in the cellular Ateam signal to a new, low level, indicating nominal depletion of intracellular ATP. Increasing the extracellular potassium concentration to 8 mM, thereby mimicking the release of potassium from active neurons, did not alter ATP levels in neurons. It, however, caused in an increase in ATP levels in astrocytes, a result which was confirmed in acutely isolated tissue slices. In summary, our results demonstrate that organotypic cultured slices are a reliable tool for FRET-based dynamic imaging of ATP in neurons and astrocytes. They moreover provide evidence for an increased ATP synthesis in astrocytes, but not neurons, during periods of elevated extracellular potassium concentrations.
Collapse
Affiliation(s)
- Rodrigo Lerchundi
- Faculty of Mathematics and Natural Sciences, Institute of Neurobiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Karl W Kafitz
- Faculty of Mathematics and Natural Sciences, Institute of Neurobiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ulrike Winkler
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, University of Leipzig, Leipzig, Germany
| | - Marcel Färfers
- Faculty of Mathematics and Natural Sciences, Institute of Neurobiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Johannes Hirrlinger
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, University of Leipzig, Leipzig, Germany.,Department of Neurogenetics, Max-Planck-Institute for Experimental Medicine, Göttingen, Germany
| | - Christine R Rose
- Faculty of Mathematics and Natural Sciences, Institute of Neurobiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
24
|
Conditional Knock-out of mGluR5 from Astrocytes during Epilepsy Development Impairs High-Frequency Glutamate Uptake. J Neurosci 2018; 39:727-742. [PMID: 30504280 DOI: 10.1523/jneurosci.1148-18.2018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 11/11/2018] [Accepted: 11/18/2018] [Indexed: 11/21/2022] Open
Abstract
Astrocyte expression of metabotropic glutamate receptor 5 (mGluR5) is consistently observed in resected tissue from patients with epilepsy and is equally prevalent in animal models of epilepsy. However, little is known about the functional signaling properties or downstream consequences of astrocyte mGluR5 activation during epilepsy development. In the rodent brain, astrocyte mGluR5 expression is developmentally regulated and confined in expression/function to the first weeks of life, with similar observations made in human control tissue. Herein, we demonstrate that mGluR5 expression and function dramatically increase in a mouse model of temporal lobe epilepsy. Interestingly, in both male and female mice, mGluR5 function persists in the astrocyte throughout the process of epileptogenesis following status epilepticus. However, mGluR5 expression and function are transient in animals that do not develop epilepsy over an equivalent time period, suggesting that patterns of mGluR5 expression may signify continuing epilepsy development or its resolution. We demonstrate that, during epileptogenesis, astrocytes reacquire mGluR5-dependent calcium transients following agonist application or synaptic glutamate release, a feature of astrocyte-neuron communication absent since early development. Finally, we find that the selective and conditional knock-out of mGluR5 signaling from astrocytes during epilepsy development slows the rate of glutamate clearance through astrocyte glutamate transporters under high-frequency stimulation conditions, a feature that suggests astrocyte mGluR5 expression during epileptogenesis may recapitulate earlier developmental roles in regulating glutamate transporter function.SIGNIFICANCE STATEMENT In development, astrocyte mGluR5 signaling plays a critical role in regulating structural and functional interactions between astrocytes and neurons at the tripartite synapse. Notably, mGluR5 signaling is a positive regulator of astrocyte glutamate transporter expression and function, an essential component of excitatory signaling regulation in hippocampus. After early development, astrocyte mGluR5 expression is downregulated, but reemerges in animal models of temporal lobe epilepsy (TLE) development and patient epilepsy samples. We explored the hypothesis that astrocyte mGluR5 reemergence recapitulates earlier developmental roles during TLE acquisition. Our work demonstrates that astrocytes with mGluR5 signaling during TLE development perform faster glutamate uptake in hippocampus, revealing a previously unexplored role for astrocyte mGluR5 signaling in hypersynchronous pathology.
Collapse
|
25
|
Kurauchi Y, Noma K, Hisatsune A, Seki T, Katsuki H. Na +, K +-ATPase inhibition induces neuronal cell death in rat hippocampal slice cultures: Association with GLAST and glial cell abnormalities. J Pharmacol Sci 2018; 138:167-175. [PMID: 30322800 DOI: 10.1016/j.jphs.2018.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/27/2018] [Accepted: 09/11/2018] [Indexed: 12/20/2022] Open
Abstract
Na+, K+-ATPase is a highly expressed membrane protein. Dysfunction of Na+, K+-ATPase has been implicated in the pathophysiology of several neurodegenerative and psychiatric disorders, however, the underlying mechanism of neuronal cell death resulting from Na+, K+-ATPase dysfunction is poorly understood. Here, we investigated the mechanism of neurotoxicity due to Na+, K+-ATPase inhibition using rat organotypic hippocampal slice cultures. Treatment with ouabain, a Na+, K+-ATPase inhibitor, increased the ratio of propidium iodide-positive cells among NeuN-positive cells in the hippocampal CA1 region, which was prevented by MK-801 and d-AP5, specific blockers of the N-methyl-d-aspartate (NMDA) receptor. EGTA, a Ca2+-chelating agent, also protected neurons from ouabain-induced injury. We observed that astrocytes expressed the glutamate aspartate transporter (GLAST), and ouabain changed the immunoreactive area of GFAP-positive astrocytes as well as GLAST. We also observed that ouabain increased the number of Iba1-positive microglial cells in a time-dependent manner. Furthermore, lithium carbonate, a mood-stabilizing drug, protected hippocampal neurons and reduced disturbances of astrocytes and microglia after ouabain treatment. Notably, lithium carbonate improved ouabain-induced decreases in GLAST intensity in astrocytes. These results suggest that glial cell abnormalities resulting in excessive extracellular concentrations of glutamate contribute to neurotoxicity due to Na+, K+-ATPase dysfunction in the hippocampal CA1 region.
Collapse
Affiliation(s)
- Yuki Kurauchi
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Kazuki Noma
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Akinori Hisatsune
- Priority Organization for Innovation and Excellence, Kumamoto University, Kumamoto 860-8555, Japan; Program for Leading Graduate Schools "HIGO (Health Life Science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, Kumamoto 862-0973, Japan
| | - Takahiro Seki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Hiroshi Katsuki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan.
| |
Collapse
|
26
|
Transcriptional network analysis of human astrocytic endfoot genes reveals region-specific associations with dementia status and tau pathology. Sci Rep 2018; 8:12389. [PMID: 30120299 PMCID: PMC6098119 DOI: 10.1038/s41598-018-30779-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 08/03/2018] [Indexed: 11/26/2022] Open
Abstract
The deposition of misfolded proteins, including amyloid beta plaques and neurofibrillary tangles is the histopathological hallmark of Alzheimer’s disease (AD). The glymphatic system, a brain-wide network of perivascular pathways that supports interstitial solute clearance, is dependent upon expression of the perivascular astroglial water channel aquaporin-4 (AQP4). Impairment of glymphatic function in the aging rodent brain is associated with reduced perivascular AQP4 localization, and in human subjects, reduced perivascular AQP4 localization is associated with AD diagnosis and pathology. Using human transcriptomic data, we demonstrate that expression of perivascular astroglial gene products dystroglycan (DAG1), dystrobrevin (DTNA) and alpha-syntrophin (SNTA1), are associated with dementia status and phosphorylated tau (P-tau) levels in temporal cortex. Gene correlation analysis reveals altered expression of a cluster of potential astrocytic endfoot components in human subjects with dementia, with increased expression associated with temporal cortical P-tau levels. The association between perivascular astroglial gene products, including DTNA and megalencephalic leukoencephalopathy with subcortical cysts 1 (MLC1) with AD status was confirmed in a second human transcriptomic dataset and in human autopsy tissue by Western blot. This suggests changes in the astroglial endfoot domain may underlie vulnerability to protein aggregation in AD.
Collapse
|
27
|
Sleep Deprivation Distinctly Alters Glutamate Transporter 1 Apposition and Excitatory Transmission to Orexin and MCH Neurons. J Neurosci 2018; 38:2505-2518. [PMID: 29431649 DOI: 10.1523/jneurosci.2179-17.2018] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 01/23/2018] [Accepted: 01/29/2018] [Indexed: 11/21/2022] Open
Abstract
Glutamate transporter 1 (GLT1) is the main astrocytic transporter that shapes glutamatergic transmission in the brain. However, whether this transporter modulates sleep-wake regulatory neurons is unknown. Using quantitative immunohistochemical analysis, we assessed perisomatic GLT1 apposition with sleep-wake neurons in the male rat following 6 h sleep deprivation (SD) or following 6 h undisturbed conditions when animals were mostly asleep (Rest). We found that SD decreased perisomatic GLT1 apposition with wake-promoting orexin neurons in the lateral hypothalamus compared with Rest. Reduced GLT1 apposition was associated with tonic presynaptic inhibition of excitatory transmission to these neurons due to the activation of Group III metabotropic glutamate receptors, an effect mimicked by a GLT1 inhibitor in the Rest condition. In contrast, SD resulted in increased GLT1 apposition with sleep-promoting melanin-concentrating hormone (MCH) neurons in the lateral hypothalamus. Functionally, this decreased the postsynaptic response of MCH neurons to high-frequency synaptic activation without changing presynaptic glutamate release. The changes in GLT1 apposition with orexin and MCH neurons were reversed after 3 h of sleep opportunity following 6 h SD. These SD effects were specific to orexin and MCH neurons, as no change in GLT1 apposition was seen in basal forebrain cholinergic or parvalbumin-positive GABA neurons. Thus, within a single hypothalamic area, GLT1 differentially regulates excitatory transmission to wake- and sleep-promoting neurons depending on sleep history. These processes may constitute novel astrocyte-mediated homeostatic mechanisms controlling sleep-wake behavior.SIGNIFICANCE STATEMENT Sleep-wake cycles are regulated by the alternate activation of sleep- and wake-promoting neurons. Whether and how astrocytes can regulate this reciprocal neuronal activity are unclear. Here we report that, within the lateral hypothalamus, where functionally opposite wake-promoting orexin neurons and sleep-promoting melanin-concentrating hormone neurons codistribute, the glutamate transporter GLT1, mainly present on astrocytes, distinctly modulates excitatory transmission in a cell-type-specific manner and according to sleep history. Specifically, GLT1 is reduced around the somata of orexin neurons while increased around melanin-concentrating hormone neurons following sleep deprivation, resulting in different forms of synaptic plasticity. Thus, astrocytes can fine-tune the excitability of functionally discrete neurons via glutamate transport, which may represent novel regulatory mechanisms for sleep.
Collapse
|
28
|
Simon MJ, Murchison C, Iliff JJ. A transcriptome-based assessment of the astrocytic dystrophin-associated complex in the developing human brain. J Neurosci Res 2018; 96:180-193. [PMID: 28509351 PMCID: PMC5995340 DOI: 10.1002/jnr.24082] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/23/2017] [Accepted: 04/20/2017] [Indexed: 11/10/2022]
Abstract
Astrocytes play a critical role in regulating the interface between the cerebral vasculature and the central nervous system. Contributing to this is the astrocytic endfoot domain, a specialized structure that ensheathes the entirety of the vasculature and mediates signaling between endothelial cells, pericytes, and neurons. The astrocytic endfoot has been implicated as a critical element of the glymphatic pathway, and changes in protein expression profiles in this cellular domain are linked to Alzheimer's disease pathology. Despite this, basic physiological properties of this structure remain poorly understood including the developmental timing of its formation, and the protein components that localize there to mediate its functions. Here we use human transcriptome data from male and female subjects across several developmental stages and brain regions to characterize the gene expression profile of the dystrophin-associated complex (DAC), a known structural component of the astrocytic endfoot that supports perivascular localization of the astroglial water channel aquaporin-4. Transcriptomic profiling is also used to define genes exhibiting parallel expression profiles to DAC elements, generating a pool of candidate genes that encode gene products that may contribute to the physiological function of the perivascular astrocytic endfoot domain. We found that several genes encoding transporter proteins are transcriptionally associated with DAC genes.
Collapse
Affiliation(s)
- Matthew J. Simon
- Neuroscience Graduate Program, Oregon Health & Science University, Portland, OR, USA
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Charles Murchison
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Jeffrey J. Iliff
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
- Knight Cardiovascular Institute. Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
29
|
Rose CR, Felix L, Zeug A, Dietrich D, Reiner A, Henneberger C. Astroglial Glutamate Signaling and Uptake in the Hippocampus. Front Mol Neurosci 2018; 10:451. [PMID: 29386994 PMCID: PMC5776105 DOI: 10.3389/fnmol.2017.00451] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 12/22/2017] [Indexed: 12/22/2022] Open
Abstract
Astrocytes have long been regarded as essentially unexcitable cells that do not contribute to active signaling and information processing in the brain. Contrary to this classical view, it is now firmly established that astrocytes can specifically respond to glutamate released from neurons. Astrocyte glutamate signaling is initiated upon binding of glutamate to ionotropic and/or metabotropic receptors, which can result in calcium signaling, a major form of glial excitability. Release of so-called gliotransmitters like glutamate, ATP and D-serine from astrocytes in response to activation of glutamate receptors has been demonstrated to modulate various aspects of neuronal function in the hippocampus. In addition to receptors, glutamate binds to high-affinity, sodium-dependent transporters, which results in rapid buffering of synaptically-released glutamate, followed by its removal from the synaptic cleft through uptake into astrocytes. The degree to which astrocytes modulate and control extracellular glutamate levels through glutamate transporters depends on their expression levels and on the ionic driving forces that decrease with ongoing activity. Another major determinant of astrocytic control of glutamate levels could be the precise morphological arrangement of fine perisynaptic processes close to synapses, defining the diffusional distance for glutamate, and the spatial proximity of transporters in relation to the synaptic cleft. In this review, we will present an overview of the mechanisms and physiological role of glutamate-induced ion signaling in astrocytes in the hippocampus as mediated by receptors and transporters. Moreover, we will discuss the relevance of astroglial glutamate uptake for extracellular glutamate homeostasis, focusing on how activity-induced dynamic changes of perisynaptic processes could shape synaptic transmission at glutamatergic synapses.
Collapse
Affiliation(s)
- Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Lisa Felix
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Andre Zeug
- Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Dirk Dietrich
- Department of Neurosurgery, University of Bonn Medical School, Bonn, Germany
| | - Andreas Reiner
- Cellular Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Christian Henneberger
- Institute of Cellular Neurosciences, University of Bonn Medical School, Bonn, Germany.,German Center for Degenerative Diseases (DZNE), Bonn, Germany.,Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
30
|
Heterogeneity and function of hippocampal macroglia. Cell Tissue Res 2017; 373:653-670. [PMID: 29204745 DOI: 10.1007/s00441-017-2746-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/16/2017] [Indexed: 12/26/2022]
Abstract
The contribution of glial cells to normal and impaired hippocampal function is increasingly being recognized, although important questions as to the mechanisms that these cells use for their crosstalk with neurons and capillaries are still unanswered or lead to controversy. Astrocytes in the hippocampus are morphologically variable and a single cell contacts with its processes more than 100,000 synapses. They predominantly express inward rectifier K+ channels and transporters serving homeostatic function but may also release gliotransmitters to modify neuronal signaling and brain circulation. Intracellular Ca2+ transients are key events in the interaction of astrocytes with neurons and the vasculature. Hippocampal NG2 glia represent a population of cells with proliferative capacity throughout adulthood. Intriguingly, they receive direct synaptic input from pyramidal neurons and interneurons and express a multitude of ion channels and receptors. Despite in-depth knowledge about the features of these transmembrane proteins, the physiological impact of NG2 glial cells and their synaptic input remain nebulous. Because of the low abundance of oligodendrocytes in the hippocampus, limited information is available about their specific properties. Given the multitude of signaling molecules expressed by the various types of hippocampal glial cells (and because of space constraints), we focus, in this review, on those properties that are considered key for the interaction of the respective cell type with its neighborhood.
Collapse
|
31
|
Meyer LC, Paisley CE, Mohamed E, Bigbee JW, Kordula T, Richard H, Lutfy K, Sato-Bigbee C. Novel role of the nociceptin system as a regulator of glutamate transporter expression in developing astrocytes. Glia 2017; 65:2003-2023. [PMID: 28906039 PMCID: PMC5766282 DOI: 10.1002/glia.23210] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 07/03/2017] [Accepted: 08/04/2017] [Indexed: 12/30/2022]
Abstract
Our previous results showed that oligodendrocyte development is regulated by both nociceptin and its G-protein coupled receptor, the nociceptin/orphanin FQ receptor (NOR). The present in vitro and in vivo findings show that nociceptin plays a crucial conserved role regulating the levels of the glutamate/aspartate transporter GLAST/EAAT1 in both human and rodent brain astrocytes. This nociceptin-mediated response takes place during a critical developmental window that coincides with the early stages of astrocyte maturation. GLAST/EAAT1 upregulation by nociceptin is mediated by NOR and the downstream participation of a complex signaling cascade that involves the interaction of several kinase systems, including PI-3K/AKT, mTOR, and JAK. Because GLAST is the main glutamate transporter during brain maturation, these novel findings suggest that nociceptin plays a crucial role in regulating the function of early astrocytes and their capacity to support glutamate homeostasis in the developing brain.
Collapse
Affiliation(s)
- Logan C Meyer
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Caitlin E Paisley
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Esraa Mohamed
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - John W Bigbee
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Tomasz Kordula
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Hope Richard
- Department of Pathology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Kabirullah Lutfy
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California
| | - Carmen Sato-Bigbee
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| |
Collapse
|
32
|
Functional Indicators of Glutamate Transport in Single Striatal Astrocytes and the Influence of Kir4.1 in Normal and Huntington Mice. J Neurosci 2017; 36:4959-75. [PMID: 27147650 DOI: 10.1523/jneurosci.0316-16.2016] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/01/2016] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED This study evaluates single-cell indicators of glutamate transport in sulforhodamine 101-positive astrocytes of Q175 mice, a knock-in model of Huntington's disease (HD). Transport-related fluorescent ratio signals obtained with sodium-binding benzofuran isophtalate (SBFI) AM from unperturbed or voltage-clamped astrocytes and respective glutamate transporter currents (GTCs) were induced by photolytic or synaptic glutamate release and isolated pharmacologically. The HD-induced deficit ranged from -27% (GTC maximum at -100 mV in Ba(2+)) to -41% (sodium transients in astrocytes after loading SBFI-AM). Our specific aim was to clarify the mechanism(s) by which Kir4.1 channels can influence glutamate transport, as determined by either Na(+) imaging or transport-associated electrical signals. A decrease of Kir4.1 conductance was mimicked with Ba(2+) (200 μm), and an increase of Kir4.1 expression was obtained by intravenous administration of AAV9-gfaABC1D-Kir4.1-EGFP. The decrease of Kir4.1 conductance reduced the sodium transients but increased the amplitudes of somatic GTCs. Accordingly, after genetic upregulation of Kir4.1, somatic GTCs were found to be decreased. In individual cells, there was a negative correlation between Kir4.1 currents and GTCs. The relative effect of the Kir4.1 conductance was higher in the astrocyte periphery. These and other results suggest that the Kir4.1 conductance affects glutamate transporter activity in a dual manner: (1) by providing the driving force (voltage dependency of the transport itself) and (2) by limiting the lateral charge transfer (thereby reducing the interference with other electrogenic transporter functions). This leads to the testable prediction that restoring the high conductance state of passive astrocytes will not only normalize glutamate uptake but also restore other astrocytic transporter activities afflicted with HD. SIGNIFICANCE STATEMENT Insufficiency of astrocytic glutamate uptake is a major element in the pathophysiology of neurodegenerative diseases. Considering the heterogeneity of astrocytes and their differential susceptibility to therapeutic interventions, it becomes necessary to evaluate the determinants of transport activity in individual astroglial cells. We have examined intracellular Na(+) transients and glutamate transporter currents as the most telling indicators of glutamate clearance after synaptic or photolytic release of glutamate in striatal slices. The results show that, in Huntington's disease, glutamate uptake activity critically depends on Kir4.1. These channels enable the high conductance state of the astrocytic plasma membrane, which ensures the driving force for glutamate transport and dumps the transport-associated depolarization along the astrocyte processes. This has significant implications for developing therapeutic targets.
Collapse
|
33
|
Withers GS, Farley JR, Sterritt JR, Crane AB, Wallace CS. Interactions with Astroglia Influence the Shape of the Developing Dendritic Arbor and Restrict Dendrite Growth Independent of Promoting Synaptic Contacts. PLoS One 2017; 12:e0169792. [PMID: 28081563 PMCID: PMC5233417 DOI: 10.1371/journal.pone.0169792] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 12/21/2016] [Indexed: 01/20/2023] Open
Abstract
Astroglia play key roles in the development of neurons, ranging from regulating neuron survival to promoting synapse formation, yet basic questions remain about whether astrocytes might be involved in forming the dendritic arbor. Here, we used cultured hippocampal neurons as a simple in vitro model that allowed dendritic growth and geometry to be analyzed quantitatively under conditions where the extent of interactions between neurons and astrocytes varied. When astroglia were proximal to neurons, dendrites and dendritic filopodia oriented toward them, but the general presence of astroglia significantly reduced overall dendrite growth. Further, dendritic arbors in partial physical contact with astroglia developed a pronounced pattern of asymmetrical growth, because the dendrites in direct contact were significantly smaller than the portion of the arbor not in contact. Notably, thrombospondin, the astroglial factor shown previously to promote synapse formation, did not inhibit dendritic growth. Thus, while astroglia promoted the formation of presynaptic contacts onto dendrites, dendritic growth was constrained locally within a developing arbor at sites where dendrites contacted astroglia. Taken together, these observations reveal influences on spatial orientation of growth as well as influences on morphogenesis of the dendritic arbor that have not been previously identified.
Collapse
Affiliation(s)
- Ginger S. Withers
- Department of Biology, Whitman College, Walla Walla, Washington, United States of America
- * E-mail:
| | - Jennifer R. Farley
- Department of Biology, Whitman College, Walla Walla, Washington, United States of America
| | - Jeffrey R. Sterritt
- Department of Biology, Whitman College, Walla Walla, Washington, United States of America
| | - Andrés B. Crane
- Department of Biology, Whitman College, Walla Walla, Washington, United States of America
| | - Christopher S. Wallace
- Department of Biology, Whitman College, Walla Walla, Washington, United States of America
| |
Collapse
|
34
|
Rose CR, Ziemens D, Untiet V, Fahlke C. Molecular and cellular physiology of sodium-dependent glutamate transporters. Brain Res Bull 2016; 136:3-16. [PMID: 28040508 DOI: 10.1016/j.brainresbull.2016.12.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 02/04/2023]
Abstract
Glutamate is the major excitatory transmitter in the vertebrate brain. After its release from presynaptic nerve terminals, it is rapidly taken up by high-affinity sodium-dependent plasma membrane transporters. While both neurons and glial cells express these excitatory amino acid transporters (EAATs), the majority of glutamate uptake is accomplished by astrocytes, which convert synaptically-released glutamate to glutamine or feed it into their own metabolism. Glutamate uptake by astrocytes not only shapes synaptic transmission by regulating the availability of glutamate to postsynaptic neuronal receptors, but also protects neurons from hyper-excitability and subsequent excitotoxic damage. In the present review, we provide an overview of the molecular and cellular characteristics of sodium-dependent glutamate transporters and their associated anion permeation pathways, with a focus on astrocytic glutamate transport. We summarize their functional properties and roles within tripartite synapses under physiological and pathophysiological conditions, exemplifying the intricate interactions and interrelationships between neurons and glial cells in the brain.
Collapse
Affiliation(s)
- Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Germany.
| | - Daniel Ziemens
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Germany
| | - Verena Untiet
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4), Forschungszentrum Jülich, Germany
| | - Christoph Fahlke
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4), Forschungszentrum Jülich, Germany
| |
Collapse
|
35
|
Langer J, Gerkau NJ, Derouiche A, Kleinhans C, Moshrefi-Ravasdjani B, Fredrich M, Kafitz KW, Seifert G, Steinhäuser C, Rose CR. Rapid sodium signaling couples glutamate uptake to breakdown of ATP in perivascular astrocyte endfeet. Glia 2016; 65:293-308. [PMID: 27785828 DOI: 10.1002/glia.23092] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/05/2016] [Accepted: 10/06/2016] [Indexed: 12/19/2022]
Abstract
Perivascular endfeet of astrocytes are highly polarized compartments that ensheath blood vessels and contribute to the blood-brain barrier. They experience calcium transients with neuronal activity, a phenomenon involved in neurovascular coupling. Endfeet also mediate the uptake of glucose from the blood, a process stimulated in active brain regions. Here, we demonstrate in mouse hippocampal tissue slices that endfeet undergo sodium signaling upon stimulation of glutamatergic synaptic activity. Glutamate-induced endfeet sodium transients were diminished by TFB-TBOA, suggesting that they were generated by sodium-dependent glutamate uptake. With local agonist application, they could be restricted to endfeet and immunohistochemical analysis revealed prominent expression of glutamate transporters GLAST and GLT-1 localized towards the neuropil vs. the vascular side of endfeet. Endfeet sodium signals spread at an apparent maximum velocity of ∼120 µm/s and directly propagated from stimulated into neighboring endfeet; this spread was omitted in Cx30/Cx43 double-deficient mice. Sodium transients resulted in elevation of intracellular magnesium, indicating a decrease in intracellular ATP. In summary, our results establish that excitatory synaptic activity and stimulation of glutamate uptake in astrocytes trigger transient sodium increases in perivascular endfeet which rapidly spread through gap junctions into neighboring endfeet and cause a reduction of intracellular ATP. The newly discovered endfeet sodium signaling thereby represents a fast, long-lived and inter-cellularly acting indicator of synaptic activity at the blood-brain barrier, which likely constitutes an important component of neuro-metabolic coupling in the brain. GLIA 2017;65:293-308.
Collapse
Affiliation(s)
- Julia Langer
- Faculty of Mathematics and Natural Sciences, Institute of Neurobiology, Heinrich Heine University Duesseldorf, Universitätsstrasse 1, Duesseldorf, D-40225, Germany
| | - Niklas J Gerkau
- Faculty of Mathematics and Natural Sciences, Institute of Neurobiology, Heinrich Heine University Duesseldorf, Universitätsstrasse 1, Duesseldorf, D-40225, Germany
| | - Amin Derouiche
- Institute of Anatomy II and Dr. Senckenbergisches Chronomedizinisches Institut, Goethe-University of Frankfurt, Theodor-Stern-Kai 7, Frankfurt/M, D-60590, Germany
| | - Christian Kleinhans
- Faculty of Mathematics and Natural Sciences, Institute of Neurobiology, Heinrich Heine University Duesseldorf, Universitätsstrasse 1, Duesseldorf, D-40225, Germany
| | - Behrouz Moshrefi-Ravasdjani
- Faculty of Mathematics and Natural Sciences, Institute of Neurobiology, Heinrich Heine University Duesseldorf, Universitätsstrasse 1, Duesseldorf, D-40225, Germany
| | - Michaela Fredrich
- Institute of Anatomy II and Dr. Senckenbergisches Chronomedizinisches Institut, Goethe-University of Frankfurt, Theodor-Stern-Kai 7, Frankfurt/M, D-60590, Germany
| | - Karl W Kafitz
- Faculty of Mathematics and Natural Sciences, Institute of Neurobiology, Heinrich Heine University Duesseldorf, Universitätsstrasse 1, Duesseldorf, D-40225, Germany
| | - Gerald Seifert
- Medical Faculty, Institute of Cellular Neurosciences, University of Bonn, Bonn, D-53105, Germany
| | - Christian Steinhäuser
- Medical Faculty, Institute of Cellular Neurosciences, University of Bonn, Bonn, D-53105, Germany
| | - Christine R Rose
- Faculty of Mathematics and Natural Sciences, Institute of Neurobiology, Heinrich Heine University Duesseldorf, Universitätsstrasse 1, Duesseldorf, D-40225, Germany
| |
Collapse
|
36
|
Moshrefi-Ravasdjani B, Dublin P, Seifert G, Jennissen K, Steinhäuser C, Kafitz KW, Rose CR. Changes in the proliferative capacity of NG2 cell subpopulations during postnatal development of the mouse hippocampus. Brain Struct Funct 2016; 222:831-847. [PMID: 27306788 DOI: 10.1007/s00429-016-1249-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/05/2016] [Indexed: 12/29/2022]
Abstract
Besides astrocytes and oligodendrocytes, NG2 proteoglycan-expressing cells (NG2 glia) represent a third subtype of macroglia in the brain. Originally described as oligodendrocyte precursor cells, they feature several characteristics not expected from mere progenitor cells, including synaptic connections with neurons. There is accumulating evidence that the properties of NG2 glia differ between different brain regions and developmental stages. To further analyze this proposed heterogeneity, we studied electrophysiological properties, transcript and protein expression, distribution and proliferative capacity of NG2 glia during postnatal development, focusing on the hippocampus and corpus callosum. All NG2 glia displayed a 'complex' current pattern consisting of voltage- and time-dependent in- and outward currents. In juvenile mice, Kir current densities and rectification index were highly variable and on average significantly lower than in adult animals. Single cell RT-PCR analyses of electrophysiologically characterized cells demonstrated that different glial genes were expressed at variable extent, independent of developmental stage and genetic background. In the hippocampus proper and the corpus callosum, the density of NG2 glia was highest at postnatal days (P)10-12, decreased by ~50 % at P25-35 and then remained stable in adults (P80-90). Interestingly, co-expression of NG2 and S100β, a marker for mature astrocytes, increased from 7 % at P10-12 to 27 % at P25-35 in the hippocampus proper, and then dropped again in the stratum radiatum at P80-90. In the dentate gyrus and corpus callosum, co-expression of NG2 and S100β was very low (3 %) and constant throughout development. Age-related differences were also observed with Ki-67, a proliferation marker. In NG2 glia of the CA1 region, its expression decreased from 16 % at P10-12 to 9 % (P25-35) and then 3 % (P80-90). Triple-stainings revealed that Ki-67 was also expressed in 2-3 % of NG2/S100β-positive cells in the juvenile and mature stratum radiatum, indicating that the latter, in contrast to S100β-positive astrocytes, still host proliferative potential. Taken together, we found significant differences in transcript and protein expression, electrophysiological properties and proliferative capacity of NG2 glia in the mouse forebrain, suggesting the co-existence of several subpopulations of NG2 glia. Our data thus support the idea of a substantial regional and developmental heterogeneity in this subtype of macroglia.
Collapse
Affiliation(s)
| | - Pavel Dublin
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Gerald Seifert
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53105, Bonn, Germany
| | - Katja Jennissen
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53105, Bonn, Germany
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53105, Bonn, Germany
| | - Karl W Kafitz
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Christine R Rose
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.
| |
Collapse
|
37
|
Hu X, Yuan Y, Wang D, Su Z. Heterogeneous astrocytes: Active players in CNS. Brain Res Bull 2016; 125:1-18. [PMID: 27021168 DOI: 10.1016/j.brainresbull.2016.03.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/22/2016] [Accepted: 03/24/2016] [Indexed: 12/12/2022]
Abstract
Astrocytes, the predominant cell type that are broadly distributed in the brain and spinal cord, play key roles in maintaining homeostasis of the central nerve system (CNS) in physiological and pathological conditions. Increasing evidence indicates that astrocytes are a complex colony with heterogeneity on morphology, gene expression, function and many other aspects depending on their spatio-temporal distribution and activation level. In pathological conditions, astrocytes differentially respond to all kinds of insults, including injury and disease, and participate in the neuropathological process. Based on current studies, we here give an overview of the roles of heterogeneous astrocytes in CNS, especially in neuropathologies, which focuses on biological and functional diversity of astrocytes. We propose that a precise understanding of the heterogeneous astrocytes is critical to unlocking the secrets about pathogenesis and treatment of the mazy CNS.
Collapse
Affiliation(s)
- Xin Hu
- Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai, China
| | - Yimin Yuan
- Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai, China
| | - Dan Wang
- Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai, China
| | - Zhida Su
- Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai, China.
| |
Collapse
|
38
|
The Neuroprotective Effect of the Association of Aquaporin-4/Glutamate Transporter-1 against Alzheimer's Disease. Neural Plast 2016; 2016:4626593. [PMID: 27057365 PMCID: PMC4736756 DOI: 10.1155/2016/4626593] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 11/21/2015] [Accepted: 11/30/2015] [Indexed: 11/21/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that is characterized by memory loss and cognitive dysfunction. Aquaporin-4 (AQP4), which is primarily expressed in astrocytes, is the major water channel expressed in the central nervous system (CNS). This protein plays an important role in water and ion homeostasis in the normal brain and in various brain pathological conditions. Emerging evidence suggests that AQP4 deficiency impairs learning and memory and that this may be related to the expression of glutamate transporter-1 (GLT-1). Moreover, the colocalization of AQP4 and GLT-1 has long been studied in brain tissue; however, far less is known about the potential influence that the AQP4/GLT-1 complex may have on AD. Research on the functional interaction of AQP4 and GLT-1 has been demonstrated to be of great significance in the study of AD. Here, we review the interaction of AQP4 and GLT-1 in astrocytes, which might play a pivotal role in the regulation of distinct cellular responses that involve neuroprotection against AD. The association of AQP4 and GLT-1 could greatly supplement previous research regarding neuroprotection against AD.
Collapse
|
39
|
Xiao KQ, Xiao M, Meng L, Du XY, Hu J, Gao BF, Yu WQ, Wang XJ, Ban YL. Effect of subarachnoid nerve block anesthesia on glutamate transporter GLAST and GLT-1 expressions in rabbits. ASIAN PAC J TROP MED 2015; 8:565-8. [PMID: 26276289 DOI: 10.1016/j.apjtm.2015.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/20/2015] [Accepted: 06/15/2015] [Indexed: 10/23/2022] Open
Abstract
OBJECTIVE To observe the effect of subarachnoid nerve block anesthesia on glutamate transporter glutamate-aspartate transporter (GLAST) and GLT-1 expressions in rabbits, and to investigate the effect of peripheral nerve anesthesia on the morphology and function of the spinal cord. METHODS Twenty healthy New Zealand white rabbits were randomly divided into two groups: the experimental group and control group; with 10 rabbits in each group. For spinal nerve anesthesia, 5 g/L of bupivacaine was used in the experimental group, and sterile saline was used in the control group. After 30 min of cardiac perfusion, GLAST and GLT-1 protein expression in spinal neurons were detected by immunohistochemistry and immunofluorescence staining. RESULTS GLAST and GLT-1 protein-positive cells increased in neurons in the experimental group, compared with the control group (P < 0.05). CONCLUSIONS After subarachnoid nerve block anesthesia, rabbit glutamate transporter GLAST and GLT-1 expression is increased; and spinal cord nerve cell function is inhibited.
Collapse
Affiliation(s)
- Ke-Qing Xiao
- Department of Anesthesiology, Shandong Provincial Hospital, Jinan, Shandong 250031, China.
| | - Mei Xiao
- Division of Preventive Medicine, Third People's Hospital of Pingdu City, Qingdao, Shandong 266753, China
| | - Li Meng
- Department of Anesthesiology, Shandong Provincial Hospital, Jinan, Shandong 250031, China
| | - Xiang-Yang Du
- Department of Anesthesiology, Shandong Provincial Hospital, Jinan, Shandong 250031, China
| | - Jing Hu
- Department of Anesthesiology, Shandong Provincial Hospital, Jinan, Shandong 250031, China
| | - Bao-Feng Gao
- Department of Anesthesiology, Shandong Provincial Hospital, Jinan, Shandong 250031, China
| | - Wen-Qiang Yu
- Department of Anesthesiology, Shandong Provincial Hospital, Jinan, Shandong 250031, China
| | - Xin-Jie Wang
- Shandong Province Chest Hospital, Department of Respiratory Diseases of Jinan City, Shandong 250 013, China
| | - Yan-Lin Ban
- Department of Anesthesiology, Qianfoshan Hospital Affiliated to Shandong University in Shandong Province, Jinan, Shandong 250014, China
| |
Collapse
|
40
|
Hansson E, Skiöldebrand E. Coupled cell networks are target cells of inflammation, which can spread between different body organs and develop into systemic chronic inflammation. JOURNAL OF INFLAMMATION-LONDON 2015. [PMID: 26213498 PMCID: PMC4514450 DOI: 10.1186/s12950-015-0091-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Several organs in the body comprise cells coupled into networks. These cells have in common that they are excitable but do not express action potentials. Furthermore, they are equipped with Ca2+ signaling systems, which can be intercellular and/or extracellular. The transport of small molecules between the cells occurs through gap junctions comprising connexin 43. Examples of cells coupled into networks include astrocytes, keratinocytes, chondrocytes, synovial fibroblasts, osteoblasts, connective tissue cells, cardiac and corneal fibroblasts, myofibroblasts, hepatocytes, and different types of glandular cells. These cells are targets for inflammation, which can be initiated after injury or in disease. If the inflammation reaches the CNS, it develops into neuroinflammation and can be of importance in the development of systemic chronic inflammation, which can manifest as pain and result in changes in the expression and structure of cellular components. Biochemical parameters of importance for cellular functions are described in this review.
Collapse
Affiliation(s)
- Elisabeth Hansson
- Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Per Dubbsgatan 14, 1tr, , SE 413 45 Gothenburg, Sweden
| | - Eva Skiöldebrand
- Section of Pathology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden ; Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska University Hospital, Gothenburg University, Gothenburg, Sweden
| |
Collapse
|
41
|
Differential regulation of two isoforms of the glial glutamate transporter EAAT2 by DLG1 and CaMKII. J Neurosci 2015; 35:5260-70. [PMID: 25834051 DOI: 10.1523/jneurosci.4365-14.2015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The gene for EAAT2, the major astrocytic glutamate transporter, generates two carrier isoforms (EAAT2a and EAAT2b) that vary at their C termini as a consequence of alternative RNA splicing. The EAAT2b cytoplasmic C terminus contains a postsynaptic density-95/Discs large/zona occludens-1 (PDZ) ligand, which is absent in EAAT2a. To understand how the distinct C termini might affect transporter trafficking and surface localization, we generated Madin-Darby canine kidney (MDCK) cells that stably express EGFP-EAAT2a or EGFP-EAAT2b and found robust basolateral membrane expression of the EAAT2b isoform. In contrast, EAAT2a displayed a predominant distribution within intracellular vesicle compartments, constitutively cycling to and from the membrane. Addition of the PDZ ligand to EAAT2a as well as its deletion from EAAT2b confirmed the importance of the motif for cell-surface localization. Using EAAT2 constructs with an extracellular biotin acceptor tag to directly assess surface proteins, we observed significant PDZ ligand-dependent EAAT2b surface expression in cultured astrocytes, consistent with observations in cell lines. Discs large homolog 1 (DLG1; SAP97), a PDZ protein prominent in both astrocytes and MDCK cells, colocalized and coimmunoprecipitated with EAAT2b. shRNA knockdown of DLG1 expression decreased surface EAAT2b in both MDCK cells and cultured astrocytes, suggesting that the DLG scaffolding protein stabilizes EAAT2b at the surface. DLG1 can be phosphorylated by Ca(2+)/calmodulin-dependent protein kinase (CaMKII), resulting in disruption of its PDZ-mediated interaction. In murine astrocytes and acute brain slices, activation of CaMKII decreases EAAT2b surface expression but does not alter the distribution of EAAT2a. These data indicate that the surface expression and function of EAAT2b can be rapidly modulated through the disruption of its interaction with DLG1 by CaMKII activation.
Collapse
|
42
|
Astrocyte sodium signaling and neuro-metabolic coupling in the brain. Neuroscience 2015; 323:121-34. [PMID: 25791228 DOI: 10.1016/j.neuroscience.2015.03.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 03/02/2015] [Accepted: 03/03/2015] [Indexed: 11/20/2022]
Abstract
At tripartite synapses, astrocytes undergo calcium signaling in response to release of neurotransmitters and this calcium signaling has been proposed to play a critical role in neuron-glia interaction. Recent work has now firmly established that, in addition, neuronal activity also evokes sodium transients in astrocytes, which can be local or global depending on the number of activated synapses and the duration of activity. Furthermore, astrocyte sodium signals can be transmitted to adjacent cells through gap junctions and following release of gliotransmitters. A main pathway for activity-related sodium influx into astrocytes is via high-affinity sodium-dependent glutamate transporters. Astrocyte sodium signals differ in many respects from the well-described glial calcium signals both in terms of their temporal as well as spatial distribution. There are no known buffering systems for sodium ions, nor is there store-mediated release of sodium. Sodium signals thus seem to represent rather direct and unbiased indicators of the site and strength of neuronal inputs. As such they have an immediate influence on the activity of sodium-dependent transporters which may even reverse in response to sodium signaling, as has been shown for GABA transporters for example. Furthermore, recovery from sodium transients through Na(+)/K(+)-ATPase requires a measurable amount of ATP, resulting in an activation of glial metabolism. In this review, we present basic principles of sodium regulation and the current state of knowledge concerning the occurrence and properties of activity-related sodium transients in astrocytes. We then discuss different aspects of the relationship between sodium changes in astrocytes and neuro-metabolic coupling, putting forward the idea that indeed sodium might serve as a new type of intracellular ion signal playing an important role in neuron-glia interaction and neuro-metabolic coupling in the healthy and diseased brain.
Collapse
|
43
|
Davila D, Thibault K, Fiacco TA, Agulhon C. Recent molecular approaches to understanding astrocyte function in vivo. Front Cell Neurosci 2013; 7:272. [PMID: 24399932 PMCID: PMC3871966 DOI: 10.3389/fncel.2013.00272] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 12/06/2013] [Indexed: 12/11/2022] Open
Abstract
Astrocytes are a predominant glial cell type in the nervous systems, and are becoming recognized as important mediators of normal brain function as well as neurodevelopmental, neurological, and neurodegenerative brain diseases. Although numerous potential mechanisms have been proposed to explain the role of astrocytes in the normal and diseased brain, research into the physiological relevance of these mechanisms in vivo is just beginning. In this review, we will summarize recent developments in innovative and powerful molecular approaches, including knockout mouse models, transgenic mouse models, and astrocyte-targeted gene transfer/expression, which have led to advances in understanding astrocyte biology in vivo that were heretofore inaccessible to experimentation. We will examine the recently improved understanding of the roles of astrocytes – with an emphasis on astrocyte signaling – in the context of both the healthy and diseased brain, discuss areas where the role of astrocytes remains debated, and suggest new research directions.
Collapse
Affiliation(s)
- David Davila
- Glia-Glia and Glia-Neuron Interactions Group, National Center for Scientific Research, UFR Biomedicale, Paris Descartes University Paris, France
| | - Karine Thibault
- Glia-Glia and Glia-Neuron Interactions Group, National Center for Scientific Research, UFR Biomedicale, Paris Descartes University Paris, France
| | - Todd A Fiacco
- Department of Cell Biology and Neuroscience, and Center for Glial-Neuronal Interactions and Program in Cellular, Molecular and Developmental Biology, University of California at Riverside Riverside, CA, USA
| | - Cendra Agulhon
- Glia-Glia and Glia-Neuron Interactions Group, National Center for Scientific Research, UFR Biomedicale, Paris Descartes University Paris, France
| |
Collapse
|