1
|
Sommer G, Rodríguez López C, Hirschkorn A, Calimano G, Marques-Lopes J, Milner TA, Glass MJ. Estrogen Receptor Beta Agonist Influences Presynaptic NMDA Receptor Distribution in the Paraventricular Hypothalamic Nucleus Following Hypertension in a Mouse Model of Perimenopause. BIOLOGY 2024; 13:819. [PMID: 39452127 PMCID: PMC11505520 DOI: 10.3390/biology13100819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/01/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024]
Abstract
Women become susceptible to hypertension as they transition to menopause (i.e., perimenopause); however, the underlying mechanisms are unclear. Animal studies using an accelerated ovarian failure (AOF) model of peri-menopause (peri-AOF) demonstrate that peri-AOF hypertension is associated with increased postsynaptic NMDA receptor plasticity in the paraventricular hypothalamic nucleus (PVN), a brain area critical for blood pressure regulation. However, recent evidence indicates that presynaptic NMDA receptors also play a role in neural plasticity. Here, using immuno-electron microscopy, we examine the influence of peri-AOF hypertension on the subcellular distribution of the essential NMDA GluN1 receptor subunit in PVN axon terminals in peri-AOF and in male mice. Hypertension was produced by 14-day slow-pressor angiotensin II (AngII) infusion. The involvement of estrogen signaling was investigated by co-administering an estrogen receptor beta (ERß) agonist. Although AngII induced hypertension in both peri-AOF and male mice, peri-AOF females showed higher cytoplasmic GluN1 levels. In peri-AOF females, activation of ERß blocked hypertension and increased plasmalemmal GluN1 in axon terminals. In contrast, stimulation of ERß did not inhibit hypertension or influence presynaptic GluN1 localization in males. These results indicate that sex-dependent recruitment of presynaptic NMDA receptors in the PVN is influenced by ERß signaling in mice during early ovarian failure.
Collapse
Affiliation(s)
- Garrett Sommer
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA (C.R.L.); (J.M.-L.)
| | - Claudia Rodríguez López
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA (C.R.L.); (J.M.-L.)
| | - Adi Hirschkorn
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA (C.R.L.); (J.M.-L.)
| | - Gianna Calimano
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA (C.R.L.); (J.M.-L.)
| | - Jose Marques-Lopes
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA (C.R.L.); (J.M.-L.)
- Center for Translational Health and Medical Biotechnology Research (TBIO)/Health Research Network (RISE-HEALTH), ESS, Polytechnic of Porto, R. Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal
| | - Teresa A. Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA (C.R.L.); (J.M.-L.)
| | - Michael J. Glass
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA (C.R.L.); (J.M.-L.)
| |
Collapse
|
2
|
Ryan MJ, Clemmer JS, Mathew RO, Faulkner JL, Taylor EB, Abais-Battad JM, Hollis F, Sullivan JC. Revisiting sex as a biological variable in hypertension research. J Clin Invest 2024; 134:e180078. [PMID: 39225093 PMCID: PMC11364402 DOI: 10.1172/jci180078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Half of adults in the United States have hypertension as defined by clinical practice guidelines. Interestingly, women are generally more likely to be aware of their hypertension and have their blood pressure controlled with treatment compared with men, yet hypertension-related mortality is greater in women. This may reflect the fact that the female sex remains underrepresented in clinical and basic science studies investigating the effectiveness of therapies and the mechanisms controlling blood pressure. This Review provides an overview of the impact of the way hypertension research has explored sex as a biological variable (SABV). Emphasis is placed on epidemiological studies, hypertension clinical trials, the genetics of hypertension, sex differences in immunology and gut microbiota in hypertension, and the effect of sex on the central control of blood pressure. The goal is to offer historical perspective on SABV in hypertension, highlight recent studies that include SABV, and identify key gaps in SABV inclusion and questions that remain in the field. Through continued awareness campaigns and engagement/education at the level of funding agencies, individual investigators, and in the editorial peer review system, investigation of SABV in the field of hypertension research will ultimately lead to improved clinical outcomes.
Collapse
Affiliation(s)
- Michael J. Ryan
- Columbia VA Health Care System, Columbia, South Carolina, USA
- University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - John S. Clemmer
- University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Roy O. Mathew
- Loma Linda VA Health Care System, Loma Linda, California, USA
| | | | - Erin B. Taylor
- University of Mississippi Medical Center, Jackson, Mississippi, USA
| | | | - Fiona Hollis
- University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | | |
Collapse
|
3
|
Woods C, Contoreggi NH, Johnson MA, Milner TA, Wang G, Glass MJ. Estrogen receptor beta activity contributes to both tumor necrosis factor alpha expression in the hypothalamic paraventricular nucleus and the resistance to hypertension following angiotensin II in female mice. Neurochem Int 2022; 161:105420. [PMID: 36170907 PMCID: PMC11575694 DOI: 10.1016/j.neuint.2022.105420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 12/26/2022]
Abstract
Sex differences in the sensitivity to hypertension and inflammatory processes are well characterized but insufficiently understood. In male mice, tumor necrosis factor alpha (TNFα) in the hypothalamic paraventricular nucleus (PVN) contributes to hypertension following slow-pressor angiotensin II (AngII) infusion. However, the role of PVN TNFα in the response to AngII in female mice is unknown. Using a combination of in situ hybridization, high-resolution electron microscopic immunohistochemistry, spatial-temporal gene silencing, and dihydroethidium microfluorography we investigated the influence of AngII on both blood pressure and PVN TNFα signaling in female mice. We found that chronic (14-day) infusion of AngII in female mice did not impact blood pressure, TNFα levels, the expression of the TNFα type 1 receptor (TNFR1), or the subcellular distribution of TNFR1 in the PVN. However, it was shown that blockade of estrogen receptor β (ERβ), a major hypothalamic estrogen receptor, was accompanied by both elevated PVN TNFα and hypertension following AngII. Further, AngII hypertension following ERβ blockade was attenuated by inhibiting PVN TNFα signaling by local TNFR1 silencing. It was also shown that ERβ blockade in isolated PVN-spinal cord projection neurons (i.e. sympathoexcitatory) heightened TNFα-induced production of NADPH oxidase (NOX2)-mediated reactive oxygen species, molecules that may play a key role in mediating the effect of TNFα in hypertension. These results indicate that ERβ contributes to the reduced sensitivity of female mice to hypothalamic inflammatory cytokine signaling and hypertension in response to AngII.
Collapse
Affiliation(s)
- Clara Woods
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Natalina H Contoreggi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Megan A Johnson
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10065, USA; Harold and Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, 10065, USA
| | - Gang Wang
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Michael J Glass
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
4
|
Milner TA, Chen RX, Welington D, Rubin BR, Contoreggi NH, Johnson MA, Mazid S, Marques-Lopes J, Marongiu R, Glass MJ. Angiotensin II differentially affects hippocampal glial inflammatory markers in young adult male and female mice. Learn Mem 2022; 29:265-273. [PMID: 36206386 PMCID: PMC9488028 DOI: 10.1101/lm.053507.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/03/2022] [Indexed: 12/16/2022]
Abstract
Hypertension is a risk factor for neurodegenerative disorders involving inflammation and inflammatory cytokine-producing brain cells (microglia and astrocytes) in the hippocampus and medial prefrontal cortex (mPFC). Here we investigated the effect of slow-pressor angiotensin II (AngII) on gliosis in the hippocampus and mPFC of young adult (2-mo-old) male and female mice. In males, AngII induced hypertension, and this resulted in an increase in the density of the astrocyte marker glial fibrillary acidic protein (GFAP) in the subgranular hilus and a decrease in the density of the microglial marker ionized calcium binding adapter molecule (Iba-1) in the CA1 region. Females infused with AngII did not show hypertension but, significantly, showed alterations in hippocampal glial activation. Compared with vehicle, AngII-infused female mice had an increased density of Iba-1 in the dentate gyrus and CA2/3a region. Like males, females infused with AngII exhibited decreased Iba-1 in the CA1 region. Neither male nor female mice showed differences in GFAP or Iba-1 in the mPFC following AngII infusion. These results demonstrate that the hippocampus is particularly vulnerable to AngII in young adulthood. Differences in gonadal hormones or the sensitivity to AngII hypertension may account for divergences in GFAP and Iba-1 in males and females.
Collapse
Affiliation(s)
- Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065, USA
- Harold and Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York 10065, USA
| | - Ryan X Chen
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065, USA
| | - Diedreanna Welington
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065, USA
| | - Batsheva R Rubin
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065, USA
| | - Natalina H Contoreggi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065, USA
| | - Megan A Johnson
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065, USA
| | - Sanoara Mazid
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065, USA
| | - Jose Marques-Lopes
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065, USA
| | - Roberta Marongiu
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065, USA
- Neurological Surgery Department, Weill Cornell Medicine, New York, New York 10065, USA
| | - Michael J Glass
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065, USA
| |
Collapse
|
5
|
Grassi D, Marraudino M, Garcia-Segura LM, Panzica GC. The hypothalamic paraventricular nucleus as a central hub for the estrogenic modulation of neuroendocrine function and behavior. Front Neuroendocrinol 2022; 65:100974. [PMID: 34995643 DOI: 10.1016/j.yfrne.2021.100974] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 12/17/2022]
Abstract
Estradiol and hypothalamic paraventricular nucleus (PVN) help coordinate reproduction with body physiology, growth and metabolism. PVN integrates hormonal and neural signals originating in the periphery, generating an output mediated both by its long-distance neuronal projections, and by a variety of neurohormones produced by its magnocellular and parvocellular neurosecretory cells. Here we review the cyto-and chemo-architecture, the connectivity and function of PVN and the sex-specific regulation exerted by estradiol on PVN neurons and on the expression of neurotransmitters, neuromodulators, neuropeptides and neurohormones in PVN. Classical and non-classical estrogen receptors (ERs) are expressed in neuronal afferents to PVN and in specific PVN interneurons, projecting neurons, neurosecretory neurons and glial cells that are involved in the input-output integration and coordination of neurohormonal signals. Indeed, PVN ERs are known to modulate body homeostatic processes such as autonomic functions, stress response, reproduction, and metabolic control. Finally, the functional implications of the estrogenic modulation of the PVN for body homeostasis are discussed.
Collapse
Affiliation(s)
- D Grassi
- Department of Anatomy, Histology and Neuroscience, Universidad Autonoma de Madrid, Madrid, Spain
| | - M Marraudino
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Torino, Italy
| | - L M Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - G C Panzica
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Torino, Italy; Department of Neuroscience Rita Levi Montalcini, University of Torino, Torino, Italy.
| |
Collapse
|
6
|
Wang G, Woods C, Johnson MA, Milner TA, Glass MJ. Angiotensin II Infusion Results in Both Hypertension and Increased AMPA GluA1 Signaling in Hypothalamic Paraventricular Nucleus of Male but not Female Mice. Neuroscience 2022; 485:129-144. [PMID: 34999197 PMCID: PMC9116447 DOI: 10.1016/j.neuroscience.2021.12.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 10/19/2022]
Abstract
The hypothalamic paraventricular nucleus (PVN) plays a key role in hypertension, however the signaling pathways that contribute to the adaptability of the PVN during hypertension are uncertain. We present evidence that signaling at the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) GluA1 receptor contributes to increased blood pressure in a model of neurogenic hypertension induced by 14-day slow-pressor angiotensin II (AngII) infusion in male mice. It was found that AngII hypertension was associated with an increase in plasma membrane affiliation of GluA1, but decreased GluA2, in dendritic profiles of PVN neurons expressing the TNFα type 1 receptor, a modulator of AMPA receptor trafficking. The increased plasma membrane GluA1 was paralleled by heightened AMPA currents in PVN-spinal cord projection neurons from AngII-infused male mice. Significantly, elevated AMPA currents in AngII-treated mice were blocked by 1-Naphthyl acetyl spermine trihydrochloride, pointing to the involvement of GluA2-lacking GluA1 receptors in the heightened AMPA signaling in PVN neurons. A further functional role for GluA1 in the PVN was demonstrated by the attenuated hypertensive response following silencing of GluA1 in the PVN of AngII-infused male mice. In female mice, AngII-infusion did not impact blood pressure or plasma membrane localization of GluA1 . Post-translational modifications that increase the plasma membrane localization of AMPA GluA1 and heighten the rapid excitatory signaling actions of glutamate in PVN neurons may serve as a molecular substrate underlying sex differences in hypertension.
Collapse
Affiliation(s)
- Gang Wang
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065
| | - Clara Woods
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065
| | - Megan A. Johnson
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065
| | - Teresa A. Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065,Harold and Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10065
| | - Michael J. Glass
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065,Address correspondence to: Dr. Michael J. Glass, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065; Phone: (646) 962-8253;
| |
Collapse
|
7
|
Windisch KA, Mazid S, Johnson MA, Ashirova E, Zhou Y, Gergoire L, Warwick S, McEwen BS, Kreek MJ, Milner TA. Acute Delta 9-tetrahydrocannabinol administration differentially alters the hippocampal opioid system in adult female and male rats. Synapse 2021; 75:e22218. [PMID: 34255372 DOI: 10.1002/syn.22218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 12/22/2022]
Abstract
Our prior studies demonstrated that the rat hippocampal opioid system can undergo sex-specific adaptations to external stimuli that can influence opioid-associated learning processes. This opioid system extensively overlaps with the cannabinoid system. Moreover, acute administration of Δ9 Tetrahydrocannabinoid (THC), the primary psychoactive constituent of cannabis, can alter cognitive behaviors that involve the hippocampus. Here, we use light and electron microscopic immunocytochemical methods to examine the effects of acute THC (5 mg/kg, i.p., 1 h) on mossy fiber Leu-Enkephalin (LEnk) levels and the distribution and phosphorylation levels of delta and mu opioid receptors (DORs and MORs, respectively) in CA3 pyramidal cells and parvalbumin dentate hilar interneurons of adult female and male Sprague-Dawley rats. In females with elevated estrogen states (proestrus/estrus stage), acute THC altered the opioid system so that it resembled that seen in vehicle-injected females with low estrogen states (diestrus) and males: (1) mossy fiber LEnk levels in CA2/3a decreased; (2) phosphorylated-DOR levels in CA2/3a pyramidal cells increased; and (3) phosphorylated-MOR levels increased in most CA3b laminae. In males, acute THC resulted in the internalization of MORs in parvalbumin-containing interneuron dendrites which would decrease disinhibition of granule cells. In both sexes, acute THC redistributed DORs to the near plasma membrane of CA3 pyramidal cell dendrites, however, the dendritic region varied with sex. Additionally, acute THC also resulted in a sex-specific redistribution of DORs within CA3 pyramidal cell dendrites which could differentially promote synaptic plasticity and/or opioid-associated learning processes in both females and males.
Collapse
Affiliation(s)
- Kyle A Windisch
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, New York
| | - Sanoara Mazid
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York
| | - Megan A Johnson
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York
| | - Elina Ashirova
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York
| | - Yan Zhou
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, New York
| | - Lennox Gergoire
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York
| | - Sydney Warwick
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York
| | - Bruce S McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York
| | - Mary Jeanne Kreek
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, New York
| | - Teresa A Milner
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, New York.,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York
| |
Collapse
|
8
|
Song X, Zou X, Ge W, Hou C, Cao Z, Zhao H, Zhang T, Jin L, Fu Y, Kong W, Yan C, Cai J, Wang J. Blocking FcγRIIB in Smooth Muscle Cells Reduces Hypertension. Circ Res 2021; 129:308-325. [PMID: 33980031 DOI: 10.1161/circresaha.120.318447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
MESH Headings
- Animals
- Antibodies/pharmacology
- Antihypertensive Agents/pharmacology
- Blood Pressure/drug effects
- Case-Control Studies
- Disease Models, Animal
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Female
- HEK293 Cells
- Humans
- Hypertension/genetics
- Hypertension/metabolism
- Hypertension/physiopathology
- Hypertension/prevention & control
- Immunoglobulin G/blood
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Middle Aged
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Rats
- Receptor, Angiotensin, Type 1/metabolism
- Receptors, IgG/antagonists & inhibitors
- Receptors, IgG/genetics
- Receptors, IgG/metabolism
- Signal Transduction
- Vascular Remodeling/drug effects
- Mice
Collapse
Affiliation(s)
- Xiaomin Song
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences (X.S., X.Z., W.G., C.H., Z.C., H.Z., J.W.), Chinese Academy of Medical Sciences, Peking Union Medical College, China
| | - Xuan Zou
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences (X.S., X.Z., W.G., C.H., Z.C., H.Z., J.W.), Chinese Academy of Medical Sciences, Peking Union Medical College, China
| | - Weipeng Ge
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences (X.S., X.Z., W.G., C.H., Z.C., H.Z., J.W.), Chinese Academy of Medical Sciences, Peking Union Medical College, China
| | - Cuiliu Hou
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences (X.S., X.Z., W.G., C.H., Z.C., H.Z., J.W.), Chinese Academy of Medical Sciences, Peking Union Medical College, China
| | - Zhujie Cao
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences (X.S., X.Z., W.G., C.H., Z.C., H.Z., J.W.), Chinese Academy of Medical Sciences, Peking Union Medical College, China
| | - Hongmei Zhao
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences (X.S., X.Z., W.G., C.H., Z.C., H.Z., J.W.), Chinese Academy of Medical Sciences, Peking Union Medical College, China
| | - Tiantian Zhang
- Department Physiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences (T.Z.), Chinese Academy of Medical Sciences, Peking Union Medical College, China
| | - Ling Jin
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases (L.J., J.C.), Chinese Academy of Medical Sciences, Peking Union Medical College, China
| | - Yi Fu
- Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China (Y.F., W.K.)
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education (Y.F., W.K.)
| | - Wei Kong
- Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China (Y.F., W.K.)
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education (Y.F., W.K.)
| | - Chen Yan
- Aab Cardiovascular Research Institute, Medicine, University of Rochester School of Medicine and Dentistry, NY (C.Y.)
| | - Jun Cai
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases (L.J., J.C.), Chinese Academy of Medical Sciences, Peking Union Medical College, China
| | - Jing Wang
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences (X.S., X.Z., W.G., C.H., Z.C., H.Z., J.W.), Chinese Academy of Medical Sciences, Peking Union Medical College, China
| |
Collapse
|
9
|
Milner TA, Contoreggi NH, Yu F, Johnson MA, Wang G, Woods C, Mazid S, Van Kempen TA, Waters EM, McEwen BS, Korach KS, Glass MJ. Estrogen Receptor β Contributes to Both Hypertension and Hypothalamic Plasticity in a Mouse Model of Peri-Menopause. J Neurosci 2021; 41:5190-5205. [PMID: 33941651 PMCID: PMC8211546 DOI: 10.1523/jneurosci.0164-21.2021] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Hypertension susceptibility in women increases at the transition to menopause, termed perimenopause, a state characterized by erratic estrogen fluctuation and extended hormone cycles. Elucidating the role of estrogen signaling in the emergence of hypertension during perimenopause has been hindered by animal models that are confounded by abrupt estrogen cessation or effects of aging. In the present study, accelerated ovarian failure (AOF) in estrogen receptor β (ERβ) reporter mice was induced by 4-vinylcyclohexene diepoxide in young mice to model early-stage ovarian failure (peri-AOF) characteristic of peri-menopause. It was found that administering ERβ agonists suppressed elevated blood pressure in a model of neurogenic hypertension induced by angiotensin II (AngII) in peri-AOF, but not in age-matched male mice. It was also found that ERβ agonist administration in peri-AOF females, but not males, suppressed the heightened NMDAR signaling and reactive oxygen production in ERβ neurons in the hypothalamic paraventricular nucleus (PVN), a critical neural regulator of blood pressure. It was further shown that deleting ERβ in the PVN of gonadally intact females produced a phenotype marked by a sensitivity to AngII hypertension. These results suggest that ERβ signaling in the PVN plays an important role in blood pressure regulation in female mice and contributes to hypertension susceptibility in females at an early stage of ovarian failure comparable to human perimenopause.
Collapse
Affiliation(s)
- Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
- Harold and Milliken Hatch Laboratory of Neuroendocrinology, Rockefeller University, New York, New York 10065
| | - Natalina H Contoreggi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| | - Fangmin Yu
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| | - Megan A Johnson
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| | - Gang Wang
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| | - Clara Woods
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| | - Sanoara Mazid
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| | - Tracey A Van Kempen
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| | - Elizabeth M Waters
- Harold and Milliken Hatch Laboratory of Neuroendocrinology, Rockefeller University, New York, New York 10065
| | - Bruce S McEwen
- Harold and Milliken Hatch Laboratory of Neuroendocrinology, Rockefeller University, New York, New York 10065
| | - Kenneth S Korach
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences/National Institutes of Health, North Carolina 27709
| | - Michael J Glass
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| |
Collapse
|
10
|
Contoreggi NH, Mazid S, Goldstein LB, Park J, Ovalles AC, Waters EM, Glass MJ, Milner TA. Sex and age influence gonadal steroid hormone receptor distributions relative to estrogen receptor β-containing neurons in the mouse hypothalamic paraventricular nucleus. J Comp Neurol 2021; 529:2283-2310. [PMID: 33341960 DOI: 10.1002/cne.25093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/17/2022]
Abstract
Within the hypothalamic paraventricular nucleus (PVN), estrogen receptor (ER) β and other gonadal hormone receptors play a role in central cardiovascular processes. However, the influence of sex and age on the cellular and subcellular relationships of ERβ with ERα, G-protein ER (GPER1), as well as progestin and androgen receptors (PR and AR) in the PVN is uncertain. In young (2- to 3-month-old) females and males, ERβ-enhanced green fluorescent protein (EGFP) containing neurons were approximately four times greater than ERα-labeled and PR-labeled nuclei in the PVN. In subdivisions of the PVN, young females, compared to males, had: (1) more ERβ-EGFP neurons in neuroendocrine rostral regions; (2) fewer ERα-labeled nuclei in neuroendocrine and autonomic projecting medial subregions; and (3) more ERα-labeled nuclei in an autonomic projecting caudal region. In contrast, young males, compared to females, had approximately 20 times more AR-labeled nuclei, which often colocalized with ERβ-EGFP in neuroendocrine (approximately 70%) and autonomic (approximately 50%) projecting subregions. Ultrastructurally, in soma and dendrites, PVN ERβ-EGFP colocalized primarily with extranuclear AR (approximately 85% soma) and GPER1 (approximately 70% soma). Aged (12- to 24-month-old) males had more ERβ-EGFP neurons in a rostral neuroendocrine subregion compared to aged females and females with accelerated ovarian failure (AOF) and in a caudal autonomic subregion compared to post-AOF females. Late-aged (18- to 24-month-old) females compared to early-aged (12- to 14-month-old) females and AOF females had fewer AR-labeled nuclei in neuroendrocrine and autonomic projecting subregions. These findings indicate that gonadal steroids may directly and indirectly influence PVN neurons via nuclear and extranuclear gonadal hormone receptors in a sex-specific manner.
Collapse
Affiliation(s)
| | - Sanoara Mazid
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Lily B Goldstein
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - John Park
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Astrid C Ovalles
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Elizabeth M Waters
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, NY
| | - Michael J Glass
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY.,Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, NY
| |
Collapse
|
11
|
RFamide-Related Peptide Neurons Modulate Reproductive Function and Stress Responses. J Neurosci 2020; 41:474-488. [PMID: 33219002 DOI: 10.1523/jneurosci.1062-20.2020] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 10/30/2020] [Accepted: 11/15/2020] [Indexed: 12/21/2022] Open
Abstract
RF-amide related peptide 3 (RFRP-3) is a neuropeptide thought to inhibit central regulation of fertility. We investigated whether alterations in RFRP neuronal activity led to changes in puberty onset, fertility, and stress responses, including stress and glucocorticoid-induced suppression of pulsatile luteinizing hormone secretion. We first validated a novel RFRP-Cre mouse line, which we then used in combination with Cre-dependent neuronal ablation and DREADD technology to selectively ablate, stimulate, and inhibit RFRP neurons to interrogate their physiological roles in the regulation of fertility and stress responses. Chronic RFRP neuronal activation delayed male puberty onset and female reproductive cycle progression, but RFRP-activated and ablated mice exhibited apparently normal fertility. When subjected to either restraint- or glucocorticoid-induced stress paradigms. However, we observed a critical sex-specific role for RFRP neurons in mediating acute and chronic stress-induced reproductive suppression. Female mice exhibiting RFRP neuron ablation or silencing did not exhibit the stress-induced suppression in pulsatile luteinizing hormone secretion observed in control mice. Furthermore, RFRP neuronal activation markedly stimulated glucocorticoid secretion, demonstrating a feedback loop whereby stressful stimuli activate RFRP neurons, which in turn further activate the stress axis. These data provide evidence for a neuronal link between the stress and reproductive axes.
Collapse
|
12
|
Ashirova E, Contoreggi NH, Johnson MA, Al-Khayat FJ, Calcano GA, Rubin BR, O'Cinneide EM, Zhang Y, Zhou Y, Gregoire L, McEwen BS, Kreek MJ, Milner TA. Oxycodone injections not paired with conditioned place preference have little effect on the hippocampal opioid system in female and male rats. Synapse 2020; 75:e22182. [PMID: 32654187 DOI: 10.1002/syn.22182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/28/2020] [Accepted: 07/03/2020] [Indexed: 12/12/2022]
Abstract
Oxycodone (Oxy) conditioned place preference (CPP) in Sprague Dawley rats results in sex-specific alterations in hippocampal opioid circuits in a manner that facilitates opioid-associative learning processes, particularly in females. Here, we examined if Oxy (3 mg/kg, I.P.) or saline (Sal) injections not paired with behavioral testing similarly affect the hippocampal opioid system. Sal-injected females compared to Sal-injected males had: (1) higher densities of cytoplasmic delta opioid receptors (DOR) in GABAergic hilar dendrites suggesting higher baseline reserve DOR pools and (2) elevated phosphorylated DOR levels, but lower phosphorylated mu opioid receptor (MOR) levels in CA3a suggesting that the baseline pools of activated opioid receptors vary in females and males. In contrast to CPP studies, Oxy-injections in the absence of behavioral tests resulted in few changes in the hippocampal opioid system in either females or males. Specifically, Oxy-injected males compared to Sal-injected males had fewer DORs near the plasma membrane of CA3 pyramidal cell dendrites and in CA3 dendritic spines contacted by mossy fibers, and lower pMOR levels in CA3a. Oxy-injected females compared to Sal-injected females had higher total DORs in GABAergic dendrites and lower total MORs in parvalbumin-containing dendrites. Thus, unlike Oxy CPP, Oxy-injections redistributed opioid receptors in hippocampal neurons in a manner that would either decrease (males) or not alter (females) excitability and plasticity processes. These results indicate that the majority of changes within hippocampal opioid circuits that would promote opioid-associative learning processes in both females and males do not occur with Oxy administration alone, and instead must be paired with CPP.
Collapse
Affiliation(s)
- Elina Ashirova
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Natalina H Contoreggi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Megan A Johnson
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Fatima J Al-Khayat
- Weill Cornell Medicine in Qatar, Qatar Foundation, Education City, Doha, Qatar
| | - Gabriela A Calcano
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Batsheva R Rubin
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Emma M O'Cinneide
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA
| | - Yong Zhang
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY, USA
| | - Yan Zhou
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY, USA
| | - Lennox Gregoire
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Bruce S McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA
| | - Mary Jeanne Kreek
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY, USA
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
13
|
Santisteban MM, Ahn SJ, Lane D, Faraco G, Garcia-Bonilla L, Racchumi G, Poon C, Schaeffer S, Segarra SG, Körbelin J, Anrather J, Iadecola C. Endothelium-Macrophage Crosstalk Mediates Blood-Brain Barrier Dysfunction in Hypertension. Hypertension 2020; 76:795-807. [PMID: 32654560 DOI: 10.1161/hypertensionaha.120.15581] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hypertension is a leading cause of stroke and dementia, effects attributed to disrupting delivery of blood flow to the brain. Hypertension also alters the blood-brain barrier (BBB), a critical component of brain health. Although endothelial cells are ultimately responsible for the BBB, the development and maintenance of the barrier properties depend on the interaction with other vascular-associated cells. However, it remains unclear if BBB disruption in hypertension requires cooperative interaction with other cells. Perivascular macrophages (PVM), innate immune cells closely associated with cerebral microvessels, have emerged as major contributors to neurovascular dysfunction. Using 2-photon microscopy in vivo and electron microscopy in a mouse model of Ang II (angiotensin II) hypertension, we found that the vascular segments most susceptible to increased BBB permeability are arterioles and venules >10 µm and not capillaries. Brain macrophage depletion with clodronate attenuates, but does not abolish, the increased BBB permeability in these arterioles where PVM are located. Deletion of AT1R (Ang II type-1 receptors) in PVM using bone marrow chimeras partially attenuated the BBB dysfunction through the free radical-producing enzyme Nox2. In contrast, downregulation of AT1R in cerebral endothelial cells using a viral gene transfer-based approach prevented the BBB disruption completely. The results indicate that while endothelial AT1R, mainly in arterioles and venules, initiate the BBB disruption in hypertension, PVM are required for the full expression of the dysfunction. The findings unveil a previously unappreciated contribution of resident brain macrophages to increased BBB permeability of hypertension and identify PVM as a putative therapeutic target in diseases associated with BBB dysfunction.
Collapse
Affiliation(s)
- Monica M Santisteban
- From the Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY (M.M.S., S.J.A., D.L., G.F., L.G.-B., G.R., C.P., S.S., S.G.S., J.A., C.I.)
| | - Sung Ji Ahn
- From the Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY (M.M.S., S.J.A., D.L., G.F., L.G.-B., G.R., C.P., S.S., S.G.S., J.A., C.I.)
| | - Diane Lane
- From the Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY (M.M.S., S.J.A., D.L., G.F., L.G.-B., G.R., C.P., S.S., S.G.S., J.A., C.I.)
| | - Giuseppe Faraco
- From the Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY (M.M.S., S.J.A., D.L., G.F., L.G.-B., G.R., C.P., S.S., S.G.S., J.A., C.I.)
| | - Lidia Garcia-Bonilla
- From the Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY (M.M.S., S.J.A., D.L., G.F., L.G.-B., G.R., C.P., S.S., S.G.S., J.A., C.I.)
| | - Gianfranco Racchumi
- From the Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY (M.M.S., S.J.A., D.L., G.F., L.G.-B., G.R., C.P., S.S., S.G.S., J.A., C.I.)
| | - Carrie Poon
- From the Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY (M.M.S., S.J.A., D.L., G.F., L.G.-B., G.R., C.P., S.S., S.G.S., J.A., C.I.)
| | - Samantha Schaeffer
- From the Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY (M.M.S., S.J.A., D.L., G.F., L.G.-B., G.R., C.P., S.S., S.G.S., J.A., C.I.)
| | - Steven G Segarra
- From the Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY (M.M.S., S.J.A., D.L., G.F., L.G.-B., G.R., C.P., S.S., S.G.S., J.A., C.I.)
| | - Jakob Körbelin
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany (J.K.)
| | - Josef Anrather
- From the Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY (M.M.S., S.J.A., D.L., G.F., L.G.-B., G.R., C.P., S.S., S.G.S., J.A., C.I.)
| | - Costantino Iadecola
- From the Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY (M.M.S., S.J.A., D.L., G.F., L.G.-B., G.R., C.P., S.S., S.G.S., J.A., C.I.)
| |
Collapse
|
14
|
Singh P, Song CY, Dutta SR, Gonzalez FJ, Malik KU. Central CYP1B1 (Cytochrome P450 1B1)-Estradiol Metabolite 2-Methoxyestradiol Protects From Hypertension and Neuroinflammation in Female Mice. Hypertension 2020; 75:1054-1062. [PMID: 32148125 PMCID: PMC7098446 DOI: 10.1161/hypertensionaha.119.14548] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Supplemental Digital Content is available in the text. Previously, we showed that peripheral administration of 2-ME (2-methoxyestradiol), a CYP1B1 (cytochrome P450 1B1)-catechol-O-methyltransferase (COMT) generated metabolite of E2 (17β-Estradiol), protects against angiotensin II-induced hypertension in female mice. The demonstration that central E2 inhibits angiotensin II-induced hypertension, together with the expression of CYP1B1 in the brain, led us to hypothesize that E2-CYP1B1 generated metabolite 2-ME in the brain mediates its protective action against angiotensin II-induced hypertension in female mice. To test this hypothesis, we examined the effect of intracerebroventricularly (ICV) administered E2 in ovariectomized (OVX)-wild-type (Cyp1b1+/+) and OVX-Cyp1b1−/− mice on the action of systemic angiotensin II. ICV-E2 attenuated the angiotensin II-induced increase in mean arterial blood pressure, impairment of baroreflex sensitivity, and sympathetic activity in OVX-Cyp1b1+/+ but not in ICV-injected short interfering (si)RNA-COMT or OVX-Cyp1b1−/− mice. ICV-2-ME attenuated the angiotensin II-induced increase in blood pressure in OVX-Cyp1b1−/− mice; this effect was inhibited by ICV-siRNA estrogen receptor-α (ERα) and G protein-coupled estrogen receptor 1 (GPER1). ICV-E2 in OVX-Cyp1b1+/+ but not in OVX-Cyp1b1−/− mice and 2-ME in the OVX-Cyp1b1−/− inhibited angiotensin II-induced increase in reactive oxygen species production in the subfornical organ and paraventricular nucleus, activation of microglia and astrocyte, and neuroinflammation in paraventricular nucleus. Furthermore, central CYP1B1 gene disruption in Cyp1b1+/+ mice by ICV-adenovirus-GFP (green fluorescence protein)-CYP1B1-short hairpin (sh)RNA elevated, while reconstitution by adenovirus-GFP-CYP1B1-DNA in the paraventricular nucleus but not in subfornical organ in Cyp1b1−/− mice attenuated the angiotensin II-induced increase in systolic blood pressure. These data suggest that E2-CYP1B1-COMT generated metabolite 2-ME, most likely in the paraventricular nucleus via estrogen receptor-α and GPER1, protects against angiotensin II-induced hypertension and neuroinflammation in female mice.
Collapse
Affiliation(s)
- Purnima Singh
- From the Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis (P.S., C.Y.S., S.R.D., K.U.M.)
| | - Chi Young Song
- From the Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis (P.S., C.Y.S., S.R.D., K.U.M.)
| | - Shubha Ranjan Dutta
- From the Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis (P.S., C.Y.S., S.R.D., K.U.M.)
| | - Frank J Gonzalez
- Laboratory of Metabolism, National Cancer Institute, Bethesda, MD (F.J.G.)
| | - Kafait U Malik
- From the Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis (P.S., C.Y.S., S.R.D., K.U.M.)
| |
Collapse
|
15
|
Rubin BR, Milner TA, Pickel VM, Coleman CG, Marques-Lopes J, Van Kempen TA, Kazim SF, McEwen BS, Gray JD, Pereira AC. Sex and age differentially affect GABAergic neurons in the mouse prefrontal cortex and hippocampus following chronic intermittent hypoxia. Exp Neurol 2019; 325:113075. [PMID: 31837319 DOI: 10.1016/j.expneurol.2019.113075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/22/2019] [Accepted: 09/30/2019] [Indexed: 12/12/2022]
Abstract
Obstructive sleep apnea (OSA), a chronic sleep disorder characterized by repetitive reduction or cessation of airflow during sleep, is widely prevalent and is associated with adverse neurocognitive sequelae including increased risk of Alzheimer's disease (AD). In humans, OSA is more common in elderly males. OSA is characterized by sleep fragmentation and chronic intermittent hypoxia (CIH), and recent epidemiological studies point to CIH as the best predictor of neurocognitive sequelae associated with OSA. The sex- and age- specific effects of OSA-associated CIH on specific cell populations such as γ-aminobutyric acid (GABA)-ergic neurons in the hippocampus and the medial prefrontal cortex (mPFC), regions important for cognitive function, remain largely unknown. The present study examined the effect of 35 days of either moderate (10% oxygen) or severe (5% oxygen) CIH on GABAergic neurons in the mPFC and hippocampus of young and aged male and female mice as well as post-accelerated ovarian failure (AOF) female mice. In the mPFC and hippocampus, the number of GABA-labeled neurons increased in aged and young severe CIH males compared to controls but not in young moderate CIH males. This change was not representative of the individual GABAergic cell subpopulations, as the number of parvalbumin-labeled neurons decreased while the number of somatostatin-labeled neurons increased in the hippocampus of severe CIH young males only. In all female groups, the number of GABA-labeled cells was not different between CIH and controls. However, in the mPFC, CIH increased the number of parvalbumin-labeled neurons in young females and the number of somatostatin-labeled cells in AOF females but decreased the number of somatostatin-labeled cells in aged females. In the hippocampus, CIH decreased the number of somatostatin-labeled neurons in young females. CIH decreased the density of vesicular GABA transporter in the mPFC of AOF females only. These findings suggest sex-specific changes in GABAergic neurons in the hippocampus and mPFC with males showing an increase of this cell population as compared to their female counterparts following CIH. Age at exposure and severity of CIH also differentially affect the GABAergic cell population in mice.
Collapse
Affiliation(s)
- Batsheva R Rubin
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10065, United States of America; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, United States of America.
| | - Teresa A Milner
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10065, United States of America; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, United States of America.
| | - Virginia M Pickel
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, United States of America
| | - Christal G Coleman
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, United States of America
| | - Jose Marques-Lopes
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, United States of America
| | - Tracey A Van Kempen
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, United States of America
| | - Syed Faraz Kazim
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10065, United States of America; Department of Neurology, Icahn School of Medicine, Mount Sinai, New York, NY 10029, United States of America; Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| | - Bruce S McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10065, United States of America
| | - Jason D Gray
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10065, United States of America
| | - Ana C Pereira
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10065, United States of America; Department of Neurology, Icahn School of Medicine, Mount Sinai, New York, NY 10029, United States of America; Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America.
| |
Collapse
|
16
|
Ovalles AC, Contoreggi NH, Marques-Lopes J, Van Kempen TA, Iadecola C, Waters EM, Glass MJ, Milner TA. Plasma Membrane Affiliated AMPA GluA1 in Estrogen Receptor β-containing Paraventricular Hypothalamic Neurons Increases Following Hypertension in a Mouse Model of Post-menopause. Neuroscience 2019; 423:192-205. [PMID: 31682817 DOI: 10.1016/j.neuroscience.2019.09.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022]
Abstract
Sex and ovarian function contribute to hypertension susceptibility, however, the mechanisms are not well understood. Prior studies show that estrogens and neurogenic factors, including hypothalamic glutamatergic NMDA receptor plasticity, play significant roles in rodent hypertension. Here, we investigated the role of sex and ovarian failure on AMPA receptor plasticity in estrogen-sensitive paraventricular nucleus (PVN) neurons in naïve and angiotensin II (AngII) infused male and female mice and female mice at early and late stages of accelerated ovarian failure (AOF). High-resolution electron microscopy was used to assess the subcellular distribution of AMPA GluA1 in age-matched male and female estrogen receptor beta (ERβ) enhanced green fluorescent protein (EGFP) reporter mice as well as female ERβ-EGFP mice treated with 4-vinylcyclohexene diepoxide. In the absence of AngII, female mice at a late stage of AOF displayed higher levels of GluA1 on the plasma membrane, indicative of functional protein, in ERβ-expressing PVN dendrites when compared to male, naïve female and early stage AOF mice. Following slow-pressor AngII infusion, males, as well as early and late stage AOF females had elevated blood pressure. Significantly, only late stage-AOF female mice infused with AngII had an increase in GluA1 near the plasma membrane in dendrites of ERβ-expressing PVN neurons. In contrast, prior studies reported that plasmalemmal NMDA GluN1 increased in ERβ-expressing PVN dendrites in males and early, but not late stage AOF females. Together, these findings reveal that early and late stage AOF female mice display unique molecular signatures of long-lasting synaptic strength prior to, and following hypertension.
Collapse
Affiliation(s)
- Astrid C Ovalles
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA
| | - Natalina H Contoreggi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA
| | - Jose Marques-Lopes
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA
| | - Tracey A Van Kempen
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA
| | - Elizabeth M Waters
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Michael J Glass
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA.
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA; Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
17
|
Marongiu R. Accelerated Ovarian Failure as a Unique Model to Study Peri-Menopause Influence on Alzheimer's Disease. Front Aging Neurosci 2019; 11:242. [PMID: 31551757 PMCID: PMC6743419 DOI: 10.3389/fnagi.2019.00242] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022] Open
Abstract
Despite decades of extensive research efforts, efficacious therapies for Alzheimer's disease (AD) are lacking. The multi-factorial nature of AD neuropathology and symptomatology has taught us that a single therapeutic approach will most likely not fit all. Women constitute ~70% of the affected AD population, and pathology and rate of symptoms progression are 2-3 times higher in women than men. Epidemiological data suggest that menopausal estrogen loss may be causative of the more severe symptoms observed in AD women, however, results from clinical trials employing estrogen replacement therapy are inconsistent. AD pathological hallmarks-amyloid β (Aβ), neurofibrillary tangles (NFTs), and chronic gliosis-are laid down during a 20-year prodromal period before clinical symptoms appear, which coincides with the menopause transition (peri-menopause) in women (~45-54-years-old). Peri-menopause is marked by widely fluctuating estrogen levels resulting in periods of irregular hormone-receptor interactions. Recent studies showed that peri-menopausal women have increased indicators of AD phenotype (brain Aβ deposition and hypometabolism), and peri-menopausal women who used hormone replacement therapy (HRT) had a reduced AD risk. This suggests that neuroendocrine changes during peri-menopause may be a trigger that increases risk of AD in women. Studies on sex differences have been performed in several AD rodent models over the years. However, it has been challenging to study the menopause influence on AD due to lack of optimal models that mimic the human process. Recently, the rodent model of accelerated ovarian failure (AOF) was developed, which uniquely recapitulates human menopause, including a transitional peri-AOF period with irregular estrogen fluctuations and a post-AOF stage with low estrogen levels. This model has proven useful in hypertension and cognition studies with wild type animals. This review article will highlight the molecular mechanisms by which peri-menopause may influence the female brain vulnerability to AD and AD risk factors, such as hypertension and apolipoprotein E (APOE) genotype. Studies on these biological mechanisms together with the use of the AOF model have the potential to shed light on key molecular pathways underlying AD pathogenesis for the development of precision medicine approaches that take sex and hormonal status into account.
Collapse
Affiliation(s)
- Roberta Marongiu
- Laboratory of Molecular Neurosurgery, Weill Cornell Medicine, Department of Neurosurgery, Cornell University, New York, NY, United States
| |
Collapse
|
18
|
Zhou X, Yang H, Song X, Wang J, Shen L, Wang J. Central blockade of the AT1 receptor attenuates pressor effects via reduction of glutamate release and downregulation of NMDA/AMPA receptors in the rostral ventrolateral medulla of rats with stress-induced hypertension. Hypertens Res 2019; 42:1142-1151. [PMID: 30842613 DOI: 10.1038/s41440-019-0242-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 01/14/2019] [Accepted: 02/12/2019] [Indexed: 02/07/2023]
Abstract
Glutamatergic activity in the rostral ventrolateral medulla (RVLM), which is an important brain area where angiotensin II (Ang II) elicits its pressor effects, contributes to the onset of hypertension. The present study aimed to explore the effect of central Ang II type 1 receptor (AT1R) blockade on glutamatergic actions in the RVLM of stress-induced hypertensive rats (SIHR). The stress-induced hypertension (SIH) model was established by electric foot shocks combined with noises. Normotensive Sprague-Dawley rats (control) and SIHR were intracerebroventricularly infused with the AT1R antagonist candesartan or artificial cerebrospinal fluid for 14 days. Mean arterial pressure (MAP), heart rate (HR), plasma norepinephrine (NE), glutamate, and the expression of N-methyl-D-aspartic acid (NMDA) receptor subunit NR1, and α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors in the RVLM increased in the SIH group. These increases were blunted by candesartan. Bilateral microinjection of the ionotropic glutamate receptor antagonist kynurenic acid, the NMDA receptor antagonist D-2-amino-5-phosphonopentanoate, or the AMPA/kainate receptors antagonist 6-cyano-7-nitroquinoxaline-2,3-dione into the RVLM caused a depressor response in the SIH group, but not in other groups. NR1 and AMPA receptors expressed in the glutamatergic neurons of the RVLM, and glutamate levels, increased in the intermediolateral column of the spinal cord of SIHR. Central Ang II elicits release of glutamate, which binds to the enhanced ionotropic NMDA and AMPA receptors via AT1R, resulting in activation of glutamatergic neurons in the RVLM, increasing sympathetic excitation in SIHR.
Collapse
Affiliation(s)
- Xuan Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hongyu Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiaoshan Song
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jijiang Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Linlin Shen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jin Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
19
|
Ryan JD, Zhou Y, Contoreggi NH, Bshesh FK, Gray JD, Kogan JF, Ben KT, McEwen BS, Jeanne Kreek M, Milner TA. Sex Differences in the Rat Hippocampal Opioid System After Oxycodone Conditioned Place Preference. Neuroscience 2018; 393:236-257. [PMID: 30316908 PMCID: PMC6246823 DOI: 10.1016/j.neuroscience.2018.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/10/2018] [Accepted: 10/01/2018] [Indexed: 12/12/2022]
Abstract
Although opioid addiction has risen dramatically, the role of gender in addiction has been difficult to elucidate. We previously found sex-dependent differences in the hippocampal opioid system of Sprague-Dawley rats that may promote associative learning relevant to drug abuse. The present studies show that although female and male rats acquired conditioned place preference (CPP) to the mu-opioid receptor (MOR) agonist oxycodone (3 mg/kg, I.P.), hippocampal opioid circuits were differentially altered. In CA3, Leu-Enkephalin-containing mossy fibers had elevated levels in oxycodone CPP (Oxy) males comparable to those in females and sprouted in Oxy-females, suggesting different mechanisms for enhancing opioid sensitivity. Electron microscopy revealed that in Oxy-males delta opioid receptors (DORs) redistributed to mossy fiber-CA3 synapses in a manner resembling females that we previously showed is important for opioid-mediated long-term potentiation. Moreover, in Oxy-females DORs redistributed to CA3 pyramidal cell spines, suggesting the potential for enhanced plasticity processes. In Saline-injected (Sal) females, dentate hilar parvalbumin-containing basket interneuron dendrites had fewer MORs, however plasmalemmal and total MORs increased in Oxy-females. In dentate hilar GABAergic dendrites that contain neuropeptide Y, Sal-females compared to Sal-males had higher plasmalemmal DORs, and near-plasmalemmal DORs increased in Oxy-females. This redistribution of MORs and DORs within hilar interneurons in Oxy-females would potentially enhance disinhibition of granule cells via two different circuits. Together, these results indicate that oxycodone CPP induces sex-dependent redistributions of opioid receptors in hippocampal circuits in a manner facilitating opioid-associative learning processes and may help explain the increased susceptibility of females to opioid addiction acquisition and relapse.
Collapse
Affiliation(s)
- James D Ryan
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, United States; Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 1300 York Ave, New York, NY 10021, United States.
| | - Yan Zhou
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States
| | - Natalina H Contoreggi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, United States
| | - Farah K Bshesh
- Weill Cornell Medicine in Qatar, Qatar Foundation, Education City, P.O. Box 24144 Doha, Qatar
| | - Jason D Gray
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States
| | - Joshua F Kogan
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States
| | - Konrad T Ben
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States
| | - Bruce S McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States
| | - Mary Jeanne Kreek
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, United States; Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 1300 York Ave, New York, NY 10021, United States; Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States.
| |
Collapse
|
20
|
Palomo GM, Granatiero V, Kawamata H, Konrad C, Kim M, Arreguin AJ, Zhao D, Milner TA, Manfredi G. Parkin is a disease modifier in the mutant SOD1 mouse model of ALS. EMBO Mol Med 2018; 10:e8888. [PMID: 30126943 PMCID: PMC6180298 DOI: 10.15252/emmm.201808888] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/14/2022] Open
Abstract
Mutant Cu/Zn superoxide dismutase (SOD1) causes mitochondrial alterations that contribute to motor neuron demise in amyotrophic lateral sclerosis (ALS). When mitochondria are damaged, cells activate mitochondria quality control (MQC) mechanisms leading to mitophagy. Here, we show that in the spinal cord of G93A mutant SOD1 transgenic mice (SOD1-G93A mice), the autophagy receptor p62 is recruited to mitochondria and mitophagy is activated. Furthermore, the mitochondrial ubiquitin ligase Parkin and mitochondrial dynamics proteins, such as Miro1, and Mfn2, which are ubiquitinated by Parkin, and the mitochondrial biogenesis regulator PGC1α are depleted. Unexpectedly, Parkin genetic ablation delays disease progression and prolongs survival in SOD1-G93A mice, as it slows down motor neuron loss and muscle denervation and attenuates the depletion of mitochondrial dynamics proteins and PGC1α. Our results indicate that Parkin is a disease modifier in ALS, because chronic Parkin-mediated MQC activation depletes mitochondrial dynamics-related proteins, inhibits mitochondrial biogenesis, and worsens mitochondrial dysfunction.
Collapse
Affiliation(s)
- Gloria M Palomo
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Veronica Granatiero
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Hibiki Kawamata
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Csaba Konrad
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Michelle Kim
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Andrea J Arreguin
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Dazhi Zhao
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA
| | - Giovanni Manfredi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
21
|
Memantine, an NMDA Receptor Antagonist, Prevents Thyroxin-induced Hypertension, but Not Cardiac Remodeling. J Cardiovasc Pharmacol 2018; 70:305-313. [PMID: 29112047 DOI: 10.1097/fjc.0000000000000521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Stimulation of glutamatergic tone has been causally linked to myocardial pathogenesis and amplified systemic blood pressure (BP). Memantine, a noncompetitive N-methyl-D-aspartate glutamatergic receptor (NMDA-R) antagonist, has been proposed to be an active cardioprotective drug. However, the efficacy of memantine and subsequently the possible involvement of the NMDA-R in the thyroxin (T4)-induced cardiovascular complications have never been investigated. We examined the effect of memantine (30 mg·kg·d) on the T4 (500 μg·kg·d)-provoked increase in mouse BP, cardiac hypertrophy indicated by enlarged overall myocardial mass, and reformed reactions of the contractile myocardium both in vivo and ex vivo after 2 weeks of treatment. Memantine alone did not result in any cardiovascular pathology in mice. Instead, memantine significantly prevented the T4-triggered systemic hypertension. But, it did not reverse cardiac hypertrophy, coupled in vivo left ventricular dysfunction (LV) or ex vivo right ventricular (RV) papillary muscle contractile alterations of the T4-treated mice. Our results openly direct the cardiovascular safety and tolerability of memantine therapy. Yet, extra research is necessary to endorse these prospective advantageous outcomes. Also, we believe that this is the first study to inspect the possible role of NMDA-R in the T4-stimulated cardiovascular disorders and concluded that NMDA-R could play a key role in the T4-induced hypertension.
Collapse
|
22
|
Li DP, Pan HL. Glutamatergic Regulation of Hypothalamic Presympathetic Neurons in Hypertension. Curr Hypertens Rep 2017; 19:78. [PMID: 28929331 DOI: 10.1007/s11906-017-0776-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Elevated sympathetic vasomotor tone emanating from the brain is a major mechanism involved in the development of hypertension. Increased glutamatergic excitatory input to presympathetic neurons in the paraventricular nucleus (PVN) of the hypothalamus leads to increased sympathetic outflow in various animal models of hypertension. Recent studies have revealed molecular and cellular mechanisms underlying enhanced glutamatergic synaptic input to PVN presympathetic neurons in hypertension. In this review article, we summarize recent findings on changes in inotropic and metabotropic glutamate receptors, at both presynaptic and postsynaptic sites, responsible for increased glutamatergic input to PVN presympathetic neurons in hypertension. Particular emphasis is placed on the role of protein kinases and phosphatases in the potentiated activity of synaptic NMDA receptors in the PVN in hypertension. New findings about glutamatergic synaptic plasticity in the PVN not only improve the understanding of molecular mechanisms involved in heightened activity of the sympathetic nervous system but also suggest new therapeutic targets for treating drug-resistant, neurogenic hypertension.
Collapse
Affiliation(s)
- De-Pei Li
- Center for Neuroscience and Pain Research, Division of Anesthesiology and Critical Care, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Division of Anesthesiology and Critical Care, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.
| |
Collapse
|
23
|
Oyola MG, Thompson MK, Handa AZ, Handa RJ. Distribution and chemical composition of estrogen receptor β neurons in the paraventricular nucleus of the female and male mouse hypothalamus. J Comp Neurol 2017; 525:3666-3682. [PMID: 28758220 DOI: 10.1002/cne.24295] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 12/11/2022]
Abstract
Activation of estrogen receptor beta (ERβ)-expressing neurons regulates the mammalian stress response via the hypothalamic-pituitary-adrenal (HPA) axis. These neurons densely populate the paraventricular nucleus of the hypothalamus (PVN). Recent research has revealed striking differences between rat and mouse PVN cytochemistry, but careful exploration of PVN ERβ neurons in mice has been hindered by a lack of specific ERβ antisera. Therefore, we used male and female transgenic mice expressing EGFP under the control of the mouse ERβ promoter (ERβ-EGFP) to examine the chemical architecture of PVN ERβ cells. Using immunohistochemistry, we found that 90% of ERβ-immunoreactivity (-ir) colocalized with EGFP. Cellular colocalization of EGFP with neuropeptides, transcription modulators, and neuronal tracers was examined throughout the PVN. ERβ-EGFP cells expressed oxytocin more abundantly in the rostral (71 ± 3%) than caudal (33 ± 8%) PVN. Arginine vasopressin colocalized with EGFP more often in females (18 ± 3%) than males (4 ± 1%). Moreover, estrogen receptor α-ir colocalized with ERβ-EGFP at low levels (15 ± 3%). Using a corticotropin releasing hormone-cre driver X tdTomato reporter mouse, we found a moderate colocalization with ERβ-ir (48 ± 16%) in the middle PVN. Peripheral injection of fluorogold revealed that the rostral PVN ERβ-EGFP cells are neuroendocrine neurons whereas non-neuroendocrine (presumably pre-autonomic) ERβ-EGFP neurons predominated in the posterior PVN. These data demonstrate chemoarchitectural differences in ERβ neurons of the mouse PVN that are different from that previously described for the rat, thus, elucidating potential neuronal pathways involved in the regulation of the HPA axis in mice.
Collapse
Affiliation(s)
- Mario G Oyola
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Maranda K Thompson
- Department of Basic Medical Sciences, Univ. Arizona College of Medicine, Phoenix, Arizona
| | - Aaron Z Handa
- Department of Basic Medical Sciences, Univ. Arizona College of Medicine, Phoenix, Arizona
| | - Robert J Handa
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
24
|
McEwen BS, Milner TA. Understanding the broad influence of sex hormones and sex differences in the brain. J Neurosci Res 2017; 95:24-39. [PMID: 27870427 PMCID: PMC5120618 DOI: 10.1002/jnr.23809] [Citation(s) in RCA: 381] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/23/2016] [Accepted: 06/10/2016] [Indexed: 12/11/2022]
Abstract
Sex hormones act throughout the entire brain of both males and females via both genomic and nongenomic receptors. Sex hormones can act through many cellular and molecular processes that alter structure and function of neural systems and influence behavior as well as providing neuroprotection. Within neurons, sex hormone receptors are found in nuclei and are also located near membranes, where they are associated with presynaptic terminals, mitochondria, spine apparatus, and postsynaptic densities. Sex hormone receptors also are found in glial cells. Hormonal regulation of a variety of signaling pathways as well as direct and indirect effects on gene expression induce spine synapses, up- or downregulate and alter the distribution of neurotransmitter receptors, and regulate neuropeptide expression and cholinergic and GABAergic activity as well as calcium sequestration and oxidative stress. Many neural and behavioral functions are affected, including mood, cognitive function, blood pressure regulation, motor coordination, pain, and opioid sensitivity. Subtle sex differences exist for many of these functions that are developmentally programmed by hormones and by not yet precisely defined genetic factors, including the mitochondrial genome. These sex differences and responses to sex hormones in brain regions, which influence functions not previously regarded as subject to such differences, indicate that we are entering a new era of our ability to understand and appreciate the diversity of gender-related behaviors and brain functions. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bruce S. McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | - Teresa A. Milner
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065
- Feil Family Brain and Mind Research Institute, Weill Cornell School of Medicine, 407 East 61st Street, New York, NY 10065
| |
Collapse
|
25
|
Marques-Lopes J, Tesfaye E, Israilov S, Van Kempen TA, Wang G, Glass MJ, Pickel VM, Iadecola C, Waters EM, Milner TA. Redistribution of NMDA Receptors in Estrogen-Receptor-β-Containing Paraventricular Hypothalamic Neurons following Slow-Pressor Angiotensin II Hypertension in Female Mice with Accelerated Ovarian Failure. Neuroendocrinology 2017; 104:239-256. [PMID: 27078860 PMCID: PMC5381723 DOI: 10.1159/000446073] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/09/2016] [Indexed: 12/11/2022]
Abstract
Hypertension in male and aging female rodents is associated with glutamate-dependent plasticity in the hypothalamus, but existing models have failed to capture distinct transitional menopausal phases that could have a significant impact on the synaptic plasticity and emergent hypertension. In rodents, accelerated ovarian failure (AOF) induced by systemic injection of 4-vinylcyclohexane diepoxide mimics the estrogen fluctuations seen in human menopause including the perimenopause transition (peri-AOF) and postmenopause (post-AOF). Thus, we used the mouse AOF model to determine the impact of slow-pressor angiotensin II (AngII) administration on blood pressure and on the subcellular distribution of obligatory N-methyl-D-aspartate (NMDA) receptor GluN1 subunits in the paraventricular hypothalamic nucleus (PVN), a key estrogen-responsive cardiovascular regulatory area. Estrogen-sensitive neuronal profiles were identified in mice expressing enhanced green fluorescent protein under the promoter for estrogen receptor (ER) β, a major ER in the PVN. Slow-pressor AngII increased arterial blood pressure in mice at peri- and post-AOF time points. In control oil-injected (nonhypertensive) mice, AngII decreased the total number of GluN1 in ERβ-containing PVN dendrites. In contrast, AngII resulted in a reapportionment of GluN1 from the cytoplasm to the plasma membrane of ERβ-containing PVN dendrites in peri-AOF mice. Moreover, in post-AOF mice, AngII increased total GluN1, dendritic size and radical production in ERβ-containing neurons. These results indicate that unique patterns of hypothalamic glutamate receptor plasticity and dendritic structure accompany the elevated blood pressure in peri- and post-AOF time points. Our findings suggest the possibility that distinct neurobiological processes are associated with the increased blood pressure during perimenopausal and postmenopausal periods.
Collapse
Affiliation(s)
- Jose Marques-Lopes
- Feil Family Brain and Mind Research Institute, The Rockefeller University, New York, N.Y., USA
| | - Ephrath Tesfaye
- Feil Family Brain and Mind Research Institute, The Rockefeller University, New York, N.Y., USA
| | - Sigal Israilov
- Feil Family Brain and Mind Research Institute, The Rockefeller University, New York, N.Y., USA
| | - Tracey A. Van Kempen
- Feil Family Brain and Mind Research Institute, The Rockefeller University, New York, N.Y., USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, The Rockefeller University, New York, N.Y., USA
| | - Gang Wang
- Feil Family Brain and Mind Research Institute, The Rockefeller University, New York, N.Y., USA
| | - Michael J. Glass
- Feil Family Brain and Mind Research Institute, The Rockefeller University, New York, N.Y., USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, The Rockefeller University, New York, N.Y., USA
| | - Virginia M. Pickel
- Feil Family Brain and Mind Research Institute, The Rockefeller University, New York, N.Y., USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, The Rockefeller University, New York, N.Y., USA
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, The Rockefeller University, New York, N.Y., USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, The Rockefeller University, New York, N.Y., USA
| | - Elizabeth M. Waters
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, N.Y., USA
| | - Teresa A. Milner
- Feil Family Brain and Mind Research Institute, The Rockefeller University, New York, N.Y., USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, The Rockefeller University, New York, N.Y., USA
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, N.Y., USA
| |
Collapse
|
26
|
Levels of Cocaine- and Amphetamine-Regulated Transcript in Vagal Afferents in the Mouse Are Unaltered in Response to Metabolic Challenges. eNeuro 2016; 3:eN-FTR-0174-16. [PMID: 27822503 PMCID: PMC5088776 DOI: 10.1523/eneuro.0174-16.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/15/2016] [Accepted: 09/16/2016] [Indexed: 12/21/2022] Open
Abstract
Cocaine- and amphetamine-regulated transcript (CART) is one of the most abundant neuropeptides in vagal afferents, including those involved in regulating feeding. Recent observations indicate that metabolic challenges dramatically alter the neuropeptidergic profile of CART-producing vagal afferents. Here, using confocal microscopy, we reassessed the distribution and regulation of CART(55–102) immunoreactivity in vagal afferents of the male mouse in response to metabolic challenges, including fasting and high-fat-diet feeding. Importantly, the perikarya and axons of vagal C-fibers were labeled using mice expressing channelrodhopsin-2 (ChR2-YFP) in Nav1.8-Cre–expressing neurons. In these mice, approximately 82% of the nodose ganglion neurons were labeled with ChR2-YFP. Furthermore, ChR2-YFP–labeled axons could easily be identified in the dorsovagal complex. CART(55–102) immunoreactivity was observed in 55% of the ChR2-YFP–labeled neurons in the nodose ganglion and 22% of the ChR2-YFP–labeled varicosities within the area postrema of fed, fasted, and obese mice. The distribution of positive profiles was also identical across the full range of CART staining in fed, fasted, and obese mice. In contrast to previous studies, fasting did not induce melanin-concentrating hormone (MCH) immunoreactivity in vagal afferents. Moreover, prepro-MCH mRNA was undetectable in the nodose ganglion of fasted mice. In summary, this study showed that the perikarya and central terminals of vagal afferents are invariably enriched in CART and devoid of MCH.
Collapse
|
27
|
Van Kempen TA, Narayan A, Waters EM, Marques-Lopes J, Iadecola C, Glass MJ, Pickel VM, Milner TA. Alterations in the subcellular distribution of NADPH oxidase p47(phox) in hypothalamic paraventricular neurons following slow-pressor angiotensin II hypertension in female mice with accelerated ovarian failure. J Comp Neurol 2016; 524:2251-65. [PMID: 26659944 PMCID: PMC4892978 DOI: 10.1002/cne.23944] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 12/12/2022]
Abstract
At younger ages, women have a lower risk for hypertension than men, but this sexual dimorphism declines with the onset of menopause. These differences are paralleled in rodents following "slow-pressor" angiotensin II (AngII) administration: young male and aged female mice, but not young females, develop hypertension. There is also an established sexual dimorphism both in the cardiovascular response to the neurohypophyseal hormone arginine vasopressin (AVP) and in the expression of oxidative stress. We examined the relationship between AngII-mediated hypertension and the cellular distribution of the superoxide generating NADPH oxidase (NOX) in AVP-expressing hypothalamic paraventricular nucleus (PVN) neurons in "menopausal" female mice. Dual-labeling immunoelectron microscopy was used to determine whether the subcellular distribution of the organizer/adapter NOX p47(phox) subunit is altered in PVN dendrites following AngII administered (14 days) during the "postmenopausal" stage of accelerated ovarian failure (AOF) in young female mice treated with 4-vinylcyclohexene diepoxide. Slow-pressor AngII elevated blood pressure in AOF females and induced a significant increase in near plasmalemmal p47(phox) and a decrease in cytoplasmic p47(phox) in PVN AVP dendrites. These changes are the opposite of those observed in AngII-induced hypertensive male mice (Coleman et al. [2013] J. Neurosci. 33:4308-4316) and may be ascribed in part to baseline differences between young females and males in the near plasmalemmal p47(phox) on AVP dendrites seen in the present study. These findings highlight fundamental differences in the neural substrates of oxidative stress in the PVN associated with AngII hypertension in postmenopausal females compared with males. J. Comp. Neurol. 524:2251-2265, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tracey A. Van Kempen
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 1300 York Ave, New York, NY 10021
| | - Ankita Narayan
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 1300 York Ave, New York, NY 10021
| | - Elizabeth M. Waters
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | - Jose Marques-Lopes
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 1300 York Ave, New York, NY 10021
| | - Michael J. Glass
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 1300 York Ave, New York, NY 10021
| | - Virginia M. Pickel
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 1300 York Ave, New York, NY 10021
| | - Teresa A. Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 1300 York Ave, New York, NY 10021
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| |
Collapse
|
28
|
Huang X, Zhou Z, Liu J, Song W, Chen Y, Liu Y, Zhang M, Dai W, Yi Y, Zhao S. Prevalence, awareness, treatment, and control of hypertension among China’s Sichuan Tibetan population: A cross-sectional study. Clin Exp Hypertens 2016; 38:457-63. [PMID: 27359364 DOI: 10.3109/10641963.2016.1163369] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Xiaobo Huang
- Department of Cardiology, Chengdu Second People’s Hospital, Chengdu. Sichuan, China
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Zhengyang Zhou
- Department of Cardiology, Chengdu Second People’s Hospital, Chengdu. Sichuan, China
| | - Jianxiong Liu
- Department of Cardiology, Chengdu Second People’s Hospital, Chengdu. Sichuan, China
| | - Weifang Song
- Department of Pathophysiology, Fenyang School of Shanxi Medical University, Fenyang, Shanxi, China
| | - Yong Chen
- Department of Cardiology, Sichuan Provincial People’s Hospital, Chengdu, Sichuan Province, China
| | - Ya Liu
- Department of Cardiology, Chengdu Second People’s Hospital, Chengdu. Sichuan, China
| | - Mingyu Zhang
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Wen Dai
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Yanjing Yi
- Department of Cardiology, Chengdu Second People’s Hospital, Chengdu. Sichuan, China
| | - Shuiping Zhao
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| |
Collapse
|
29
|
Dai SY, Fan J, Shen Y, He JJ, Peng W. Endoplasmic reticulum stress in the brain subfornical organ contributes to sex differences in angiotensin-dependent hypertension in rats. Acta Physiol (Oxf) 2016; 217:33-44. [PMID: 26639993 DOI: 10.1111/apha.12635] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/05/2015] [Accepted: 11/25/2015] [Indexed: 01/16/2023]
Abstract
AIM Endoplasmic reticulum (ER) stress in the brain subfornical organ (SFO), a key cardiovascular regulatory centre, has been implicated in angiotensin (ANG) II-induced hypertension in males; however, the contribution of ER stress to ANG II-induced hypertension in females is unknown. Female hormones have been shown to prevent ER stress in the periphery. We tested the hypothesis that females are less susceptible to ANG II-induced SFO ER stress than males, leading to sex differences in hypertension. METHODS Male, intact and ovariectomized (OVX) female rats received a continuous 2-week subcutaneous infusion of ANG II or saline. Additional male, intact and OVX female rats received intracerebroventricular (ICV) injection of ER stress inducer tunicamycin. RESULTS ANG II, but not saline, increased blood pressure (BP) in both males and females, but intact females exhibited smaller increase in BP and less depressor response to ganglionic blockade compared with males or OVX females. Molecular studies revealed that ANG II elevated expression of ER stress biomarkers and Fra-like activity in the SFO in both males and females; however, elevations in these parameters were less in intact females than in males or OVX females. Moreover, ICV tunicamycin induced smaller elevation in BP and less increase in expression of ER stress biomarkers in the SFO in intact females compared with males or OVX females. CONCLUSION The results suggest that differences in ANG II-induced brain ER stress between males and females contribute to sex differences in ANG II-mediated hypertension and that oestrogen protects females against ANG II-induced brain ER stress.
Collapse
Affiliation(s)
- S.-Y. Dai
- Department of Obstetrics and Gynecology; Shengjing Hospital; China Medical University; Shenyang China
| | - J. Fan
- Department of Pathology; Hebei North University; Zhangjiakou China
| | - Y. Shen
- Department of Obstetrics and Gynecology; Shengjing Hospital; China Medical University; Shenyang China
| | - J.-J. He
- Department of Obstetrics and Gynecology; Shengjing Hospital; China Medical University; Shenyang China
| | - W. Peng
- Life Science Research Center and Department of Physiology and Pathophysiology; Hebei North University; Zhangjiakou China
| |
Collapse
|
30
|
NMDA Receptor Plasticity in the Hypothalamic Paraventricular Nucleus Contributes to the Elevated Blood Pressure Produced by Angiotensin II. J Neurosci 2015; 35:9558-67. [PMID: 26134639 DOI: 10.1523/jneurosci.2301-14.2015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hypertension induced by angiotensin II (Ang II) is associated with glutamate-dependent dysregulation of the hypothalamic paraventricular nucleus (PVN). Many forms of glutamate-dependent plasticity are mediated by NMDA receptor GluN1 subunit expression and the distribution of functional receptor to the plasma membrane of dendrites. Here, we use a combined ultrastructural and functional analysis to examine the relationship between PVN NMDA receptors and the blood pressure increase induced by chronic infusion of a low dose of Ang II. We report that the increase in blood pressure produced by a 2 week administration of a subpressor dose of Ang II results in an elevation in plasma membrane GluN1 in dendrites of PVN neurons in adult male mice. The functional implications of these observations are further demonstrated by the finding that GluN1 deletion in PVN neurons attenuated the Ang II-induced increases in blood pressure. These results indicate that NMDA receptor plasticity in PVN neurons significantly contributes to the elevated blood pressure mediated by Ang II.
Collapse
|
31
|
Sex differences in NMDA GluN1 plasticity in rostral ventrolateral medulla neurons containing corticotropin-releasing factor type 1 receptor following slow-pressor angiotensin II hypertension. Neuroscience 2015; 307:83-97. [PMID: 26306872 DOI: 10.1016/j.neuroscience.2015.08.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 08/12/2015] [Accepted: 08/14/2015] [Indexed: 11/15/2022]
Abstract
There are profound, yet incompletely understood, sex differences in the neurogenic regulation of blood pressure. Both corticotropin signaling and glutamate receptor plasticity, which differ between males and females, are known to play important roles in the neural regulation of blood pressure. However, the relationship between hypertension and glutamate plasticity in corticotropin-releasing factor (CRF)-receptive neurons in brain cardiovascular regulatory areas, including the rostral ventrolateral medulla (RVLM) and paraventricular nucleus of the hypothalamus (PVN), is not understood. In the present study, we used dual-label immuno-electron microscopy to analyze sex differences in slow-pressor angiotensin II (AngII) hypertension with respect to the subcellular distribution of the obligatory NMDA glutamate receptor subunit 1 (GluN1) subunit of the N-methyl-D-aspartate receptor (NMDAR) in the RVLM and PVN. Studies were conducted in mice expressing the enhanced green fluorescence protein (EGFP) under the control of the CRF type 1 receptor (CRF1) promoter (i.e., CRF1-EGFP reporter mice). By light microscopy, GluN1-immunoreactivity (ir) was found in CRF1-EGFP neurons of the RVLM and PVN. Moreover, in both regions tyrosine hydroxylase (TH) was found in CRF1-EGFP neurons. In response to AngII, male mice showed an elevation in blood pressure that was associated with an increase in the proportion of GluN1 on presumably functional areas of the plasma membrane (PM) in CRF1-EGFP dendritic profiles in the RVLM. In female mice, AngII was neither associated with an increase in blood pressure nor an increase in PM GluN1 in the RVLM. Unlike the RVLM, AngII-mediated hypertension had no effect on GluN1 localization in CRF1-EGFP dendrites in the PVN of either male or female mice. These studies provide an anatomical mechanism for sex-differences in the convergent modulation of RVLM catecholaminergic neurons by CRF and glutamate. Moreover, these results suggest that sexual dimorphism in AngII-induced hypertension is reflected by NMDA receptor trafficking in presumptive sympathoexcitatory neurons in the RVLM.
Collapse
|
32
|
Marques-Lopes J, Lynch MK, Van Kempen TA, Waters EM, Wang G, Iadecola C, Pickel VM, Milner TA. Female protection from slow-pressor effects of angiotensin II involves prevention of ROS production independent of NMDA receptor trafficking in hypothalamic neurons expressing angiotensin 1A receptors. Synapse 2015; 69:148-65. [PMID: 25559190 PMCID: PMC4355104 DOI: 10.1002/syn.21800] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 12/23/2014] [Indexed: 12/21/2022]
Abstract
Renin–angiotensin system overactivity, upregulation of postsynaptic NMDA receptor function, and increased reactive oxygen species (ROS) production in the hypothalamic paraventricular nucleus (PVN) are hallmarks of angiotensin II (AngII)-induced hypertension, which is far more common in young males than in young females. We hypothesize that the sex differences in hypertension are related to differential AngII-induced changes in postsynaptic trafficking of the essential NMDA receptor GluN1 subunit and ROS production in PVN cells expressing angiotensin Type 1a receptor (AT1aR). We tested this hypothesis using slow-pressor (14-day) infusion of AngII (600 ng/kg/min) in mice, which elicits hypertension in males but not in young females. Two-month-old male and female transgenic mice expressing enhanced green fluorescent protein (EGFP) in AT1aR-containing cells were used. In males, but not in females, AngII increased blood pressure and ROS production in AT1aR–EGFP PVN cells at baseline and following NMDA treatment. Electron microscopy showed that AngII increased cytoplasmic and total GluN1–silver-intensified immunogold (SIG) densities and induced a trend toward an increase in near plasmalemmal GluN1–SIG density in AT1aR–EGFP dendrites of males and females. Moreover, AngII decreased dendritic area and diameter in males, but increased dendritic area of small (<1 µm) dendrites and decreased diameter of large (>1 µm) dendrites in females. Fluorescence microscopy revealed that AT1aR and estrogen receptor β do not colocalize, suggesting that if estrogen is involved, its effect is indirect. These data suggest that the sexual dimorphism in AngII-induced hypertension is associated with sex differences in ROS production in AT1aR-containing PVN cells but not with postsynaptic NMDA receptor trafficking.
Collapse
Affiliation(s)
- Jose Marques-Lopes
- Brain and Mind Research Institute, Weill Cornell Medical College, 407 East 61st Street, New York, NY 10065
| | - Mary-Katherine Lynch
- Brain and Mind Research Institute, Weill Cornell Medical College, 407 East 61st Street, New York, NY 10065
| | - Tracey A. Van Kempen
- Brain and Mind Research Institute, Weill Cornell Medical College, 407 East 61st Street, New York, NY 10065
| | - Elizabeth M. Waters
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | - Gang Wang
- Brain and Mind Research Institute, Weill Cornell Medical College, 407 East 61st Street, New York, NY 10065
| | - Costantino Iadecola
- Brain and Mind Research Institute, Weill Cornell Medical College, 407 East 61st Street, New York, NY 10065
| | - Virginia M. Pickel
- Brain and Mind Research Institute, Weill Cornell Medical College, 407 East 61st Street, New York, NY 10065
| | - Teresa A. Milner
- Brain and Mind Research Institute, Weill Cornell Medical College, 407 East 61st Street, New York, NY 10065
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| |
Collapse
|
33
|
Abstract
The role of the brain in hypertension between the sexes is known to be important especially with regards to the effects of circulating sex hormones. A number of different brain regions important for regulation of sympathetic outflow and blood pressure express estrogen receptors (ERα and ERβ). Estradiol, acting predominantly via the ERα, inhibits angiotensin II activation of the area postrema and subfornical organ neurons and inhibits reactive oxygen generation that is required for the development of Angiotensin II-induced neurogenic hypertension. Estradiol activation of ERβ within the paraventricular nucleus and the rostral ventral lateral medulla inhibits these neurons and inhibits angiotensin II, or aldosterone induced increases in sympathetic outflow and hypertension. Understanding the cellular and molecular mechanisms underlying ERα and ERβ actions within key brain regions regulating blood pressure will be essential for the development of "next generation" selective estrogen receptor modulators (SERMS) that can be used clinically for the treatment of neurogenic hypertension.
Collapse
Affiliation(s)
- Meredith Hay
- Department of Physiology, University of Arizona, 1501 N Campbell Rd Bldg 201, Rm 4103, Tucson, AZ, 85724, USA,
| | | | | |
Collapse
|