1
|
Gonzalez LS, Fisher AA, Grover KE, Robinson JE. Examining the role of the photopigment melanopsin in the striatal dopamine response to light. Front Syst Neurosci 2025; 19:1568878. [PMID: 40242043 PMCID: PMC12000111 DOI: 10.3389/fnsys.2025.1568878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/17/2025] [Indexed: 04/18/2025] Open
Abstract
The mesolimbic dopamine system is a set of subcortical brain circuits that plays a key role in reward processing, reinforcement, associative learning, and behavioral responses to salient environmental events. In our previous studies of the dopaminergic response to salient visual stimuli, we observed that dopamine release in the lateral nucleus accumbens (LNAc) of mice encoded information about the rate and magnitude of rapid environmental luminance changes from darkness. Light-evoked dopamine responses were rate-dependent, robust to the time of testing or stimulus novelty, and required phototransduction by rod and cone opsins. However, it is unknown if these dopaminergic responses also involve non-visual opsins, such as melanopsin, the primary photopigment expressed by intrinsically photosensitive retinal ganglion cells (ipRGCs). In the current study, we evaluated the role of melanopsin in the dopaminergic response to light in the LNAc using the genetically encoded dopamine sensor dLight1 and fiber photometry. By measuring light-evoked dopamine responses across a broad irradiance and wavelength range in constitutive melanopsin (Opn4) knockout mice, we were able to provide new insights into the ability of non-visual opsins to regulate the mesolimbic dopamine response to visual stimuli.
Collapse
Affiliation(s)
- L. Sofia Gonzalez
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Austen A. Fisher
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Kassidy E. Grover
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - J. Elliott Robinson
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
2
|
Olufsen ME, Hannibal J, Soerensen NB, Christiansen AT, Christensen UC, Pertile G, Steel DH, Heegaard S, Kiilgaard JF. Autologous Neurosensory Retinal Flap Transplantation in a Porcine Model of Retinal Hole. OPHTHALMOLOGY SCIENCE 2025; 5:100644. [PMID: 39758132 PMCID: PMC11699102 DOI: 10.1016/j.xops.2024.100644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/30/2024] [Accepted: 10/29/2024] [Indexed: 01/07/2025]
Abstract
Purpose Autologous retinal transplantation has been successfully employed in the treatment of large and myopic macular holes that are refractory to standard surgical treatments. Patients transplanted with a peripheral neurosensory retinal graft have shown unexpected improvements in visual acuity. The study aims to investigate if neural integration of the graft takes place in a porcine model of retinal hole. Design Experimental animal study. Subjects Left eyes of 10 Danish landrace pigs. Methods The pigs underwent vitrectomy under general anesthesia, and a subretinal bleb was created within the visual streak on both sites of the optic disc. A retinal hole, approximately 1900 to 4000 microns in size, was cut temporally using a vitrector. A graft of matching size was harvested from the nasal retina. The graft was gently moved toward the retinal hole under perfluoro-n-octane and placed within it. Endolaser was applied around the donor site, and either air or oil tamponade was used. OCT and color fundus photography were performed 2 and 6 weeks after surgery. At the end of follow-up, the eyes were enucleated for histological examination, including immunohistochemical analysis with antibodies against retinal glial cells, photoreceptors, and inner retinal neurons. Main Outcome Measures The primary outcome measures were the morphology of the graft and the junctional area between the host and the graft. Results Retinal hole closure was achieved in 9 of 10 cases, with the graft remaining in situ in 6 cases. In 4 cases, OCT scans indicated preservation of the outer retinal layers, and in 2 of these cases, there was apparent integration with the adjacent host retina. Corresponding histology confirmed the preservation of the photoreceptor layer in 3 cases, but there was no evidence of graft integration with degeneration of the inner retina in all cases. The distance between the margins of the retinal hole decreased during follow-up, suggesting that the graft contracts and drags the surrounding retina toward the center. Conclusions The outer retina of a retinal graft can be preserved, while the inner retina degenerates. No evidence of neuroretinal integration of the graft was observed. The retinal graft serves as a scaffold, promoting the centripetal migration of the edges of the hole, resulting in closure of large retinal holes. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Madeline E. Olufsen
- Department of Ophthalmology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jens Hannibal
- Faculty of Health and Medical Sciences, Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health Sciences, Department of Clinical Biochemistry, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Nina B. Soerensen
- Department of Ophthalmology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anders T. Christiansen
- Department of Ophthalmology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ulrik C. Christensen
- Department of Ophthalmology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Grazia Pertile
- Department of Ophthalmology, IRCCS Sacro Cuore Don Calabria Hospital, Verona, Italy
| | - David H. Steel
- Bioscience Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Steffen Heegaard
- Department of Ophthalmology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Pathology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jens F. Kiilgaard
- Department of Ophthalmology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Yang Y, Foster VS, Marlowe S, Stevenson SR, Alexander I, Foster RG, Downes SM. Sleep and mood in central serous chorioretinopathy. Eye (Lond) 2025:10.1038/s41433-025-03688-3. [PMID: 40011741 DOI: 10.1038/s41433-025-03688-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 01/08/2025] [Accepted: 02/05/2025] [Indexed: 02/28/2025] Open
Abstract
PURPOSE To investigate the impact of central serous chorioretinopathy on sleep and mood in patients with acute and chronic central serous chorioretinopathy. METHODS This cross-sectional study compared sleep and mood differences between central serous chorioretinopathy and control patients recruited from Ophthalmology clinics at the John Radcliffe Hospital, Oxford between 2012 and 2020. Data including visual acuity, type of central serous chorioretinopathy (acute or chronic; aCSC/cCSC), sex, and chronotype were obtained. Sleep quality was measured using the Pittsburgh Sleep Quality Index (PSQI); the Hospital Anxiety and Depression Scale (HADS) was used to evaluate anxiety (HADS-A) and depression (HADS-D). RESULTS A total of 247 age matched controls and 109 patients with central serous chorioretinopathy participated. There were no significant differences in PSQI or HADs (P > 0.05) between the two groups. Females exhibited significantly higher PSQI scores than males both for control and central serous chorioretinopathy groups (P < 0.05). Within the central serous chorioretinopathy group, 88 (81%) had chronic central serous chorioretinopathy and 21 (19%) had acute central serous chorioretinopathy, and an increase in daytime dysfunction was seen in the acute phenotype compared to chronic (P = 0.018). CONCLUSION In our study, no significant differences in sleep quality or mood scores were identified in central serous chorioretinopathy patients, when compared to controls. Worsened sleep for females was present when compared to males, both in central serous chorioretinopathy and control groups. Within central serous chorioretinopathy groups, worsened daytime function was observed in acute versus chronic - a larger study would help distinguish the effect of chronicity on sleep.
Collapse
Affiliation(s)
- Yunfei Yang
- Department of Ophthalmology, Lister Hospital, East and North Hertfordshire NHS Foundation Trust, Coreys Mill Ln, Stevenage, SG1 4AB, England
- Oxford Eye Hospital, West Wing, Oxford University Hospitals Foundation Trust, Headington, Oxford, OX3 9DU, England
| | - Victoria S Foster
- Oxford Eye Hospital, West Wing, Oxford University Hospitals Foundation Trust, Headington, Oxford, OX3 9DU, England
- St George's, University of London, Medical School, Cranmer Terrace, London, SW17 0RE, UK
| | - Sophie Marlowe
- Great Ormond Street Hospital, Great Ormond Street, London, WC1N 3JH, UK
| | - Sarah R Stevenson
- Ophthalmology Department of the Royal Gwent Hospital, Cardiff Road, Newport, NP20 2UB, UK
| | - Iona Alexander
- Oxford Eye Hospital, West Wing, Oxford University Hospitals Foundation Trust, Headington, Oxford, OX3 9DU, England
| | - Russell G Foster
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Road, Oxford, OX1 3QU, England.
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Road, Oxford, OX1 3QU, England.
| | - Susan M Downes
- Oxford Eye Hospital, West Wing, Oxford University Hospitals Foundation Trust, Headington, Oxford, OX3 9DU, England.
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Road, Oxford, OX1 3QU, England.
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Road, Oxford, OX1 3QU, England.
| |
Collapse
|
4
|
Olufsen ME, Hannibal J, Sørensen NB, Christiansen AT, Christensen UC, Pertile G, Steel DH, Heegaard S, Kiilgaard JF. Subretinal Amniotic Membrane Transplantation in a Porcine Model of Retinal Hole. Invest Ophthalmol Vis Sci 2024; 65:52. [PMID: 39585676 PMCID: PMC11601133 DOI: 10.1167/iovs.65.13.52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/02/2024] [Indexed: 11/26/2024] Open
Abstract
Purpose To investigate the histopathological changes following subretinal amniotic membrane transplantation in an in vivo porcine model of retinal holes. Methods Left eyes of 12 Danish Landrace pigs were vitrectomized under full anesthesia. A subretinal bleb was created before excising a retinal hole (1154-2934 µm) using a 23-gauge vitrector. The pigs underwent transplantation of human freeze-dried amniotic membrane into the subretinal space, with no tamponade applied. Optical coherence tomography and color fundus photography were performed just after surgery and at 2 and 4 weeks post-surgery. At the end of follow-up, the eyes were enucleated for hematoxylin and eosin staining and fluorescence immunohistochemistry, using antibodies against retinal glial cells and inner retinal neurons. Results The amniotic membrane sheets facilitated hole closure by gliosis and centripetal migration of the edges of the hole. Immunohistochemical examination showed that the cells within the closed hole expressed anti-glial fibrillary acidic protein (GFAP) and anti-S100B, but not anti-glutamine synthetase (GS), suggesting that astrocytes were the predominant glial cells involved in hole closure. Gliosis was observed between the amniotic membrane sheet and the overlying photoreceptors of the surrounding retina. Morphological restoration of the retinal layers within the closed retinal hole was not observed. Conclusions The amniotic membrane acted as a stimulator for retinal hole closure by inducing glial cell proliferation and providing a scaffold for the centripetal migration of the edges of the hole. No morphological restoration was observed.
Collapse
Affiliation(s)
- Madeline E Olufsen
- Department of Ophthalmology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jens Hannibal
- Faculty of Health and Medical Sciences, Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Faculty of Health Sciences, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Nina B Sørensen
- Department of Ophthalmology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anders T Christiansen
- Department of Ophthalmology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ulrik C Christensen
- Department of Ophthalmology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | - David H Steel
- Bioscience Institute, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Steffen Heegaard
- Department of Ophthalmology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Pathology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jens F Kiilgaard
- Department of Ophthalmology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Amorim-de-Sousa A, Chakraborty R, Collins MJ, Fernandes P, González-Méijome J, Hannibal J, Hoseini-Yazdi H, Read SA, Ellrich J, Schilling T. Blue light stimulation of the blind spot in human: from melanopsin to clinically relevant biomarkers of myopia. Bioelectron Med 2024; 10:26. [PMID: 39491000 PMCID: PMC11533427 DOI: 10.1186/s42234-024-00159-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/11/2024] [Indexed: 11/05/2024] Open
Abstract
The protective effects of time spent outdoors emphasize the major role of daylight in myopia. Based on the pathophysiology of myopia, the impact of blue light stimulation on the signaling cascade, from melanopsin at the blind spot to clinically relevant biomarkers for myopia, was investigated. Parameters and site of light stimulation are mainly defined by the photopigment melanopsin, that is sensitive to blue light with a peak wavelength of 480 nm and localized on the intrinsically photosensitive retinal ganglion cells (ipRGC) whose axons converge to the optic disc, corresponding to the physiological blind spot. Blue light at the blind spot (BluSpot) stimulation provides the opportunity to activate the vast majority of ipRGC and avoids additional involvement of rods and cones which may exert incalculable effects on the signaling cascade.Experimental studies have applied anatomical, histochemical, electrophysiological, imaging, and psychophysical methods to unravel the mode of action of BluSpot stimulation. Results indicate activation of melanopsin, improvement of contrast sensitivity, gain in electrical retinal activity, and increase of choroidal thickness following BluSpot stimulation. Short-term changes of clinically relevant biomarkers lead to the hypothesis that BluSpot stimulation may exert antimyopic effects with long-term application.
Collapse
Affiliation(s)
- Ana Amorim-de-Sousa
- Clinical & Experimental Optometry Research Lab, Physics Center of Minho and Porto Universities, University of Minho, Braga, Portugal
| | - Ranjay Chakraborty
- Myopia and Visual Development Lab, Flinders University College of Nursing and Health Sciences, Bedford Park, South Australia, Australia
| | - Michael J Collins
- Contact Lens and Visual Optics Laboratory, Centre for Vision and Eye Research, Optometry and Vision Science, Queensland University of Technology, Brisbane, Australia
| | - Paulo Fernandes
- Clinical & Experimental Optometry Research Lab, Physics Center of Minho and Porto Universities, University of Minho, Braga, Portugal
| | - José González-Méijome
- Clinical & Experimental Optometry Research Lab, Physics Center of Minho and Porto Universities, University of Minho, Braga, Portugal
| | - Jens Hannibal
- Department of Clinical Biochemistry, Bispebjerg and Frederiksberg Hospital, Institute of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hosein Hoseini-Yazdi
- Contact Lens and Visual Optics Laboratory, Centre for Vision and Eye Research, Optometry and Vision Science, Queensland University of Technology, Brisbane, Australia
| | - Scott A Read
- Contact Lens and Visual Optics Laboratory, Centre for Vision and Eye Research, Optometry and Vision Science, Queensland University of Technology, Brisbane, Australia
| | - Jens Ellrich
- Dopavision GmbH, Pfuelstrasse 5, 10997, Berlin, Germany
- Medical Faculty, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Tim Schilling
- Dopavision GmbH, Pfuelstrasse 5, 10997, Berlin, Germany.
| |
Collapse
|
6
|
Marte ME, Kurokawa K, Jung H, Liu Y, Bernucci MT, King BJ, Miller DT. Characterizing Presumed Displaced Retinal Ganglion Cells in the Living Human Retina of Healthy and Glaucomatous Eyes. Invest Ophthalmol Vis Sci 2024; 65:20. [PMID: 39259176 PMCID: PMC11401130 DOI: 10.1167/iovs.65.11.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024] Open
Abstract
Purpose The purpose of this study was to investigate the large somas presumed to be displaced retinal ganglion cells (dRGCs) located in the inner nuclear layer (INL) of the living human retina. Whereas dRGCs have previously been studied in mammals and human donor tissue, they have never been investigated in the living human retina. Methods Five young, healthy subjects and three subjects with varying types of glaucoma were imaged at multiple locations in the macula using adaptive optics optical coherence tomography. In the acquired volumes, bright large somas at the INL border with the inner plexiform layer were identified, and the morphometric biomarkers of soma density, en face diameter, and spatial distribution were measured at up to 13 degrees retinal eccentricity. Susceptibility to glaucoma was assessed. Results In the young, healthy individuals, mean density of the bright, large somas was greatest foveally (550 and 543 cells/mm2 at 2 degrees temporal and nasal, respectively) and decreased with increasing retinal eccentricity (38 cells/mm2 at 13 degrees temporal, the farthest we measured). Soma size distribution showed the opposite trend with diameters and size variation increasing with retinal eccentricity, from 12.7 ± 1.8 µm at 2 degrees to 15.7 ± 3.5 µm at 13 degrees temporal, and showed evidence of a bimodal distribution in more peripheral locations. Within and adjacent to the arcuate defects of the subjects with glaucoma, density of the bright large somas was significantly lower than found in the young, healthy individuals. Conclusions Our results suggest that the bright, large somas at the INL border are likely comprised of dRGCs but amacrine cells may contribute too. These somas appear highly susceptible to glaucomatous damage.
Collapse
Affiliation(s)
- Mary E Marte
- Indiana University School of Optometry, Bloomington, Indiana, United States
| | - Kazuhiro Kurokawa
- Indiana University School of Optometry, Bloomington, Indiana, United States
| | - HaeWon Jung
- Indiana University School of Optometry, Bloomington, Indiana, United States
| | - Yan Liu
- Indiana University School of Optometry, Bloomington, Indiana, United States
| | - Marcel T Bernucci
- Indiana University School of Optometry, Bloomington, Indiana, United States
| | - Brett J King
- Indiana University School of Optometry, Bloomington, Indiana, United States
| | - Donald T Miller
- Indiana University School of Optometry, Bloomington, Indiana, United States
| |
Collapse
|
7
|
Gibertoni G, Hromov A, Piffaretti F, Geiser MH. Development of an Innovative Pupillometer Able to Selectively Stimulate the Eye's Fundus Photoreceptor Cells. Diagnostics (Basel) 2024; 14:1940. [PMID: 39272724 PMCID: PMC11394444 DOI: 10.3390/diagnostics14171940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/12/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Recent advancements in clinical research have identified the need to combine pupillometry with a selective stimulation of the eye's photoreceptor cell types to broaden retinal and neuroretinal health assessment opportunities. Our thorough analysis of the literature revealed the technological gaps that currently restrict and hinder the effective utilization of a method acknowledged to hold great potential. The available devices do not adequately stimulate the photoreceptor types with enough contrast and do not guarantee seamless device function integration, which would enable advanced data analysis. RetinaWISE is an advanced silencing pupillometry device that addresses these deficiencies. It combines a Maxwellian optical arrangement with advanced retinal stimulation, allowing for calibrated standard measurements to generate advanced and consistent results across multiple sites. The device holds a Class 1 CE marking under EU regulation 2017/745, thus facilitating clinical research progress.
Collapse
Affiliation(s)
- Giovanni Gibertoni
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Anton Hromov
- Oculox Technologies SA, Industria 3, 6933 Muzzano, Switzerland
| | | | - Martial H Geiser
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, 41125 Modena, Italy
- Oculox Technologies SA, Industria 3, 6933 Muzzano, Switzerland
| |
Collapse
|
8
|
Hoseini-Yazdi H, Read SA, Collins MJ, Bahmani H, Ellrich J, Schilling T. Increase in choroidal thickness after blue light stimulation of the blind spot in young adults. Bioelectron Med 2024; 10:13. [PMID: 38825695 PMCID: PMC11145801 DOI: 10.1186/s42234-024-00146-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/01/2024] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND Blue light activates melanopsin, a photopigment that is expressed in intrinsically photosensitive retinal ganglion cells (ipRGCs). The axons of ipRGCs converge on the optic disc, which corresponds to the physiological blind spot in the visual field. Thus, a blue light stimulus aligned with the blind spot captures the ipRGCs axons at the optic disc. This study examined the potential changes in choroidal thickness and axial length associated with blue light stimulation of melanopsin-expressing ipRGCs at the blind spot. It was hypothesized that blue light stimulation at the blind spot in adults increases choroidal thickness. METHODS The blind spots of both eyes of 10 emmetropes and 10 myopes, with a mean age of 28 ± 6 years (SD), were stimulated locally for 1-minute with blue flickering light with a 460 nm peak wavelength. Measurements of choroidal thickness and axial length were collected from the left eye before stimulation and over a 60-minute poststimulation period. At a similar time of day, choroidal thickness and axial length were measured under sham control condition in all participants, while a subset of 3 emmetropes and 3 myopes were measured after 1-minute of red flickering light stimulation of the blind spot with a peak wavelength of 620 nm. Linear mixed model analyses were performed to examine the light-induced changes in choroidal thickness and axial length over time and between refractive groups. RESULTS Compared with sham control (2 ± 1 μm, n = 20) and red light (-1 ± 2 μm, n = 6) stimulation, subfoveal choroidal thickness increased within 60 min after blue light stimulation of the blind spot (7 ± 1 μm, n = 20; main effect of light, p < 0.001). Significant choroidal thickening after blue light stimulation occurred in emmetropes (10 ± 2 μm, p < 0.001) but not in myopes (4 ± 2 μm, p > 0.05). Choroidal thickening after blue light stimulation was greater in the fovea, diminishing in the parafoveal and perifoveal regions. There was no significant main effect of light, or light by refractive error interaction on the axial length after blind spot stimulation. CONCLUSIONS These findings demonstrate that stimulating melanopsin-expressing axons of ipRGCs at the blind spot with blue light increases choroidal thickness in young adults. This has potential implications for regulating eye growth.
Collapse
Affiliation(s)
- Hosein Hoseini-Yazdi
- Contact Lens and Visual Optics Laboratory, Centre for Vision and Eye Research, Optometry and Vision Science, Queensland University of Technology, Brisbane, 4059, Australia
| | - Scott A Read
- Contact Lens and Visual Optics Laboratory, Centre for Vision and Eye Research, Optometry and Vision Science, Queensland University of Technology, Brisbane, 4059, Australia
| | - Michael J Collins
- Contact Lens and Visual Optics Laboratory, Centre for Vision and Eye Research, Optometry and Vision Science, Queensland University of Technology, Brisbane, 4059, Australia
| | - Hamed Bahmani
- Dopavision GmbH, Krausenstr. 9-10, 10117, Berlin, Germany
| | - Jens Ellrich
- Dopavision GmbH, Krausenstr. 9-10, 10117, Berlin, Germany
- Medical Faculty, Friedrich-Alexander-University Erlangen-Nuremberg, 91054, Erlangen, Germany
| | - Tim Schilling
- Dopavision GmbH, Krausenstr. 9-10, 10117, Berlin, Germany.
| |
Collapse
|
9
|
Foster RG. Introduction and reflections on the comparative physiology of sleep and circadian rhythms. J Comp Physiol B 2024; 194:225-231. [PMID: 38856727 PMCID: PMC11233284 DOI: 10.1007/s00360-024-01567-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 05/17/2024] [Indexed: 06/11/2024]
Abstract
Circadian rhythms and the sleep/wake cycle allows us, and most life on Earth, to function optimally in a dynamic world, adjusting all aspects of biology to the varied and complex demands imposed by the 24-hour rotation of the Earth upon its axis. A key element in understanding these rhythms, and the success of the field in general, has been because researchers have adopted a comparative approach. Across all taxa, fundamental questions relating to the generation and regulation of sleep and circadian rhythms have been address using biochemical, molecular, cellular, system and computer modelling techniques. Furthermore, findings have been placed into an ecological and evolutionary context. By addressing both the "How" - mechanistic, and "Why" - evolutionary questions in parallel, the field has achieved remarkable successes, including how circadian rhythms are generated and regulated by light. Yet many key questions remain. In this special issue on the Comparative Physiology of Sleep and Circadian Rhythms, celebrating the 100th anniversary of the Journal of Comparative Physiology, important new discoveries are detailed. These findings illustrate the power of comparative physiology to address novel questions and demonstrate that sleep and circadian physiology are embedded within the biological framework of an organism.
Collapse
Affiliation(s)
- Russell G Foster
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
10
|
Steiner OL, de Zeeuw J. Melanopsin retinal ganglion cell function in Alzheimer's vs. Parkinson's disease an exploratory meta-analysis and review of pupillometry protocols. Parkinsonism Relat Disord 2024; 123:106063. [PMID: 38443213 DOI: 10.1016/j.parkreldis.2024.106063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Neurodegenerative diseases share retinal abnormalities. Chromatic pupillometry allows in vivo assessment of photoreceptor functional integrity, including melanopsin-expressing retinal ganglion cells. This exploratory meta-analysis assesses retinal photoreceptor functionality in Alzheimer's vs. Parkinson's disease and conducts an in-depth review of applied pupillometric protocols. METHODS Literature reviews on PubMed and Scopus from 1991 to August 2023 identified chromatic pupillometry studies on Alzheimer's disease (AD; n = 42 patients from 2 studies) and Parkinson's disease (PD; n = 66 from 3 studies). Additionally, a pre-AD study (n = 10) and an isolated REM Sleep Behavior Disorder study (iRBD; n = 10) were found, but their results were not included in the meta-analysis statistics. RESULTS Melanopsin-mediated post-illumination pupil response to blue light was not significantly impaired in Alzheimer's (weighted mean difference = -1.54, 95% CI: 4.57 to 1.49, z = -1.00, p = 0.319) but was in Parkinson's (weighted mean difference = -9.14, 95% CI: 14.19 to -4.08, z = -3.54, p < 0.001). Other pupil light reflex metrics showed no significant differences compared to controls. Studies adhered to international standards of pupillometry with moderate to low bias. All studies used full-field stimulation. Alzheimer's studies used direct while Parkinson's studies used consensual measurement. Notably, studies did not control for circadian timing and Parkinson's patients were on dopaminergic treatment. CONCLUSION AND RELEVANCE Results affirm chromatic pupillometry as a useful method to assess melanopsin-related retinal cell dysfunction in Parkinson's but not in Alzheimer's disease. While adhering to international standards, future studies may analyze the effects of local field stimulation, dopaminergic treatment, and longitudinal design to elucidate melanopsin dysfunction in Parkinson's disease.
Collapse
Affiliation(s)
- Oliver Leopold Steiner
- Department of Neurology, Motor and Cognition Group, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Germany; Institute of Psychology, Humboldt-Universität zu Berlin, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Germany.
| | - Jan de Zeeuw
- Sleep Research & Clinical Chronobiology, Institute of Physiology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Germany; Clinic for Sleep & Chronomedicine, St. Hedwig-Hospital, Berlin, Germany
| |
Collapse
|
11
|
Stangerup I, Kjeldsen SAS, Richter MM, Jensen NJ, Rungby J, Haugaard SB, Georg B, Hannibal J, Møllgård K, Wewer Albrechtsen NJ, Bjørnbak Holst C. Glucagon does not directly stimulate pituitary secretion of ACTH, GH or copeptin. Peptides 2024; 176:171213. [PMID: 38604379 DOI: 10.1016/j.peptides.2024.171213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/20/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Glucagon is best known for its contribution to glucose regulation through activation of the glucagon receptor (GCGR), primarily located in the liver. However, glucagon's impact on other organs may also contribute to its potent effects in health and disease. Given that glucagon-based medicine is entering the arena of anti-obesity drugs, elucidating extrahepatic actions of glucagon are of increased importance. It has been reported that glucagon may stimulate secretion of arginine-vasopressin (AVP)/copeptin, growth hormone (GH) and adrenocorticotrophic hormone (ACTH) from the pituitary gland. Nevertheless, the mechanisms and whether GCGR is present in human pituitary are unknown. In this study we found that intravenous administration of 0.2 mg glucagon to 14 healthy subjects was not associated with increases in plasma concentrations of copeptin, GH, ACTH or cortisol over a 120-min period. GCGR immunoreactivity was present in the anterior pituitary but not in cells containing GH or ACTH. Collectively, glucagon may not directly stimulate secretion of GH, ACTH or AVP/copeptin in humans but may instead be involved in yet unidentified pituitary functions.
Collapse
Affiliation(s)
- Ida Stangerup
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Department of Clinical Biochemistry, Copenhagen University Hospital - Nordsjælland, Hillerød, Denmark.
| | - Sasha A S Kjeldsen
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael M Richter
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicole J Jensen
- Steno Diabetes Center Copenhagen, Herlev, Denmark; Department of Endocrinology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Jørgen Rungby
- Steno Diabetes Center Copenhagen, Herlev, Denmark; Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Steen Bendix Haugaard
- Department of Endocrinology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Georg
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Jens Hannibal
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kjeld Møllgård
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Camilla Bjørnbak Holst
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Lorenceau J, Ajasse S, Barbet R, Boucart M, Chavane F, Lamirel C, Legras R, Matonti F, Rateaux M, Rouland JF, Sahel JA, Trinquet L, Wexler M, Vignal-Clermont C. Method to Quickly Map Multifocal Pupillary Response Fields (mPRF) Using Frequency Tagging. Vision (Basel) 2024; 8:17. [PMID: 38651438 PMCID: PMC11036301 DOI: 10.3390/vision8020017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/27/2024] [Indexed: 04/25/2024] Open
Abstract
We present a method for mapping multifocal Pupillary Response Fields in a short amount of time using a visual stimulus covering 40° of the visual angle divided into nine contiguous sectors simultaneously modulated in luminance at specific, incommensurate, temporal frequencies. We test this multifocal Pupillary Frequency Tagging (mPFT) approach with young healthy participants (N = 36) and show that the spectral power of the sustained pupillary response elicited by 45 s of fixation of this multipartite stimulus reflects the relative contribution of each sector/frequency to the overall pupillary response. We further analyze the phase lag for each temporal frequency as well as several global features related to pupil state. Test/retest performed on a subset of participants indicates good repeatability. We also investigate the existence of structural (RNFL)/functional (mPFT) relationships. We then summarize the results of clinical studies conducted with mPFT on patients with neuropathies and retinopathies and show that the features derived from pupillary signal analyses, the distribution of spectral power in particular, are homologous to disease characteristics and allow for sorting patients from healthy participants with excellent sensitivity and specificity. This method thus appears as a convenient, objective, and fast tool for assessing the integrity of retino-pupillary circuits as well as idiosyncrasies and permits to objectively assess and follow-up retinopathies or neuropathies in a short amount of time.
Collapse
Affiliation(s)
- Jean Lorenceau
- Integrative Neuroscience and Cognition Center, UMR8002, Université Paris Cité, 75006 Paris, France; (R.B.); (M.W.)
| | | | - Raphael Barbet
- Integrative Neuroscience and Cognition Center, UMR8002, Université Paris Cité, 75006 Paris, France; (R.B.); (M.W.)
| | - Muriel Boucart
- CNRS, INSERM UMR-S 1172-Lille Neurosciences & Cognition, 59000 Lille, France;
| | - Frédéric Chavane
- Institut des Neurosciences de la Timone-CNRS UMR 7289, 13005 Marseille, France;
| | - Cédric Lamirel
- Hopital Fondation, Adolphe de Rothschild 29, rue Manin, 75019 Paris, France; (C.L.); (C.V.-C.)
| | - Richard Legras
- LuMIn, CNRS, ENS Paris-Saclay, Centrale Supelec, Université Paris-Saclay, 91192 Orsay, France;
| | - Frédéric Matonti
- Centre Monticelli Paradis d’Ophtalmologie, 13008 Marseille, France;
| | - Maxence Rateaux
- Centre BORELLI, Université Paris Cité, ENS Paris-Saclay, CNRS, INSERM, SSA, 75006 Paris, France;
| | - Jean-François Rouland
- Department of Ophthalmology, Hôpital Claude Huriez, CHRU de Lille, 59037 Lille, France;
| | - José-Alain Sahel
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15219, USA;
| | - Laure Trinquet
- Faculté des Sciences Médicales et Paramédicales, Aix-Marseille Université, 13385 Marseille, France;
| | - Mark Wexler
- Integrative Neuroscience and Cognition Center, UMR8002, Université Paris Cité, 75006 Paris, France; (R.B.); (M.W.)
| | | |
Collapse
|
13
|
Huang X, Tao Q, Ren C. A Comprehensive Overview of the Neural Mechanisms of Light Therapy. Neurosci Bull 2024; 40:350-362. [PMID: 37555919 PMCID: PMC10912407 DOI: 10.1007/s12264-023-01089-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/22/2023] [Indexed: 08/10/2023] Open
Abstract
Light is a powerful environmental factor influencing diverse brain functions. Clinical evidence supports the beneficial effect of light therapy on several diseases, including depression, cognitive dysfunction, chronic pain, and sleep disorders. However, the precise mechanisms underlying the effects of light therapy are still not well understood. In this review, we critically evaluate current clinical evidence showing the beneficial effects of light therapy on diseases. In addition, we introduce the research progress regarding the neural circuit mechanisms underlying the modulatory effects of light on brain functions, including mood, memory, pain perception, sleep, circadian rhythm, brain development, and metabolism.
Collapse
Affiliation(s)
- Xiaodan Huang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, 510632, China
| | - Qian Tao
- Psychology Department, School of Medicine, Jinan University, Guangzhou, 510632, China.
| | - Chaoran Ren
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
14
|
Romagnoli M, Amore G, Avanzini P, Carelli V, La Morgia C. Chromatic pupillometry for evaluating melanopsin retinal ganglion cell function in Alzheimer's disease and other neurodegenerative disorders: a review. Front Psychol 2024; 14:1295129. [PMID: 38259552 PMCID: PMC10801184 DOI: 10.3389/fpsyg.2023.1295129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
The evaluation of pupillary light reflex (PLR) by chromatic pupillometry may provide a unique insight into specific photoreceptor functions. Chromatic pupillometry refers to evaluating PLR to different wavelengths and intensities of light in order to differentiate outer/inner retinal photoreceptor contributions to the PLR. Different protocols have been tested and are now established to assess in-vivo PLR contribution mediated by melanopsin retinal ganglion cells (mRGCs). These intrinsically photosensitive photoreceptors modulate the non-image-forming functions of the eye, which are mainly the circadian photoentrainment and PLR, via projections to the hypothalamic suprachiasmatic and olivary pretectal nucleus, respectively. In this context, chromatic pupillometry has been used as an alternative and non-invasive tool to evaluate the mRGC system in several clinical settings, including hereditary optic neuropathies, glaucoma, and neurodegenerative disorders such as Parkinson's disease (PD), idiopathic/isolated rapid eye movement sleep behavior disorder (iRBD), and Alzheimer's disease (AD). The purpose of this article is to review the key steps of chromatic pupillometry protocols for studying in-vivo mRGC-system functionality and provide the main findings of this technique in the research setting on neurodegeneration. mRGC-dependent pupillary responses are short-wavelength sensitive, have a higher threshold of activation, and are much slower and sustained compared with rod- and cone-mediated responses, driving the tonic component of the PLR during exposure to high-irradiance and continuous light stimulus. Thus, mRGCs contribute mainly to the tonic component of the post-illumination pupil response (PIPR) to bright blue light flash that persists after light stimulation is switched off. Given the role of mRGCs in circadian photoentrainment, the use of chromatic pupillometry to perform a functional evaluation of mRGcs may be proposed as an early biomarker of mRGC-dysfunction in neurodegenerative disorders characterized by circadian and/or sleep dysfunction such as AD, PD, and its prodromal phase iRBD. The evaluation by chromatic pupillometry of mRGC-system functionality may lay the groundwork for a new, easily accessible biomarker that can be exploited also as the starting point for future longitudinal cohort studies aimed at stratifying the risk of conversion in these disorders.
Collapse
Affiliation(s)
- Martina Romagnoli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Giulia Amore
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | | | - Valerio Carelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Chiara La Morgia
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| |
Collapse
|
15
|
Redondo B, Serramito M, Vera J, Alguacil-Espejo M, Rubio-Martínez M, Molina R, Jiménez R. Diurnal Variation in Accommodation, Binocular Vergence, and Pupil Size. Optom Vis Sci 2023; 100:847-854. [PMID: 38019970 DOI: 10.1097/opx.0000000000002091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
SIGNIFICANCE Our results show significant diurnal variations in accommodative function and the magnitude of the phoria. Therefore, when comparing visual measures in clinical or laboratory settings, performing the visual examination at the same time of day (±1 hour) is encouraged. PURPOSE The aim of this study was to evaluate the accommodation, binocular vergence, and pupil behavior on three different times during the day. METHODS Twenty collegiate students (22.8 ± 2.1 years) participated in this study. Participants visited the laboratory on three different days at 2-hourly intervals (morning, 9:00 to 11:00 am ; afternoon, 2:00 to 4:00 pm ; evening, 7:00 to 9:00 pm ). The binocular vergence and accommodative function were measured using clinical optometric procedures, and the accommodative response and pupil function were evaluated in binocular conditions using the WAM-5500 autorefractometer. RESULTS The accommodative amplitude for the right and left eyes showed statistically significant differences for the time interval ( P = .001 and P = .02, respectively), revealing higher accommodative amplitude in the morning and afternoon in comparison with the evening. Participants were more esophoric when assessed in the morning in comparison with the evening at far and near ( P = .02 and P = .01, respectively) and when assessed in the afternoon in comparison with the evening at far distance ( P = .02). The magnitude of accommodative response was higher in the morning, and it decreased throughout the day at 500 ( P < .001), 40 ( P = .05), and 20 cm ( P < .001). No statistically significant differences were obtained for any other variable. CONCLUSIONS This study shows small diurnal variations in some accommodative and binocular vergence parameters, but no effects were observed for the pupil response. These outcomes are of special relevance for eye care specialists when performing repeated accommodative or binocular vergence measures. However, the diurnal variations were modest and may not influence a routine orthoptic examination.
Collapse
Affiliation(s)
| | - María Serramito
- Ocupharm Research Group, Faculty of Optic and Optometry, University Complutense of Madrid, Madrid, Spain
| | | | - Marina Alguacil-Espejo
- CLARO (Clinical and Laboratory Applications of Research in Optometry) Research Group, Department of Optics, Faculty of Sciences, University of Granada, Spain
| | - Mercedes Rubio-Martínez
- CLARO (Clinical and Laboratory Applications of Research in Optometry) Research Group, Department of Optics, Faculty of Sciences, University of Granada, Spain
| | - Rubén Molina
- CLARO (Clinical and Laboratory Applications of Research in Optometry) Research Group, Department of Optics, Faculty of Sciences, University of Granada, Spain
| | - Raimundo Jiménez
- CLARO (Clinical and Laboratory Applications of Research in Optometry) Research Group, Department of Optics, Faculty of Sciences, University of Granada, Spain
| |
Collapse
|
16
|
Nobari H, Azarian S, Saedmocheshi S, Valdés-Badilla P, García Calvo T. Narrative review: The role of circadian rhythm on sports performance, hormonal regulation, immune system function, and injury prevention in athletes. Heliyon 2023; 9:e19636. [PMID: 37809566 PMCID: PMC10558889 DOI: 10.1016/j.heliyon.2023.e19636] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 08/21/2023] [Accepted: 08/29/2023] [Indexed: 10/10/2023] Open
Abstract
Objectives This study was a narrative review of the importance of circadian rhythm (CR), describes the underlying mechanisms of CR in sports performance, emphasizes the reciprocal link between CR, endocrine homeostasis and sex differences, and the unique role of the circadian clock in immune system function and coordination. Method As a narrative review study, a comprehensive search was conducted in PubMed, Scopus, and Web of Science (core collection) databases using the keywords "circadian rhythm", "sports performance", "hormonal regulation", "immune system", and "injury prevention". Inclusion criteria were studies published in English and peer-reviewed journals until July 2023. Studies that examined the role of CR in sports performance, hormonal status, immune system function, and injury prevention in athletes were selected for review. Results CR is followed by almost all physiological and biochemical activities in the human body. In humans, the superchiasmatic nucleus controls many daily biorhythms under solar time, including the sleep-wake cycle. A body of literature indicates that the peak performance of essential indicators of sports performance is primarily in the afternoon hours, and the evening of actions occurs roughly at the peak of core body temperature. Recent studies have demonstrated that the time of day that exercise is performed affects the achievement of good physical performance. This review also shows various biomarkers of cellular damage in weariness and the underlying mechanisms of diurnal fluctuations. According to the clock, CR can be synchronized with photonic and non-photonic stimuli (i.e., temperature, physical activity, and food intake), and feeding patterns and diet changes can affect CR and redox markers. It also emphasizes the reciprocal links between CR and endocrine homeostasis, the specific role of the circadian clock in coordinating immune system function, and the relationship between circadian clocks and sex differences. Conclusion The interaction between insufficient sleep and time of day on performance has been established in this study because it is crucial to balance training, recovery, and sleep duration to attain optimal sports performance.
Collapse
Affiliation(s)
- Hadi Nobari
- Faculty of Sport Sciences, University of Extremadura, 10003, Cáceres, Spain
- Department of Exercise Physiology, Faculty of Educational Sciences and Psychology, University of Mohaghegh Ardabili, Ardabil, 56199-11367, Iran
| | - Somayeh Azarian
- Department of Exercise Physiology, Faculty of Educational Sciences and Psychology, University of Mohaghegh Ardabili, Ardabil, 56199-11367, Iran
| | - Saber Saedmocheshi
- Department of Physical Education and Sport Sciences, Faculty of Humanities and Social Sciences, University of Kurdistan, Sanandaj, 66177-15175, Iran
| | - Pablo Valdés-Badilla
- Department of Physical Activity Sciences, Faculty of Education Sciences, Universidad Católica del Maule, Talca, 3530000, Chile
- Sports Coach Career, School of Education, Universidad Viña del Mar, Viña del Mar, 2520000, Chile
| | - Tomás García Calvo
- Faculty of Sport Sciences, University of Extremadura, 10003, Cáceres, Spain
| |
Collapse
|
17
|
Helmbrecht H, Lin TJ, Janakiraman S, Decker K, Nance E. Prevalence and practices of immunofluorescent cell image processing: a systematic review. Front Cell Neurosci 2023; 17:1188858. [PMID: 37545881 PMCID: PMC10400723 DOI: 10.3389/fncel.2023.1188858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/06/2023] [Indexed: 08/08/2023] Open
Abstract
Background We performed a systematic review that identified at least 9,000 scientific papers on PubMed that include immunofluorescent images of cells from the central nervous system (CNS). These CNS papers contain tens of thousands of immunofluorescent neural images supporting the findings of over 50,000 associated researchers. While many existing reviews discuss different aspects of immunofluorescent microscopy, such as image acquisition and staining protocols, few papers discuss immunofluorescent imaging from an image-processing perspective. We analyzed the literature to determine the image processing methods that were commonly published alongside the associated CNS cell, microscopy technique, and animal model, and highlight gaps in image processing documentation and reporting in the CNS research field. Methods We completed a comprehensive search of PubMed publications using Medical Subject Headings (MeSH) terms and other general search terms for CNS cells and common fluorescent microscopy techniques. Publications were found on PubMed using a combination of column description terms and row description terms. We manually tagged the comma-separated values file (CSV) metadata of each publication with the following categories: animal or cell model, quantified features, threshold techniques, segmentation techniques, and image processing software. Results Of the almost 9,000 immunofluorescent imaging papers identified in our search, only 856 explicitly include image processing information. Moreover, hundreds of the 856 papers are missing thresholding, segmentation, and morphological feature details necessary for explainable, unbiased, and reproducible results. In our assessment of the literature, we visualized current image processing practices, compiled the image processing options from the top twelve software programs, and designed a road map to enhance image processing. We determined that thresholding and segmentation methods were often left out of publications and underreported or underutilized for quantifying CNS cell research. Discussion Less than 10% of papers with immunofluorescent images include image processing in their methods. A few authors are implementing advanced methods in image analysis to quantify over 40 different CNS cell features, which can provide quantitative insights in CNS cell features that will advance CNS research. However, our review puts forward that image analysis methods will remain limited in rigor and reproducibility without more rigorous and detailed reporting of image processing methods. Conclusion Image processing is a critical part of CNS research that must be improved to increase scientific insight, explainability, reproducibility, and rigor.
Collapse
Affiliation(s)
- Hawley Helmbrecht
- Department of Chemical Engineering, University of Washington, Seattle, WA, United States
| | - Teng-Jui Lin
- Department of Chemical Engineering, University of Washington, Seattle, WA, United States
| | - Sanjana Janakiraman
- Paul G. Allen School of Computer Science & Engineering, Seattle, WA, United States
| | - Kaleb Decker
- Department of Chemical Engineering, University of Washington, Seattle, WA, United States
| | - Elizabeth Nance
- Department of Chemical Engineering, University of Washington, Seattle, WA, United States
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| |
Collapse
|
18
|
López-Cuenca I, Sánchez-Puebla L, Salobrar-García E, Álvarez-Gutierrez M, Elvira-Hurtado L, Barabash A, Ramírez-Toraño F, Fernández-Albarral JA, Matamoros JA, Nebreda A, García-Colomo A, Ramírez AI, Salazar JJ, Gil P, Maestú F, Ramírez JM, de Hoz R. Exploratory Longitudinal Study of Ocular Structural and Visual Functional Changes in Subjects at High Genetic Risk of Developing Alzheimer's Disease. Biomedicines 2023; 11:2024. [PMID: 37509663 PMCID: PMC10377092 DOI: 10.3390/biomedicines11072024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
This study aimed to analyze the evolution of visual changes in cognitively healthy individuals at risk for Alzheimer's disease (AD). Participants with a first-degree family history of AD (FH+) and carrying the Ε4+ allele for the ApoE gene (ApoE ε4+) underwent retinal thickness analysis using optical coherence tomography (OCT) and visual function assessments, including visual acuity (VA), contrast sensitivity (CS), color perception, perception digital tests, and visual field analysis. Structural analysis divided participants into FH+ ApoE ε4+ and FH- ApoE ε4- groups, while functional analysis further categorized them by age (40-60 years and over 60 years). Over the 27-month follow-up, the FH+ ApoE ε4+ group exhibited thickness changes in all inner retinal layers. Comparing this group to the FH- ApoE ε4- group at 27 months revealed progressing changes in the inner nuclear layer. In the FH+ ApoE ε4+ 40-60 years group, no progression of visual function changes was observed, but an increase in VA and CS was maintained at 3 and 12 cycles per degree, respectively, compared to the group without AD risk at 27 months. In conclusion, cognitively healthy individuals at risk for AD demonstrated progressive retinal structural changes over the 27-month follow-up, while functional changes remained stable.
Collapse
Affiliation(s)
- Inés López-Cuenca
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (I.L.-C.); (L.S.-P.); (E.S.-G.); (M.Á.-G.); (L.E.-H.); (J.A.F.-A.); (J.A.M.); (A.I.R.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (A.B.); (P.G.); (F.M.)
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28037 Madrid, Spain
| | - Lidia Sánchez-Puebla
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (I.L.-C.); (L.S.-P.); (E.S.-G.); (M.Á.-G.); (L.E.-H.); (J.A.F.-A.); (J.A.M.); (A.I.R.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (A.B.); (P.G.); (F.M.)
| | - Elena Salobrar-García
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (I.L.-C.); (L.S.-P.); (E.S.-G.); (M.Á.-G.); (L.E.-H.); (J.A.F.-A.); (J.A.M.); (A.I.R.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (A.B.); (P.G.); (F.M.)
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28037 Madrid, Spain
| | - María Álvarez-Gutierrez
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (I.L.-C.); (L.S.-P.); (E.S.-G.); (M.Á.-G.); (L.E.-H.); (J.A.F.-A.); (J.A.M.); (A.I.R.); (J.J.S.)
| | - Lorena Elvira-Hurtado
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (I.L.-C.); (L.S.-P.); (E.S.-G.); (M.Á.-G.); (L.E.-H.); (J.A.F.-A.); (J.A.M.); (A.I.R.); (J.J.S.)
| | - Ana Barabash
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (A.B.); (P.G.); (F.M.)
- Endocrinology and Nutrition Department, Hospital Clínico Universitario San Carlos, 28040 Madrid, Spain
- Centre for Biomedical Research Network on Diabetes and Associated Metabolic Diseases (CIBERMED), 28029 Madrid, Spain
- Department of Medicine II, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Federico Ramírez-Toraño
- Center for Cognitive and Computational Neuroscience Laboratory of Cognitive and Computational Neurscience, Complutense University of Madrid, 28223 Pozuelo de Alarcón, Spain; (F.R.-T.); (A.N.); (A.G.-C.)
- Department of Experimental Psychology, Cognitive Psychology and Speech & Language Therapy, Complutense University of Madrid, 28223 Pozuelo de Alarcón, Spain
| | - José A. Fernández-Albarral
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (I.L.-C.); (L.S.-P.); (E.S.-G.); (M.Á.-G.); (L.E.-H.); (J.A.F.-A.); (J.A.M.); (A.I.R.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (A.B.); (P.G.); (F.M.)
| | - José A. Matamoros
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (I.L.-C.); (L.S.-P.); (E.S.-G.); (M.Á.-G.); (L.E.-H.); (J.A.F.-A.); (J.A.M.); (A.I.R.); (J.J.S.)
| | - Alberto Nebreda
- Center for Cognitive and Computational Neuroscience Laboratory of Cognitive and Computational Neurscience, Complutense University of Madrid, 28223 Pozuelo de Alarcón, Spain; (F.R.-T.); (A.N.); (A.G.-C.)
- Department of Experimental Psychology, Cognitive Psychology and Speech & Language Therapy, Complutense University of Madrid, 28223 Pozuelo de Alarcón, Spain
| | - Alejandra García-Colomo
- Center for Cognitive and Computational Neuroscience Laboratory of Cognitive and Computational Neurscience, Complutense University of Madrid, 28223 Pozuelo de Alarcón, Spain; (F.R.-T.); (A.N.); (A.G.-C.)
- Department of Experimental Psychology, Cognitive Psychology and Speech & Language Therapy, Complutense University of Madrid, 28223 Pozuelo de Alarcón, Spain
| | - Ana I. Ramírez
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (I.L.-C.); (L.S.-P.); (E.S.-G.); (M.Á.-G.); (L.E.-H.); (J.A.F.-A.); (J.A.M.); (A.I.R.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (A.B.); (P.G.); (F.M.)
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28037 Madrid, Spain
| | - Juan J. Salazar
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (I.L.-C.); (L.S.-P.); (E.S.-G.); (M.Á.-G.); (L.E.-H.); (J.A.F.-A.); (J.A.M.); (A.I.R.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (A.B.); (P.G.); (F.M.)
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28037 Madrid, Spain
| | - Pedro Gil
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (A.B.); (P.G.); (F.M.)
- Memory Unit, Geriatrics Service, Hospital Clínico San Carlos, 28040 Madrid, Spain
- Department of Medicine, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Fernando Maestú
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (A.B.); (P.G.); (F.M.)
- Center for Cognitive and Computational Neuroscience Laboratory of Cognitive and Computational Neurscience, Complutense University of Madrid, 28223 Pozuelo de Alarcón, Spain; (F.R.-T.); (A.N.); (A.G.-C.)
- Department of Experimental Psychology, Cognitive Psychology and Speech & Language Therapy, Complutense University of Madrid, 28223 Pozuelo de Alarcón, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, 28029 Madrid, Spain
| | - José M. Ramírez
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (I.L.-C.); (L.S.-P.); (E.S.-G.); (M.Á.-G.); (L.E.-H.); (J.A.F.-A.); (J.A.M.); (A.I.R.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (A.B.); (P.G.); (F.M.)
- Department of Immunology, Ophthalmology and ENT, Faculty of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Rosa de Hoz
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (I.L.-C.); (L.S.-P.); (E.S.-G.); (M.Á.-G.); (L.E.-H.); (J.A.F.-A.); (J.A.M.); (A.I.R.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (A.B.); (P.G.); (F.M.)
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28037 Madrid, Spain
| |
Collapse
|
19
|
Eto T, Higuchi S. Review on age-related differences in non-visual effects of light: melatonin suppression, circadian phase shift and pupillary light reflex in children to older adults. J Physiol Anthropol 2023; 42:11. [PMID: 37355647 DOI: 10.1186/s40101-023-00328-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/15/2023] [Indexed: 06/26/2023] Open
Abstract
Physiological effects of light exposure in humans are diverse. Among them, the circadian rhythm phase shift effect in order to maintain a 24-h cycle of the biological clock is referred to as non-visual effects of light collectively with melatonin suppression and pupillary light reflex. The non-visual effects of light may differ depending on age, and clarifying age-related differences in the non-visual effects of light is important for providing appropriate light environments for people of different ages. Therefore, in various research fields, including physiological anthropology, many studies on the effects of age on non-visual functions have been carried out in older people, children and adolescents by comparing the effects with young adults. However, whether the non-visual effects of light vary depending on age and, if so, what factors contribute to the differences have remained unclear. In this review, results of past and recent studies on age-related differences in the non-visual effects of light are presented and discussed in order to provide clues for answering the question of whether non-visual effects of light actually vary depending on age. Some studies, especially studies focusing on older people, have shown age-related differences in non-visual functions including differences in melatonin suppression, circadian phase shift and pupillary light reflex, while other studies have shown no differences. Studies showing age-related differences in the non-visual effects of light have suspected senile constriction and crystalline lens opacity as factors contributing to the differences, while studies showing no age-related differences have suspected the presence of a compensatory mechanism. Some studies in children and adolescents have shown that children's non-visual functions may be highly sensitive to light, but the studies comparing with other age groups seem to have been limited. In order to study age-related differences in non-visual effects in detail, comparative studies should be conducted using subjects having a wide range of ages and with as much control as possible for intensity, wavelength component, duration, circadian timing, illumination method of light exposure, and other factors (mydriasis or non-mydriasis, cataracts or not in the older adults, etc.).
Collapse
Affiliation(s)
- Taisuke Eto
- Research Fellow of the Japan Society for the Promotion of Science, Kodaira, Japan
- Department of Sleep-Wake Disorders, National Center of Neurology and Psychiatry, National Institute of Mental Health, Kodaira, Japan
| | - Shigekazu Higuchi
- Department of Human Life Design and Science, Faculty of Design, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
20
|
Zielinska-Dabkowska KM, Schernhammer ES, Hanifin JP, Brainard GC. Reducing nighttime light exposure in the urban environment to benefit human health and society. Science 2023; 380:1130-1135. [PMID: 37319219 DOI: 10.1126/science.adg5277] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023]
Abstract
Nocturnal light pollution can have profound effects on humans and other organisms. Recent research indicates that nighttime outdoor lighting is increasing rapidly. Evidence from controlled laboratory studies demonstrates that nocturnal light exposure can strain the visual system, disrupt circadian physiology, suppress melatonin secretion, and impair sleep. There is a growing body of work pointing to adverse effects of outdoor lighting on human health, including the risk of chronic diseases, but this knowledge is in a more nascent stage. In this Review, we synthesize recent research on the context-specific factors and physiology relevant to nocturnal light exposure in relation to human health and society, identify critical areas for future research, and highlight recent policy steps and recommendations for mitigating light pollution in the urban environment.
Collapse
Affiliation(s)
- K M Zielinska-Dabkowska
- GUT LightLab Department of Architecture, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - E S Schernhammer
- Department of Epidemiology, Center for Public Health, Medical University of Vienna, Vienna, 1090, Austria
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - J P Hanifin
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - G C Brainard
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
21
|
La Morgia C, Mitolo M, Romagnoli M, Stanzani Maserati M, Evangelisti S, De Matteis M, Capellari S, Bianchini C, Testa C, Vandewalle G, Santoro A, Carbonelli M, D'Agati P, Filardi M, Avanzini P, Barboni P, Zenesini C, Baccari F, Liguori R, Tonon C, Lodi R, Carelli V. Multimodal investigation of melanopsin retinal ganglion cells in Alzheimer's disease. Ann Clin Transl Neurol 2023; 10:918-932. [PMID: 37088544 PMCID: PMC10270274 DOI: 10.1002/acn3.51773] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 04/25/2023] Open
Abstract
OBJECTIVE In Alzheimer's disease (AD), the presence of circadian dysfunction is well-known and may occur early in the disease course. The melanopsin retinal ganglion cell (mRGC) system may play a relevant role in contributing to circadian dysfunction. In this study, we aimed at evaluating, through a multimodal approach, the mRGC system in AD at an early stage of disease. METHODS We included 29 mild-moderate AD (70.9 ± 11 years) and 26 (70.5 ± 8 years) control subjects. We performed an extensive neurophtalmological evaluation including optical coherence tomography with ganglion cell layer segmentation, actigraphic evaluation of the rest-activity rhythm, chromatic pupillometry analyzed with a new data-fitting approach, and brain functional MRI combined with light stimuli assessing the mRGC system. RESULTS We demonstrated a significant thinning of the infero-temporal sector of the ganglion cell layer in AD compared to controls. Moreover, we documented by actigraphy the presence of a circadian-impaired AD subgroup. Overall, circadian measurements worsened by age. Chromatic pupillometry evaluation highlighted the presence of a pupil-light response reduction in the rod condition pointing to mRGC dendropathy. Finally, brain fMRI showed a reduced occipital cortex activation with blue light particularly for the sustained responses. INTERPRETATION Overall, the results of this multimodal innovative approach clearly document a dysfunctional mRGC system at early stages of disease as a relevant contributing factor for circadian impairment in AD providing also support to the use of light therapy in AD.
Collapse
Affiliation(s)
- Chiara La Morgia
- IRCCS Istituto delle Scienze Neurologiche di BolognaUOC Clinica NeurologicaBolognaItaly
- Dipartimento di Scienze Biomediche e NeuromotorieUniversità di BolognaBolognaItaly
- IRCCS Istituto delle Scienze Neurologiche di BolognaProgramma di NeurogeneticaBolognaItaly
| | - Micaela Mitolo
- IRCCS Istituto delle Scienze Neurologiche di BolognaProgramma Neuroimmagini Funzionali e MolecolariBolognaItaly
- Dipartimento di Medicina e ChirurgiaUniversità di ParmaParmaItaly
| | - Martina Romagnoli
- IRCCS Istituto delle Scienze Neurologiche di BolognaProgramma di NeurogeneticaBolognaItaly
| | | | - Stefania Evangelisti
- Dipartimento di Scienze Biomediche e NeuromotorieUniversità di BolognaBolognaItaly
| | - Maddalena De Matteis
- IRCCS Istituto delle Scienze Neurologiche di BolognaUOC Clinica NeurologicaBolognaItaly
| | - Sabina Capellari
- IRCCS Istituto delle Scienze Neurologiche di BolognaUOC Clinica NeurologicaBolognaItaly
- Dipartimento di Scienze Biomediche e NeuromotorieUniversità di BolognaBolognaItaly
| | - Claudio Bianchini
- Dipartimento di Scienze Biomediche e NeuromotorieUniversità di BolognaBolognaItaly
| | - Claudia Testa
- IRCCS Istituto delle Scienze Neurologiche di BolognaProgramma Neuroimmagini Funzionali e MolecolariBolognaItaly
- Dipartimento di Fisica ed AstronomiaUniversità di BolognaBolognaItaly
| | - Gilles Vandewalle
- Sleep and Chronobiology Lab, GIGA‐Cyclotron Research Centre‐In Vivo ImagingUniversity of LiègeLiègeBelgium
| | - Aurelia Santoro
- Dipartimento di Medicina Specialistica Diagnostica e SperimentaleUniversità di BolognaBolognaItaly
- Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate)Università di BolognaBolognaItaly
| | - Michele Carbonelli
- Dipartimento di Scienze Biomediche e NeuromotorieUniversità di BolognaBolognaItaly
| | - Pietro D'Agati
- IRCCS Istituto delle Scienze Neurologiche di BolognaUOC Clinica NeurologicaBolognaItaly
| | - Marco Filardi
- Dipartimento di Medicina di Base, Neuroscienze e degli Organi di SensoUniversità di Bari Aldo MoroBariItaly
- Centro per le Malattie Neurodegenerative e l'Invecchiamento CerebraleUniversità di Bari Aldo Moro‐ A.O. Pia Fondazione Cardinale G. PanicoTricaseItaly
| | | | | | - Corrado Zenesini
- IRCCS Istituto delle Scienze Neurologiche di BolognaUnità di Epidemiologia e StatisticaBolognaItaly
| | - Flavia Baccari
- IRCCS Istituto delle Scienze Neurologiche di BolognaUnità di Epidemiologia e StatisticaBolognaItaly
| | - Rocco Liguori
- IRCCS Istituto delle Scienze Neurologiche di BolognaUOC Clinica NeurologicaBolognaItaly
- Dipartimento di Scienze Biomediche e NeuromotorieUniversità di BolognaBolognaItaly
| | - Caterina Tonon
- Dipartimento di Scienze Biomediche e NeuromotorieUniversità di BolognaBolognaItaly
- IRCCS Istituto delle Scienze Neurologiche di BolognaProgramma Neuroimmagini Funzionali e MolecolariBolognaItaly
| | - Raffaele Lodi
- Dipartimento di Scienze Biomediche e NeuromotorieUniversità di BolognaBolognaItaly
- IRCCS Istituto delle Scienze Neurologiche di BolognaProgramma Neuroimmagini Funzionali e MolecolariBolognaItaly
| | - Valerio Carelli
- Dipartimento di Scienze Biomediche e NeuromotorieUniversità di BolognaBolognaItaly
- IRCCS Istituto delle Scienze Neurologiche di BolognaProgramma di NeurogeneticaBolognaItaly
| |
Collapse
|
22
|
Wu XQ, Tan B, Du Y, Yang L, Hu TT, Ding YL, Qiu XY, Moutal A, Khanna R, Yu J, Chen Z. Glutamatergic and GABAergic neurons in the vLGN mediate the nociceptive effects of green and red light on neuropathic pain. Neurobiol Dis 2023; 183:106164. [PMID: 37217103 DOI: 10.1016/j.nbd.2023.106164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/24/2023] Open
Abstract
Phototherapy is an emerging non-pharmacological treatment for depression, circadian rhythm disruptions, and neurodegeneration, as well as pain conditions including migraine and fibromyalgia. However, the mechanism of phototherapy-induced antinociception is not well understood. Here, using fiber photometry recordings of population-level neural activity combined with chemogenetics, we found that phototherapy elicits antinociception via regulation of the ventral lateral geniculate body (vLGN) located in the visual system. Specifically, both green and red lights caused an increase of c-fos in vLGN, with red light increased more. In vLGN, green light causes a large increase in glutamatergic neurons, whereas red light causes a large increase in GABAergic neurons. Green light preconditioning increases the sensitivity of glutamatergic neurons to noxious stimuli in vLGN of PSL mice. Green light produces antinociception by activating glutamatergic neurons in vLGN, and red light promotes nociception by activating GABAergic neurons in vLGN. Together, these results demonstrate that different colors of light exert different pain modulation effects by regulating glutamatergic and GABAergic subpopulations in the vLGN. This may provide potential new therapeutic strategies and new therapeutic targets for the precise clinical treatment of neuropathic pain.
Collapse
Affiliation(s)
- Xue-Qing Wu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Basic Medical Science, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310058, China
| | - Bei Tan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Basic Medical Science, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310058, China
| | - Yu Du
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Basic Medical Science, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310058, China
| | - Lin Yang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Basic Medical Science, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310058, China
| | - Ting-Ting Hu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Basic Medical Science, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310058, China
| | - Yi-La Ding
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Basic Medical Science, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310058, China
| | - Xiao-Yun Qiu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Basic Medical Science, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310058, China
| | - Aubin Moutal
- Department of Pharmacology and Physiology, School of Medicine, St. Louis University, St. Louis, MO, USA
| | - Rajesh Khanna
- Department of Molecular Pathobiology, College of Dentistry, and NYU Pain Research Center, New York University, New York, NY 10010, USA.
| | - Jie Yu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Basic Medical Science, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310058, China.
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Basic Medical Science, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310058, China.
| |
Collapse
|
23
|
Kish KE, Lempka SF, Weiland JD. Modeling extracellular stimulation of retinal ganglion cells: theoretical and practical aspects. J Neural Eng 2023; 20:026011. [PMID: 36848677 PMCID: PMC10010067 DOI: 10.1088/1741-2552/acbf79] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/15/2023] [Accepted: 02/27/2023] [Indexed: 03/01/2023]
Abstract
Objective.Retinal prostheses use electric current to activate inner retinal neurons, providing artificial vision for blind people. Epiretinal stimulation primarily targets retinal ganglion cells (RGCs), which can be modeled with cable equations. Computational models provide a tool to investigate the mechanisms of retinal activation, and improve stimulation paradigms. However, documentation of RGC model structure and parameters is limited, and model implementation can influence model predictions.Approach.We created a functional guide for building a mammalian RGC multi-compartment cable model and applying extracellular stimuli. Next, we investigated how the neuron's three-dimensional shape will influence model predictions. Finally, we tested several strategies to maximize computational efficiency.Main results.We conducted sensitivity analyses to examine how dendrite representation, axon trajectory, and axon diameter influence membrane dynamics and corresponding activation thresholds. We optimized the spatial and temporal discretization of our multi-compartment cable model. We also implemented several simplified threshold prediction theories based on activating function, but these did not match the prediction accuracy achieved by the cable equations.Significance.Through this work, we provide practical guidance for modeling the extracellular stimulation of RGCs to produce reliable and meaningful predictions. Robust computational models lay the groundwork for improving the performance of retinal prostheses.
Collapse
Affiliation(s)
- Kathleen E Kish
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
- BioInterfaces Institute, University of Michigan, Ann Arbor, MI, United States of America
| | - Scott F Lempka
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States of America
- BioInterfaces Institute, University of Michigan, Ann Arbor, MI, United States of America
| | - James D Weiland
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
- Department of Ophthalmology and Visual Science, University of Michigan, Ann Arbor, MI, United States of America
- BioInterfaces Institute, University of Michigan, Ann Arbor, MI, United States of America
| |
Collapse
|
24
|
Khan MAB, BaHammam AS, Amanatullah A, Obaideen K, Arora T, Ali H, Cheikh Ismail L, Abdelrahim DN, Al-Houqani M, Allaham K, Abdalrazeq R, Aloweiwi WS, Mim SS, Mektebi A, Amiri S, Sulaiman SK, Javaid SF, Hawlader MDH, Tsiga-Ahmed FI, Elbarazi I, Manggabarani S, Hunde GA, Chelli S, Sotoudeh M, Faris ME. Examination of sleep in relation to dietary and lifestyle behaviors during Ramadan: A multi-national study using structural equation modeling among 24,500 adults amid COVID-19. Front Nutr 2023; 10:1040355. [PMID: 36969823 PMCID: PMC10030961 DOI: 10.3389/fnut.2023.1040355] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/23/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Of around 2 billion Muslims worldwide, approximately 1.5 billion observe Ramadan fasting (RF) month. Those that observe RF have diverse cultural, ethnic, social, and economic backgrounds and are distributed over a wide geographical area. Sleep is known to be significantly altered during the month of Ramadan, which has a profound impact on human health. Moreover, sleep is closely connected to dietary and lifestyle behaviors. METHODS This cross-sectional study collected data using a structured, self-administered electronic questionnaire that was translated into 13 languages and disseminated to Muslim populations across 27 countries. The questionnaire assessed dietary and lifestyle factors as independent variables, and three sleep parameters (quality, duration, and disturbance) as dependent variables. We performed structural equation modeling (SEM) to examine how dietary and lifestyle factors affected these sleep parameters. RESULTS In total, 24,541 adults were enrolled in this study. SEM analysis revealed that during RF, optimum sleep duration (7-9 h) was significantly associated with sufficient physical activity (PA) and consuming plant-based proteins. In addition, smoking was significantly associated with greater sleep disturbance and lower sleep quality. Participants that consumed vegetables, fruits, dates, and plant-based proteins reported better sleep quality. Infrequent consumption of delivered food and infrequent screen time were also associated with better sleep quality. Conflicting results were found regarding the impact of dining at home versus dining out on the three sleep parameters. CONCLUSION Increasing the intake of fruits, vegetables, and plant-based proteins are important factors that could help improve healthy sleep for those observing RF. In addition, regular PA and avoiding smoking may contribute to improving sleep during RF.
Collapse
Affiliation(s)
- Moien A. B. Khan
- College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ahmed S. BaHammam
- Department of Internal Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Asma Amanatullah
- Knowledge and Research Support Services Department, University of Management and Technology, Lahore, Pakistan
| | - Khaled Obaideen
- Sustainable Energy and Power Systems Research Centre, RISE, University of Sharjah, Sharjah, United Arab Emirates
| | - Teresa Arora
- Department of Psychology, Zayed University, Abu Dhabi, United Arab Emirates
| | - Habiba Ali
- College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Leila Cheikh Ismail
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Dana N. Abdelrahim
- Sharjah Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Mohammed Al-Houqani
- Internal Medicine College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Kholoud Allaham
- Department of Neurology, Rashid Hospital, Dubai Health Authority, Dubai, United Arab Emirates
| | | | | | - Somayea Sultana Mim
- Chattogram International Medical College and Hospital, Chattogram, Bangladesh
| | - Ammar Mektebi
- Faculty of Medicine, Kütahya Health Sciences University, Kütahya, Türkiye
| | - Sohrab Amiri
- Medicine, Quran and Hadith Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sahabi Kabir Sulaiman
- Department of Internal Medicine, Yobe State University Teaching Hospital, Damaturu, Nigeria
| | - Syed Fahad Javaid
- Department of Psychiatry and Behavioral Science, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | | | | | - Iffat Elbarazi
- Institute of Public Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | | | - Gamechu Atomsa Hunde
- Faculty of Health Sciences, School of Nursing, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Sabrina Chelli
- Royal College of Surgeons in Ireland (Bahrain), Al Muharraq, Bahrain
| | - Mitra Sotoudeh
- Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - MoezAlIslam Ezzat Faris
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
25
|
Jakobsen JR, Mackey AL, Koch M, Imhof T, Hannibal J, Kjaer M, Krogsgaard MR. Larger interface area at the human myotendinous junction in type 1 compared with type 2 muscle fibers. Scand J Med Sci Sports 2023; 33:136-145. [PMID: 36226768 PMCID: PMC10091713 DOI: 10.1111/sms.14246] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 08/13/2022] [Accepted: 10/01/2022] [Indexed: 01/11/2023]
Abstract
The myotendinous junction (MTJ) is structurally specialized to transmit force. The highly folded muscle membrane at the MTJ increases the contact area between muscle and tendon and potentially the load tolerance of the MTJ. Muscles with a high content of type II fibers are more often subject to strain injury compared with muscles with type I fibers. It is hypothesized that this is explained by a smaller interface area of MTJ in type II compared with type I muscle fibers. The aim was to investigate by confocal microscopy whether there is difference in the surface area at the MTJ between type I and II muscle fibers. Individual muscle fibers with an intact MTJ were isolated by microscopic dissection in samples from human semitendinosus, and they were labeled with antibodies against collagen XXII (indicating MTJ) and type I myosin (MHCI). Using a spinning disc confocal microscope, the MTJ from each fiber was scanned and subsequently reconstructed to a 3D-model. The interface area between muscle and tendon was calculated in type I and II fibers from these reconstructions. The MTJ was analyzed in 314 muscle fibers. Type I muscle fibers had a 22% larger MTJ interface area compared with type II fibers (p < 0.05), also when the area was normalized to fiber diameter. By the new method, it was possible to analyze the structure of the MTJ from a large number of human muscle fibers. The finding that the interface area between muscle and tendon is higher in type I compared with type II fibers suggests that type II fibers are less resistant to strain and therefore more susceptible to injury.
Collapse
Affiliation(s)
- Jens Rithamer Jakobsen
- Section for Sports Traumatology M51, Department of Orthopaedic Surgery, Copenhagen University Hospital, Bispebjerg and Frederiksberg, Denmark
| | - Abigail Louise Mackey
- Department of Orthopaedic Surgery M, Institute of Sports Medicine, Copenhagen University Hospital, Bispebjerg and Frederiksberg, Denmark.,Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal Biology, and Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Thomas Imhof
- Institute for Dental Research and Oral Musculoskeletal Biology, and Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Jens Hannibal
- Department of Clinical Biochemistry, Copenhagen University Hospital, Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Michael Kjaer
- Department of Orthopaedic Surgery M, Institute of Sports Medicine, Copenhagen University Hospital, Bispebjerg and Frederiksberg, Denmark
| | - Michael Rindom Krogsgaard
- Section for Sports Traumatology M51, Department of Orthopaedic Surgery, Copenhagen University Hospital, Bispebjerg and Frederiksberg, Denmark
| |
Collapse
|
26
|
Raja S, Milosavljevic N, Allen AE, Cameron MA. Burning the candle at both ends: Intraretinal signaling of intrinsically photosensitive retinal ganglion cells. Front Cell Neurosci 2023; 16:1095787. [PMID: 36687522 PMCID: PMC9853061 DOI: 10.3389/fncel.2022.1095787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/13/2022] [Indexed: 01/09/2023] Open
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) are photoreceptors located in the ganglion cell layer. They project to brain regions involved in predominately non-image-forming functions including entrainment of circadian rhythms, control of the pupil light reflex, and modulation of mood and behavior. In addition to possessing intrinsic photosensitivity via the photopigment melanopsin, these cells receive inputs originating in rods and cones. While most research in the last two decades has focused on the downstream influence of ipRGC signaling, recent studies have shown that ipRGCs also act retrogradely within the retina itself as intraretinal signaling neurons. In this article, we review studies examining intraretinal and, in addition, intraocular signaling pathways of ipRGCs. Through these pathways, ipRGCs regulate inner and outer retinal circuitry through both chemical and electrical synapses, modulate the outputs of ganglion cells (both ipRGCs and non-ipRGCs), and influence arrangement of the correct retinal circuitry and vasculature during development. These data suggest that ipRGC function plays a significant role in the processing of image-forming vision at its earliest stage, positioning these photoreceptors to exert a vital role in perceptual vision. This research will have important implications for lighting design to optimize the best chromatic lighting environments for humans, both in adults and potentially even during fetal and postnatal development. Further studies into these unique ipRGC signaling pathways could also lead to a better understanding of the development of ocular dysfunctions such as myopia.
Collapse
Affiliation(s)
- Sushmitha Raja
- School of Medicine, Western Sydney University, Sydney, NSW, Australia
| | - Nina Milosavljevic
- Division of Neuroscience, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Annette E. Allen
- Division of Neuroscience, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Morven A. Cameron
- School of Medicine, Western Sydney University, Sydney, NSW, Australia,*Correspondence: Morven A. Cameron,
| |
Collapse
|
27
|
Dauchy RT, Blask DE. Vivarium Lighting as an Important Extrinsic Factor Influencing Animal-based Research. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2023; 62:3-25. [PMID: 36755210 PMCID: PMC9936857 DOI: 10.30802/aalas-jaalas-23-000003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 01/22/2023]
Abstract
Light is an extrinsic factor that exerts widespread influence on the regulation of circadian, physiologic, hormonal, metabolic, and behavioral systems of all animals, including those used in research. These wide-ranging biologic effects of light are mediated by distinct photoreceptors, the melanopsin-containing intrinsically photosensitive retinal ganglion cells of the nonvisual system, which interact with the rods and cones of the conventional visual system. Here, we review the nature of light and circadian rhythms, current industry practices and standards, and our present understanding of the neurophysiology of the visual and nonvisual systems. We also consider the implications of this extrinsic factor for vivarium measurement, production, and technological application of light, and provide simple recommendations on artificial lighting for use by regulatory authorities, lighting manufacturers, designers, engineers, researchers, and research animal care staff that ensure best practices for optimizing animal health and wellbeing and, ultimately, improving scientific outcomes.
Collapse
Key Words
- blad, blue-enriched led light at daytime
- clock, circadian locomotor output kaput
- cct, correlated color temperature
- cwf, cool white fluorescent
- iprgc, intrinsically photosensitive retinal ganglion cell
- hiomt, hydroxyindole-o-methyltransferase
- lan, light at night
- led, light-emitting diode
- plr, pupillary light reflex
- scn, suprachiasmatic nuclei
- spd, spectral power distribution
Collapse
Affiliation(s)
- Robert T Dauchy
- Department of Structural and Cellular Biology, Laboratory of Chrono-Neuroendocrine Oncology, Tulane University School of Medicine, New Orleans, Louisiana
| | - David E Blask
- Department of Structural and Cellular Biology, Laboratory of Chrono-Neuroendocrine Oncology, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
28
|
Arévalo-López C, Gleitze S, Madariaga S, Plaza-Rosales I. Pupillary response to chromatic light stimuli as a possible biomarker at the early stage of glaucoma: a review. Int Ophthalmol 2023; 43:343-356. [PMID: 35781599 DOI: 10.1007/s10792-022-02381-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 06/14/2022] [Indexed: 02/07/2023]
Abstract
Glaucoma is a multifactorial neurodegenerative disease of the optic nerve currently considered a severe health problem because of its high prevalence, being the primary cause of irreversible blindness worldwide. The most common type corresponds to Primary Open-Angle Glaucoma. Glaucoma produces, among other alterations, a progressive loss of retinal ganglion cells (RGC) and its axons which are the key contributors to generate action potentials that reach the visual cortex to create the visual image. Glaucoma is characterized by Visual Field loss whose main feature is to be painless and therefore makes early detection difficult, causing a late diagnosis and a delayed treatment indication that slows down its progression. Intrinsically photosensitive retinal ganglion cells, which represent a subgroup of RGCs are characterized by their response to short-wave light stimulation close to 480 nm, their non-visual function, and their role in the generation of the pupillary reflex. Currently, the sensitivity of clinical examinations correlates to RGC damage; however, the need for an early damage biomarker is still relevant. It is an urgent task to create new diagnostic approaches to detect an early stage of glaucoma in a prompt, quick, and economical manner. We summarize the pathology of glaucoma and its current clinical detection methods, and we suggest evaluating the pupillary response to chromatic light as a potential biomarker of disease, due to its diagnostic benefit and its cost-effectiveness in clinical practice in order to reduce irreversible damage caused by glaucoma.
Collapse
Affiliation(s)
- Carla Arévalo-López
- Department of Medical Technology, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Silvia Gleitze
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Samuel Madariaga
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Laboratorio de Neurosistemas, Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Ecological Cognitive Neuroscience Group, Santiago, Chile
| | - Iván Plaza-Rosales
- Department of Medical Technology, Faculty of Medicine, Universidad de Chile, Santiago, Chile. .,Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile. .,Laboratorio de Neurosistemas, Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile. .,Ecological Cognitive Neuroscience Group, Santiago, Chile.
| |
Collapse
|
29
|
Rozhkova G, Belokopytov A, Gracheva M, Ershov E, Nikolaev P. A simple method for comparing peripheral and central color vision by means of two smartphones. Behav Res Methods 2023; 55:38-57. [PMID: 35260965 DOI: 10.3758/s13428-021-01783-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2021] [Indexed: 11/08/2022]
Abstract
Information on peripheral color perception is far from sufficient, since it has predominantly been obtained using small stimuli, limited ranges of eccentricities, and sophisticated experimental conditions. Our goal was to consider the possibility of facilitating technical realization of the classical method of asymmetric color matching (ACM) developed by Moreland and Cruz (1959) for assessing appearance of color stimuli in the peripheral visual field (VF). We adopted the ACM method by employing two smartphones to implement matching procedure at various eccentricities. Although smartphones were successfully employed in vision studies, we are aware that some photometric parameters of smartphone displays are not sufficiently precise to ensure accurate color matching in foveal vision; moreover, certain technical characteristics of commercially available devices are variable. In the present study we provided evidence that, despite these shortages, smartphones can be applied for general and wide investigations of the peripheral vision. In our experiments, the smartphones were mounted on a mechanical perimeter to simultaneously present colored stimuli foveally and peripherally. Trying to reduce essential discomfort and fatigue experienced by most observers in peripheral vision studies, we did not apply bite bars, pupil dilatation, and Maxwellian view. The ACM measurements were performed without prior training of observers and in a wide range of eccentricities, varying between 0 and 95°. The results were presented in the HSV (hue, saturation, value) color space coordinates as a function of eccentricity and stimulus luminance. We demonstrated that our easy-to-conduct method provided a convenient means to investigate color appearance in the peripheral vision and to assess inter-individual differences.
Collapse
Affiliation(s)
- Galina Rozhkova
- Institute for Information Transmission Problems, RAS, Bolshoy Karetny 19, 127051, Moscow, Russia.
| | - Alexander Belokopytov
- Institute for Information Transmission Problems, RAS, Bolshoy Karetny 19, 127051, Moscow, Russia
| | - Maria Gracheva
- Institute for Information Transmission Problems, RAS, Bolshoy Karetny 19, 127051, Moscow, Russia
| | - Egor Ershov
- Institute for Information Transmission Problems, RAS, Bolshoy Karetny 19, 127051, Moscow, Russia
| | - Petr Nikolaev
- Institute for Information Transmission Problems, RAS, Bolshoy Karetny 19, 127051, Moscow, Russia
| |
Collapse
|
30
|
Procyk CA, Rodgers J, Zindy E, Lucas RJ, Milosavljevic N. Quantitative characterisation of ipRGCs in retinal degeneration using a computation platform for extracting and reconstructing single neurons in 3D from a multi-colour labeled population. Front Cell Neurosci 2022; 16:1009321. [PMID: 36385954 PMCID: PMC9664085 DOI: 10.3389/fncel.2022.1009321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/30/2022] [Indexed: 12/24/2022] Open
Abstract
Light has a profound impact on mammalian physiology and behavior. Intrinsically photosensitive retinal ganglion cells (ipRGCs) express the photopigment melanopsin, rendering them sensitive to light, and are involved in both image-forming vision and non-image forming responses to light such as circadian photo-entrainment and the pupillary light reflex. Following outer photoreceptor degeneration, the death of rod and cone photoreceptors results in global re-modeling of the remnant neural retina. Although ipRGCs can continue signaling light information to the brain even in advanced stages of degeneration, it is unknown if all six morphologically distinct subtypes survive, or how their dendritic architecture may be affected. To answer these questions, we generated a computational platform-BRIAN (Brainbow Analysis of individual Neurons) to analyze Brainbow labeled tissues by allowing objective identification of voxels clusters in Principal Component Space, and their subsequent extraction to produce 3D images of single neurons suitable for analysis with existing tracing technology. We show that BRIAN can efficiently recreate single neurons or individual axonal projections from densely labeled tissue with sufficient anatomical resolution for subtype quantitative classification. We apply this tool to generate quantitative morphological information about ipRGCs in the degenerate retina including soma size, dendritic field size, dendritic complexity, and stratification. Using this information, we were able to identify cells whose characteristics match those reported for all six defined subtypes of ipRGC in the wildtype mouse retina (M1-M6), including the rare and complex M3 and M6 subtypes. This indicates that ipRGCs survive outer retinal degeneration with broadly normal morphology. We additionally describe one cell in the degenerate retina which matches the description of the Gigantic M1 cell in Humans which has not been previously identified in rodent.
Collapse
Affiliation(s)
- Christopher A. Procyk
- Ocular Cell and Gene Therapy Group, Centre for Gene Therapy and Regenerative Medicine, King’s College London, Guy’s Hospital, London, United Kingdom
| | - Jessica Rodgers
- Faculty of Biology Medicine and Health, Centre for Biological Timing and Division of Neuroscience, University of Manchester, Manchester, United Kingdom
| | - Egor Zindy
- Centre for Microscopy and Molecular Imaging, Université Libre de Bruxelles, Brussels, Belgium
| | - Robert J. Lucas
- Faculty of Biology Medicine and Health, Centre for Biological Timing and Division of Neuroscience, University of Manchester, Manchester, United Kingdom
| | - Nina Milosavljevic
- Faculty of Biology Medicine and Health, Centre for Biological Timing and Division of Neuroscience, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
31
|
Lund AM, Hannibal J. Localization of the neuropeptides pituitary adenylate cyclase-activating polypeptide, vasoactive intestinal peptide, and their receptors in the basal brain blood vessels and trigeminal ganglion of the mouse CNS; an immunohistochemical study. Front Neuroanat 2022; 16:991403. [PMID: 36387999 PMCID: PMC9643199 DOI: 10.3389/fnana.2022.991403] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/04/2022] [Indexed: 11/26/2022] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) are structurally related neuropeptides that are widely expressed in vertebrate tissues. The two neuropeptides are pleiotropic and have been associated with migraine pathology. Three PACAP and VIP receptors have been described: PAC1, VPAC1, and VPAC2. The localization of these receptors in relation to VIP and PACAP in migraine-relevant structures has not previously been shown in mice. In the present study, we used fluorescence immunohistochemistry, well-characterized antibodies, confocal microscopy, and three-dimensional reconstruction to visualize the distribution of PACAP, VIP, and their receptors in the basal blood vessels (circle of Willis), trigeminal ganglion, and brain stem spinal trigeminal nucleus (SP5) of the mouse CNS. We demonstrated a dense network of circularly oriented VIP fibers on the basal blood vessels. PACAP nerve fibers were fewer in numbers compared to VIP fibers and ran along the long axis of the blood vessels, colocalized with calcitonin gene-related peptide (CGRP). The nerve fibers expressing CGRP are believed to be sensorial, with neuronal somas localized in the trigeminal ganglion and PACAP was found in a subpopulation of these CGRP-neurons. Immunostaining of the receptors revealed that only the VPAC1 receptor was present in the basal blood vessels, localized on the surface cell membrane of vascular smooth muscle cells and innervated by VIP fibers. No staining was seen for the PAC1, VPAC1, or VPAC2 receptor in the trigeminal ganglion. However, distinct PAC1 immunoreactivity was found in neurons innervated by PACAP nerve terminals located in the spinal trigeminal nucleus. These findings indicate that the effect of VIP is mediated via the VPAC1 receptor in the basal arteries. The role of PACAP in cerebral arteries is less clear. The localization of PACAP in a subpopulation of CGRP-expressing neurons in the trigeminal ganglion points toward a primary sensory function although a dendritic release cannot be excluded which could stimulate the VPAC1 receptor or the PAC1 and VPAC2 receptors on immune cells in the meninges, initiating neurogenic inflammation relevant for migraine pathology.
Collapse
Affiliation(s)
- Anne Marie Lund
- Faculty of Health and Medical Sciences, Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Faculty of Health Sciences, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jens Hannibal
- Faculty of Health and Medical Sciences, Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Faculty of Health Sciences, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Jens Hannibal,
| |
Collapse
|
32
|
Gao J, Provencio I, Liu X. Intrinsically photosensitive retinal ganglion cells in glaucoma. Front Cell Neurosci 2022; 16:992747. [PMID: 36212698 PMCID: PMC9537624 DOI: 10.3389/fncel.2022.992747] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022] Open
Abstract
Glaucoma is a group of eye diseases afflicting more than 70 million people worldwide. It is characterized by damage to retinal ganglion cells (RGCs) that ultimately leads to the death of the cells and vision loss. The diversity of RGC types has been appreciated for decades, and studies, including ours, have shown that RGCs degenerate and die in a type-specific manner in rodent models of glaucoma. The type-specific loss of RGCs results in differential damage to visual and non-visual functions. One type of RGC, the intrinsically photosensitive retinal ganglion cell (ipRGC), expressing the photopigment melanopsin, serves a broad array of non-visual responses to light. Since its discovery, six subtypes of ipRGC have been described, each contributing to various image-forming and non-image-forming functions such as circadian photoentrainment, the pupillary light reflex, the photic control of mood and sleep, and visual contrast sensitivity. We recently demonstrated a link between type-specific ipRGC survival and behavioral deficits in a mouse model of chronic ocular hypertension. This review focuses on the type-specific ipRGC degeneration and associated behavioral changes in animal models and glaucoma patients. A better understanding of how glaucomatous insult impacts the ipRGC-based circuits will have broad impacts on improving the treatment of glaucoma-associated non-visual disorders.
Collapse
Affiliation(s)
- Jingyi Gao
- Department of Biology, University of Virginia, Charlottesville, VA, United States
| | - Ignacio Provencio
- Department of Biology, University of Virginia, Charlottesville, VA, United States
- Department of Ophthalmology, University of Virginia, Charlottesville, VA, United States
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA, United States
| | - Xiaorong Liu
- Department of Biology, University of Virginia, Charlottesville, VA, United States
- Department of Ophthalmology, University of Virginia, Charlottesville, VA, United States
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA, United States
- Department of Psychology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
33
|
Bordt AS, Patterson SS, Kuchenbecker JA, Mazzaferri MA, Yearick JN, Yang ER, Ogilvie JM, Neitz J, Marshak DW. Synaptic inputs to displaced intrinsically-photosensitive ganglion cells in macaque retina. Sci Rep 2022; 12:15160. [PMID: 36071126 PMCID: PMC9452553 DOI: 10.1038/s41598-022-19324-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 08/26/2022] [Indexed: 11/08/2022] Open
Abstract
Ganglion cells are the projection neurons of the retina. Intrinsically photosensitive retinal ganglion cells (ipRGCs) express the photopigment melanopsin and also receive input from rods and cones via bipolar cells and amacrine cells. In primates, multiple types of ipRGCs have been identified. The ipRGCs with somas in the ganglion cell layer have been studied extensively, but less is known about those with somas in the inner nuclear layer, the "displaced" cells. To investigate their synaptic inputs, three sets of horizontal, ultrathin sections through central macaque retina were collected using serial block-face scanning electron microscopy. One displaced ipRGC received nearly all of its excitatory inputs from ON bipolar cells and would therefore be expected to have ON responses to light. In each of the three volumes, there was also at least one cell that had a large soma in the inner nuclear layer, varicose axons and dendrites with a large diameter that formed large, extremely sparse arbor in the outermost stratum of the inner plexiform layer. They were identified as the displaced M1 type of ipRGCs based on this morphology and on the high density of granules in their somas. They received extensive input from amacrine cells, including the dopaminergic type. The vast majority of their excitatory inputs were from OFF bipolar cells, including two subtypes with extensive input from the primary rod pathway. They would be expected to have OFF responses to light stimuli below the threshold for melanopsin or soon after the offset of a light stimulus.
Collapse
Affiliation(s)
- Andrea S Bordt
- Department of Neurobiology and Anatomy, McGovern Medical School, Houston, TX, USA
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - Sara S Patterson
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
- Center for Visual Science, University of Rochester, Rochester, NY, USA
| | | | | | - Joel N Yearick
- Department of BioSciences, Rice University, Houston, TX, USA
| | - Emma R Yang
- Department of BioSciences, Rice University, Houston, TX, USA
| | | | - Jay Neitz
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - David W Marshak
- Department of Neurobiology and Anatomy, McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
34
|
Polese D, Riccio ML, Fagioli M, Mazzetta A, Fagioli F, Parisi P, Fagioli M. The Newborn's Reaction to Light as the Determinant of the Brain's Activation at Human Birth. Front Integr Neurosci 2022; 16:933426. [PMID: 36118115 PMCID: PMC9478760 DOI: 10.3389/fnint.2022.933426] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Developmental neuroscience research has not yet fully unveiled the dynamics involved in human birth. The trigger of the first breath, often assumed to be the marker of human life, has not been characterized nor has the process entailing brain modification and activation at birth been clarified yet. To date, few researchers only have investigated the impact of the extrauterine environment, with its strong stimuli, on birth. This ‘hypothesis and theory' article assumes the role of a specific stimulus activating the central nervous system (CNS) at human birth. This stimulus must have specific features though, such as novelty, efficacy, ubiquity, and immediacy. We propose light as a robust candidate for the CNS activation via the retina. Available data on fetal and neonatal neurodevelopment, in particular with reference to retinal light-responsive pathways, will be examined together with the GABA functional switch, and the subplate disappearance, which, at an experimental level, differentiate the neonatal brain from the fetal brain. In this study, we assume how a very rapid activation of retinal photoreceptors at birth initiates a sudden brain shift from the prenatal pattern of functions to the neonatal setup. Our assumption implies the presence of a photoreceptor capable of capturing and transducing light/photon stimulus, transforming it into an effective signal for the activation of new brain functions at birth. Opsin photoreception or, more specifically, melanopsin-dependent photoreception, which is provided by intrinsically photosensitive retinal ganglion cells (ipRGCs), is considered as a valid candidate. Although what is assumed herein cannot be verified in humans based on knowledge available so far, proposing an important and novel function can trigger a broad range of diversified research in different domains, from neurophysiology to neurology and psychiatry.
Collapse
Affiliation(s)
- Daniela Polese
- PhD Program on Sensorineural Plasticity, Department of Neuroscience, Mental Health and Sensory Organs NESMOS, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
- *Correspondence: Daniela Polese
| | | | - Marcella Fagioli
- Department of Mental Health, National Health System ASL Rome 1, Rome, Italy
| | - Alessandro Mazzetta
- PhD Program on Neuroscience, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Francesca Fagioli
- Department of Mental Health, National Health System ASL Rome 1, Rome, Italy
| | - Pasquale Parisi
- Chair of Pediatrics, Department of Neuroscience, Mental Health and Sensory Organs NESMOS, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
35
|
Tapia ML, Nascimento-Dos-Santos G, Park KK. Subtype-specific survival and regeneration of retinal ganglion cells in response to injury. Front Cell Dev Biol 2022; 10:956279. [PMID: 36035999 PMCID: PMC9411869 DOI: 10.3389/fcell.2022.956279] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/28/2022] [Indexed: 11/19/2022] Open
Abstract
Retinal ganglion cells (RGCs) are a heterogeneous population of neurons that function synchronously to convey visual information through the optic nerve to retinorecipient target areas in the brain. Injury or disease to the optic nerve results in RGC degeneration and loss of visual function, as few RGCs survive, and even fewer can be provoked to regenerate their axons. Despite causative insults being broadly shared, regeneration studies demonstrate that RGC types exhibit differential resilience to injury and undergo selective survival and regeneration of their axons. While most early studies have identified these RGC types based their morphological and physiological characteristics, recent advances in transgenic and gene sequencing technologies have further enabled type identification based on unique molecular features. In this review, we provide an overview of the well characterized RGC types and identify those shown to preferentially survive and regenerate in various regeneration models. Furthermore, we discuss cellular characteristics of both the resilient and susceptible RGC types including the combinatorial expression of different molecular markers that identify these specific populations. Lastly, we discuss potential molecular mechanisms and genes found to be selectively expressed by specific types that may contribute to their reparative capacity. Together, we describe the studies that lay the important groundwork for identifying factors that promote neural regeneration and help advance the development of targeted therapy for the treatment of RGC degeneration as well as neurodegenerative diseases in general.
Collapse
Affiliation(s)
- Mary L Tapia
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Gabriel Nascimento-Dos-Santos
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Kevin K Park
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
36
|
Uprety S, Adhikari P, Feigl B, Zele AJ. Melanopsin photoreception differentially modulates rod-mediated and cone-mediated human temporal vision. iScience 2022; 25:104529. [PMID: 35754721 PMCID: PMC9218364 DOI: 10.1016/j.isci.2022.104529] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/04/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022] Open
Abstract
To evaluate the nature of interactions between visual pathways transmitting the slower melanopsin and faster rod and cone signals, we implement a temporal phase summation paradigm in human observers using photoreceptor-directed stimuli. We show that melanopsin stimulation interacts with and alters both rod-mediated and cone-mediated vision regardless of whether it is perceptually visible or not. Melanopsin-rod interactions result in either inhibitory or facilitatory summation depending on the temporal frequency and photoreceptor pathway contrast sensitivity. Moreover, by isolating rod vision, we reveal a bipartite intensity response property of the rod pathway in photopic lighting that extends its operational range at lower frequencies to beyond its classic saturation limits but at the expense of attenuating sensitivity at higher frequencies. In comparison, melanopsin-cone interactions always lead to facilitation. These interactions can be described by linear or probability summations and potentially involve multiple intraretinal and visual cortical pathways to set human visual contrast sensitivity. Melanopsin ipRGCs support vision independent of the rod and cone signals Rod pathways mediate robust visual responses in daylight Temporal contrast sensitivity is contingent on the melanopsin excitation level Visual performance is collectively regulated by melanopsin, rod and cone pathways
Collapse
Affiliation(s)
- Samir Uprety
- Centre for Vision and Eye Research, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia.,School of Optometry and Vision Science, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia
| | - Prakash Adhikari
- Centre for Vision and Eye Research, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia.,School of Optometry and Vision Science, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia
| | - Beatrix Feigl
- Centre for Vision and Eye Research, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia.,School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia.,Queensland Eye Institute, Brisbane, QLD 4101, Australia
| | - Andrew J Zele
- Centre for Vision and Eye Research, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia.,School of Optometry and Vision Science, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia
| |
Collapse
|
37
|
Pandi-Perumal SR, Cardinali DP, Zaki NFW, Karthikeyan R, Spence DW, Reiter RJ, Brown GM. Timing is everything: Circadian rhythms and their role in the control of sleep. Front Neuroendocrinol 2022; 66:100978. [PMID: 35033557 DOI: 10.1016/j.yfrne.2022.100978] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/12/2021] [Accepted: 01/08/2022] [Indexed: 01/16/2023]
Abstract
Sleep and the circadian clock are intertwined and have persisted throughout history. The suprachiasmatic nucleus (SCN) orchestrates sleep by controlling circadian (Process C) and homeostatic (Process S) activities. As a "hand" on the endogenous circadian clock, melatonin is critical for sleep regulation. Light serves as a cue for sleep/wake control by activating retino-recipient cells in the SCN and subsequently suppressing melatonin. Clock genes are the molecular timekeepers that keep the 24 h cycle in place. Two main sleep and behavioural disorder diagnostic manuals have now officially recognised the importance of these processes for human health and well-being. The body's ability to respond to daily demands with the least amount of effort is maximised by carefully timing and integrating all components of sleep and waking. In the brain, the organization of timing is essential for optimal brain physiology.
Collapse
Affiliation(s)
- Seithikurippu R Pandi-Perumal
- Somnogen Canada Inc, College Street, Toronto, ON, Canada; Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Daniel P Cardinali
- Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, 1107 Buenos Aires, Argentina
| | - Nevin F W Zaki
- Department of Psychiatry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | | | | | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Gregory M Brown
- Centre for Addiction and Mental Health, Molecular Brain Sciences, University of Toronto, 250 College St. Toronto, ON, Canada
| |
Collapse
|
38
|
Baldicano AK, Nasir-Ahmad S, Novelli M, Lee SCS, Do MTH, Martin PR, Grünert U. Retinal ganglion cells expressing CaM kinase II in human and nonhuman primates. J Comp Neurol 2022; 530:1470-1493. [PMID: 35029299 PMCID: PMC9010361 DOI: 10.1002/cne.25292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 11/07/2022]
Abstract
Immunoreactivity for calcium-/calmodulin-dependent protein kinase II (CaMKII) in the primate dorsal lateral geniculate nucleus (dLGN) has been attributed to geniculocortical relay neurons and has also been suggested to arise from terminals of retinal ganglion cells. Here, we combined immunostaining with single-cell injections to investigate the expression of CaMKII in retinal ganglion cells of three primate species: macaque (Macaca fascicularis, M. nemestrina), human, and marmoset (Callithrix jacchus). We found that in all species, about 2%-10% of the total ganglion cell population expressed CaMKII. In all species, CaMKII was expressed by multiple types of wide-field ganglion cell including large sparse, giant sparse (melanopsin-expressing), broad thorny, and narrow thorny cells. Three other ganglion cells types, namely, inner and outer stratifying maze cells in macaque and tufted cells in marmoset were also found. Double labeling experiments showed that CaMKII-expressing cells included inner and outer stratifying melanopsin cells. Nearly all CaMKII-expressing ganglion cell types identified here are known to project to the koniocellular layers of the dLGN as well as to the superior colliculus. The best characterized koniocellular projecting cell type-the small bistratified (blue ON/yellow OFF) cell-was, however, not CaMKII-positive in any species. Our results indicate that the pattern of CaMKII expression in retinal ganglion cells is largely conserved across different species of primate suggesting a common functional role. But the results also show that CaMKII is not a marker for all koniocellular projecting retinal ganglion cells.
Collapse
Affiliation(s)
- Alyssa K Baldicano
- Save Sight Institute and Discipline of Ophthalmology, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Subha Nasir-Ahmad
- Save Sight Institute and Discipline of Ophthalmology, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, The University of Sydney, Sydney, NSW, 2000, Australia
| | - Mario Novelli
- Save Sight Institute and Discipline of Ophthalmology, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Sammy C S Lee
- Save Sight Institute and Discipline of Ophthalmology, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, The University of Sydney, Sydney, NSW, 2000, Australia
| | - Michael Tri H Do
- F.M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Paul R Martin
- Save Sight Institute and Discipline of Ophthalmology, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, The University of Sydney, Sydney, NSW, 2000, Australia
| | - Ulrike Grünert
- Save Sight Institute and Discipline of Ophthalmology, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, The University of Sydney, Sydney, NSW, 2000, Australia
| |
Collapse
|
39
|
Theis J. Differential diagnosis and theories of pathophysiology of post-traumatic photophobia: A review. NeuroRehabilitation 2022; 50:309-319. [DOI: 10.3233/nre-228014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: Photophobia is a common sensory symptom after traumatic brain injury (TBI) that may have a grave impact on a patient’s functional independence, neurorehabilitation, and activities of daily living. Post-TBI photophobia can be difficult to treat and the majority of patients can suffer chronically up to and beyond one year after their injury. OBJECTIVES: This review evaluates the current theories of the pathophysiology of photophobia and the most-common co-morbid etiologies of light sensitivity in TBI to help guide the differential diagnosis and individualized management of post-TBI photophobia. METHODS: Primary articles were found via PubMed and Google Scholar search of key terms including “photophobia” “light sensitivity” “photosensitivity” “photo-oculodynia” “intrinsically photosensitive retinal ganglion cells” “ipRGC” and “concussion” “brain injury” “dry eye”. Due to paucity of literature papers were reviewed from 1900 to present in English. RESULTS: Recent advances in understanding the pathophysiology of photophobia in dry eye and migraine and their connection to intrinsically photosensitive retinal ganglion cells (ipRGC) have revealed complex and multifaceted trigeminovascular and trigeminoautonomic pathways underlying photophobia. Patients who suffer a TBI often have co-morbidities like dry eye and migraine that may influence the patient’s photophobia. CONCLUSION: Post-traumatic photophobia is a complex multi-disciplinary complaint that can severely impact a patient’s quality of life. Exploration of underlying etiology may allow for improved treatment and symptomatic relief for these patients beyond tinted lenses alone.
Collapse
Affiliation(s)
- Jacqueline Theis
- Concussion Care Centre of Virginia, Richmond, VA, USA
- Virginia Neuro-Optometry, Richmond, VA, USA Tel.: +1 804 387 2902; Fax: +1 804 509 0543; E-mail:
| |
Collapse
|
40
|
Kubota N, Tamori Y, Baba K, Yamanaka Y. Effects of different light incident angles via a head-mounted device on the magnitude of nocturnal melatonin suppression in healthy young subjects. Sleep Biol Rhythms 2022; 20:247-254. [PMID: 38469249 PMCID: PMC10899976 DOI: 10.1007/s41105-021-00360-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/28/2021] [Indexed: 10/19/2022]
Abstract
Bright light is a primary zeitgeber (synchronizer) for the central circadian pacemaker in humans. Recently, head-mounted devices for light therapy have been developed to treat patients suffering from circadian rhythm sleep disorders. In this study, to evaluate the influence of the light incident angle of head-mounted devices on the human circadian pacemaker, we examined the effects of bright light (ca.10000 lx) from two different angles (55° vs. 28°) on the suppression of melatonin secretion at night. Twenty-nine subjects (25.1 ± 6.3 SD years) participated in the present study. The subjects were kept under dim light conditions (< 5 lx) from 4 h before their habitual bedtime, followed by exposure to 1 h of bright light at two different angles during their habitual bedtime. Saliva samples were collected every hour under dim light conditions and then collected every 30 min during the bright light exposure. To assess the effect of the light incident angle on ipRGCs mediating light-evoked pupillary constriction, pupil size was measured in before and after exposure to bright light. Melatonin suppression in the group exposed to light at 28° was significantly higher than that in the group with light at 55° (p < 0.001). The pupillary constriction was significantly greater in the group exposed to light at 28° than that in the group with light at 55° (p < 0.001). The present findings suggest that the light incident angle is an important factor for bright light therapy and should be considered to effectively use head-mounted devices in home and clinical settings.
Collapse
Affiliation(s)
- Naoko Kubota
- Laboratory of Life and Health Sciences, Faculty of Education and Graduate School of Education, Hokkaido University, Sapporo, 060-0811 Japan
- Department of Nursing, Hokkaido University of Science, Sapporo, Japan
| | | | - Kenkichi Baba
- Department of Pharmacology and Toxicology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA USA
| | - Yujiro Yamanaka
- Laboratory of Life and Health Sciences, Faculty of Education and Graduate School of Education, Hokkaido University, Sapporo, 060-0811 Japan
- Research and Education Center for Brain Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
41
|
Nasir-Ahmad S, Vanstone KA, Novelli M, Lee SCS, Do MTH, Martin PR, Grünert U. Satb1 expression in retinal ganglion cells of marmosets, macaques, and humans. J Comp Neurol 2022; 530:923-940. [PMID: 34622958 PMCID: PMC8831458 DOI: 10.1002/cne.25258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 12/18/2022]
Abstract
Recent advances in single-cell RNA sequencing have enabled the molecular distinction of ganglion cell populations in mammalian retinas. Here we used antibodies against the transcription factor special AT-rich binding protein 1 (Satb1, a protein which is expressed by on-off direction-selective ganglion cells in mouse retina) to study Satb1 expression in the retina of marmosets (Callithrix jacchus), macaques (Macaca fascicularis), and humans. In all species, Satb1 was exclusively expressed in retinal ganglion cells. The Satb1 cells made up ∼2% of the ganglion cell population in the central retina of all species, rising to a maximum ∼7% in peripheral marmoset retina. Intracellular injections in marmoset and macaque retinas revealed that most Satb1 expressing ganglion cells are widefield ganglion cells. In marmoset, Satb1 cells have a densely branching dendritic tree and include broad and narrow thorny, recursive bistratified, and parasol cells, all of which show some costratification with the outer or inner cholinergic amacrine cells. The recursive bistratified cells showed the strongest costratification but did not show extensive cofasciculation as reported for on-off direction-selective ganglion cells in rabbit and rodent retinas. In macaque, Satb1 was not expressed in recursive bistratified cells, but in large sparsely branching cells. Our findings further support the idea that the expression of transcription factors in retinal ganglion cells is not conserved across Old World (human and macaque) and New World (marmoset) primates and provides a further step to link a molecular marker with specific cell types.
Collapse
Affiliation(s)
- Subha Nasir-Ahmad
- Faculty of Medicine and Health, Save Sight Institute, and Discipline of Ophthalmology, The University of Sydney, Sydney, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Sydney Node, The University of Sydney, Sydney, Australia
| | - Kurt A Vanstone
- Faculty of Medicine and Health, Save Sight Institute, and Discipline of Ophthalmology, The University of Sydney, Sydney, Australia
| | - Mario Novelli
- Faculty of Medicine and Health, Save Sight Institute, and Discipline of Ophthalmology, The University of Sydney, Sydney, Australia
| | - Sammy C S Lee
- Faculty of Medicine and Health, Save Sight Institute, and Discipline of Ophthalmology, The University of Sydney, Sydney, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Sydney Node, The University of Sydney, Sydney, Australia
| | - Michael Tri H Do
- F.M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Paul R Martin
- Faculty of Medicine and Health, Save Sight Institute, and Discipline of Ophthalmology, The University of Sydney, Sydney, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Sydney Node, The University of Sydney, Sydney, Australia
| | - Ulrike Grünert
- Faculty of Medicine and Health, Save Sight Institute, and Discipline of Ophthalmology, The University of Sydney, Sydney, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Sydney Node, The University of Sydney, Sydney, Australia
| |
Collapse
|
42
|
Abstract
SignificanceThe function of our biological clock is dependent on environmental light. Rodent studies have shown that there are multiple colors that affect the clock, but indirect measures in humans suggest blue light is key. We performed functional MRI studies in human subjects with unprecedented spatial resolution to investigate color sensitivity of our clock. Here, we show that narrowband blue, green, and orange light were all effective in changing neuronal activity of the clock. While the clock of nocturnal rodents is excited by light, the human clock responds with a decrease in neuronal activity as indicated by a negative BOLD response. The sensitivity of the clock to multiple colors should be integrated in light therapy aimed to strengthen our 24-h rhythms.
Collapse
|
43
|
Pondelis NJ, Moulton EA. Supraspinal Mechanisms Underlying Ocular Pain. Front Med (Lausanne) 2022; 8:768649. [PMID: 35211480 PMCID: PMC8862711 DOI: 10.3389/fmed.2021.768649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/27/2021] [Indexed: 12/04/2022] Open
Abstract
Supraspinal mechanisms of pain are increasingly understood to underlie neuropathic ocular conditions previously thought to be exclusively peripheral in nature. Isolating individual causes of centralized chronic conditions and differentiating them is critical to understanding the mechanisms underlying neuropathic eye pain and ultimately its treatment. Though few functional imaging studies have focused on the eye as an end-organ for the transduction of noxious stimuli, the brain networks related to pain processing have been extensively studied with functional neuroimaging over the past 20 years. This article will review the supraspinal mechanisms that underlie pain as they relate to the eye.
Collapse
Affiliation(s)
- Nicholas J Pondelis
- Brain and Eye Pain Imaging Lab, Pain and Affective Neuroscience Center, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Eric A Moulton
- Brain and Eye Pain Imaging Lab, Pain and Affective Neuroscience Center, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.,Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
44
|
Wandell BA, Brainard DH, Cottaris NP. Visual encoding: Principles and software. PROGRESS IN BRAIN RESEARCH 2022; 273:199-229. [DOI: 10.1016/bs.pbr.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
45
|
Tir S, Steel LCE, Tam SKE, Semo M, Pothecary CA, Vyazovskiy VV, Foster RG, Peirson SN. Rodent models in translational circadian photobiology. PROGRESS IN BRAIN RESEARCH 2022; 273:97-116. [PMID: 35940726 DOI: 10.1016/bs.pbr.2022.02.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Over the last decades remarkable advances have been made in the understanding of the photobiology of circadian rhythms. The identification of a third photoreceptive system in the mammalian eye, in addition to the rods and cones that mediate vision, has transformed our appreciation of the role of light in regulating physiology and behavior. These photosensitive retinal ganglion cells (pRGCs) express the blue-light sensitive photopigment melanopsin and project to the suprachiasmatic nuclei (SCN)-the master circadian pacemaker-as well as many other brain regions. Much of our understanding of the fundamental mechanisms of the pRGCs, and the processes that they regulate, comes from mouse and other rodent models. Here we describe the contribution of rodent models to circadian photobiology, including both their strengths and limitations. In addition, we discuss how an appreciation of both rodent and human data is important for translational circadian photobiology. Such an approach enables a bi-directional flow of information whereby an understanding of basic mechanisms derived from mice can be integrated with studies from humans. Progress in this field is being driven forward at several levels of analysis, not least by the use of personalized light measurements and photoreceptor specific stimuli in human studies, and by studying the impact of environmental, rather than laboratory, lighting on different rodent models.
Collapse
Affiliation(s)
- Selma Tir
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for NanoScience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Laura C E Steel
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for NanoScience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - S K E Tam
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for NanoScience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Ma'ayan Semo
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for NanoScience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Carina A Pothecary
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for NanoScience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Vladyslav V Vyazovskiy
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for NanoScience Discovery, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Russell G Foster
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for NanoScience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Stuart N Peirson
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for NanoScience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
46
|
Raghuram V, Werginz P, Fried SI, Timko BP. Morphological Factors that Underlie Neural Sensitivity to Stimulation in the Retina. ADVANCED NANOBIOMED RESEARCH 2021; 1:2100069. [PMID: 35399546 PMCID: PMC8993153 DOI: 10.1002/anbr.202100069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Retinal prostheses are a promising therapeutic intervention for patients afflicted by outer retinal degenerative diseases like retinitis pigmentosa and age-related macular degeneration. While significant advances in the development of retinal implants have been made, the quality of vision elicited by these devices remains largely sub-optimal. The variability in the responses produced by retinal devices is most likely due to the differences between the natural cell type-specific signaling that occur in the healthy retina vs. the non-specific activation of multiple cell types arising from artificial stimulation. In order to replicate these natural signaling patterns, stimulation strategies must be capable of preferentially activating specific RGC types. To design more selective stimulation strategies, a better understanding of the morphological factors that underlie the sensitivity to prosthetic stimulation must be developed. This review will focus on the role that different anatomical components play in driving the direct activation of RGCs by extracellular stimulation. Briefly, it will (1) characterize the variability in morphological properties of α-RGCs, (2) detail the influence of morphology on the direct activation of RGCs by electric stimulation, and (3) describe some of the potential biophysical mechanisms that could explain differences in activation thresholds and electrically evoked responses between RGC types.
Collapse
Affiliation(s)
- Vineeth Raghuram
- Boston VA Healthcare System, 150 S Huntington Ave, Boston, MA 02130, USA
- Dept. of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
- Dept. of Neurosurgery, Massachusetts General Hospital - Harvard Medical School, 50 Blossom Street, Boston, MA, 02114
| | - Paul Werginz
- Institute for Analysis and Scientific Computing, Vienna University of Technology, Wiedner Hauptstrasse 8-10, Vienna, Austria
- Dept. of Neurosurgery, Massachusetts General Hospital - Harvard Medical School, 50 Blossom Street, Boston, MA, 02114
| | - Shelley I. Fried
- Boston VA Healthcare System, 150 S Huntington Ave, Boston, MA 02130, USA
- Dept. of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
- Dept. of Neurosurgery, Massachusetts General Hospital - Harvard Medical School, 50 Blossom Street, Boston, MA, 02114
| | - Brian P. Timko
- Dept. of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| |
Collapse
|
47
|
Yu H, Wang Q, Wu W, Zeng W, Feng Y. Therapeutic Effects of Melatonin on Ocular Diseases: Knowledge Map and Perspective. Front Pharmacol 2021; 12:721869. [PMID: 34795578 PMCID: PMC8593251 DOI: 10.3389/fphar.2021.721869] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/30/2021] [Indexed: 01/08/2023] Open
Abstract
Melatonin plays a critical role in the pathophysiological process including circadian rhythm, apoptosis, and oxidative stress. It can be synthesized in ocular tissues, and its receptors are also found in the eye, triggering more investigations concentrated on the role of melatonin in the eye. In the past decades, the protective and therapeutic potentials of melatonin for ocular diseases have been widely revealed in animal models. Herein, we construct a knowledge map of melatonin in treating ocular diseases through bibliometric analysis and review its current understanding and clinical evidence. The overall field could be divided into twelve topics through keywords co-occurrence analysis, in which the glaucoma, myopia, and retinal diseases were of greatest research interests according to the keywords burst detection. The existing clinical trials of melatonin in ocular diseases mainly focused on the glaucoma, and more research should be promoted, especially for various diseases and drug administration. We also discuss its bioavailability and further research topics including developing melatonin sensors for personalized medication, acting as stem cell therapy assistant drug, and consuming food-derived melatonin for facilitating its clinical transformation.
Collapse
Affiliation(s)
- Haozhe Yu
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China.,Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Qicong Wang
- Department of Chinese Medicine of Taiwan, Hong Kong and Macao, Beijing University of Chinese Medicine, Beijing, China
| | - Wenyu Wu
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
| | - Weizhen Zeng
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
| | - Yun Feng
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China.,Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| |
Collapse
|
48
|
Schmid SR, Höhn C, Bothe K, Plamberger CP, Angerer M, Pletzer B, Hoedlmoser K. How Smart Is It to Go to Bed with the Phone? The Impact of Short-Wavelength Light and Affective States on Sleep and Circadian Rhythms. Clocks Sleep 2021; 3:558-580. [PMID: 34842631 PMCID: PMC8628671 DOI: 10.3390/clockssleep3040040] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/25/2022] Open
Abstract
Previously, we presented our preliminary results (N = 14) investigating the effects of short-wavelength light from a smartphone during the evening on sleep and circadian rhythms (Höhn et al., 2021). Here, we now demonstrate our full sample (N = 33 men), where polysomnography and body temperature were recorded during three experimental nights and subjects read for 90 min on a smartphone with or without a filter or from a book. Cortisol, melatonin and affectivity were assessed before and after sleep. These results confirm our earlier findings, indicating reduced slow-wave-sleep and -activity in the first night quarter after reading on the smartphone without a filter. The same was true for the cortisol-awakening-response. Although subjective sleepiness was not affected, the evening melatonin increase was attenuated in both smartphone conditions. Accordingly, the distal-proximal skin temperature gradient increased less after short-wavelength light exposure than after reading a book. Interestingly, we could unravel within this full dataset that higher positive affectivity in the evening predicted better subjective but not objective sleep quality. Our results show disruptive consequences of short-wavelength light for sleep and circadian rhythmicity with a partially attenuating effect of blue-light filters. Furthermore, affective states influence subjective sleep quality and should be considered, whenever investigating sleep and circadian rhythms.
Collapse
Affiliation(s)
- Sarah R. Schmid
- Laboratory for Sleep, Cognition and Consciousness Research, Department of Psychology, University of Salzburg, 5020 Salzburg, Austria; (S.R.S.); (C.H.); (K.B.); (C.P.P.); (M.A.)
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of Salzburg, 5020 Salzburg, Austria;
| | - Christopher Höhn
- Laboratory for Sleep, Cognition and Consciousness Research, Department of Psychology, University of Salzburg, 5020 Salzburg, Austria; (S.R.S.); (C.H.); (K.B.); (C.P.P.); (M.A.)
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of Salzburg, 5020 Salzburg, Austria;
| | - Kathrin Bothe
- Laboratory for Sleep, Cognition and Consciousness Research, Department of Psychology, University of Salzburg, 5020 Salzburg, Austria; (S.R.S.); (C.H.); (K.B.); (C.P.P.); (M.A.)
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of Salzburg, 5020 Salzburg, Austria;
| | - Christina P. Plamberger
- Laboratory for Sleep, Cognition and Consciousness Research, Department of Psychology, University of Salzburg, 5020 Salzburg, Austria; (S.R.S.); (C.H.); (K.B.); (C.P.P.); (M.A.)
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of Salzburg, 5020 Salzburg, Austria;
| | - Monika Angerer
- Laboratory for Sleep, Cognition and Consciousness Research, Department of Psychology, University of Salzburg, 5020 Salzburg, Austria; (S.R.S.); (C.H.); (K.B.); (C.P.P.); (M.A.)
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of Salzburg, 5020 Salzburg, Austria;
| | - Belinda Pletzer
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of Salzburg, 5020 Salzburg, Austria;
| | - Kerstin Hoedlmoser
- Laboratory for Sleep, Cognition and Consciousness Research, Department of Psychology, University of Salzburg, 5020 Salzburg, Austria; (S.R.S.); (C.H.); (K.B.); (C.P.P.); (M.A.)
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of Salzburg, 5020 Salzburg, Austria;
| |
Collapse
|
49
|
La Morgia C, Romagnoli M, Pizza F, Biscarini F, Filardi M, Donadio V, Carbonelli M, Amore G, Park JC, Tinazzi M, Carelli V, Liguori R, Plazzi G, Antelmi E. Chromatic Pupillometry in Isolated Rapid Eye Movement Sleep Behavior Disorder. Mov Disord 2021; 37:205-210. [PMID: 34617633 PMCID: PMC9293298 DOI: 10.1002/mds.28809] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/01/2021] [Accepted: 09/10/2021] [Indexed: 12/21/2022] Open
Abstract
Background Melanopsin retinal ganglion cell (mRGC)‐mediated pupillary light reflex (PLR) abnormalities have been documented in several neurodegenerative disorders including Parkinson's disease. Overall, isolated rapid eye movement (REM) sleep behavior disorder (iRBD) represents the strongest prodromal risk factor for impending α‐synucleinopathies. Objectives To quantitatively compare PLR and mRGC‐mediated contribution to PLR in 16 iRBD patients and 16 healthy controls. Methods iRBD and controls underwent extensive neuro‐ophthalmological evaluation and chromatic pupillometry. In iRBD, PLR metrics were correlated with clinical variables and with additional biomarkers including REM atonia index (RAI), DaTscan, and presence of phosphorylated‐α‐synuclein (p‐α‐syn) deposition in skin biopsy. Results We documented higher baseline pupil diameter and decreased rod‐transient PLR amplitude in iRBD patients compared to controls. PLR rod‐contribution correlated with RAI. Moreover, only iRBD patients with evidence of p‐α‐syn deposition at skin biopsy showed reduced PLR amplitude compared to controls. Conclusion The observed PLR abnormalities in iRBD might be considered as potential biomarkers for the risk stratification of phenoconversion of the disease. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
Collapse
Affiliation(s)
- Chiara La Morgia
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Martina Romagnoli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Fabio Pizza
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy.,Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Francesco Biscarini
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Marco Filardi
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy.,Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari "Aldo Moro", Bari, Italy.,Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro"- A.O. Pia Fondazione Cardinale G. Panico, Tricase, Italy
| | - Vincenzo Donadio
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Michele Carbonelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Giulia Amore
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Jason C Park
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Michele Tinazzi
- Dipartimento di Neuroscienze, Biomedicina e Movimento, Università di Verona, Verona, Italy
| | - Valerio Carelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy.,Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Rocco Liguori
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy.,Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Giuseppe Plazzi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy.,Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Elena Antelmi
- Dipartimento di Neuroscienze, Biomedicina e Movimento, Università di Verona, Verona, Italy
| |
Collapse
|
50
|
Grünert U, Martin PR. Morphology, Molecular Characterization, and Connections of Ganglion Cells in Primate Retina. Annu Rev Vis Sci 2021; 7:73-103. [PMID: 34524877 DOI: 10.1146/annurev-vision-100419-115801] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The eye sends information about the visual world to the brain on over 20 parallel signal pathways, each specialized to signal features such as spectral reflection (color), edges, and motion of objects in the environment. Each pathway is formed by the axons of a separate type of retinal output neuron (retinal ganglion cell). In this review, we summarize what is known about the excitatory retinal inputs, brain targets, and gene expression patterns of ganglion cells in humans and nonhuman primates. We describe how most ganglion cell types receive their input from only one or two of the 11 types of cone bipolar cell and project selectively to only one or two target regions in the brain. We also highlight how genetic methods are providing tools to characterize ganglion cells and establish cross-species homologies.
Collapse
Affiliation(s)
- Ulrike Grünert
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney NSW 2000, Australia; , .,Sydney Node, Australian Research Council Centre of Excellence for Integrative Brain Function, The University of Sydney, Sydney NSW 2000, Australia
| | - Paul R Martin
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney NSW 2000, Australia; , .,Sydney Node, Australian Research Council Centre of Excellence for Integrative Brain Function, The University of Sydney, Sydney NSW 2000, Australia
| |
Collapse
|