1
|
Morello T, Kollmar R, Stewart M, Orman R. Latexin and calretinin together define a novel excitatory neuron subclass in the claustrum of the short-tailed fruit bat, Carollia perspicillata. Ann N Y Acad Sci 2025. [PMID: 40289365 DOI: 10.1111/nyas.15346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
The claustrum is a telencephalic structure with inputs from and outputs to many other brain structures. This central arrangement has motivated research on the claustrum's role in cognition and highlights the need to understand its intrinsic connectivity. In the fruit bat, Carollia perspicillata, the large size of the claustrum offers access to its intrinsic structure. Previously, we defined the structure of the C. perspicillata claustrum with antibodies against latexin as an excitatory cell marker and against calcium-binding proteins as inhibitory cell markers. Using this immunohistochemical method, we have now identified an unexpected cell type with concurrent latexin and calretinin immunoreactivity. The calretinin+ neurons of the claustrum, including those that coexpress GAD67 (another inhibitory cell marker) and those that coexpress latexin, are located in the claustral shell subregion. Neuronal latexin+/calretinin+ somata are smaller than either latexin-/calretinin+ or latexin+/calretinin- somata. Since latexin labels glutamatergic neurons in multiple brain areas and has never been found to colocalize with GAD, we conclude that the latexin+/calretinin+ neurons in the claustral shell are excitatory. They represent one of three excitatory cell types that are identifiable in the claustral shell and demonstrate that calretinin can label both inhibitory and excitatory cells in the C. perspicillata claustrum.
Collapse
Affiliation(s)
- Timothy Morello
- Departments of Physiology & Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
- Wilmer Eye Institute, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Richard Kollmar
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
- Department of Otolaryngology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
| | - Mark Stewart
- Departments of Physiology & Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
- Department of Neurology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
| | - Rena Orman
- Departments of Physiology & Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
| |
Collapse
|
2
|
Lei Y, Liu Y, Wang M, Yuan N, Hou Y, Ding L, Zhu Z, Wu Z, Li C, Zheng M, Zhang R, Ribeiro Gomes AR, Xu Y, Luo Z, Liu Z, Chai Q, Misery P, Zhong Y, Song X, Lamy C, Cui W, Yu Q, Fang J, An Y, Tian Y, Liu Y, Sun X, Wang R, Li H, Song J, Tan X, Wang H, Wang S, Han L, Zhang Y, Li S, Wang K, Wang G, Zhou W, Liu J, Yu C, Zhang S, Chang L, Toplanaj D, Chen M, Liu J, Zhao Y, Ren B, Shi H, Zhang H, Yan H, Ma J, Wang L, Li Y, Zuo Y, Lu L, Gu L, Li S, Wang Y, He Y, Li S, Zhang Q, Lu Y, Dou Y, Liu Y, Zhao A, Zhang M, Zhang X, Xia Y, Zhang W, Cao H, Lu Z, Yu Z, Li X, Wang X, Liang Z, Xu S, Liu C, Zheng C, Xu C, Liu Z, Li C, Sun YG, Xu X, Dehay C, Vezoli J, Poo MM, Yao J, Liu L, Wei W, Kennedy H, Shen Z. Single-cell spatial transcriptome atlas and whole-brain connectivity of the macaque claustrum. Cell 2025:S0092-8674(25)00273-9. [PMID: 40185102 DOI: 10.1016/j.cell.2025.02.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/03/2024] [Accepted: 02/28/2025] [Indexed: 04/07/2025]
Abstract
Claustrum orchestrates brain functions via its connections with numerous brain regions, but its molecular and cellular organization remains unresolved. Single-nucleus RNA sequencing of 227,750 macaque claustral cells identified 48 transcriptome-defined cell types, with most glutamatergic neurons similar to deep-layer insular neurons. Comparison of macaque, marmoset, and mouse transcriptomes revealed macaque-specific cell types. Retrograde tracer injections at 67 cortical and 7 subcortical regions defined four distinct distribution zones of retrogradely labeled claustral neurons. Joint analysis of whole-brain connectivity and single-cell spatial transcriptome showed that these four zones containing distinct compositions of glutamatergic (but not GABAergic) cell types preferentially connected to specific brain regions with a strong ipsilateral bias. Several macaque-specific glutamatergic cell types in ventral vs. dorsal claustral zones selectively co-projected to two functionally related areas-entorhinal cortex and hippocampus vs. motor cortex and putamen, respectively. These data provide the basis for elucidating the neuronal organization underlying diverse claustral functions.
Collapse
Affiliation(s)
- Ying Lei
- BGI-Research, Hangzhou 310012, China; BGI-Research, Shenzhen 518103, China; Shanxi Medical University - BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Yuxuan Liu
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing 100049, China
| | - Mingli Wang
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Lingang Laboratory, Shanghai 200031, China; University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing 100049, China
| | - Nini Yuan
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yujie Hou
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm U1208, Stem Cell and Brain Research Institute, Bron 69500, France
| | - Lingjun Ding
- BGI-Research, Hangzhou 310012, China; BGI-Research, Shenzhen 518103, China
| | - Zhiyong Zhu
- BGI-Research, Hangzhou 310012, China; BGI-Research, Shenzhen 518103, China
| | - Zihan Wu
- AI for Life Sciences Lab, Tencent, Shenzhen 518057, China
| | - Chao Li
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Mingyuan Zheng
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ruiyi Zhang
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ana Rita Ribeiro Gomes
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm U1208, Stem Cell and Brain Research Institute, Bron 69500, France
| | - Yuanfang Xu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhaoke Luo
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm U1208, Stem Cell and Brain Research Institute, Bron 69500, France
| | - Zhen Liu
- Lingang Laboratory, Shanghai 200031, China
| | - Qinwen Chai
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing 100049, China
| | - Pierre Misery
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm U1208, Stem Cell and Brain Research Institute, Bron 69500, France
| | - Yanqing Zhong
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xinxiang Song
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Camille Lamy
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm U1208, Stem Cell and Brain Research Institute, Bron 69500, France
| | - Wei Cui
- BGI-Research, Qingdao 266555, China
| | - Qian Yu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiao Fang
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing 100049, China
| | - Yingjie An
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ye Tian
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing 100049, China
| | - Yiwen Liu
- Lingang Laboratory, Shanghai 200031, China; University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing 100049, China
| | - Xing Sun
- Lingang Laboratory, Shanghai 200031, China
| | - Ruiqi Wang
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Huanhuan Li
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jingjing Song
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xing Tan
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - He Wang
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shiwen Wang
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ling Han
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Shenyu Li
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kexin Wang
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing 100049, China
| | - Guangling Wang
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wanqiu Zhou
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jianfeng Liu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing 100049, China
| | - Cong Yu
- BGI-Research, Qingdao 266555, China
| | - Shuzhen Zhang
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Liangtang Chang
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dafina Toplanaj
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm U1208, Stem Cell and Brain Research Institute, Bron 69500, France
| | - Mengni Chen
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiabing Liu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yun Zhao
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Biyu Ren
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hanyu Shi
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hui Zhang
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Haotian Yan
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jianyun Ma
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing 100049, China
| | - Lina Wang
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yan Li
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yichen Zuo
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing 100049, China
| | - Linjie Lu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Liqin Gu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shuting Li
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Yinying He
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Qi Zhang
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yanbing Lu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yannong Dou
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuan Liu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Anqi Zhao
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201602, China
| | - Minyuan Zhang
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xinyan Zhang
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ying Xia
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wei Zhang
- Lingang Laboratory, Shanghai 200031, China
| | - Huateng Cao
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhiyue Lu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zixian Yu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xin Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing 100049, China
| | - Xiaofei Wang
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhifeng Liang
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing 100049, China
| | - Shengjin Xu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing 100049, China
| | - Cirong Liu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing 100049, China
| | - Changhong Zheng
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201602, China
| | - Chun Xu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing 100049, China
| | - Zhiyong Liu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing 100049, China
| | - Chengyu Li
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Lingang Laboratory, Shanghai 200031, China; University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing 100049, China
| | - Yan-Gang Sun
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing 100049, China
| | - Xun Xu
- BGI-Research, Shenzhen 518103, China; Shanxi Medical University - BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Colette Dehay
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm U1208, Stem Cell and Brain Research Institute, Bron 69500, France
| | - Julien Vezoli
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm U1208, Stem Cell and Brain Research Institute, Bron 69500, France
| | - Mu-Ming Poo
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201602, China; University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing 100049, China
| | - Jianhua Yao
- AI for Life Sciences Lab, Tencent, Shenzhen 518057, China.
| | - Longqi Liu
- BGI-Research, Hangzhou 310012, China; BGI-Research, Shenzhen 518103, China; Shanxi Medical University - BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan 030001, China.
| | - Wu Wei
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China; Lingang Laboratory, Shanghai 200031, China; University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing 100049, China.
| | - Henry Kennedy
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm U1208, Stem Cell and Brain Research Institute, Bron 69500, France.
| | - Zhiming Shen
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201602, China.
| |
Collapse
|
3
|
Zahacy R, Ma Y, Winship IR, Jackson J, Chan AW. Claustrum modulation drives altered prefrontal cortex dynamics and connectivity. Commun Biol 2024; 7:1556. [PMID: 39578634 PMCID: PMC11584859 DOI: 10.1038/s42003-024-07256-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024] Open
Abstract
This study delves into the claustrum's role in modulating spontaneous and sensory-evoked network activity across cortical regions. Using mesoscale calcium imaging and Gi and Gq DREADDs in anesthetized mice, we show that decreasing claustral activity enhances prefrontal cortical activity, while activation reduces prefrontal cortical activity. This claustrum modulation also caused changes to the brain's large-scale functional networks, emphasizing the claustrum's ability to influence long-range functional connectivity in the cortex. Claustrum inhibition increased the local coupling between frontal cortex areas, but reduced the correlation between anterior medial regions and lateral/posterior regions, while also enhancing sensory-evoked responses in the visual cortex. These findings indicate the claustrum can participate in orchestrating neural communication across cortical regions through modulation of prefrontal cortical activity. These insights deepen our understanding of the claustrum's impact on prefrontal connectivity, large-scale network dynamics, and sensory processing, positioning the claustrum as a key node modulating large-scale cortical dynamics.
Collapse
Affiliation(s)
- Ryan Zahacy
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Yonglie Ma
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Ian R Winship
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Jesse Jackson
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.
- Department of Physiology, University of Alberta, Edmonton, AB, Canada.
| | - Allen W Chan
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
4
|
Anderson TL, Keady JV, Songrady J, Tavakoli NS, Asadipooya A, Neeley RE, Turner JR, Ortinski PI. Distinct 5-HT receptor subtypes regulate claustrum excitability by serotonin and the psychedelic, DOI. Prog Neurobiol 2024; 240:102660. [PMID: 39218140 PMCID: PMC11444019 DOI: 10.1016/j.pneurobio.2024.102660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/03/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Recent evidence indicates that neuronal activity within the claustrum (CLA) may be central to cellular and behavioral responses to psychedelic hallucinogens. The CLA prominently innervates many cortical targets and displays exceptionally high levels of serotonin (5-HT) binding. However, the influence of serotonin receptors, prime targets of psychedelic drug action, on CLA activity remains unexplored. We characterize the CLA expression of all known 5-HT subtypes and contrast the effects of 5-HT and the psychedelic hallucinogen, 2,5-dimethoxy-4-iodoamphetamine (DOI), on excitability of cortical-projecting CLA neurons. We find that the CLA is particularly enriched with 5-HT2C receptors, expressed predominantly on glutamatergic neurons. Electrophysiological recordings from CLA neurons that project to the anterior cingulate cortex (ACC) indicate that application of 5-HT inhibits glutamate receptor-mediated excitatory postsynaptic currents (EPSCs). In contrast, application of DOI stimulates EPSCs. We find that the opposite effects of 5-HT and DOI on synaptic signaling can both be reversed by inhibition of the 5-HT2C, but not 5-HT2A, receptors. We identify specific 5-HT receptor subtypes as serotonergic regulators of the CLA excitability and argue against the canonical role of 5-HT2A in glutamatergic synapse response to psychedelics within the CLA-ACC circuit.
Collapse
Affiliation(s)
- Tanner L Anderson
- University of Kentucky, College of Medicine, Department of Neuroscience, Lexington, KY 40536, United States
| | - Jack V Keady
- University of Kentucky, College of Pharmacy, Department of Pharmaceutical Sciences, Lexington, KY 40536, United States
| | - Judy Songrady
- University of Kentucky, College of Pharmacy, Department of Pharmaceutical Sciences, Lexington, KY 40536, United States
| | - Navid S Tavakoli
- University of Kentucky, College of Medicine, Department of Neuroscience, Lexington, KY 40536, United States
| | - Artin Asadipooya
- University of Kentucky, College of Medicine, Department of Neuroscience, Lexington, KY 40536, United States
| | - Ryson E Neeley
- University of Kentucky, College of Medicine, Department of Neuroscience, Lexington, KY 40536, United States
| | - Jill R Turner
- University of Kentucky, College of Pharmacy, Department of Pharmaceutical Sciences, Lexington, KY 40536, United States
| | - Pavel I Ortinski
- University of Kentucky, College of Medicine, Department of Neuroscience, Lexington, KY 40536, United States.
| |
Collapse
|
5
|
Atlan G, Matosevich N, Peretz-Rivlin N, Marsh-Yvgi I, Zelinger N, Chen E, Kleinman T, Bleistein N, Sheinbach E, Groysman M, Nir Y, Citri A. Claustrum neurons projecting to the anterior cingulate restrict engagement during sleep and behavior. Nat Commun 2024; 15:5415. [PMID: 38926345 PMCID: PMC11208603 DOI: 10.1038/s41467-024-48829-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 05/14/2024] [Indexed: 06/28/2024] Open
Abstract
The claustrum has been linked to attention and sleep. We hypothesized that this reflects a shared function, determining responsiveness to stimuli, which spans the axis of engagement. To test this hypothesis, we recorded claustrum population dynamics from male mice during both sleep and an attentional task ('ENGAGE'). Heightened activity in claustrum neurons projecting to the anterior cingulate cortex (ACCp) corresponded to reduced sensory responsiveness during sleep. Similarly, in the ENGAGE task, heightened ACCp activity correlated with disengagement and behavioral lapses, while low ACCp activity correlated with hyper-engagement and impulsive errors. Chemogenetic elevation of ACCp activity reduced both awakenings during sleep and impulsive errors in the ENGAGE task. Furthermore, mice employing an exploration strategy in the task showed a stronger correlation between ACCp activity and performance compared to mice employing an exploitation strategy which reduced task complexity. Our results implicate ACCp claustrum neurons in restricting engagement during sleep and goal-directed behavior.
Collapse
Affiliation(s)
- Gal Atlan
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Noa Matosevich
- Department of Physiology & Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Noa Peretz-Rivlin
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Idit Marsh-Yvgi
- The Alexander Silberman Institute of Life Science, Faculty of Science, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Noam Zelinger
- Department of Physiology & Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Eden Chen
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Timna Kleinman
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Noa Bleistein
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
- The Alexander Silberman Institute of Life Science, Faculty of Science, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Efrat Sheinbach
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
- The Alexander Silberman Institute of Life Science, Faculty of Science, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Maya Groysman
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Yuval Nir
- Department of Physiology & Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- The Sieratzki-Sagol Center for Sleep Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Ami Citri
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel.
- The Alexander Silberman Institute of Life Science, Faculty of Science, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel.
- Program in Child and Brain Development, Canadian Institute for Advanced Research; MaRS Centre, Toronto, ON, Canada.
| |
Collapse
|
6
|
Faig CA, Kim GHK, Do AD, Dworsky-Fried Z, Jackson J, Taylor AMW. Claustrum projections to the anterior cingulate modulate nociceptive and pain-associated behavior. Curr Biol 2024; 34:1987-1995.e4. [PMID: 38614081 DOI: 10.1016/j.cub.2024.03.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/08/2024] [Accepted: 03/22/2024] [Indexed: 04/15/2024]
Abstract
The anterior cingulate cortex (ACC) is critical for the perception and unpleasantness of pain.1,2,3,4,5,6 It receives nociceptive information from regions such as the thalamus and amygdala and projects to several cortical and subcortical regions of the pain neuromatrix.7,8 ACC hyperexcitability is one of many functional changes associated with chronic pain, and experimental activation of ACC pyramidal cells produces hypersensitivity to innocuous stimuli (i.e., allodynia).9,10,11,12,13,14 A less-well-studied projection to the ACC arises from a small forebrain region, the claustrum.15,16,17,18,19,20 Stimulation of excitatory claustrum projection neurons preferentially activates GABAergic interneurons, generating feed-forward inhibition onto excitatory cortical networks.21,22,23,24 Previous work has shown that claustrocingulate projections display altered activity in prolonged pain25,26,27; however, it remains unclear whether and how the claustrum participates in nociceptive processing and high-order pain behaviors. Inhibition of ACC activity reverses mechanical allodynia in animal models of persistent and neuropathic pain,1,9,28 suggesting claustrum inputs may function to attenuate pain processing. In this study, we sought to define claustrum function in acute and chronic pain. We found enhanced claustrum activity after a painful stimulus that was attenuated in chronic inflammatory pain. Selective inhibition of claustrocingulate projection neurons enhanced acute nociception but blocked pain learning. Inversely, chemogenetic activation of claustrocingulate neurons had no effect on basal nociception but rescued inflammation-induced mechanical allodynia. Together, these results suggest that claustrocingulate neurons are a critical component of the pain neuromatrix, and dysregulation of this connection may contribute to chronic pain.
Collapse
Affiliation(s)
- Christian A Faig
- Department of Pharmacology, University of Alberta, 8613 114 Street NW, Edmonton, AB T6G 2R3, Canada; Neuroscience and Mental Health Institute, University of Alberta, 11315 87 Avenue NW, Edmonton, AB T6G 2E1, Canada
| | - Gloria H K Kim
- Neuroscience and Mental Health Institute, University of Alberta, 11315 87 Avenue NW, Edmonton, AB T6G 2E1, Canada
| | - Alison D Do
- Department of Physiology, University of Alberta, 8613 114 Street NW, Edmonton, AB T6G 2R3, Canada
| | - Zoë Dworsky-Fried
- Department of Pharmacology, University of Alberta, 8613 114 Street NW, Edmonton, AB T6G 2R3, Canada
| | - Jesse Jackson
- Neuroscience and Mental Health Institute, University of Alberta, 11315 87 Avenue NW, Edmonton, AB T6G 2E1, Canada; Department of Physiology, University of Alberta, 8613 114 Street NW, Edmonton, AB T6G 2R3, Canada.
| | - Anna M W Taylor
- Department of Pharmacology, University of Alberta, 8613 114 Street NW, Edmonton, AB T6G 2R3, Canada; Neuroscience and Mental Health Institute, University of Alberta, 11315 87 Avenue NW, Edmonton, AB T6G 2E1, Canada; Cancer Research Institute of Northern Alberta, University of Alberta, 11315 87 Avenue NW, Edmonton, AB T6G 2E1, Canada; Department of Anesthesiology and Pain Medicine, University of Alberta, 8440 112 Street NW, Edmonton, AB T6G 2B7, Canada.
| |
Collapse
|
7
|
Han Y, Sohn K, Yoon D, Park S, Lee J, Choi S. Delayed escape behavior requires claustral activity. Cell Rep 2024; 43:113748. [PMID: 38324450 DOI: 10.1016/j.celrep.2024.113748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/05/2023] [Accepted: 01/21/2024] [Indexed: 02/09/2024] Open
Abstract
Animals are known to exhibit innate and learned forms of defensive behaviors, but it is unclear whether animals can escape through methods other than these forms. In this study, we develop the delayed escape task, in which male rats temporarily hold the information required for future escape, and we demonstrate that this task, in which the subject extrapolates from past experience without direct experience of its behavioral outcome, does not fall into either of the two forms of behavior. During the holding period, a subset of neurons in the rostral-to-striatum claustrum (rsCla), only when pooled together, sustain enhanced population activity without ongoing sensory stimuli. Transient inhibition of rsCla neurons during the initial part of the holding period produces prolonged inhibition of the enhanced activity. The transient inhibition also attenuates the delayed escape behavior. Our data suggest that the rsCla activity bridges escape-inducing stimuli to the delayed onset of escape.
Collapse
Affiliation(s)
- Yujin Han
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea
| | - Kuenbae Sohn
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea
| | - Donghyeon Yoon
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea
| | - Sewon Park
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea
| | - Junghwa Lee
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea.
| | - Sukwoo Choi
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea.
| |
Collapse
|
8
|
Shaker T, Dagpa GJ, Cattaud V, Marriott BA, Sultan M, Almokdad M, Jackson J. A simple and reliable method for claustrum localization across age in mice. Mol Brain 2024; 17:10. [PMID: 38368400 PMCID: PMC10874566 DOI: 10.1186/s13041-024-01082-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/11/2024] [Indexed: 02/19/2024] Open
Abstract
The anatomical organization of the rodent claustrum remains obscure due to lack of clear borders that distinguish it from neighboring forebrain structures. Defining what constitutes the claustrum is imperative for elucidating its functions. Methods based on gene/protein expression or transgenic mice have been used to spatially outline the claustrum but often report incomplete labeling and/or lack of specificity during certain neurodevelopmental timepoints. To reliably identify claustrum projection cells in mice, we propose a simple immunolabelling method that juxtaposes the expression pattern of claustrum-enriched and cortical-enriched markers. We determined that claustrum cells immunoreactive for the claustrum-enriched markers Nurr1 and Nr2f2 are devoid of the cortical marker Tle4, which allowed us to differentiate the claustrum from adjoining cortical cells. Using retrograde tracing, we verified that nearly all claustrum projection neurons lack Tle4 but expressed Nurr1/Nr2f2 markers to different degrees. At neonatal stages between 7 and 21 days, claustrum projection neurons were identified by their Nurr1-postive/Tle4-negative expression profile, a time-period when other immunolabelling techniques used to localize the claustrum in adult mice are ineffective. Finally, exposure to environmental novelty enhanced the expression of the neuronal activation marker c-Fos in the claustrum region. Notably, c-Fos labeling was mainly restricted to Nurr1-positive cells and nearly absent from Tle4-positive cells, thus corroborating previous work reporting novelty-induced claustrum activation. Taken together, this method will aid in studying the claustrum during postnatal development and may improve histological and functional studies where other approaches are not amenable.
Collapse
Affiliation(s)
- Tarek Shaker
- Department of Physiology, University of Alberta, 7-22 Medical Sciences Building, Edmonton, AB, T6G 2H7, Canada
| | - Gwyneth J Dagpa
- Department of Physiology, University of Alberta, 7-22 Medical Sciences Building, Edmonton, AB, T6G 2H7, Canada
| | - Vanessa Cattaud
- Department of Physiology, University of Alberta, 7-22 Medical Sciences Building, Edmonton, AB, T6G 2H7, Canada
| | - Brian A Marriott
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Mariam Sultan
- Department of Physiology, University of Alberta, 7-22 Medical Sciences Building, Edmonton, AB, T6G 2H7, Canada
| | - Mohammed Almokdad
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Jesse Jackson
- Department of Physiology, University of Alberta, 7-22 Medical Sciences Building, Edmonton, AB, T6G 2H7, Canada.
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
9
|
Marriott BA, Do AD, Portet C, Thellier F, Goutagny R, Jackson J. Brain-state-dependent constraints on claustrocortical communication and function. Cell Rep 2024; 43:113620. [PMID: 38159273 DOI: 10.1016/j.celrep.2023.113620] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/20/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024] Open
Abstract
Neural activity in the claustrum has been associated with a range of vigilance states, yet the activity patterns and efficacy of synaptic communication of identified claustrum neurons have not been thoroughly determined. Here, we show that claustrum neurons projecting to the retrosplenial cortex are most active during synchronized cortical states such as non-rapid eye movement (NREM) sleep and are suppressed during increased cortical desynchronization associated with arousal, movement, and REM sleep. The efficacy of claustrocortical signaling is increased during NREM and diminished during movement due in part to increased cholinergic tone. Finally, claustrum activation during NREM sleep enhances memory consolidation through the phase resetting of cortical delta waves. Therefore, claustrocortical communication is constrained to function most effectively during cognitive processes associated with synchronized cortical states, such as memory consolidation.
Collapse
Affiliation(s)
- Brian A Marriott
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G2H7, Canada
| | - Alison D Do
- Department of Physiology, University of Alberta, Edmonton, AB T6G2H7, Canada
| | - Coline Portet
- University of Strasbourg, Strasbourg, France; Laboratoire de Neurosciences Cognitives et Adaptatives, CNRS UMR7364, Strasbourg, France
| | - Flora Thellier
- University of Strasbourg, Strasbourg, France; Laboratoire de Neurosciences Cognitives et Adaptatives, CNRS UMR7364, Strasbourg, France
| | - Romain Goutagny
- University of Strasbourg, Strasbourg, France; Laboratoire de Neurosciences Cognitives et Adaptatives, CNRS UMR7364, Strasbourg, France.
| | - Jesse Jackson
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G2H7, Canada; Department of Physiology, University of Alberta, Edmonton, AB T6G2H7, Canada.
| |
Collapse
|
10
|
Grimstvedt JS, Shelton AM, Hoerder‐Suabedissen A, Oliver DK, Berndtsson CH, Blankvoort S, Nair RR, Packer AM, Witter MP, Kentros CG. A multifaceted architectural framework of the mouse claustrum complex. J Comp Neurol 2023; 531:1772-1795. [PMID: 37782702 PMCID: PMC10953385 DOI: 10.1002/cne.25539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 10/04/2023]
Abstract
Accurate anatomical characterizations are necessary to investigate neural circuitry on a fine scale, but for the rodent claustrum complex (CLCX), this has yet to be fully accomplished. The CLCX is generally considered to comprise two major subdivisions, the claustrum (CL) and the dorsal endopiriform nucleus (DEn), but regional boundaries to these areas are debated. To address this, we conducted a multifaceted analysis of fiber- and cytoarchitecture, genetic marker expression, and connectivity using mice of both sexes, to create a comprehensive guide for identifying and delineating borders to CLCX, including an online reference atlas. Our data indicated four distinct subregions within CLCX, subdividing both CL and DEn into two. Additionally, we conducted brain-wide tracing of inputs to CLCX using a transgenic mouse line. Immunohistochemical staining against myelin basic protein (MBP), parvalbumin (PV), and calbindin (CB) revealed intricate fiber-architectural patterns enabling precise delineations of CLCX and its subregions. Myelinated fibers were abundant dorsally in CL but absent ventrally, whereas PV expressing fibers occupied the entire CL. CB staining revealed a central gap within CL, also visible anterior to the striatum. The Nr2f2, Npsr1, and Cplx3 genes expressed specifically within different subregions of the CLCX, and Rprm helped delineate the CL-insular border. Furthermore, cells in CL projecting to the retrosplenial cortex were located within the myelin sparse area. By combining own experimental data with digitally available datasets of gene expression and input connectivity, we could demonstrate that the proposed delineation scheme allows anchoring of datasets from different origins to a common reference framework.
Collapse
Affiliation(s)
- Joachim S. Grimstvedt
- Kavli Institute for Systems NeuroscienceNTNU Norwegian University of Science and TechnologyTrondheimNorway
| | - Andrew M. Shelton
- Department of Physiology, Anatomy & GeneticsUniversity of OxfordOxfordUK
| | | | - David K. Oliver
- Department of Physiology, Anatomy & GeneticsUniversity of OxfordOxfordUK
| | - Christin H. Berndtsson
- Kavli Institute for Systems NeuroscienceNTNU Norwegian University of Science and TechnologyTrondheimNorway
| | - Stefan Blankvoort
- Kavli Institute for Systems NeuroscienceNTNU Norwegian University of Science and TechnologyTrondheimNorway
| | - Rajeevkumar R. Nair
- Kavli Institute for Systems NeuroscienceNTNU Norwegian University of Science and TechnologyTrondheimNorway
| | - Adam M. Packer
- Department of Physiology, Anatomy & GeneticsUniversity of OxfordOxfordUK
| | - Menno P. Witter
- Kavli Institute for Systems NeuroscienceNTNU Norwegian University of Science and TechnologyTrondheimNorway
| | - Clifford G. Kentros
- Kavli Institute for Systems NeuroscienceNTNU Norwegian University of Science and TechnologyTrondheimNorway
- Institute of NeuroscienceUniversity of OregonEugeneOregonUSA
| |
Collapse
|
11
|
Takahashi M, Kobayashi T, Mizuma H, Yamauchi K, Okamoto S, Okamoto K, Ishida Y, Koike M, Watanabe M, Isa T, Hioki H. Preferential arborization of dendrites and axons of parvalbumin- and somatostatin-positive GABAergic neurons within subregions of the mouse claustrum. Neurosci Res 2023; 190:92-106. [PMID: 36574563 DOI: 10.1016/j.neures.2022.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/06/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022]
Abstract
The claustrum coordinates the activities of individual cortical areas through abundant reciprocal connections with the cerebral cortex. Although these excitatory connections have been extensively investigated in three subregions of the claustrum-core region and dorsal and ventral shell regions-the contribution of GABAergic neurons to the circuitry in each subregion remains unclear. Here, we examined the distribution of GABAergic neurons and their dendritic and axonal arborizations in each subregion. Combining in situ hybridization with immunofluorescence histochemistry showed that approximately 10% of neuronal nuclei-positive cells expressed glutamic acid decarboxylase 67 mRNA across the claustral subregions. Approximately 20%, 30%, and 10% of GABAergic neurons were immunoreactive for parvalbumin (PV), somatostatin (SOM), and vasoactive intestinal polypeptide, respectively, in each subregion, and these neurochemical markers showed little overlap with each other. We then reconstructed PV and SOM neurons labeled with adeno-associated virus vectors. The dendrites and axons of PV and SOM neurons were preferentially localized to their respective subregions where their cell bodies were located. Furthermore, the axons were preferentially extended in a rostrocaudal direction, whereas the dendrites were relatively isotropic. The present findings suggest that claustral PV and SOM neurons might execute information processing separately within the core and shell regions.
Collapse
Affiliation(s)
- Megumu Takahashi
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Research Fellow of Japan Society for the Promotion of Science (JSPS), Chiyoda-ku, Tokyo 102-0083, Japan
| | - Tomoyo Kobayashi
- Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Haruhi Mizuma
- Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Kenta Yamauchi
- Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Shinichiro Okamoto
- Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Advanced Research Institute for Health Sciences, Juntendo University, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Kazuki Okamoto
- Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Yoko Ishida
- Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Advanced Research Institute for Health Sciences, Juntendo University, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Masato Koike
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Advanced Research Institute for Health Sciences, Juntendo University, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan
| | - Tadashi Isa
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 606-8501, Japan
| | - Hiroyuki Hioki
- Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Department of Multi-Scale Brain Structure Imaging, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan.
| |
Collapse
|
12
|
Hoerder-Suabedissen A, Ocana-Santero G, Draper TH, Scott SA, Kimani JG, Shelton AM, Butt SJB, Molnár Z, Packer AM. Temporal origin of mouse claustrum and development of its cortical projections. Cereb Cortex 2023; 33:3944-3959. [PMID: 36104852 PMCID: PMC10068282 DOI: 10.1093/cercor/bhac318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/12/2022] Open
Abstract
The claustrum is known for its extensive connectivity with many other forebrain regions, but its elongated shape and deep location have made further study difficult. We have sought to understand when mouse claustrum neurons are born, where they are located in developing brains, and when they develop their widespread connections to the cortex. We established that a well-characterized parvalbumin plexus, which identifies the claustrum in adults, is only present from postnatal day (P) 21. A myeloarchitectonic outline of the claustrum can be derived from a triangular fiber arrangement from P15. A dense patch of Nurr1+ cells is present at its core and is already evident at birth. Bromodeoxyuridine birth dating of forebrain progenitors reveals that the majority of claustrum neurons are born during a narrow time window centered on embryonic day 12.5, which is later than the adjacent subplate and endopiriform nucleus. Retrograde tracing revealed that claustrum projections to anterior cingulate (ACA) and retrosplenial cortex (RSP) follow distinct developmental trajectories. Claustrum-ACA connectivity matures rapidly and reaches adult-like innervation density by P10, whereas claustrum-RSP innervation emerges later over a protracted time window. This work establishes the timeline of claustrum development and provides a framework for understanding how the claustrum is built and develops its unique connectivity.
Collapse
Affiliation(s)
- Anna Hoerder-Suabedissen
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, United Kingdom
| | - Gabriel Ocana-Santero
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, United Kingdom
| | - Thomas H Draper
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, United Kingdom
| | - Sophie A Scott
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, United Kingdom
- Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, London SE5 8AF, UK
| | - Jesse G Kimani
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, United Kingdom
| | - Andrew M Shelton
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, United Kingdom
| | - Simon J B Butt
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, United Kingdom
| | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, United Kingdom
| | - Adam M Packer
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, United Kingdom
| |
Collapse
|
13
|
Wang Q, Wang Y, Kuo HC, Xie P, Kuang X, Hirokawa KE, Naeemi M, Yao S, Mallory M, Ouellette B, Lesnar P, Li Y, Ye M, Chen C, Xiong W, Ahmadinia L, El-Hifnawi L, Cetin A, Sorensen SA, Harris JA, Zeng H, Koch C. Regional and cell-type-specific afferent and efferent projections of the mouse claustrum. Cell Rep 2023; 42:112118. [PMID: 36774552 PMCID: PMC10415534 DOI: 10.1016/j.celrep.2023.112118] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 12/17/2022] [Accepted: 01/30/2023] [Indexed: 02/13/2023] Open
Abstract
The claustrum (CLA) is a conspicuous subcortical structure interconnected with cortical and subcortical regions. Its regional anatomy and cell-type-specific connections in the mouse remain not fully determined. Using multimodal reference datasets, we confirmed the delineation of the mouse CLA as a single group of neurons embedded in the agranular insular cortex. We quantitatively investigated brain-wide inputs and outputs of CLA using bulk anterograde and retrograde viral tracing data and single neuron tracing data. We found that the prefrontal module has more cell types projecting to the CLA than other cortical modules, with layer 5 IT neurons predominating. We found nine morphological types of CLA principal neurons that topographically innervate functionally linked cortical targets, preferentially the midline cortical areas, secondary motor area, and entorhinal area. Together, this study provides a detailed wiring diagram of the cell-type-specific connections of the mouse CLA, laying a foundation for studying its functions at the cellular level.
Collapse
Affiliation(s)
- Quanxin Wang
- Allen Institute for Brain Science, Seattle, WA 98109, USA.
| | - Yun Wang
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Hsien-Chi Kuo
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Peng Xie
- Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu, China
| | - Xiuli Kuang
- School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | | | - Maitham Naeemi
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Shenqin Yao
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Matt Mallory
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Ben Ouellette
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Phil Lesnar
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Yaoyao Li
- School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Min Ye
- School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Chao Chen
- School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Wei Xiong
- School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | | | | | - Ali Cetin
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Julie A Harris
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Christof Koch
- Allen Institute for Brain Science, Seattle, WA 98109, USA.
| |
Collapse
|
14
|
Influence of claustrum on cortex varies by area, layer, and cell type. Neuron 2023; 111:275-290.e5. [PMID: 36368317 DOI: 10.1016/j.neuron.2022.10.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/15/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022]
Abstract
The claustrum is a small subcortical structure with widespread connections to disparate regions of the cortex. However, the impact of the claustrum on cortical activity is not fully understood, particularly beyond frontal areas. Here, using optogenetics and multi-regional Neuropixels recordings from over 15,000 cortical neurons in awake mice, we demonstrate that the effect of claustrum input to the cortex differs depending on brain area, layer, and cell type. Brief claustrum stimulation, producing approximately 1 spike per claustrum neuron, affects many fast spiking (FS; putative inhibitory) but relatively fewer regular-spiking (RS; putative excitatory) cortical neurons and leads to a modest decrease in population activity in frontal cortical areas. Prolonged claustrum stimulation affects many more cortical neurons and can increase or decrease spiking activity. More excitation occurs in posterior regions and superficial layers, while inhibition predominates in frontal regions and deeper layers. These findings suggest that claustro-cortical circuits are organized into functional modules.
Collapse
|
15
|
Qadir H, Stewart BW, VanRyzin JW, Wu Q, Chen S, Seminowicz DA, Mathur BN. The mouse claustrum synaptically connects cortical network motifs. Cell Rep 2022; 41:111860. [PMID: 36543121 PMCID: PMC9838879 DOI: 10.1016/j.celrep.2022.111860] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/31/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Spatially distant areas of the cerebral cortex coordinate their activity into networks that are integral to cognitive processing. A common structural motif of cortical networks is co-activation of frontal and posterior cortical regions. The neural circuit mechanisms underlying such widespread inter-areal cortical coordination are unclear. Using a discovery based functional magnetic resonance imaging (fMRI) approach in mouse, we observe frontal and posterior cortical regions that demonstrate significant functional connectivity with the subcortical nucleus, the claustrum. Examining whether the claustrum synaptically supports such frontoposterior cortical network architecture, we observe cortico-claustro-cortical circuits reflecting the fMRI data: significant trans-claustral synaptic connectivity from frontal cortices to posteriorly lying sensory and sensory association cortices contralaterally. These data reveal discrete cortical pathways through the claustrum that are positioned to support cortical network motifs central to cognitive control functions and add to the canon of major extended cortico-subcortico-cortical systems in the mammalian brain.
Collapse
Affiliation(s)
- Houman Qadir
- Department of Pharmacology, University of Maryland School of Medicine, HSF III 9179, Baltimore, MD 21201, USA
| | - Brent W. Stewart
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Jonathan W. VanRyzin
- Department of Pharmacology, University of Maryland School of Medicine, HSF III 9179, Baltimore, MD 21201, USA
| | - Qiong Wu
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Shuo Chen
- Division of Biostatistics and Bioinformatics, Department of Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - David A. Seminowicz
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, USA,Department of Medical Biophysics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Brian N. Mathur
- Department of Pharmacology, University of Maryland School of Medicine, HSF III 9179, Baltimore, MD 21201, USA,Lead contact,Correspondence:
| |
Collapse
|
16
|
Ham GX, Augustine GJ. Topologically Organized Networks in the Claustrum Reflect Functional Modularization. Front Neuroanat 2022; 16:901807. [PMID: 35815332 PMCID: PMC9259979 DOI: 10.3389/fnana.2022.901807] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/11/2022] [Indexed: 12/04/2022] Open
Abstract
Using genetic strategies and viral-based directional tracers, we investigated the topological location and output networks of claustrum (CLA) neuron populations projecting to either the retrosplenial cortex, primary motor cortex, or basolateral amygdala. We found that all three CLA neuron populations clearly reside in distinct topological locations within the CLA complex and project broadly to multiple downstream targets. Each neuron population projects to different targets, suggesting that each CLA subzone coordinates a unique set of brain-wide functions. Our findings establish that the claustrum complex encompasses at least three minimally overlapping networks that are compartmentalized into different topological subzones. Such modularity is likely to be important for CLA function.
Collapse
Affiliation(s)
| | - George J. Augustine
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
17
|
Kitanishi T, Tashiro M, Kitanishi N, Mizuseki K. Intersectional, anterograde transsynaptic targeting of neurons receiving monosynaptic inputs from two upstream regions. Commun Biol 2022; 5:149. [PMID: 35190665 PMCID: PMC8860993 DOI: 10.1038/s42003-022-03096-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/01/2022] [Indexed: 12/17/2022] Open
Abstract
A brain region typically receives inputs from multiple upstream areas. However, currently, no method is available to selectively dissect neurons that receive monosynaptic inputs from two upstream regions. Here, we developed a method to genetically label such neurons with a single gene of interest in mice by combining the anterograde transsynaptic spread of adeno-associated virus serotype 1 (AAV1) with intersectional gene expression. Injections of AAV1 expressing either Cre or Flpo recombinases and the Cre/Flpo double-dependent AAV into two upstream regions and the downstream region, respectively, were used to label postsynaptic neurons receiving inputs from the two upstream regions. We demonstrated this labelling in two distinct circuits: the retina/primary visual cortex to the superior colliculus and the bilateral motor cortex to the dorsal striatum. Systemic delivery of the intersectional AAV allowed the unbiased detection of the labelled neurons throughout the brain. This strategy may help analyse the interregional integration of information in the brain. In this paper, a method is developed to genetically label neurons that receive monosynaptic inputs from two upstream regions of the brain. This could improve the analysis of interregional integration of information in neurons.
Collapse
Affiliation(s)
- Takuma Kitanishi
- Department of Physiology, Osaka City University Graduate School of Medicine, Osaka, 545-8585, Japan. .,PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama, 332-0012, Japan.
| | - Mariko Tashiro
- Department of Physiology, Osaka City University Graduate School of Medicine, Osaka, 545-8585, Japan
| | - Naomi Kitanishi
- Department of Physiology, Osaka City University Graduate School of Medicine, Osaka, 545-8585, Japan
| | - Kenji Mizuseki
- Department of Physiology, Osaka City University Graduate School of Medicine, Osaka, 545-8585, Japan.
| |
Collapse
|
18
|
Differential distribution of inhibitory neuron types in subregions of claustrum and dorsal endopiriform nucleus of the short-tailed fruit bat. Brain Struct Funct 2022; 227:1615-1640. [PMID: 35188589 DOI: 10.1007/s00429-022-02459-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/17/2022] [Indexed: 12/22/2022]
Abstract
Few brain regions have such wide-ranging inputs and outputs as the claustrum does, and fewer have posed equivalent challenges in defining their structural boundaries. We studied the distributions of three calcium-binding proteins-calretinin, parvalbumin, and calbindin-in the claustrum and dorsal endopiriform nucleus of the fruit bat, Carollia perspicillata. The proportionately large sizes of claustrum and dorsal endopiriform nucleus in Carollia brain afford unique access to these structures' intrinsic anatomy. Latexin immunoreactivity permits a separation of claustrum into core and shell subregions and an equivalent separation of dorsal endopiriform nucleus. Using latexin labeling, we found that the claustral shell in Carollia brain can be further subdivided into at least four distinct subregions. Calretinin and parvalbumin immunoreactivity reinforced the boundaries of the claustral core and its shell subregions with diametrically opposite distribution patterns. Calretinin, parvalbumin, and calbindin all colocalized with GAD67, indicating that these proteins label inhibitory neurons in both claustrum and dorsal endopiriform nucleus. Calretinin, however, also colocalized with latexin in a subset of neurons. Confocal microscopy revealed appositions that suggest synaptic contacts between cells labeled for each of the three calcium-binding proteins and latexin-immunoreactive somata in claustrum and dorsal endopiriform nucleus. Our results indicate significant subregional differences in the intrinsic inhibitory connectivity within and between claustrum and dorsal endopiriform nucleus. We conclude that the claustrum is structurally more complex than previously appreciated and that claustral and dorsal endopiriform nucleus subregions are differentially modulated by multiple inhibitory systems. These findings can also account for the excitability differences between claustrum and dorsal endopiriform nucleus described previously.
Collapse
|
19
|
Chevée M, Finkel EA, Kim SJ, O’Connor DH, Brown SP. Neural activity in the mouse claustrum in a cross-modal sensory selection task. Neuron 2022; 110:486-501.e7. [PMID: 34863367 PMCID: PMC8829966 DOI: 10.1016/j.neuron.2021.11.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 09/28/2021] [Accepted: 11/12/2021] [Indexed: 02/04/2023]
Abstract
The claustrum, a subcortical nucleus forming extensive connections with the neocortex, has been implicated in sensory selection. Sensory-evoked claustrum activity is thought to modulate the neocortex's context-dependent response to sensory input. Recording from claustrum neurons while mice performed a tactile-visual sensory-selection task, we found that neurons in the anterior claustrum, including putative optotagged claustrocortical neurons projecting to the primary somatosensory cortex (S1), were rarely modulated by sensory input. Rather, they exhibited different types of direction-tuned motor responses. Furthermore, we found that claustrum neurons encoded upcoming movement during intertrial intervals and that pairs of claustrum neurons exhibiting synchronous firing were enriched for pairs preferring contralateral lick directions, suggesting that the activity of specific ensembles of similarly tuned claustrum neurons may modulate cortical activity. Chemogenetic inhibition of claustrocortical neurons decreased lick responses to inappropriate sensory stimuli. Altogether, our data indicate that the claustrum is integrated into higher-order premotor circuits recently implicated in decision-making.
Collapse
Affiliation(s)
- Maxime Chevée
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.,Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Eric A. Finkel
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Su-Jeong Kim
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Daniel H. O’Connor
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.,Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.,Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Solange P. Brown
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.,Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.,Lead contact,Correspondence:
| |
Collapse
|
20
|
Fang C, Wang H, Naumann RK. Developmental Patterning and Neurogenetic Gradients of Nurr1 Positive Neurons in the Rat Claustrum and Lateral Cortex. Front Neuroanat 2021; 15:786329. [PMID: 34924965 PMCID: PMC8675902 DOI: 10.3389/fnana.2021.786329] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/05/2021] [Indexed: 12/20/2022] Open
Abstract
The claustrum is an enigmatic brain structure thought to be important for conscious sensations. Recent studies have focused on gene expression patterns, connectivity, and function of the claustrum, but relatively little is known about its development. Interestingly, claustrum-enriched genes, including the previously identified marker Nurr1, are not only expressed in the classical claustrum complex, but also embedded within lateral neocortical regions in rodents. Recent studies suggest that Nurr1 positive neurons in the lateral cortex share a highly conserved genetic expression pattern with claustrum neurons. Thus, we focus on the developmental progression and birth dating pattern of the claustrum and Nurr1 positive neurons in the lateral cortex. We comprehensively investigate the expression of Nurr1 at various stages of development in the rat and find that Nurr1 expression first appears as an elongated line along the anterior-posterior axis on embryonic day 13.5 (E13.5) and then gradually differentiates into multiple sub-regions during prenatal development. Previous birth dating studies of the claustrum have led to conflicting results, therefore, we combine 5-ethynyl-2'-deoxyuridine (EdU) labeling with in situ hybridization for Nurr1 to study birth dating patterns. We find that most dorsal endopiriform (DEn) neurons are born on E13.5 to E14.5. Ventral claustrum (vCL) and dorsal claustrum (dCL) are mainly born on E14.5 to E15.5. Nurr1 positive cortical deep layer neurons (dLn) and superficial layer neurons (sLn) are mainly born on E14.5 to E15.5 and E15.5 to E17.5, respectively. Finally, we identify ventral to dorsal and posterior to anterior neurogenetic gradients within vCL and DEn. Thus, our findings suggest that claustrum and Nurr1 positive neurons in the lateral cortex are born sequentially over several days of embryonic development and contribute toward charting the complex developmental pattern of the claustrum in rodents.
Collapse
Affiliation(s)
| | | | - Robert Konrad Naumann
- CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| |
Collapse
|
21
|
Erwin SR, Bristow BN, Sullivan KE, Kendrick RM, Marriott B, Wang L, Clements J, Lemire AL, Jackson J, Cembrowski MS. Spatially patterned excitatory neuron subtypes and projections of the claustrum. eLife 2021; 10:68967. [PMID: 34397382 PMCID: PMC8367382 DOI: 10.7554/elife.68967] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/28/2021] [Indexed: 01/22/2023] Open
Abstract
The claustrum is a functionally and structurally complex brain region, whose very spatial extent remains debated. Histochemical-based approaches typically treat the claustrum as a relatively narrow anatomical region that primarily projects to the neocortex, whereas circuit-based approaches can suggest a broader claustrum region containing projections to the neocortex and other regions. Here, in the mouse, we took a bottom-up and cell-type-specific approach to complement and possibly unite these seemingly disparate conclusions. Using single-cell RNA-sequencing, we found that the claustrum comprises two excitatory neuron subtypes that are differentiable from the surrounding cortex. Multicolor retrograde tracing in conjunction with 12-channel multiplexed in situ hybridization revealed a core-shell spatial arrangement of these subtypes, as well as differential downstream targets. Thus, the claustrum comprises excitatory neuron subtypes with distinct molecular and projection properties, whose spatial patterns reflect the narrower and broader claustral extents debated in previous research. This subtype-specific heterogeneity likely shapes the functional complexity of the claustrum.
Collapse
Affiliation(s)
- Sarah R Erwin
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Brianna N Bristow
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Kaitlin E Sullivan
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Rennie M Kendrick
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Brian Marriott
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Lihua Wang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Jody Clements
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Andrew L Lemire
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Jesse Jackson
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada.,Department of Physiology, University of Alberta, Edmonton, Canada
| | - Mark S Cembrowski
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada.,Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
| |
Collapse
|
22
|
Wong KLL, Nair A, Augustine GJ. Changing the Cortical Conductor's Tempo: Neuromodulation of the Claustrum. Front Neural Circuits 2021; 15:658228. [PMID: 34054437 PMCID: PMC8155375 DOI: 10.3389/fncir.2021.658228] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
The claustrum is a thin sheet of neurons that is densely connected to many cortical regions and has been implicated in numerous high-order brain functions. Such brain functions arise from brain states that are influenced by neuromodulatory pathways from the cholinergic basal forebrain, dopaminergic substantia nigra and ventral tegmental area, and serotonergic raphe. Recent revelations that the claustrum receives dense input from these structures have inspired investigation of state-dependent control of the claustrum. Here, we review neuromodulation in the claustrum-from anatomical connectivity to behavioral manipulations-to inform future analyses of claustral function.
Collapse
Affiliation(s)
- Kelly L. L. Wong
- Neuroscience and Mental Health Program, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Aditya Nair
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Computation and Neural Systems, California Institute of Technology, Pasadena, CA, United States
| | - George J. Augustine
- Neuroscience and Mental Health Program, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
23
|
Marriott BA, Do AD, Zahacy R, Jackson J. Topographic gradients define the projection patterns of the claustrum core and shell in mice. J Comp Neurol 2021; 529:1607-1627. [PMID: 32975316 PMCID: PMC8048916 DOI: 10.1002/cne.25043] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 01/05/2023]
Abstract
The claustrum is densely connected to the cortex and participates in brain functions such as attention and sleep. Although some studies have reported the widely divergent organization of claustrum projections, others describe parallel claustrocortical connections to different cortical regions. Therefore, the details underlying how claustrum neurons broadcast information to cortical networks remain incompletely understood. Using multicolor retrograde tracing we determined the density, topography, and co-projection pattern of 14 claustrocortical pathways, in mice. We spatially registered these pathways to a common coordinate space and found that the claustrocortical system is topographically organized as a series of overlapping spatial modules, continuously distributed across the dorsoventral claustrum axis. The claustrum core projects predominantly to frontal-midline cortical regions, whereas the dorsal and ventral shell project to the cortical motor system and temporal lobe, respectively. Anatomically connected cortical regions receive common input from a subset of claustrum neurons shared by neighboring modules, whereas spatially separated regions of cortex are innervated by different claustrum modules. Therefore, each output module exhibits a unique position within the claustrum and overlaps substantially with other modules projecting to functionally related cortical regions. Claustrum inhibitory cells containing parvalbumin, somatostatin, and neuropeptide Y also show unique topographical distributions, suggesting different output modules are controlled by distinct inhibitory circuit motifs. The topographic organization of excitatory and inhibitory cell types may enable parallel claustrum outputs to independently coordinate distinct cortical networks.
Collapse
Affiliation(s)
- Brian A. Marriott
- Neuroscience and Mental Health InstituteUniversity of AlbertaEdmontonAlbertaCanada
| | - Alison D. Do
- Department of PhysiologyUniversity of AlbertaEdmontonAlbertaCanada
| | - Ryan Zahacy
- Neuroscience and Mental Health InstituteUniversity of AlbertaEdmontonAlbertaCanada
| | - Jesse Jackson
- Neuroscience and Mental Health InstituteUniversity of AlbertaEdmontonAlbertaCanada
- Department of PhysiologyUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|