1
|
Cai B, Wu D, Xie H, Chen Y, Wang H, Jin S, Song Y, Li A, Huang S, Wang S, Lu Y, Bao L, Xu F, Gong H, Li C, Zhang X. A direct spino-cortical circuit bypassing the thalamus modulates nociception. Cell Res 2023; 33:775-789. [PMID: 37311832 PMCID: PMC10542357 DOI: 10.1038/s41422-023-00832-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/19/2023] [Indexed: 06/15/2023] Open
Abstract
Nociceptive signals are usually transmitted to layer 4 neurons in somatosensory cortex via the spinothalamic-thalamocortical pathway. The layer 5 corticospinal neurons in sensorimotor cortex are reported to receive the output of neurons in superficial layers; and their descending axons innervate the spinal cord to regulate basic sensorimotor functions. Here, we show that a subset of layer 5 neurons receives spinal inputs through a direct spino-cortical circuit bypassing the thalamus, and thus define these neurons as spino-cortical recipient neurons (SCRNs). Morphological studies revealed that the branches from spinal ascending axons formed a kind of disciform structure with the descending axons from SCRNs in the basilar pontine nucleus (BPN). Electron microscopy and calcium imaging further confirmed that the axon terminals from spinal ascending neurons and SCRNs made functional synaptic contacts in the BPN, linking the ascending sensory pathway to the descending motor control pathway. Furthermore, behavioral tests indicated that the spino-cortical connection in the BPN was involved in nociceptive responses. In vivo calcium imaging showed that SCRNs responded to peripheral noxious stimuli faster than neighboring layer 4 cortical neurons in awake mice. Manipulating activities of SCRNs could modulate nociceptive behaviors. Therefore, this direct spino-cortical circuit represents a noncanonical pathway, allowing a fast sensory-motor transition of the brain in response to noxious stimuli.
Collapse
Affiliation(s)
- Bing Cai
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong, China
- SIMR Joint Lab of Drug Innovation, Shanghai Advanced Research Institute, Chinese Academy of Sciences (CAS); Xuhui Central Hospital, Shanghai, China
- Research Unit of Pain Medicine, Chinese Academy of Medical Sciences, Hengqin, Zhuhai, Guangdong, China
| | - Dan Wu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, CAS, Shanghai, China
| | - Hong Xie
- SIMR Joint Lab of Drug Innovation, Shanghai Advanced Research Institute, Chinese Academy of Sciences (CAS); Xuhui Central Hospital, Shanghai, China
- Institute of Photonic Chips; School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yan Chen
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong, China
- SIMR Joint Lab of Drug Innovation, Shanghai Advanced Research Institute, Chinese Academy of Sciences (CAS); Xuhui Central Hospital, Shanghai, China
- Research Unit of Pain Medicine, Chinese Academy of Medical Sciences, Hengqin, Zhuhai, Guangdong, China
| | - Huadong Wang
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, CAS, Shenzhen, Guangdong, China
| | - Sen Jin
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, CAS, Shenzhen, Guangdong, China
| | - Yuran Song
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong, China
- SIMR Joint Lab of Drug Innovation, Shanghai Advanced Research Institute, Chinese Academy of Sciences (CAS); Xuhui Central Hospital, Shanghai, China
- Research Unit of Pain Medicine, Chinese Academy of Medical Sciences, Hengqin, Zhuhai, Guangdong, China
| | - Anan Li
- HUST-Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou, Jiangsu, China
| | - Shiqi Huang
- SIMR Joint Lab of Drug Innovation, Shanghai Advanced Research Institute, Chinese Academy of Sciences (CAS); Xuhui Central Hospital, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Sashuang Wang
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital, Shenzhen, Guangdong, China
| | - Yingjin Lu
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong, China
| | - Lan Bao
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, CAS, Shanghai, China
| | - Fuqiang Xu
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, CAS, Shenzhen, Guangdong, China
| | - Hui Gong
- HUST-Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou, Jiangsu, China
| | - Changlin Li
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong, China.
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital, Shenzhen, Guangdong, China.
| | - Xu Zhang
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong, China.
- SIMR Joint Lab of Drug Innovation, Shanghai Advanced Research Institute, Chinese Academy of Sciences (CAS); Xuhui Central Hospital, Shanghai, China.
- Research Unit of Pain Medicine, Chinese Academy of Medical Sciences, Hengqin, Zhuhai, Guangdong, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
2
|
Khalil AJ, Mansvelder HD, Witter L. Mesodiencephalic junction GABAergic inputs are processed separately from motor cortical inputs in the basilar pons. iScience 2022; 25:104641. [PMID: 35800775 PMCID: PMC9254490 DOI: 10.1016/j.isci.2022.104641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/13/2022] [Accepted: 06/14/2022] [Indexed: 11/21/2022] Open
Abstract
The basilar pontine nuclei (bPN) are known to receive excitatory input from the entire neocortex and constitute the main source of mossy fibers to the cerebellum. Various potential inhibitory afferents have been described, but their origin, synaptic plasticity, and network function have remained elusive. Here we identify the mesodiencephalic junction (MDJ) as a prominent source of monosynaptic GABAergic inputs to the bPN. We found no evidence that these inputs converge with motor cortex (M1) inputs at the single neuron or at the local network level. Tracing the inputs to GABAergic MDJ neurons revealed inputs to these neurons from neocortical areas. Additionally, we observed little short-term synaptic facilitation or depression in afferents from the MDJ, enabling MDJ inputs to carry sign-inversed neocortical inputs. Thus, our results show a prominent source of GABAergic inhibition to the bPN that could enrich input to the cerebellar granule cell layer.
Collapse
Affiliation(s)
- Ayoub J. Khalil
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, 1081HV Amsterdam, the Netherlands
| | - Huibert D. Mansvelder
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, 1081HV Amsterdam, the Netherlands
| | - Laurens Witter
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, 1081HV Amsterdam, the Netherlands
- Department for Developmental Origins of Disease, Wilhelmina Children’s Hospital and Brain Center, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands
| |
Collapse
|
3
|
Anzulewicz A, Hobot J, Siedlecka M, Wierzchoń M. Bringing action into the picture. How action influences visual awareness. Atten Percept Psychophys 2019; 81:2171-2176. [PMID: 31168700 PMCID: PMC6848036 DOI: 10.3758/s13414-019-01781-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This article discusses how the analysis of interactions between action and awareness allows us to better understand the mechanisms of visual awareness. We argue that action is one of several factors that influence visual awareness and we provide a number of examples. We also discuss the possible mechanisms that underlie these influences on both the cognitive and the neural levels. We propose that action affects visual awareness for the following reasons: (1) it serves as additional information in the process of evidence accumulation; (2) it restricts the number of alternatives in the decisional process; (3) it enables error detection and performance monitoring; and (4) it triggers attentional mechanisms that modify stimulus perception. We also discuss the possible neuronal mechanisms of the aforementioned effects, including feedback-dependent prefrontal cortex modulation of the activity of visual areas, error-based modulation, interhemispheric inhibition of motor cortices, and attentional modulation of visual cortex activity triggered by motor processing.
Collapse
Affiliation(s)
- Anna Anzulewicz
- Consciousness Lab, Institute of Psychology, Jagiellonian University, Ingardena 6, 30-060, Kraków, Poland
| | - Justyna Hobot
- Consciousness Lab, Institute of Psychology, Jagiellonian University, Ingardena 6, 30-060, Kraków, Poland
| | - Marta Siedlecka
- Consciousness Lab, Institute of Psychology, Jagiellonian University, Ingardena 6, 30-060, Kraków, Poland
| | - Michał Wierzchoń
- Consciousness Lab, Institute of Psychology, Jagiellonian University, Ingardena 6, 30-060, Kraków, Poland.
| |
Collapse
|
4
|
Person AL. Corollary Discharge Signals in the Cerebellum. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 4:813-819. [PMID: 31230918 DOI: 10.1016/j.bpsc.2019.04.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/09/2019] [Accepted: 04/24/2019] [Indexed: 10/26/2022]
Abstract
The cerebellum is known to make movements fast, smooth, and accurate. Many hypotheses emphasize the role of the cerebellum in computing learned predictions important for sensorimotor calibration and feedforward control of movements. Hypotheses of the computations performed by the cerebellum in service of motor control borrow heavily from control systems theory, with models that frequently invoke copies of motor commands, called corollary discharge. This review describes evidence for corollary discharge inputs to the cerebellum and highlights the hypothesized roles for this information in cerebellar motor-related computations. Insights into the role of corollary discharge in motor control, described here, are intended to inform the exciting but still untested roles of corollary discharge in cognition, perception, and thought control relevant in psychiatric disorders.
Collapse
Affiliation(s)
- Abigail L Person
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|
5
|
Benagiano V, Rizzi A, Lorusso L, Flace P, Saccia M, Cagiano R, Ribatti D, Roncali L, Ambrosi G. The functional anatomy of the cerebrocerebellar circuit: A review and new concepts. J Comp Neurol 2017; 526:769-789. [PMID: 29238972 DOI: 10.1002/cne.24361] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 11/03/2017] [Accepted: 11/06/2017] [Indexed: 12/19/2022]
Abstract
The cerebrocerebellar circuit is a feedback circuit that bidirectionally connects the neocortex and the cerebellum. According to the classic view, the cerebrocerebellar circuit is specifically involved in the functional regulation of the motor areas of the neocortex. In recent years, studies carried out in experimental animals by morphological and physiological methods, and in humans by magnetic resonance imaging, have indicated that the cerebrocerebellar circuit is also involved in the functional regulation of the nonmotor areas of the neocortex, including the prefrontal, associative, sensory and limbic areas. Moreover, a second type of cerebrocerebellar circuit, bidirectionally connecting the hypothalamus and the cerebellum, has been detected, being specifically involved in the regulation of the hypothalamic functions. This review analyzes the morphological features of the centers and pathways of the cerebrocerebellar circuits, paying particular attention to their organization in different channels, which separately connect the cerebellum with the motor areas and nonmotor areas of the neocortex, and with the hypothalamus. Actually, a considerable amount of new data have led, and are leading, to profound changes on the views on the anatomy, physiology, and pathophysiology of the cerebrocerebellar circuits, so much they may be now considered to be essential for the functional regulation of many neocortex areas, perhaps all, as well as of the hypothalamus and of the limbic system. Accordingly, clinical studies have pointed out an involvement of the cerebrocerebellar circuits in the pathophysiology of an increasing number of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Vincenzo Benagiano
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari, Bari, Italy
| | - Anna Rizzi
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari, Bari, Italy
| | - Loredana Lorusso
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari, Bari, Italy
| | - Paolo Flace
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari, Bari, Italy
| | - Matteo Saccia
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari, Bari, Italy
| | - Raffaele Cagiano
- Department of Biomedical Sciences and Human Oncology, University of Bari, Bari, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari, Bari, Italy.,National Cancer Institute 'Giovanni Paolo II', Bari, Italy
| | - Luisa Roncali
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari, Bari, Italy
| | - Glauco Ambrosi
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari, Bari, Italy
| |
Collapse
|
6
|
Moya MV, Siegel JJ, McCord ED, Kalmbach BE, Dembrow N, Johnston D, Chitwood RA. Species-specific differences in the medial prefrontal projections to the pons between rat and rabbit. J Comp Neurol 2015; 522:3052-74. [PMID: 24639247 DOI: 10.1002/cne.23566] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 01/18/2014] [Accepted: 02/18/2014] [Indexed: 12/19/2022]
Abstract
The medial prefrontal cortex (mPFC) of both rats and rabbits has been shown to support trace eyeblink conditioning, presumably by providing an input to the cerebellum via the pons that bridges the temporal gap between conditioning stimuli. The pons of rats and rabbits, however, shows divergence in gross anatomical organization, leaving open the question of whether the topography of prefrontal inputs to the pons is similar in rats and rabbits. To investigate this question, we injected anterograde tracer into the mPFC of rats and rabbits to visualize and map in 3D the distribution of labeled terminals in the pons. Effective mPFC injections showed labeled axons in the ipsilateral descending pyramidal tract in both species. In rats, discrete clusters of densely labeled terminals were observed primarily in the rostromedial pons. Clusters of labeled terminals were also observed contralateral to mPFC injection sites in rats, appearing as a less dense "mirror-image" of ipsilateral labeling. In rabbits, mPFC labeled corticopontine terminals were absent in the rostral pons, and instead were restricted to the intermediate pons. The densest terminal fields were typically observed in association with the ipsilateral pyramidal tract as it descended ventromedially through the rabbit pons. No contralateral terminal labeling was observed for any injections made in the rabbit mPFC. The results suggest the possibility that mPFC inputs to the pons may be integrated with different sources of cortical inputs between rats and rabbits. The resulting implications for mPFC or pons manipulations for studies of trace eyeblink in each species are discussed.
Collapse
Affiliation(s)
- Maria V Moya
- Center for Learning & Memory, University of Texas at Austin, Austin, Texas, 78712
| | | | | | | | | | | | | |
Collapse
|
7
|
Rondi-Reig L, Paradis AL, Lefort JM, Babayan BM, Tobin C. How the cerebellum may monitor sensory information for spatial representation. Front Syst Neurosci 2014; 8:205. [PMID: 25408638 PMCID: PMC4219422 DOI: 10.3389/fnsys.2014.00205] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 10/01/2014] [Indexed: 01/09/2023] Open
Abstract
The cerebellum has already been shown to participate in the navigation function. We propose here that this structure is involved in maintaining a sense of direction and location during self-motion by monitoring sensory information and interacting with navigation circuits to update the mental representation of space. To better understand the processing performed by the cerebellum in the navigation function, we have reviewed: the anatomical pathways that convey self-motion information to the cerebellum; the computational algorithm(s) thought to be performed by the cerebellum from these multi-source inputs; the cerebellar outputs directed toward navigation circuits and the influence of self-motion information on space-modulated cells receiving cerebellar outputs. This review highlights that the cerebellum is adequately wired to combine the diversity of sensory signals to be monitored during self-motion and fuel the navigation circuits. The direct anatomical projections of the cerebellum toward the head-direction cell system and the parietal cortex make those structures possible relays of the cerebellum influence on the hippocampal spatial map. We describe computational models of the cerebellar function showing that the cerebellum can filter out the components of the sensory signals that are predictable, and provides a novelty output. We finally speculate that this novelty output is taken into account by the navigation structures, which implement an update over time of position and stabilize perception during navigation.
Collapse
Affiliation(s)
- Laure Rondi-Reig
- Sorbonne Universités, UPMC Univ Paris 06, UMR-S 8246/UM 119, Neuroscience Paris Seine, Cerebellum, Navigation and Memory Team Paris, France ; Institut National de la Santé et de la Recherche Médicale 1130, Neuroscience Paris Seine, Cerebellum, Navigation and Memory Team Paris, France ; Centre National de la Recherche Scientifique, UMR 8246, Neuroscience Paris Seine, Cerebellum, Navigation and Memory Team Paris, France
| | - Anne-Lise Paradis
- Sorbonne Universités, UPMC Univ Paris 06, UMR-S 8246/UM 119, Neuroscience Paris Seine, Cerebellum, Navigation and Memory Team Paris, France ; Institut National de la Santé et de la Recherche Médicale 1130, Neuroscience Paris Seine, Cerebellum, Navigation and Memory Team Paris, France ; Centre National de la Recherche Scientifique, UMR 8246, Neuroscience Paris Seine, Cerebellum, Navigation and Memory Team Paris, France
| | - Julie M Lefort
- Sorbonne Universités, UPMC Univ Paris 06, UMR-S 8246/UM 119, Neuroscience Paris Seine, Cerebellum, Navigation and Memory Team Paris, France ; Institut National de la Santé et de la Recherche Médicale 1130, Neuroscience Paris Seine, Cerebellum, Navigation and Memory Team Paris, France ; Centre National de la Recherche Scientifique, UMR 8246, Neuroscience Paris Seine, Cerebellum, Navigation and Memory Team Paris, France
| | - Benedicte M Babayan
- Sorbonne Universités, UPMC Univ Paris 06, UMR-S 8246/UM 119, Neuroscience Paris Seine, Cerebellum, Navigation and Memory Team Paris, France ; Institut National de la Santé et de la Recherche Médicale 1130, Neuroscience Paris Seine, Cerebellum, Navigation and Memory Team Paris, France ; Centre National de la Recherche Scientifique, UMR 8246, Neuroscience Paris Seine, Cerebellum, Navigation and Memory Team Paris, France
| | - Christine Tobin
- Sorbonne Universités, UPMC Univ Paris 06, UMR-S 8246/UM 119, Neuroscience Paris Seine, Cerebellum, Navigation and Memory Team Paris, France ; Institut National de la Santé et de la Recherche Médicale 1130, Neuroscience Paris Seine, Cerebellum, Navigation and Memory Team Paris, France ; Centre National de la Recherche Scientifique, UMR 8246, Neuroscience Paris Seine, Cerebellum, Navigation and Memory Team Paris, France
| |
Collapse
|
8
|
Huang CC, Sugino K, Shima Y, Guo C, Bai S, Mensh BD, Nelson SB, Hantman AW. Convergence of pontine and proprioceptive streams onto multimodal cerebellar granule cells. eLife 2013; 2:e00400. [PMID: 23467508 PMCID: PMC3582988 DOI: 10.7554/elife.00400] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 01/28/2013] [Indexed: 12/30/2022] Open
Abstract
Cerebellar granule cells constitute the majority of neurons in the brain and are the primary conveyors of sensory and motor-related mossy fiber information to Purkinje cells. The functional capability of the cerebellum hinges on whether individual granule cells receive mossy fiber inputs from multiple precerebellar nuclei or are instead unimodal; this distinction is unresolved. Using cell-type-specific projection mapping with synaptic resolution, we observed the convergence of separate sensory (upper body proprioceptive) and basilar pontine pathways onto individual granule cells and mapped this convergence across cerebellar cortex. These findings inform the long-standing debate about the multimodality of mammalian granule cells and substantiate their associative capacity predicted in the Marr-Albus theory of cerebellar function. We also provide evidence that the convergent basilar pontine pathways carry corollary discharges from upper body motor cortical areas. Such merging of related corollary and sensory streams is a critical component of circuit models of predictive motor control. DOI:http://dx.doi.org/10.7554/eLife.00400.001 Learning a new motor skill, from riding a bicycle to eating with chopsticks, involves the cerebellum—a structure located at the base of the brain underneath the cerebral hemispheres. Although its name translates as ‘little brain' in Latin, the cerebellum contains more neurons than all other regions of the mammalian brain combined. Most cerebellar neurons are granule cells which, although numerous, are simple neurons with an average of only four excitatory inputs, from axons called mossy fibers. These inputs are diverse in nature, originating from virtually every sensory system and from command centers at multiple levels of the motor hierarchy. However, it is unclear whether individual granule cells receive inputs from only a single sensory source or can instead mix modalities. This distinction has important implications for the functional capabilities of the cerebellum. Now, Huang et al. have addressed this question by mapping, at extremely high resolution, the projections of two pathways onto individual granule cells—one carrying sensory feedback from the upper body (the proprioceptive stream), and another carrying motor-related information (the pontine stream). Using a combination of genetic and viral techniques to label the pathways, Huang and co-workers identified regions where the two types of fiber terminated in close proximity. They then showed that around 40% of proprioceptive granule cells formed junctions, or synapses, with two (or more) fibers carrying different types of input. These cells were not uniformly distributed throughout the cerebellum but tended to occur in ‘hotspots’. Lastly, Huang et al. examined the type of information conveyed by the sensory and motor-related input streams whenever they contacted a single granule cell. They confirmed that when the sensory input consisted of feedback from the upper body, the motor input consisted of copies of motor commands related to the same body region. Because it is thought that the cerebellum converts sensory information into representations of the body's movements, directing motor commands to these same circuits may allow the cerebellum to predict the consequences of a planned movement prior to, or without, the actual movement occurring. The work of Huang et al. provides evidence to support the previously controversial idea that granule cells in the mammalian cerebellum receive both sensory and motor-related inputs. The labeling technique that they used could also be deployed to study the inputs to the cerebellum in greater detail, which should yield new insights into the functioning of this part of the brain. DOI:http://dx.doi.org/10.7554/eLife.00400.002
Collapse
Affiliation(s)
- Cheng-Chiu Huang
- Janelia Farm Research Campus, Howard Hughes Medical Institute , Ashburn , United States
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Bosman LWJ, Houweling AR, Owens CB, Tanke N, Shevchouk OT, Rahmati N, Teunissen WHT, Ju C, Gong W, Koekkoek SKE, De Zeeuw CI. Anatomical pathways involved in generating and sensing rhythmic whisker movements. Front Integr Neurosci 2011; 5:53. [PMID: 22065951 PMCID: PMC3207327 DOI: 10.3389/fnint.2011.00053] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 08/26/2011] [Indexed: 11/29/2022] Open
Abstract
The rodent whisker system is widely used as a model system for investigating sensorimotor integration, neural mechanisms of complex cognitive tasks, neural development, and robotics. The whisker pathways to the barrel cortex have received considerable attention. However, many subcortical structures are paramount to the whisker system. They contribute to important processes, like filtering out salient features, integration with other senses, and adaptation of the whisker system to the general behavioral state of the animal. We present here an overview of the brain regions and their connections involved in the whisker system. We do not only describe the anatomy and functional roles of the cerebral cortex, but also those of subcortical structures like the striatum, superior colliculus, cerebellum, pontomedullary reticular formation, zona incerta, and anterior pretectal nucleus as well as those of level setting systems like the cholinergic, histaminergic, serotonergic, and noradrenergic pathways. We conclude by discussing how these brain regions may affect each other and how they together may control the precise timing of whisker movements and coordinate whisker perception.
Collapse
Affiliation(s)
- Laurens W. J. Bosman
- Department of Neuroscience, Erasmus MCRotterdam, Netherlands
- Netherlands Institute for Neuroscience, Royal Academy of Arts and SciencesAmsterdam, Netherlands
| | | | - Cullen B. Owens
- Department of Neuroscience, Erasmus MCRotterdam, Netherlands
| | - Nouk Tanke
- Department of Neuroscience, Erasmus MCRotterdam, Netherlands
| | | | - Negah Rahmati
- Department of Neuroscience, Erasmus MCRotterdam, Netherlands
| | | | - Chiheng Ju
- Department of Neuroscience, Erasmus MCRotterdam, Netherlands
| | - Wei Gong
- Department of Neuroscience, Erasmus MCRotterdam, Netherlands
| | | | - Chris I. De Zeeuw
- Department of Neuroscience, Erasmus MCRotterdam, Netherlands
- Netherlands Institute for Neuroscience, Royal Academy of Arts and SciencesAmsterdam, Netherlands
| |
Collapse
|
10
|
|
11
|
Overk CR, Kelley CM, Mufson EJ. Brainstem Alzheimer's-like pathology in the triple transgenic mouse model of Alzheimer's disease. Neurobiol Dis 2009; 35:415-25. [PMID: 19524671 DOI: 10.1016/j.nbd.2009.06.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 05/28/2009] [Accepted: 06/04/2009] [Indexed: 01/15/2023] Open
Abstract
The triple transgenic mouse (3xTgAD), harboring human APP(Swe), PS1(M146V) and Tau(P301L) genes, develops age-dependent forebrain intraneuronal Abeta and tau as well as extraneuronal plaques. We evaluated brainstem AD-like pathology using 6E10, AT8, and Alz50 antibodies and unbiased stereology in young and old 3xTgAD mice. Intraneuronal Abeta occurred in the tectum, periaqueductal gray, substantia nigra, red nucleus, tegmentum and mesencephalic V nucleus at all ages. Abeta-positive neuron numbers significantly decreased in the superior colliculus and substantia nigra while AT8-positive superior colliculus, red nucleus, principal sensory V, vestibular nuclei, and tegmental neurons significantly increased between 2 and 12 months. Alz50-positive neuron numbers increased only in the inferior colliculus between these ages. Dual labeling revealed a few Abeta- and tau-positive neurons. Plaques occurred only in the pons of female 3xTgAD mice starting at 9 months. 3xTgAD mice provide a platform to define in vivo mechanisms of Abeta and tau brainstem pathology.
Collapse
Affiliation(s)
- Cassia R Overk
- Department of Neurological Sciences, Rush University Medical Center, 1735 W. Harrison Street, Suite 300, Chicago, IL 60612, USA
| | | | | |
Collapse
|
12
|
Sharp FR. Regional (14C) 2-deoxyglucose uptake during forelimb movements evoked by rat motor cortex stimulation: cortex, diencephalon, midbrain. J Comp Neurol 2009; 224:259-85. [PMID: 19180815 DOI: 10.1002/cne.902240207] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The caudal forelimb region of right "motor" cortex was repetitively stimulated in normal, conscious rats. Left forelimb movements were produced and (14C) 2-deoxyglucose (2DG) was injected. After sacrifice, regions of increased brain (14C) 2DG uptake were mapped autoradiographically. Uptake of 2DG increased about the stimulating electrode in motor (MI) cortex. Columnar activation of primary (SI) and second (SII) somatosensory neocortex occurred. The rostral or second forelimb (MII) region of motor cortex was activated. Many ipsilateral subcortical structures were also activated during forelimb MI stimulation (FLMIS). Rostral dorsolateral caudate-putamen (CP), central globus pallidus (GP), posterior entopeduncular nucleus (EPN), subthalamic nucleus (STN), zona incerta (ZI), and caudal, ventrolateral substantia nigra pars reticulata (SNr) were activated. Thalamic nuclei that increased (14C) 2DG uptake included anterior dorsolateral reticular (R), ventral and central ventrolateral (VL), lateral ventromedial (VM), ventral ventrobasal (VB), dorsolateral posteromedial (POm), and the parafascicular-centre median (Pf-CM) complex. Activated midbrain regions included ventromedial magnocellular red nucleus (RNm), posterior deep layers of the superior colliculus (SCsgp), lateral deep mesencephalic nucleus (DMN), nucleus tegmenti pedunculopontinus (NTPP), and anterior pretectal nucleus (NCU). Monosynaptic connections from MI or SI to SII, MII, CP, STN, ZI, R, VL, VM, VB, POm, Pf-CM, RNm, SCsgp, SNr, and DMN can account for ipsilateral activation of these structures. GP and EPN must be activated polysynaptically, either from MI stimulation or sensory feedback, since there are no known monosynaptic connections from MI and SI to these structures. Most rat brain motor-sensory structures are somatotopically organized. However, the same regions of R, EPN, CM-Pf, DMN, and ZI are activated during FLMIS compared to VMIS (vibrissae MI stimulation). Since these structures are not somatopically organized, this suggests they are involved in motor-sensory processing independent of which body part is moving. VB, SII, and MII are activated during FLMIS but not during VMIS.
Collapse
Affiliation(s)
- F R Sharp
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, California 92093, USA
| |
Collapse
|
13
|
Sharp FR, Ryan AF. Regional (14C) 2-deoxyglucose uptake during forelimb movements evoked by rat motor cortex stimulation: pons, cerebellum, medulla, spinal cord, muscle. J Comp Neurol 2009; 224:286-306. [PMID: 19180816 DOI: 10.1002/cne.902240208] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Electrical stimulation of the right forelimb motor (MI) sensory (SI) cortex in normal, adult rats produced repetitive left forelimb movements. Regions of increased (14C) 2-deoxyglucose (2DG) uptake were mapped auto-radiographically during these movements. MI stimulation activated the ipsilateral reticular tegmental pontine nucleus (RTP) and the middle (rostral-caudal) third of the pontine nuclei including pyramidal (P), medial (POM), ventral (POV), and lateral (POL) pontine nuclei. The ipsilateral inferior olivary complex was activated including dorsal accessory olive (DAO), principal olive (PO), and medial accessory olive (MAO). The contralateral lateral reticular (LR) nucleus and nucleus cuneatus (CU) were activated. Lateral vermal, paravermal, and hemispheric portions of the contralateral cerebellum were also activated. Parts of vermian lobules IV, V, VI, VII, and VIII, and lobulus simplex, crus I, crus II, paramedian lobule, and copula pyramidis were activated. Granule cell layers were activated much more than molecular layers. Discrete microzones of high granule cell 2DG uptake alternated with zones of low uptake in left paramedian lobule and copula pyramidis and may correlate with the fractured cerebellar somatotopy described physiologically by Welker and his associates. Portions of the left lateral and interpositus nuclei were metabolically activated. Medial portions of laminae I-VI were activated in the dorsal horn of cervical spinal cord. The 2DG uptake was either unchanged or decreased in the ventral horn. Thoracic and lumbar spinal cord were not activated. Monsynaptic MI and SI connections to P, POM, POV, POL, RTP, DAO, PO, MAO, LR, CU, and spinal cord could account for activation of those structures. However, there are no direct MI or SI connections to the deep cerebellar nuclei, the cerebellar hemisphere, or the muscles. Activation of these structures must be due to activation of polysynaptic pathways, sensory feedback from the moving forelimb, or both. The present experiments cannot distinguish these possibilities. Comparison of the regions activated during forelimb MI stimulation (FLMIS) to those activated during vibrissae MI stimulation (VMIS) suggests that the pontine nuclei, cerebellar hemisphere, and possibly the deep cerebellar nuclei are somatotopically organized. RTP, LR, CU, and spinal cord were activated during FLMIS but were not activated during VMIS. The failure to activate the ventral horn of cervical spinal cord may be due to known inhibition of alpha-motor neurons during motor cortex stimulation.
Collapse
Affiliation(s)
- F R Sharp
- Department of Neurosciences University of California, San Diego, School of Medicine (M-024), La Jolla, California 92093, USA
| | | |
Collapse
|
14
|
Thompson AM. Inferior colliculus projections to pontine nuclei in guinea pig. Brain Res 2006; 1100:104-9. [PMID: 16769039 DOI: 10.1016/j.brainres.2006.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Revised: 05/01/2006] [Accepted: 05/02/2006] [Indexed: 10/24/2022]
Abstract
The present study examined the neural projection from the inferior colliculus to the pontine nuclei in guinea pig. This projection has been reported in other animals, and our goal was to establish the projection in guinea pig, a commonly used auditory model. Ultimately, we wanted to determine if the pontine nuclei could be a component of the descending auditory system from the inferior colliculus to the cochlear nucleus. The anterograde tracer Phaseolus vulgaris leucoagglutinin (PHA-L) was injected into one inferior colliculus of 10 animals and the pontine nuclei examined under a light microscope to detect PHA-L-labeled fibers. PHA-L-labeled fibers were observed in the ipsilateral pontine nuclei in 70% of the animals. While the majority of labeled fibers were smooth in appearance, a few fibers with en passant type varicosities (indicating synapses) were observed in the dorsolateral area of the pontine nuclei, adjacent to the lateral lemniscus. These findings do not support a robust projection from the inferior colliculus to the pontine nuclei in guinea pig. This is in opposition to findings in bat in which the projection may play a major role in modulating responses to sound.
Collapse
Affiliation(s)
- Ann M Thompson
- Department of Otorhinolaryngology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, USA.
| |
Collapse
|
15
|
May PJ. The mammalian superior colliculus: laminar structure and connections. PROGRESS IN BRAIN RESEARCH 2006; 151:321-78. [PMID: 16221594 DOI: 10.1016/s0079-6123(05)51011-2] [Citation(s) in RCA: 462] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The superior colliculus is a laminated midbrain structure that acts as one of the centers organizing gaze movements. This review will concentrate on sensory and motor inputs to the superior colliculus, on its internal circuitry, and on its connections with other brainstem gaze centers, as well as its extensive outputs to those structures with which it is reciprocally connected. This will be done in the context of its laminar arrangement. Specifically, the superficial layers receive direct retinal input, and are primarily visual sensory in nature. They project upon the visual thalamus and pretectum to influence visual perception. These visual layers also project upon the deeper layers, which are both multimodal, and premotor in nature. Thus, the deep layers receive input from both somatosensory and auditory sources, as well as from the basal ganglia and cerebellum. Sensory, association, and motor areas of cerebral cortex provide another major source of collicular input, particularly in more encephalized species. For example, visual sensory cortex terminates superficially, while the eye fields target the deeper layers. The deeper layers are themselves the source of a major projection by way of the predorsal bundle which contributes collicular target information to the brainstem structures containing gaze-related burst neurons, and the spinal cord and medullary reticular formation regions that produce head turning.
Collapse
Affiliation(s)
- Paul J May
- Department of Anatomy, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA.
| |
Collapse
|
16
|
Abstract
The anatomical, physiological, and behavioral evidence for the involvement of three regions of the cerebellum in oculomotor behavior is reviewed here: (1) the oculomotor vermis and paravermis of lobules V, IV, and VII; (2) the uvula and nodulus; (3) flocculus and ventral paraflocculus. No region of the cerebellum controls eye movements exclusively, but each receives sensory information relevant for the control of multiple systems. An analysis of the microcircuitry suggests how sagittal climbing fiber zones bring visual information to the oculomotor vermis; convey vestibular information to the uvula and nodulus, while optokinetic space is represented in the flocculus. The mossy fiber projections are more heterogeneous. The importance of the inferior olive in modulating Purkinje cell responses is discussed.
Collapse
Affiliation(s)
- Jan Voogd
- Department of Neuroscience, Erasmus Medical Center Rotterdam, Box 1738, 3000 DR Rotterdam, The Netherlands.
| | | |
Collapse
|
17
|
Schwarz C, Horowski A, Möck M, Thier P. Organization of tectopontine terminals within the pontine nuclei of the rat and their spatial relationship to terminals from the visual and somatosensory cortex. J Comp Neurol 2005; 484:283-98. [PMID: 15739237 DOI: 10.1002/cne.20461] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We investigated the spatial relationship of axonal and dendritic structures in the rat pontine nuclei (PN), which transfer visual signals from the superior colliculus (SC) and visual cortex (A17) to the cerebellum. Double anterograde tracing (DiI and DiAsp) from different sites in the SC showed that the tectal retinotopy of visual signals is largely lost in the PN. Whereas axon terminals from lateral sites in the SC were confined to a single terminal field close to the cerebral peduncle, medial sites in the SC projected to an additional dorsolateral one. On the other hand, axon terminals originating from the two structures occupy close but, nevertheless, totally nonoverlapping terminal fields within the PN. Furthermore, a quantitative analysis of the dendritic trees of intracellularly filled identified pontine projection neurons showed that the dendritic fields were confined to either the SC or the A17 terminal fields and never extended into both. We also investigated the projections carrying cortical somatosensory inputs to the PN as these signals are known to converge with tectal ones in the cerebellum. However, terminals originating in the whisker representation of the primary somatosensory cortex and in the SC were located in segregated pontine compartments as well. Our results, therefore, point to a possible pontocerebellar mapping rule: Functionally related signals, commonly destined for common cerebellar target zones but residing in different afferent locations, may be kept segregated on the level of the PN and converge only later at specific sites in the granular layer of cerebellar cortex.
Collapse
Affiliation(s)
- Cornelius Schwarz
- Abteilung für Kognitive Neurologie, Hertie-Institut für Klinische Hirnforschung, Universität Tübingen, 72076 Tübingen, Germany.
| | | | | | | |
Collapse
|
18
|
Chernock ML, Larue DT, Winer JA. A periodic network of neurochemical modules in the inferior colliculus. Hear Res 2005; 188:12-20. [PMID: 14759566 DOI: 10.1016/s0378-5955(03)00340-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2003] [Accepted: 09/24/2003] [Indexed: 10/26/2022]
Abstract
A new organization has been found in shell nuclei of rat inferior colliculus. Chemically specific modules with a periodic distribution fill about half of layer 2 of external cortex and dorsal cortex. Modules contain clusters of small glutamic acid decarboxylase-positive neurons and large boutons at higher density than in other inferior colliculus subdivisions. The modules are also present in tissue stained for parvalbumin, cytochrome oxidase, nicotinamide adenine dinucleotide phosphate-diaphorase, and acetylcholinesterase. Six to seven bilaterally symmetrical modules extend from the caudal extremity of the external cortex of the inferior colliculus to its rostral pole. Modules are from approximately 800 to 2200 microm long and have areas between 5000 and 40,000 microm2. Modules alternate with immunonegative regions. Similar modules are found in inbred and outbred strains of rat, and in both males and females. They are absent in mouse, squirrel, cat, bat, macaque monkey, and barn owl. Modules are immunonegative for glycine, calbindin, serotonin, and choline acetyltransferase. The auditory cortex and ipsi- and contralateral inferior colliculi project to the external cortex. Somatic sensory influences from the dorsal column nuclei and spinal trigeminal nucleus are the primary ascending sensory input to the external cortex; ascending auditory input to layer 2 is sparse. If the immunopositive modular neurons receive this input, the external cortex could participate in spatial orientation and somatic motor control through its intrinsic and extrinsic projections.
Collapse
Affiliation(s)
- Michelle L Chernock
- Division of Neurobiology, Department of Molecular and Cell Biology, 285 LSA Mail Code 3200, University of California at Berkeley, Berkeley, CA 94720-3200, USA.
| | | | | |
Collapse
|
19
|
Kimura A, Donishi T, Okamoto K, Tamai Y. Efferent connections of “posterodorsal” auditory area in the rat cortex: Implications for auditory spatial processing. Neuroscience 2004; 128:399-419. [PMID: 15350651 DOI: 10.1016/j.neuroscience.2004.07.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2004] [Indexed: 11/19/2022]
Abstract
We examined efferent connections of the cortical auditory field that receives thalamic afferents specifically from the suprageniculate nucleus (SG) and the dorsal division (MGD) of the medial geniculate body (MG) in the rat [Neuroscience 117 (2003) 1003]. The examined cortical region was adjacent to the caudodorsal border (4.8-7.0 mm posterior to bregma) of the primary auditory area (area Te1) and exhibited relatively late auditory response and high best frequency, compared with the caudal end of area Te1. On the basis of the location and auditory response property, the cortical region is considered identical to "posterodorsal" auditory area (PD). Injections of biocytin in PD revealed characteristic projections, which terminated in cortical areas and subcortical structures that play pivotal roles in directed attention and space processing. The most noticeable cortical terminal field appeared as dense plexuses of axons in area Oc2M, the posterior parietal cortex. Small terminal fields were scattered in area frontal cortex, area 2 that comprises the frontal eye field. The subcortical terminal fields were observed in the pontine nucleus, the nucleus of the brachium inferior colliculus, and the intermediate and deep layers of the superior colliculus. Corticostriatal projections targeted two discrete regions of the caudate putamen: the top of the middle part and the caudal end. It is noteworthy that the inferior colliculus and amygdala virtually received no projection. Corticothalamic projections terminated in the MGD, the SG, the ventral zone of the ventral division of the MG, the ventral margin of the lateral posterior nucleus (LP), and the caudodorsal part of the posterior thalamic nuclear group (Po). Large terminals were found in the MGD, SG, LP and Po besides small terminals, the major component of labeling. The results suggest that PD is an auditory area that plays an important role in spatial processing linked to directed attention and motor function. The results extend to the rat findings from nonhuman primates suggesting the existence of a posterodorsal processing stream for auditory spatial perception.
Collapse
Affiliation(s)
- A Kimura
- Department of Physiology, Wakayama Medical University, Kimiidera 811-1, 641-8509, Japan.
| | | | | | | |
Collapse
|
20
|
Yang CY, Yoshimoto M, Xue HG, Yamamoto N, Imura K, Sawai N, Ishikawa Y, Ito H. Fiber connections of the lateral valvular nucleus in a percomorph teleost, tilapia (Oreochromis niloticus). J Comp Neurol 2004; 474:209-26. [PMID: 15164423 DOI: 10.1002/cne.20150] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Fiber connections of the lateral valvular nucleus were investigated in a percomorph teleost, the tilapia (Oreochromis niloticus), by tract-tracing methods. Following tracer injections into the lateral valvular nucleus, neurons were labeled in the ipsilateral dorsal part of dorsal telencephalic area, corpus glomerulosum pars anterior, dorsomedial thalamic nucleus, central nucleus of the inferior lobe, mammillary body, semicircular torus, valvular and cerebellar corpus, in the bilateral rostral regions of the central part of dorsal telencephalic area, dorsal region of the medial part of dorsal telencephalic area, habenula, anterior tuberal nucleus, posterior tuberal nucleus, and spinal cord, and in the contralateral lateral funicular nucleus. Labeled fibers and terminals were found in the ipsilateral cerebellar corpus and bilateral valvula of the cerebellum. Tracers were injected into portions of the telencephalon, pretectum, inferior lobe, and cerebellum to confirm reciprocally connections with the lateral valvular nucleus and to determine afferent terminal morphology in the lateral valvular nucleus. Telencephalic fibers terminated mainly in a dorsolateral portion of the lateral valvular nucleus. Terminals from the corpus glomerulosum pars anterior, central nucleus of the inferior lobe, and mammillary body showed more diffuse distributions and were not confined to particular portions of the lateral valvular nucleus. Labeled terminals in the lateral valvular nucleus were cup-shaped or of beaded morphology. These results indicate that the lateral valvular nucleus receives projections from various sources including the telencephalon, pretectum, and inferior lobe to relay information to the valvular and cerebellar corpus. In addition, the corpus glomerulosum pars anterior in tilapia is considered to be homologous to the magnocellular part of superficial pretectal nucleus in cyprinids.
Collapse
Affiliation(s)
- Chun-Ying Yang
- Department of Anatomy and Laboratory for Comparative Neuromorphology, Nippon Medical School, Tokyo 113-8602, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Mana S, Chevalier G. The fine organization of nigro-collicular channels with additional observations of their relationships with acetylcholinesterase in the rat. Neuroscience 2002; 106:357-74. [PMID: 11566506 DOI: 10.1016/s0306-4522(01)00283-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The nigro-collicular pathway that links the basal ganglia to the sensorimotor layers of superior colliculus plays a crucial role in promoting orienting behaviors. This connection originating in the pars reticulata and lateralis of the substantia nigra has been shown in rat and cat to be topographically organized. In rat, a functional compartmentalization of the substantia nigra has also been shown reflecting that of the striatum. In light of this, we reinvestigated the topographical arrangement of the nigro-collicular pathway by examining the innervation of each nigral functional zone. We performed small injections of either biocytin or wheatgerm agglutinin conjugated with horseradish peroxidase restricted to identified somatic, visual and auditory nigral zones. Frontally cut sections showed that innervations provided by the three main nigral zones form a mosaic of complementary domains stratified from the stratum opticum to the ventral part of the intermediate collicular layers, with the somatic afferents sandwiched between the visual and the auditory ones. When reconstructed from semi-horizontal sections, nigral innervations organized in the form of a honeycomb-like array composed of 100 cylindrical modules covering three-quarters of the collicular surface. Such a modular architecture is reminiscent of the acetylcholinesterase lattice we previously described in rat intermediate collicular layers. In the enzyme lattice, the surroundings of the cylindrical modules are composed of a mosaic of dense and diffuse enzyme subdomains. Thus, we compared the distribution of the overall nigral projection and of its constituent channels with the acetylcholinesterase lattice. The procedure combined axonal labelling with histochemistry on single sections for acetylcholinesterase activity. The results demonstrate that the overall nigral projection overlaps the acetylcholinesterase lattice and its constituent channels converge with either the dense or the diffuse enzyme subdomains. The stereometric arrangement of the nigro-collicular pathway is suggestive of an architecture promoting the selection of collicular motor programs for different classes of orienting behavior.
Collapse
Affiliation(s)
- S Mana
- Université René Descartes, Laboratoire de Neurosciences Comportementales, Centre Universitaire de Boulogne, 71 avenue Edouard Vaillant, 92774 Boulogne Billancourt, France
| | | |
Collapse
|
22
|
Abstract
Understanding the interaction of the cerebral cortex and cerebellum requires knowledge of the highly complex spatial characteristics of cerebro-cerebellar signal transfer. Cerebro-pontine fibers from one neocortical site terminate in several sharply demarcated patches across large parts of the pontine nuclei (PN), and fibers from different neocortical areas terminate in the same pontine region. To determine whether projections from segregated neocortical sites overlap in the PN, we studied double anterograde tracing of cerebro-pontine terminals from large parts of rat neocortex. In none of these experiments, including double injection into two functionally related areas, were we able to demonstrate overlapping patches, although close spatial relationships were always detected. This non-overlapping distribution is consistent with a compartmentalized organization of the cerebro-pontine projection and may be the basis of the fractured type of maps found in the cerebellar granular layer. The critical distance between two sites on the neocortical surface that project to non-overlapping patches in the PN was found to be 600 microm, by using double injection within the whisker representation of the primary somatosensory area. This matches the diameter of dendritic trees of layer 5 projection neurons, indicating that non-overlapping populations of neocortical projection neurons possess non-overlapping patches of pontine terminals. Estimations based on this critical distance and the pontine volume anterogradely labeled by one injection site indicate that the size of the PN may be well suited to accommodate a complete set of non-overlapping pontine patches from all possible neocortical sites.
Collapse
Affiliation(s)
- C Schwarz
- Abteilung Kognitive Neurologie, Neurologische Universitätsklinik Tübingen, 72076 Tübingen, Germany.
| | | |
Collapse
|
23
|
Mana S, Chevalier G. Honeycomb-like structure of the intermediate layers of the rat superior colliculus: afferent and efferent connections. Neuroscience 2001; 103:673-93. [PMID: 11274787 DOI: 10.1016/s0306-4522(01)00026-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There is increasing evidence that acetylcholinesterase is organised in a lattice-like fashion in the intermediate layers of the mammalian superior colliculus. In a recent study, we described this organisation in rat by showing that it comprises a well formed honeycomb-like lattice with about 100 cylindrical compartments or modules occupying both the intermediate collicular layers. Considering this enzyme domain as a reference marker for comparing the organisation of collicular input-output systems, the present study investigates whether the principal sensori-motor systems in intermediate layers also have honeycomb-like arrangements. In 33 animals, the distributions of afferents (visual from extrastriate cortex; somatic from the primary somatosensory cortex, the trigeminal nucleus and the cervical spinal cord) and efferents (cells of origin of the crossed descending bulbospinal tract and uncrossed pathway to the pontine gray, the ascending system to the medial dorsal thalamus) were examined in a tangential plane following applications of horseradish peroxidase-wheatgerm agglutinin conjugate (used as an anterograde and retrograde tracer). In 22 of the 33 rats, axonal tracing was made within single tangential sections also stained for cholinesterasic activity in order to compare the neuron profiles with the cholinesterasic lattice.The results show that these afferent and efferent systems are also organised in honeycomb-like networks. Moreover, those related to the cortical, trigeminal and some of the spinal afferents are aligned with the cholinesterasic lattice. Likewise most of colliculo-pontine, colliculo-bulbospinal and half of colliculo-diencephalic projecting cells also tend to be in spatial register with the enzyme lattice. This indicates that the honeycomb-like arrangement is a basic architectural plan in the superior colliculus for the organisation of both acetylcholinesterase and major sensori-motor systems for orientation.
Collapse
Affiliation(s)
- S Mana
- Université Pierre et Marie Curie, Département de Neurochimie-Anatomie, Institut des Neurosciences, 9 quai Saint Bernard, 75230 Paris Cedex 05, France
| | | |
Collapse
|
24
|
Ohlrogge M, Doucet JR, Ryugo DK. Projections of the pontine nuclei to the cochlear nucleus in rats. J Comp Neurol 2001. [DOI: 10.1002/cne.1068] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
Schwarz C, Thier P. Binding of signals relevant for action: towards a hypothesis of the functional role of the pontine nuclei. Trends Neurosci 1999; 22:443-51. [PMID: 10481191 DOI: 10.1016/s0166-2236(99)01446-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
If numbers matter, the projection that connects the cerebral cortex to the cerebellum is probably one of the most-important pathways through the CNS. Its extensive development as one ascends the phylogenetic scale parallels that of the cerebral hemispheres and the cerebellum, and it accompanies improvements in motor skills, suggesting that this system might have a decisive role in the generation of skilled movement. This article focuses on the pontine nuclei (PN), which are intercalated in the cerebro-cerebellar pathway, a large nuclear complex in the ventral brainstem of mammals, whose raison d'être has as yet not been examined. By considering recent morphological and electrophysiological findings, this article argues that the PN are an interface that is needed to accommodate the grossly different computational principles governing the cerebral cortex and the cerebellum.
Collapse
Affiliation(s)
- C Schwarz
- Sektion für Visuelle Sensomotorik, Neurologische Universitätsklinik Tübingen, 72076 Tübingen, Germany
| | | |
Collapse
|
26
|
Buisseret-Delmas C, Angaut P, Compoint C, Diagne M, Buisseret P. Brainstem efferents from the interface between the nucleus medialis and the nucleus interpositus in the rat. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19981214)402:2<264::aid-cne10>3.0.co;2-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
27
|
Glickstein M, Buchbinder S, May JL. Visual control of the arm, the wrist and the fingers: pathways through the brain. Neuropsychologia 1998; 36:981-1001. [PMID: 9845046 DOI: 10.1016/s0028-3932(98)00053-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Sperry and his colleagues had shown that section of the corpus callosum blocks the normally strong interocular transfer of visual learning in chiasma sectioned monkeys. Although interhemispheric transfer of learning was blocked, monkeys could be readily trained to use any combination of eye and hand in a task that required rapid visually guided responses. Sperry suggested that there must be a subcortical pathway linking sensory to motor areas of the brain. We tested monkeys in a task which required them to orient their wrist and fingers correctly in order to remove a morsel of food from a slotted disc. Animals in which we made lesions of the dorsal extrastriate visual areas of the parietal lobe were profoundly impaired in performing this task, but showed no deficit in visual discrimination learning. A monkey with an extensive lesion of the ventral, temporal lobe extrastriate areas showed no deficit in the visuomotor task but was profoundly impaired in visual discrimination learning. Lesions of peri-arcuate cortex, a major cortical target of parietal lobe visual areas, produced only a mild deficit which was motor in character. We suggest that the visuomotor deficit caused by parietal lobe lesions is brought about by depriving the cerebellum of its cortical visual input.
Collapse
Affiliation(s)
- M Glickstein
- Department of Anatomy, University of College London, UK
| | | | | |
Collapse
|
28
|
Ochiishi T, Yamauchi T, Terashima T. Regional differences between the immunohistochemical distribution of Ca2+/calmodulin-dependent protein kinase II alpha and beta isoforms in the brainstem of the rat. Brain Res 1998; 790:129-40. [PMID: 9593859 DOI: 10.1016/s0006-8993(98)00058-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The distribution of Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) alpha and beta isoforms in the brainstem of adult rats was investigated using an immunohistochemical method with two monoclonal antibodies which specifically recognize the alpha and beta isoform, respectively. We found that these isoforms were differentially expressed by neurons in the substantia nigra, red nucleus, dorsal cochlear nucleus, pontine nuclei and inferior olivary nucleus. Neurons in the inferior olivary nucleus express the alpha isoform, but not the beta isoform. In contrast, neurons in the substantia nigra, red nucleus and pontine nuclei were immunostained with the beta antibody, but not with the alpha antibody. In the dorsal cochlear nucleus, neurons in layers I and II were alpha-immunopositive, whereas neurons in layers III and IV were beta-immunopositive. Therefore, the distribution of the CaM kinase II alpha-immunopositive neurons is completely different from that of CaM kinase II beta-immunopositive neurons. Next we examined the possible coexistence of CaM kinase II alpha isoform and glutamate or that of CaM kinase II beta isoform and glutamic acid decarboxylase (GAD) in the single neuron by double immunofluorescence labelling using a pair of anti-alpha and anti-glutamate antibodies, or a pair of anti-beta and anti-GAD antibodies. The results indicated that neurons expressing anti-alpha immunoreactivity were also immunopositive against anti-glutamate antibody, and neurons expressing beta isoform were also immunopositive against anti-GAD antibody, suggesting that alpha-immunopositive neurons are classified as excitatory-type neurons, and on the contrary, beta-immunopositive neurons are classified as inhibitory-type neurons. In conclusion, the present study confirmed that alpha- and beta-isoforms of CaM kinase II are differentially expressed in the nuclei of the brainstem and have different roles.
Collapse
Affiliation(s)
- T Ochiishi
- Biosignalling Department, National Institute of Bioscience and Human-Technology, Agency of Industrial Science and Technology, M.I.T. I., Tsukuba, Ibaraki 305-8566, Japan.
| | | | | |
Collapse
|
29
|
Verveer C, Hawkins RK, Ruigrok TJ, De Zeeuw CI. Ultrastructural study of the GABAergic and cerebellar input to the nucleus reticularis tegmenti pontis. Brain Res 1997; 766:289-96. [PMID: 9359619 DOI: 10.1016/s0006-8993(97)00774-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The nucleus reticularis tegmenti pontis is an intermediate of the cerebrocerebellar pathway and serves as a relay centre for sensorimotor and visual information. The central nuclei of the cerebellum provide a dense projection to the nucleus reticularis tegmenti pontis, but it is not known to what extent this projection is excitatory or inhibitory, and whether the terminals of this projection contact the neurons in the nucleus reticularis tegmenti pontis that give rise to the mossy fibre collaterals innervating the cerebellar nuclei. In the present study the nucleus reticularis tegmenti pontis of the cat was investigated at the ultrastructural level following anterograde and retrograde transport of wheat germ agglutinin coupled to horseradish peroxidase (WGA-HRP) from the cerebellar nuclei combined with postembedding GABA immunocytochemistry. The neuropil of this nucleus was found to contain many WGA-HRP labeled terminals, cell bodies and dendrites, but none of these pre- or postsynaptic structures was double labeled with GABA. The vast majority of the WGA-HRP labeled terminals contained clear spherical vesicles, showed asymmetric synapses, and contacted intermediate or distal dendrites. Many of the postsynaptic elements of the cerebellar afferents in the nucleus reticularis tegmenti pontis were retrogradely labeled with WGA-HRP, while relatively few were GABAergic. We conclude that all cerebellar terminals in the nucleus reticularis tegmenti pontis of the cat are nonGABAergic and excitatory, and that they contact predominantly neurons that project back to the cerebellum. Thus, the reciprocal circuit between the cerebellar nuclei and the nucleus reticularis tegmenti pontis appears to be well designed to function as an excitatory reverberating loop.
Collapse
Affiliation(s)
- C Verveer
- Department of Anatomy, Erasmus University of Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
30
|
Künzle H. Connections of the superior colliculus with the tegmentum and the cerebellum in the hedgehog tenrec. Neurosci Res 1997; 28:127-45. [PMID: 9220470 DOI: 10.1016/s0168-0102(97)00034-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Different tracer substances were injected into the superior colliculus (CoS) in order to study its afferents and efferents with the meso-rhombencephalic tegmentum, the precerebellar nuclei and the cerebellum in the Madagascan hedgehog tenrec. The overall pattern of tectal connectivity in tenrec was similar to that in other mammals, as, e.g. the efferents to the contralateral paramedian reticular formation. Similarly the origin of the cerebello-tectal projection in mainly the lateral portions of the tenrec's cerebellar nuclear complex corresponded to the findings in species with little binocular overlap. In comparison to other mammals, however, the tenrec showed a consistent projection to the ipsilateral inferior olivary nucleus, in addition to the classical contralateral tecto-olivary projection. The tenrec's CoS also appeared to receive an unusually prominent monoaminergic input particularly from the substantia nigra, pars compacta. There was a reciprocal tecto-parabigeminal projection, a distinct nuclear aggregation of parabigeminal neurons, however, was difficult to identify. The dorsal lemniscal nucleus did not show perikaryal labeling in contrast to the paralemniscal region. Similar to the cat but unlike the rat there were a few neurons in the nucleus of the central acoustic tract. Unlike the cat, but similar to the rat there was a distinct, predominantly ipsilateral projection to the magnocellular reticular field known to project spinalward.
Collapse
Affiliation(s)
- H Künzle
- Institute of Anatomy, University of Munich, Germany.
| |
Collapse
|
31
|
Mihailoff GA. Orthograde axonal transport studies of projections from the zona incerta and pretectum to the basilar pontine nuclei in the rat. J Comp Neurol 1995; 360:301-18. [PMID: 8522649 DOI: 10.1002/cne.903600208] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This study employed orthogradely transported axonal tracers to demonstrate, in the rat, projections that reach the basilar pontine nuclei from the zona incerta or pretectal nuclei. Except for the most rostral levels, all subdivisions of the zona incerta give rise to substantive basilar pontine projections. Although some topographic differences exist among the temination patterns of various subdivisions, no clear somatotopically organized scheme is apparent. Most incertopontine axons descend to the basilar pons in association with fibers of the medial lemniscus or crus cerebri and reach ipsilateral ventral and medial pontine gray regions. A sparse number of terminals are evident in the contralateral medial pontine gray. The anterior pretectal axons also descend with the medial lemniscus and crus cerebri to enter exclusively the ipsilateral basilar pons where they terminate most densely in ventral and medial regions. Dual orthograde labeling experiments indicate that some pretectal terminal fields in the pontine gray are shared with incertopontine projections and with afferents from the dorsal column nuclei. This potential convergence of basilar pontine afferent projections is significant in light of 1) the known somatosensory input to the zona incerta and pretectum and 2), the fractured somatotopy of peripheral cutaneous inputs that arrive in the cerebellar cortex via mossy fibers. The present studies also employed electron microscopy to identify synaptic boutons formed by incerto- and pretectopontine axons, and they proved to be remarkably similar. Each is a medium to small-sized bouton that contains spheroidal synaptic vesicles and forms asymmetric membrane specializations. Most incerto- and pretectopontine boutons participate in glomerular synaptic complexes that include a single, centrally located bouton contacted on its perimeter by several types of dendritic profiles including shafts and spine-like appendages. A relatively small number of labeled boutons of either type contacts single, isolated dendritic elements in the neuropil. Taken together, these findings suggest that some basilar pontine neurons might receive convergent inputs from the zona incerta and pretectum as well as other somatosensory-related systems such as the dorsal column nuclei and sensorimotor cortex.
Collapse
Affiliation(s)
- G A Mihailoff
- Department of Anatomy, University of Mississippi Medical Center, Jackson 39216-4505, USA
| |
Collapse
|
32
|
Glickstein M, Gerrits N, Kralj-Hans I, Mercier B, Stein J, Voogd J. Visual pontocerebellar projections in the macaque. J Comp Neurol 1994; 349:51-72. [PMID: 7852626 DOI: 10.1002/cne.903490105] [Citation(s) in RCA: 205] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The cerebellum plays an important role in the visual guidance of movement. In order to understand the anatomical basis of visuomotor control, we studied the projection of pontine visual cells onto the cerebellar cortex of monkeys. Wheat germ agglutinin horseradish peroxidase was injected into the dorsolateral pons two monkeys. Retrogradely labelled cells were mapped in the cerebral cortex and superior colliculus, and orthogradely labelled fibers in the cerebellar cortex. The largest number of retrogradely labelled cells in the cerebral cortex was in a group of medial extrastriate visual areas. The major cerebellar target of these dorsolateral pontine cells is the dorsal paraflocculus. There is a weaker projection to the uvula, paramedian lobe, and Crus II, and a sparse but definite projection to the ventral paraflocculus. There are virtually no projections to the flocculus. There are sparse ipsilateral pontocerebellar projections to these same regions of cerebellar cortex. In nine monkeys, we made small injections of the tracer into the cerebellar cortex and studied the location of retrogradely filled cells in the pontine nuclei and inferior olive. Injections into the dorsal paraflocculus or rostral folia of the uvula retrogradely labelled large numbers of cells in the dorsolateral region of the contralateral pontine nuclei. Labelled cells were found ipsilaterally, but in reduced numbers. Injections outside of these areas in ventral paraflocculus or paramedian lobule labelled far fewer cells in this region of the pons. We conclude that the principal source of cerebral cortical visual information arises from a medial group of extrastriate visual areas and is relayed through cells in the dorsolateral pontine nuclei. The principal target of pontine visual cells is the dorsal paraflocculus.
Collapse
Affiliation(s)
- M Glickstein
- Department of Anatomy and Developmental Biology, University College London, England
| | | | | | | | | | | |
Collapse
|
33
|
Cooper JD, Phillipson OT. Central neuroanatomical organisation of the rat visuomotor system. Prog Neurobiol 1993; 41:209-79. [PMID: 8332752 DOI: 10.1016/0301-0082(93)90008-g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- J D Cooper
- Department of Anatomy, School of Medical Sciences, University of Bristol, U.K
| | | |
Collapse
|
34
|
Abstract
Stimulation of the superior colliculus (SC) of rodents, following knife cuts to the predorsal bundle decussation, evokes ipsiversive circling along with "cringing" or avoidance responses. A major uncut SC output is the uncrossed tectopontine pathway that projects heavily to the ventrolateral pons (VLP). Stimulation of this pathway in the VLP also evokes ipsiversive circling, but the circling is smoother, lacks the avoidance components, and begins with a shorter latency than SC circling. To determine whether continuous tectopontine axons mediate ipsiversive circling in both sites, the collision method of Shizgal et al. was used. Pairs of stimulating pulses were presented to the two sites, conditioning (C) pulses to one site and testing (T) pulses to the other site. Collision was evidenced when the frequencies required to evoke circling were higher at short conditioning-testing (C-T) intervals than at long C-T intervals. Between SC and VLP, collision varied from 25 to 64%. Refractory periods ranged from 0.4 to 1.0 ms in most VLP sites, and from 0.45 to roughly 3 ms in SC sites. Conduction velocities ranged from 1.2 to 19 m/s, but most were concentrated in two ranges, 1.2 to 2.7 m/s and 10 to 19 m/s. The contribution of the slower population was higher in electrode pairs where the percent collision was higher. Therefore, continuous axons from colliculus to ventrolateral pons mediate most of the ipsiversive circling produced by collicular stimulation. Slight asymmetries in the collision were observed between 3 pairs with high threshold colliculus electrodes, suggesting transsynaptic collisions across colliculus synapses transmitting from dorsal to ventral.
Collapse
Affiliation(s)
- K E Buckenham
- University of Toronto, Department of Psychology, Ont., Canada
| | | |
Collapse
|
35
|
Illing RB. Association of efferent neurons to the compartmental architecture of the superior colliculus. Proc Natl Acad Sci U S A 1992; 89:10900-4. [PMID: 1438296 PMCID: PMC50450 DOI: 10.1073/pnas.89.22.10900] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The superior colliculus is a layered structure in the mammalian midbrain serving multimodal sensorimotor integration. Its intermediate layers are characterized by a compartmental architecture. These compartments are apparent through the clustering of terminals of major collicular afferents, which in many instances match the heterogeneous distribution of tissue components such as acetylcholinesterase, choline acetyltransferase, substance P, and parvalbumin. The present study was undertaken to determine whether efferent cells observe this compartmental architecture. It was found that subpopulations of both descending and ascending collicular efferents originate from perikarya situated in characteristic positions relative to the collicular compartments defined by elevated acetylcholinesterase activity and that their dendrites appear to be specifically coordinated with the heterogeneous environment. With the specific interlocking of afferent and efferent neurons through spatially distinguished neural networks, the compartmental architecture apparently constitutes an essential element for the determination of information flow in the superior colliculus.
Collapse
Affiliation(s)
- R B Illing
- Unit for Morphological Brain Research, University Department of Otorhinolaryngology, Federal Republic of Germany
| |
Collapse
|
36
|
Kamada T, Wu M, Jen PH. Auditory response properties and spatial response areas of single neurons in the pontine nuclei of the big brown bat, Eptesicus fuscus. Brain Res 1992; 575:187-98. [PMID: 1571779 DOI: 10.1016/0006-8993(92)90079-o] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Using free-field acoustic stimulation conditions, we studied the response properties and spatial sensitivity of 146 pontine neurons of the big brown bat, Eptesicus fuscus. The best frequency (BF) and minimum threshold (MT) of a pontine neuron were first determined with a sound broadcast from a loudspeaker placed ahead of the bat. A BF sound was delivered from the loudspeaker as it moved across the frontal auditory space in order to locate the response center at which the neuron had its lowest MT. Then the basic response properties of the neuron to a sound delivered from the response center were studied. As in inferior collicular and auditory cortical neurons, pontine neurons can be characterized as phasic responders, phasic bursters and tonic responders. They have both monotonic and non-monotonic intensity-rate functions. However, most of them are broadly tuned as are cerebellar neurons. Auditory spatial sensitivity was studied for 144 pontine neurons. In 9 neurons, variation of MT with a BF sound delivered from several azimuthal and elevational angles along the horizontal and vertical planes crossing the neuron's response center was measured. In addition, variation in the number of impulses with several stimulus intensities at 10 dB increments above a neuron's MT delivered from each angle was also studied. The auditory spatial sensitivity of other pontine neurons was studied by measuring the response area of each neuron with stimulus intensities at 3, 5, 10, 15 or 40 dB above its lowest MT. The response areas of pontine neurons expanded asymmetrically with stimulus intensity, but the size of the response area was not correlated with either MT or BF. In half of the pontine neurons studied, the response area expanded greatly and eventually covered almost the entire frontal auditory space. The response areas of the other half of the pontine neurons only expanded to a restricted area of frontal auditory space. Two possible neural mechanisms underlying these two types of response areas are hypothesized. The response centers of all 144 neurons were located within a small area of the frontal auditory space. The locations of response centers of these neurons are not correlated with their BFs. The distribution pattern of these response centers is comparable to that of superior collicular and cerebellar neurons but is different from that of inferior collicular and auditory cortical neurons. The results of our study suggest that auditory information is integrated in the pontine nuclei before being further sent into the cerebellum.
Collapse
Affiliation(s)
- T Kamada
- Division of Biological Sciences, University of Missouri, Columbia 65211
| | | | | |
Collapse
|
37
|
Simó LS, Doñate-Oliver F. Superficial tectal neurons projecting to the dorsolateral pontine nucleus in the rabbit. Exp Brain Res 1991; 87:696-9. [PMID: 1723692 DOI: 10.1007/bf00227096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
After WGA-HRP injections in the pontine grey involving the dorsolateral pontine nucleus, a great number of labeled cells were found in the superficial layers of the ipsilateral superior colliculus. The majority of these cells were located in the stratum griseum superficiale (SGS). Few labeled cells were found in the stratum opticum, and the stratum zonale (SZ) showed no labeled cells. Labeled cells in the SGS formed a rather homogeneous population as most of them had fusiform somata with an upper dendritic process which runs vertically to reach the SZ. These cells were mainly located in the middle third of the SGS, forming a sublamina in this layer. These results demonstrate the participation of the superficial tectal layers in the ipsilateral descending pathway of the superior colliculus, allowing visual information to reach precerebellar stations at the dorsolateral pontine nucleus.
Collapse
Affiliation(s)
- L S Simó
- Department of Neuroscience, Faculty of Medicine, University of the Basque Country, Vizcaya, Spain
| | | |
Collapse
|
38
|
Kandler K, Herbert H. Auditory projections from the cochlear nucleus to pontine and mesencephalic reticular nuclei in the rat. Brain Res 1991; 562:230-42. [PMID: 1773339 DOI: 10.1016/0006-8993(91)90626-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We investigated projections from the cochlear nucleus in the rat using the anterograde tracer Phaseolus vulgaris-leucoagglutinin. We focused on nuclei in the brainstem which are not considered to be part of the classical auditory pathway. In addition to labeling in auditory nuclei, we found presumed terminal fibers in 4 pontine and mesencephalic areas: (1) the pontine nucleus (PN), which receives bilateral projections from the antero- and posteroventral cochlear nuclei; (2) the ventrolateral tegmental nucleus (VLTg), which receives a contralateral projection from the rostral portion of the anteroventral cochlear nucleus; (3) the caudal pontine reticular nucleus (PnC), which receives bilateral input originating predominantly in the dorsal cochlear nucleus; and (4) the lateral paragigantocellular nucleus (LPGi), which receives projections from all subdivisions of the cochlear nuclei. In the VLTg and PnC, anterogradely labeled varicose axons were often found in close apposition to the primary dendrites and somata of large reticular neurons. Injections of the retrograde fluorescent tracer Fluoro-Gold into the VLTg demonstrated that the neurons of origin are mainly located contralaterally in the rostral anteroventral cochlear nucleus and in the cochlear root nucleus. The relevance of these auditory projections for short-latency audio-motor behaviors and acoustically elicited autonomic responses is discussed.
Collapse
Affiliation(s)
- K Kandler
- Department of Animal Physiology, University of Tübingen, F.R.G
| | | |
Collapse
|
39
|
Cadusseau J, Roger M. Cortical and subcortical connections of the pars compacta of the anterior pretectal nucleus in the rat. Neurosci Res 1991; 12:83-100. [PMID: 1721119 DOI: 10.1016/0168-0102(91)90102-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The efferent and afferent connections of the dorsal part of the anterior pretectal nucleus, pars compacta (APc), were studied experimentally in the rat by using neurotracers. A restricted number of structures supply afferents to the anterior pretectal nucleus: the visual cortex (areas 17, 18 and 18a), ventral lateral geniculate nucleus and superficial layers of the superior colliculus. Additional afferents have been demonstrated originating from the Darkschewitsch nucleus, periaqueductal gray, zona incerta and anterior cingulate cortex. Efferent fibers are distributed to a sector of the deep mesencephalic nucleus just dorsolateral to the red nucleus, the basilar pontine gray, posterior and olivary pretectal nuclei, superficial layers of the superior colliculus, lateral posterior thalamic nucleus, ventral lateral geniculate nucleus and zona incerta. These anatomical observations indicate that the pars compacta of the anterior pretectal nucleus is closely related to visual centers, suggesting an involvement of this nucleus in visually mediated behavior.
Collapse
Affiliation(s)
- J Cadusseau
- Laboratoire de Neurophysiologie, CNRS: URA 290, Poitiers, France
| | | |
Collapse
|
40
|
Huang CM, Liu L, Pettavel P, Huang RH. Target areas of presumed auditory projections from lateral and dorsolateral pontine nuclei to posterior cerebellar vermis in rat. Brain Res 1990; 536:327-30. [PMID: 2085759 DOI: 10.1016/0006-8993(90)90044-c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Small injections of the retrograde tracer horseradish peroxidase were made into lobules V through X in the posterior cerebellar vermis of the rat. Labeled cells were counted in the auditory subdivisions of the pontine nuclei, the lateral and dorsolateral pontine nuclei. The results suggest that, within the posterior vermis, lobules VI, VII, and VIII together receive over 90% of projections from the lateral and dorsolateral pontine nuclei.
Collapse
Affiliation(s)
- C M Huang
- Division of Molecular Biology and Biochemistry, School of Basic Life Sciences, University of Missouri-Kansas City 64110-2499
| | | | | | | |
Collapse
|
41
|
Allen GV, Hopkins DA. Topography and synaptology of mamillary body projections to the mesencephalon and pons in the rat. J Comp Neurol 1990; 301:214-31. [PMID: 1702105 DOI: 10.1002/cne.903010206] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The anterograde and retrograde transport of horseradish peroxidase conjugated to wheat germ agglutinin (WGA-HRP) was used to study the anatomical organization of descending projections from the mamillary body (MB) to the mesencephalon and pons at light and electron microscopic levels. Injections of WGA-HRP into the medial mamillary nucleus resulted in dense anterograde and retrograde labeling in the ventral tegmental nucleus, while injections in the lateral mamillary nucleus resulted in dense anterograde labeling in the dorsal tegmental nucleus pars dorsalis and dense anterograde and retrograde labeling in the pars ventralis of the dorsal tegmental nucleus. Anterogradely labeled fibers in the mamillotegmental tract diverged from the principal mamillary tract in an extensive dorsocaudally oriented swath of axons which extended to the dorsal and ventral tegmental nuclei, and numerous axons turned sharply ventrally and rostrally to terminate topographically in the dorsomedial nucleus reticularis tegmenti pontis and rostromedial pontine nuclei. The anterograde labeling in these two precerebellar relay nuclei was distributed near the midline such that projections from the lateral mamillary nucleus terminated mainly dorsomedial to the terminal fields of projections from the medial mamillary nucleus. In the dorsal and ventral tegmental nuclei, labeled axon terminals contained round synaptic vesicles and formed asymmetric synaptic junctions primarily with small diameter dendrites and to a lesser extent with neuronal somata. A few labeled terminals contained pleomorphic vesicles and formed symmetric synaptic junctions with dendrites and neuronal somata. Labeled axon terminals were also frequently found in synaptic contact with retrogradely labeled dendrites and neuronal somata in the dorsal and ventral tegmental nuclei. These findings indicate that neurons in the dorsal and ventral tegmental nuclei are reciprocally connected with MB projection neurons. In the nucleus reticularis tegmenti pontis and medial pontine nuclei, labeled axon terminals contained round synaptic vesicles and formed asymmetric synaptic junctions primarily with small diameter dendrites. The present study demonstrates that projections from the medial and lateral nuclei of the MB are topographically organized in the mesencephalon and pons. The synaptic morphology of mamillotegmental projections suggests that they may have excitatory influences primarily on the distal dendrites of neurons in these brain regions.
Collapse
Affiliation(s)
- G V Allen
- Department of Anatomy, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
42
|
Redgrave P, Dean P, Westby GW. Organization of the crossed tecto-reticulo-spinal projection in rat--I. Anatomical evidence for separate output channels to the periabducens area and caudal medulla. Neuroscience 1990; 37:571-84. [PMID: 1701037 DOI: 10.1016/0306-4522(90)90092-i] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The superior colliculus has been used to study principles of sensorimotor transformation underlying the guidance of orienting movements by multimodal sensory stimuli. We have previously suggested that there may be two different classes of mechanism which can produce orienting-like movements towards a novel event; one that locates a stimulus on the basis of remembered position, and another which uses continuous feedback relating to target velocity. The crossed descending pathway of the superior colliculus is widely considered the projection most likely to relay signals associated with the production of orienting movements. However, if different neural mechanisms are used to produce functionally distinct types of orienting, we might expect this pathway to have separate anatomical components related to function. The purpose of the present experiment was to see if collicular fibres innervating two important pre-motor targets of the crossed descending pathway, the periabducens area and the caudal medulla-spinal cord, come from the same population of tectal cells. One of the retrogradely transported fluorescent tracers (Diamidino Yellow) was injected into the periabducens area, and another (True Blue or Fast Blue) was injected into tectospinal fibres at the level of the ventromedial caudal medulla. Under these conditions we found: (i) less than 10% of labelled cells within the superior colliculus contained both tracers; (ii) the bulk of singly labelled cells projecting to the periabducens area or the caudal medulla were concentrated at different locations within the colliculus, (iii) in regions of the superior colliculus where there was overlap of singly labelled cells, neurons projecting to the periabducens area or the caudal medulla could be distinguished morphologically. These data provide three classes of evidence which indicate that the crossed descending projection in rat can be subdivided into at least two relatively independent anatomical components. This conclusion may, in part, provide an anatomical substrate for the functional dissociations proposed for orienting movements.
Collapse
Affiliation(s)
- P Redgrave
- Department of Psychology, University of Sheffield, U.K
| | | | | |
Collapse
|
43
|
Mihailoff GA, Kosinski RJ, Azizi SA, Border BG. Survey of noncortical afferent projections to the basilar pontine nuclei: a retrograde tracing study in the rat. J Comp Neurol 1989; 282:617-43. [PMID: 2723155 DOI: 10.1002/cne.902820411] [Citation(s) in RCA: 69] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The retrograde transport of the conjugate wheat germ agglutinin-horseradish peroxidase (WGA-HRP) was used in the rat to identify the cell bodies of origin for all subcortical projections to the basilar pontine nuclei (BPN). A parapharyngeal surgical approach was used to allow the injection micropipette to enter the BPN from the ventral aspect of the brainstem and thus avoid any potential for false-positive labeling due to transection and injury-filling of axonal systems located dorsal to the basilar pontine gray. A surprisingly large number of BPN afferent cell groups were identified in the present study. Included were labeled somata in the lumbar spinal cord and a large variety of nuclei in the medulla, pons, and midbrain, as well as labeled cells in diencephalic and telencephalic nuclei such as the zona incerta, ventral lateral geniculate, hypothalamus, amygdala, nucleus basalis of Meynert, and the horizontal nucleus of the diagonal band of Broca. Quite a number of cell groups known to project directly to the cerebellum also exhibited labeled somata in the present study. To explore the possibility that such neurons were labeled because their axons were transected and injury-filled as they coursed through the BPN injection site to enter the cerebellum via the brachium pontis, a series of rats received complete, bilateral lesions of the brachium pontis followed 30-60 minutes later with multiple, diffuse injections of WGA-HRP (12-16 placements per animal) throughout the cerebellar cortex. In another series of animals, the massive cerebellar WGA-HRP injections were not preceded by brachium pontis lesions. In the latter cases, each of the cell groups in question that were known to project directly to the cerebellum exhibited labeled somata. However, when the cerebellar HRP injections were preceded by brachium pontis lesions, each of the cell groups in question continued to exhibit labeled somata in numbers comparable to that observed in the nonlesion cases. This implies that such neurons project to the BPN and the cerebellar cortex and that the axons of these particular neurons do not project to the cerebellum via the brachium pontis.
Collapse
Affiliation(s)
- G A Mihailoff
- Department of Cell Biology, University of Texas Health Science Center, Dallas 75235
| | | | | | | |
Collapse
|
44
|
Korp BG, Blanks RH, Torigoe Y. Projections of the nucleus of the optic tract to the nucleus reticularis tegmenti pontis and prepositus hypoglossi nucleus in the pigmented rat as demonstrated by anterograde and retrograde transport methods. Vis Neurosci 1989; 2:275-86. [PMID: 2562149 DOI: 10.1017/s095252380000119x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The visual pathways from the nucleus of the optic tract (NOT) to the nucleus reticularis tegmenti pontis (NRTP) and prepositus hypoglossi nucleus (ph) were studied following injections of tritiated leucine into the NOT of pigmented rats. The cell bodies of origin of the pretectal-NRTP, NRTP-ph, and pretectal-ph projections were determined using retrograde horseradish peroxidase (HRP) technique. The pretectum projects strongly to the rostral two-thirds of the central and pericentral subdivisions of the NRTP and sends a remarkably smaller projection to the ph. Both are entirely ipsilateral. The fibers destined for the ph travel with the NOT-NRTP bundle, pass through the NRTP, traverse the medial longitudinal fasciculus, and are distributed to the rostral one-half of the ph. The retrograde HRP studies confirm these pathways. The pretectal projections to the NRTP arise from neurons in the rostromedial NOT; those to the ph are located primarily in the rostral NOT although small numbers are found within the anterior, posterior, and olivary pretectal nuclei. Of major importance is the fact that the ph injections retrogradely label neurons within the NRTP and the adjacent paramedian pontine reticular formation. This NRTP-ph projection is entirely bilateral and arises from parts of both subdivisions of the nucleus targeted by NOT afferents. Both the direct NOT-ph and indirect NOT-NRTP-ph connections provide the anatomical basis for the relay of visual (optokinetic) information to the perihypoglossal complex and, presumably, by virtue of reciprocal ph-vestibular nuclear connections, to the vestibular nuclei itself. Such pathways confirm previous physiological studies in rat and, in particular, clarify the contrasting effects of electrolytic lesions of NRTP in rat which completely abolishes optokinetic nystagmus (OKN) (Cazin et al., 1980a) vs kainic acid lesions which produce only minor effects on OKN slow velocity (Hess et al., 1988). Given these differential effects, one concludes that the critical pathway for OKN passes in relation to, but is not significantly relayed by, the neurons of the NRTP or adjacent pontine tegmentum. The present studies suggest that one such fiber system is the NOT-ph bundle. How this relatively small projection compares to other possible fiber of passage systems remains to be determined electrophysiologically.
Collapse
Affiliation(s)
- B G Korp
- Department of Anatomy and Neurobiology, University of California, Irvine 92717
| | | | | |
Collapse
|
45
|
Wells GR, Hardiman MJ, Yeo CH. Visual projections to the pontine nuclei in the rabbit: orthograde and retrograde tracing studies with WGA-HRP. J Comp Neurol 1989; 279:629-52. [PMID: 2465324 DOI: 10.1002/cne.902790410] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Visual projections to the pontine nuclei in the rabbit were examined by means of both orthograde and retrograde tracing of WGA-HRP. The tecto-pontine projection was examined following microinjections of WGA-HRP in the right superior colliculus. The projection to the pontine nuclei is strictly ipsilateral and terminates at middle and caudal levels of the pons. The projection is absent in rostral pontine nuclei. The strongest projection is to the dorsal border of the dorsolateral pontine nuclei and is the only projection seen when the primary injection site is confined to superficial laminae. When the primary injection site also includes intermediate and deep laminae, patches of labelled terminals are also seen within dorsolateral, lateral, peduncular, paramedian, and ventral pontine nuclei as well as in the contralateral nucleus reticularis tegmenti pontis. The striate corticopontine projection was also examined with orthograde tracing of WGA-HRP. The striate corticopontine projection is ipsilateral. Most labelled terminals were seen in dorsolateral and lateral pontine nuclei throughout the rostral half of pons with some additional terminal labelling in paramedian and peduncular nuclei. Labelled terminals were also seen in ventral pontine nuclei throughout the middle and caudal levels of the pons. In a retrograde tracing study, visual projections to the pontine nuclei were examined following microinjections of WGA-HRP into the pontine nuclei. Labelled cells were seen ipsilaterally in superficial and deep laminae of the superior colliculus and in layer V of striate and surrounding occipital cortex. The pontine nuclei also receive ipsilateral projections from the ventral lateral geniculate, the nucleus of the optic tract, anterior and posterior pretectal nuclei, and the dorsal and medial terminal nuclei of the accessory optic system. These pathways are potential sources of visual input to the cerebellum.
Collapse
Affiliation(s)
- G R Wells
- Department of Anatomy and Developmental Biology, University College London, England
| | | | | |
Collapse
|
46
|
Lee HS, Kosinski RJ, Mihailoff GA. Collateral branches of cerebellopontine axons reach the thalamus, superior colliculus, or inferior olive: a double-fluorescence and combined fluorescence-horseradish peroxidase study in the rat. Neuroscience 1989; 28:725-34. [PMID: 2469035 DOI: 10.1016/0306-4522(89)90017-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Retrograde double-labeling methods that used two different fluorescent dyes or a fluorescent dye in combination with wheat germ agglutinin horseradish peroxidase were used in the rat to study the collateralization of cerebellopontine fibers to the thalamus, the superior colliculus, or the inferior olive. In cases with combined basilar pontine nuclei and thalamus injections, double-labeled neurons were located in the rostral part of the lateral cerebellar nucleus as well as within the interpositus anterior and interpositus posterior nuclei. These cells are medium to large in size and multipolar-shaped. A much smaller number of double-labeled cells was observed in the combined basilar pontine nuclei and superior colliculus injections. In these cases most of the double-labeled cells were intermediate- to large-sized and either bipolar- or multipolar-shaped. Such neurons were distributed throughout the rostrocaudal extent of the lateral cerebellar nucleus, with only a few double-labeled cells located in the interpositus anterior and posterior nuclei. Finally, in the cases with combined basilar pontine nuclei and inferior olive injections, double-labeled cells were located in interpositus anterior and posterior nuclei and the medial portion of the lateral cerebellar nucleus. The double-labeled cells were relatively small in size and most were spindle-shaped. No double-labeled cells were observed in the medial cerebellar nucleus in any of the three injection combinations. Based upon the observation of double-labeled neurons in the deep cerebellar nuclei in each of the three injection combinations involving the basilar pontine nuclei, we conclude that cerebellar projections to the basilar pons arise in part as collaterals of axons that project to the thalamus, superior colliculus, or the inferior olive.
Collapse
Affiliation(s)
- H S Lee
- Department of Cell Biology, University of Texas Health Science Center, Dallas 75235
| | | | | |
Collapse
|
47
|
Mori K, Miyashita Y. Localized metabolic responses to optokinetic stimulation in the brain stem nuclei and the cerebellum investigated with the [14C]2-deoxyglucose method in rats. Neuroscience 1989; 30:271-81. [PMID: 2747917 DOI: 10.1016/0306-4522(89)90253-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The localized metabolic effects of monocular optokinetic stimulation to the cerebellar flocculus and brain stem nuclei were measured in pigmented rats. Quantitative [14C]2-deoxyglucose autoradiography was performed on alert rats stimulated with a drum either rotated horizontally in the temporonasal direction (optokinetic group) or kept stationary (control group). The superior colliculus in both groups showed a higher amount of activity on the contralateral side to the stimulated eye than on the ipsilateral side. The dorsal cap of the inferior olive, the nucleus of the optic tract, and the lateral pontine nucleus showed a higher amount of activity on the contralateral side only in the optokinetic group. The nucleus reticularis tegmenti pontis and the ventromedial aspect of the cerebellar paraflocculus showed no lateralized activity in either group. Local glucose utilization rates of both flocculi were significantly enhanced in the optokinetic group. Only in the optokinetic group did the ipsilateral flocculus show a higher local glucose utilization rate than the contralateral flocculus. The most enhanced activity was localized in the middle aspect of the rostrocaudal extent of the ipsilateral flocculus. The activity was greater in the granular layer than in the molecular layer or in the white matter. The pattern of activation in the granular layer was characterized by a patchy appearance in the frontal sections. Serial reconstruction of these sections showed metabolic blobs appearing with intervals of several hundred micrometers.
Collapse
Affiliation(s)
- K Mori
- Department of Physiology, Faculty of Medicine, University of Tokyo, Japan
| | | |
Collapse
|
48
|
Abstract
Lateral eye, head, and body movements are produced by electrical stimulation of many brain regions from frontal cortex to pons. A new collision method shows that at least 5 separate axon bundles mediate stimulation-elicited lateral head and body movements in rats. One bundle passes between the rostromedial tegmentum and medial pons, with conduction velocities of 0.8-18 m/s. A second bundle passes between the superior colliculus and contralateral medial pons, with conduction velocities of 1.7-13 m/s. A third bundle passes between the superior colliculus and ventrolateral pons, with conduction velocities of 1.3-20 m/s. A fourth bundle passes between the internal capsule and medial substantia nigra, with conduction velocities of 0.9-4.4 m/s. A fifth bundle passes between the anteromedial cortex and rostral striatum, with conduction velocities of 2.4-36 m/s. Collision effects have not been observed between the anteromedial cortex and the internal capsule, medial substantia nigra, superior colliculus, rostromedial tegmentum, or medial pons, which suggests that these sites are not connected by axons mediating turning. Possible synaptic linkages between the 5 bundles and possible transmitters are discussed.
Collapse
Affiliation(s)
- J S Yeomans
- Department of Psychology, University of Toronto, Ont., Canada
| | | |
Collapse
|
49
|
Mihailoff GA, Kosinski RJ, Border BG, Lee HS. A review of recent observations concerning the synaptic organization of the basilar pontine nuclei. JOURNAL OF ELECTRON MICROSCOPY TECHNIQUE 1988; 10:229-46. [PMID: 3069969 DOI: 10.1002/jemt.1060100303] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Ultrastructural studies are described that have identified in the basilar pontine nuclei (BPN), the synaptic boutons formed by the corticopontine, cerebellopontine, tectopontine, and dorsal column nuclei-pontine afferent projection systems. In addition, immunocytochemical studies visualized neuronal somata, dendrites, and synaptic boutons that contain immunoreactivity for GABA or the synthesizing enzyme glutamic acid decarboxylase (GAD). Based upon differences in the mode of degeneration and postsynaptic locus of degenerative synaptic boutons in the BPN, it is suggested that two types of cortical neurons and three classes of deep cerebellar nuclear cells project to the BPN. For similar reasons, it appears that two types of neurons in the dorsal column nuclei project to the BPN while only one type of afferent synaptic bouton takes origin from the superior colliculus. Furthermore it appears that the population of BPN neurons projecting to the paramedian lobule receives convergent inputs from the cutaneous periphery and the corresponding region of sensorimotor cortex. Studies employing GAD immunohistochemistry indicate that GABA-ergic neurons and axon terminals are present in the BPN and thus support the suggestion that a local inhibitory interneuron is present within the BPN. Taken together these observations suggest that basilar pontine neurons might play a more active role in the integration of various types of information destined for the cerebellar cortex than has previously been recognized.
Collapse
Affiliation(s)
- G A Mihailoff
- Department of Cell Biology and Anatomy, University of Texas Health Science Center, Dallas 75235
| | | | | | | |
Collapse
|
50
|
Gayer NS, Faull RL. Connections of the paraflocculus of the cerebellum with the superior colliculus in the rat brain. Brain Res 1988; 449:253-70. [PMID: 2456127 DOI: 10.1016/0006-8993(88)91042-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The interconnections between the paraflocculus of the cerebellum and the superior colliculus (SC) of the adult male Wistar albino rat were traced utilising the retrograde and anterograde transport of horseradish peroxidase conjugated with wheatgerm agglutinin (WGA-HRP). The study comprises three series of experiments. In the first series designed to trace the connections between the paraflocculus and the pre- and deep cerebellar nuclei, microiontophoretic injections of WGA-HRP filled either the entire paraflocculus or one of its subdivisions (ventral or dorsal paraflocculus). The results showed that, the ventral and dorsal paraflocculus receive afferents from distinct and separate regions of pontine nuclei, nucleus reticularis tegmenti pontis (Rtp) and the inferior olive. The efferents from the ventral and dorsal parafloccular subdivisions project to circumscribed regions of the lateral and posterior interpositus cerebellar nuclei. In the second series of experiments, unilateral iontophoretic WGA-HRP injections were placed at varying depths, through the rostrocaudal extent of SC and the tectal connections with the brainstem, and deep cerebellar nuclei were traced. The SC projects to well circumscribed regions of the pontine nuclei. Rtp and the inferior olive and receives afferents from the lateral and posterior interpositus cerebellar nuclei. In the third series of experiments involving combined injections of WGA-HRP into SC and the ventral paraflocculus, the collicular and ventral parafloccular connections were traced. The ventral paraflocculus receives afferents from regions of pons and Rtp which in turn receive inputs from the SC and projects to the lateral and posterior interpositus cerebellar nuclei which in turn give rise to efferents to the SC. These findings demonstrate that the ventral paraflocculus is linked to the contralateral superior colliculus via (i) a crossed afferent tecto-ponto/Rtp-parafloccular pathway, and (ii) a crossed efferent paraflocculo-nucleo-tectal pathway.
Collapse
Affiliation(s)
- N S Gayer
- Department of Anatomy, University of Sydney, N.S.W., Australia
| | | |
Collapse
|