1
|
Zhang R, Wickens JR, Carrasco A, Oorschot DE. Absolute Number of Thalamic Parafascicular and Striatal Cholinergic Neurons, and the Three-Dimensional Spatial Array of Striatal Cholinergic Neurons, in the Sprague-Dawley Rat. J Comp Neurol 2025; 533:e70050. [PMID: 40275352 DOI: 10.1002/cne.70050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 02/26/2025] [Accepted: 03/25/2025] [Indexed: 04/26/2025]
Abstract
The absolute number of neurons and their spatial distribution yields important information about brain function and species comparisons. We studied thalamic parafascicular neurons and striatal cholinergic interneurons (CINs) because the parafascicular neurons are the main excitatory input to the striatal CINs. This circuit is of increasing interest due to research showing its involvement in specific types of learning and behavioral flexibility. In the Sprague-Dawley rat, the absolute number of thalamic parafascicular neurons and striatal CINs is unknown. They were estimated in this study using modern stereological counting methods. From each of six young adult rats, complete sets of serial 40 µm glycol methacrylate sections were used to quantify neuronal numbers in the right parafascicular nucleus (PFN). From each of five young adult rats, complete sets of serial 20 µm frozen sections were immunostained and used to quantify cholinergic neuronal numbers in the right striatum. The spatial distribution, in three dimensions, of striatal CINs was also determined from exhaustive measurement of the x, y, z coordinates of each large interneuron in 40 µm glycol methacrylate sections in sampled sets of five consecutive serial sections from each of two rats. Statistical analysis of spatial distribution was conducted by comparing observed three-dimensional data with computer models of 10,000 pseudorandom distributions, using measures of nearest neighbor distance and Ripley's K-function for inhomogeneous samples. We found that the right PFN consisted, on average, of 30,073 neurons (with a coefficient of variation of 0.11). The right striatum consisted, on average, of 10,778 CINs (0.14). The statistical analysis of spatial distribution showed no evidence of clustering of striatal CINs in three dimensions in the rat striatum, consistent with previous findings in the mouse striatum. The results provide important data for the transfer of information through the PFN and striatum, species comparisons, and computer modeling.
Collapse
Affiliation(s)
- Rong Zhang
- Department of Anatomy, School of Biomedical Sciences, and the Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Jeffery R Wickens
- Neurobiology Research Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Andres Carrasco
- Department of Psychology, California State University, Fresno, California, USA
| | - Dorothy E Oorschot
- Department of Anatomy, School of Biomedical Sciences, and the Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| |
Collapse
|
2
|
Loftén A, Cadeddu D, Danielsson K, Stomberg R, Adermark L, Söderpalm B, Ericson M. Reduced Alcohol Consumption Following Ablation of Cholinergic Interneurons in the Nucleus Accumbens of Wistar Rats. Addict Biol 2025; 30:e70022. [PMID: 39936333 DOI: 10.1111/adb.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/15/2025] [Accepted: 01/23/2025] [Indexed: 02/13/2025]
Abstract
Alcohol use disorder is a severe mental health condition causing medical consequences and preterm death. Alcohol activates the mesolimbic dopamine system leading to an increase of extracellular dopamine (DA) in the nucleus accumbens, an event that is associated with the reinforcing effects of alcohol. Cholinergic interneurons (CIN) are important modulators of accumbal DA signalling, and depletion of accumbal CIN attenuates the alcohol-induced increase in extracellular DA. The aim of this study was to explore the functional role of accumbal CIN in alcohol-related behaviour. To this end, ablation of CIN was induced by local administration of anticholine acetyltransferase-saporin bilaterally into the nucleus accumbens of male Wistar rats. Alcohol consumption in ablated and sham-treated rats was studied using a two-bottle-choice intermittent alcohol consumption paradigm. Rats with depleted CIN consumed significantly less alcohol than sham-treated controls. No differences in sucrose preference, motor activity, water intake or weight gain were noted between treatment groups, suggesting that the ablation selectively affected alcohol-related behaviour. In conclusion, this study further supports a role for accumbal CIN in regulating alcohol-consummatory behaviour.
Collapse
Affiliation(s)
- Anna Loftén
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Beroendekliniken, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Davide Cadeddu
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Klara Danielsson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Rosita Stomberg
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Louise Adermark
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bo Söderpalm
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Beroendekliniken, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mia Ericson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
3
|
Stedehouder J, Roberts BM, Raina S, Bossi S, Liu AKL, Doig NM, McGerty K, Magill PJ, Parkkinen L, Cragg SJ. Rapid modulation of striatal cholinergic interneurons and dopamine release by satellite astrocytes. Nat Commun 2024; 15:10017. [PMID: 39562551 PMCID: PMC11577008 DOI: 10.1038/s41467-024-54253-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 11/01/2024] [Indexed: 11/21/2024] Open
Abstract
Astrocytes are increasingly appreciated to possess underestimated and important roles in modulating neuronal circuits. Astrocytes in striatum can regulate dopamine transmission by governing the extracellular tone of axonal neuromodulators, including GABA and adenosine. However, here we reveal that striatal astrocytes occupy a cell type-specific anatomical and functional relationship with cholinergic interneurons (ChIs), through which they rapidly excite ChIs and govern dopamine release via nicotinic acetylcholine receptors on subsecond timescales. We identify that ChI somata are in unexpectedly close proximity to astrocyte somata, in mouse and human, forming a "soma-to-soma" satellite-like configuration not typically observed for other striatal neurons. We find that transient depolarization of astrocytes in mouse striatum reversibly regulates ChI excitability by decreasing extracellular calcium. These findings reveal a privileged satellite astrocyte-interneuron interaction for striatal ChIs operating on subsecond timescales via regulation of extracellular calcium dynamics to shape downstream striatal circuit activity and dopamine signaling.
Collapse
Affiliation(s)
- Jeffrey Stedehouder
- Centre for Cellular and Molecular Neurobiology, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford, OX1 3PT, UK
| | - Bradley M Roberts
- Centre for Cellular and Molecular Neurobiology, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford, OX1 3PT, UK
| | - Shinil Raina
- Centre for Cellular and Molecular Neurobiology, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford, OX1 3PT, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Simon Bossi
- Centre for Cellular and Molecular Neurobiology, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford, OX1 3PT, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Alan King Lun Liu
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford, OX1 3PT, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Natalie M Doig
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX1 3QT, UK
| | - Kevin McGerty
- Mathematical Institute, University of Oxford, Oxford, OX2 6GG, UK
| | - Peter J Magill
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford, OX1 3PT, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX1 3QT, UK
| | - Laura Parkkinen
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford, OX1 3PT, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Stephanie J Cragg
- Centre for Cellular and Molecular Neurobiology, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK.
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford, OX1 3PT, UK.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
| |
Collapse
|
4
|
Wegman E, Wosiski-Kuhn M, Luo Y. The dual role of striatal interneurons: circuit modulation and trophic support for the basal ganglia. Neural Regen Res 2024; 19:1277-1283. [PMID: 37905876 PMCID: PMC11467944 DOI: 10.4103/1673-5374.382987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/26/2023] [Accepted: 07/30/2023] [Indexed: 11/02/2023] Open
Abstract
ABSTRACT Striatal interneurons play a key role in modulating striatal-dependent behaviors, including motor activity and reward and emotional processing. Interneurons not only provide modulation to the basal ganglia circuitry under homeostasis but are also involved in changes to plasticity and adaptation during disease conditions such as Parkinson's or Huntington's disease. This review aims to summarize recent findings regarding the role of striatal cholinergic and GABAergic interneurons in providing circuit modulation to the basal ganglia in both homeostatic and disease conditions. In addition to direct circuit modulation, striatal interneurons have also been shown to provide trophic support to maintain neuron populations in adulthood. We discuss this interesting and novel role of striatal interneurons, with a focus on the maintenance of adult dopaminergic neurons from interneuron-derived sonic-hedgehog.
Collapse
Affiliation(s)
- Elliot Wegman
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH, USA
| | - Marlena Wosiski-Kuhn
- Department of Emergency Medicine at the School of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Yu Luo
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH, USA
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
5
|
Singh V, Menard MA, Serrano GE, Beach TG, Zhao HT, Riley-DiPaolo A, Subrahmanian N, LaVoie MJ, Volpicelli-Daley LA. Cellular and subcellular localization of Rab10 and phospho-T73 Rab10 in the mouse and human brain. Acta Neuropathol Commun 2023; 11:201. [PMID: 38110990 PMCID: PMC10726543 DOI: 10.1186/s40478-023-01704-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/03/2023] [Indexed: 12/20/2023] Open
Abstract
Autosomal dominant pathogenic mutations in Leucine-rich repeat kinase 2 (LRRK2) cause Parkinson's disease (PD). The most common mutation, G2019S-LRRK2, increases the kinase activity of LRRK2 causing hyper-phosphorylation of its substrates. One of these substrates, Rab10, is phosphorylated at a conserved Thr73 residue (pRab10), and is one of the most abundant LRRK2 Rab GTPases expressed in various tissues. The involvement of Rab10 in neurodegenerative disease, including both PD and Alzheimer's disease makes pinpointing the cellular and subcellular localization of Rab10 and pRab10 in the brain an important step in understanding its functional role, and how post-translational modifications could impact function. To establish the specificity of antibodies to the phosphorylated form of Rab10 (pRab10), Rab10 specific antisense oligonucleotides were intraventricularly injected into the brains of mice. Further, Rab10 knock out induced neurons, differentiated from human induced pluripotent stem cells were used to test the pRab10 antibody specificity. To amplify the weak immunofluorescence signal of pRab10, tyramide signal amplification was utilized. Rab10 and pRab10 were expressed in the cortex, striatum and the substantia nigra pars compacta. Immunofluorescence for pRab10 was increased in G2019S-LRRK2 knockin mice. Neurons, astrocytes, microglia and oligodendrocytes all showed Rab10 and pRab10 expression. While Rab10 colocalized with endoplasmic reticulum, lysosome and trans-Golgi network markers, pRab10 did not localize to these organelles. However, pRab10, did overlap with markers of the presynaptic terminal in both mouse and human cortex, including α-synuclein. Results from this study suggest Rab10 and pRab10 are expressed in all brain areas and cell types tested in this study, but pRab10 is enriched at the presynaptic terminal. As Rab10 is a LRRK2 kinase substrate, increased kinase activity of G2019S-LRRK2 in PD may affect Rab10 mediated membrane trafficking at the presynaptic terminal in neurons in disease.
Collapse
Affiliation(s)
- Vijay Singh
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Marissa A Menard
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Geidy E Serrano
- Department of Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, 85351, USA
| | - Thomas G Beach
- Department of Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, 85351, USA
| | - Hien T Zhao
- Ionis Pharmaceuticals Inc, Carlsbad, CA, 92010, USA
| | - Alexis Riley-DiPaolo
- Department of Neuroscience at the University of Florida, Gainesville, FL, 32611, USA
| | - Nitya Subrahmanian
- Department of Neurology, Center for Translational Research in Neurodegenerative Disease, Fixel Institute for Neurologic Disease, University of Florida, Gainesville, FL, 32610, USA
| | - Matthew J LaVoie
- Department of Neurology, Center for Translational Research in Neurodegenerative Disease, Fixel Institute for Neurologic Disease, University of Florida, Gainesville, FL, 32610, USA
| | - Laura A Volpicelli-Daley
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
6
|
Loftén A, Adermark L, Ericson M, Söderpalm B. Regulation of ethanol-mediated dopamine elevation by glycine receptors located on cholinergic interneurons in the nucleus accumbens. Addict Biol 2023; 28:e13349. [PMID: 38017639 DOI: 10.1111/adb.13349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/08/2023] [Accepted: 09/26/2023] [Indexed: 11/30/2023]
Abstract
Alcohol use disorder is one of the major psychiatric disorders worldwide, and there are many factors and effects contributing to the disorder, for example, the experience of ethanol reward. The rewarding and reinforcing properties of ethanol have been linked to activation of the mesolimbic dopamine system, an effect that appears to involve glycine receptors (GlyRs) in the nucleus accumbens. On which neuronal subtypes these receptors are located is, however, not known. The aim of this study was to explore the role of GlyRs on cholinergic interneurons (CIN) in sustaining extracellular dopamine levels and in ethanol-induced dopamine release. To this end, CIN were ablated by anti-choline acetyltransferase-saporin administered locally in the nucleus accumbens of male Wistar rats. Changes in dopamine levels induced by ablation, ethanol and/or a GlyR antagonist were monitored using in vivo microdialysis. The GlyRs antagonist strychnine depressed extracellular dopamine in a similar manner independent on local ablation, suggesting that GlyRs on CIN are not important for sustaining the extracellular dopamine tone. However, a low concentration of strychnine hampered ethanol-induced dopamine release in sham-treated animals, whilst no reduction was seen in ablated animals, suggesting that GlyRs located on CIN are involved in ethanol-induced dopamine release. Further, in ablated rats, ethanol-induced increases of the extracellular levels of the GlyR agonists glycine and taurine were attenuated. In conclusion, this study suggests that CIN are not important for GlyR-mediated regulation of basal dopamine output, but that CIN ablation blunts the ethanol-induced dopamine release, putatively by reducing the release of GlyR agonists.
Collapse
Affiliation(s)
- Anna Loftén
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Beroendekliniken, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Louise Adermark
- Department of Pharmacology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Mia Ericson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Bo Söderpalm
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Beroendekliniken, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
7
|
Rios A, Nonomura S, Kato S, Yoshida J, Matsushita N, Nambu A, Takada M, Hira R, Kobayashi K, Sakai Y, Kimura M, Isomura Y. Reward expectation enhances action-related activity of nigral dopaminergic and two striatal output pathways. Commun Biol 2023; 6:914. [PMID: 37673949 PMCID: PMC10482957 DOI: 10.1038/s42003-023-05288-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 08/25/2023] [Indexed: 09/08/2023] Open
Abstract
Neurons comprising nigrostriatal system play important roles in action selection. However, it remains unclear how this system integrates recent outcome information with current action (movement) and outcome (reward or no reward) information to achieve appropriate subsequent action. We examined how neuronal activity of substantia nigra pars compacta (SNc) and dorsal striatum reflects the level of reward expectation from recent outcomes in rats performing a reward-based choice task. Movement-related activity of direct and indirect pathway striatal projection neurons (dSPNs and iSPNs, respectively) were enhanced by reward expectation, similarly to the SNc dopaminergic neurons, in both medial and lateral nigrostriatal projections. Given the classical basal ganglia model wherein dopamine stimulates dSPNs and suppresses iSPNs through distinct dopamine receptors, dopamine might not be the primary driver of iSPN activity increasing following higher reward expectation. In contrast, outcome-related activity was affected by reward expectation in line with the classical model and reinforcement learning theory, suggesting purposive effects of reward expectation.
Collapse
Affiliation(s)
- Alain Rios
- Department of Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan.
| | - Satoshi Nonomura
- Department of Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Aichi, 484-8506, Japan
| | - Shigeki Kato
- Department of Molecular Genetics, Institute of Biomedical Science, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Junichi Yoshida
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Natsuki Matsushita
- Division of Laboratory Animal Research, Aichi Medical University, Aichi, 480-1195, Japan
| | - Atsushi Nambu
- Division of System Neurophysiology, National Institute of Physiological Sciences and Department of Physiological Sciences, SOKENDAI, Aichi, 444-8585, Japan
| | - Masahiko Takada
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Aichi, 484-8506, Japan
| | - Riichiro Hira
- Department of Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Science, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Yutaka Sakai
- Brain Science Institute, Tamagawa University, Tokyo, 194-8610, Japan
| | - Minoru Kimura
- Brain Science Institute, Tamagawa University, Tokyo, 194-8610, Japan
| | - Yoshikazu Isomura
- Department of Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan.
- Brain Science Institute, Tamagawa University, Tokyo, 194-8610, Japan.
| |
Collapse
|
8
|
Padilla-Orozco M, Duhne M, Fuentes-Serrano A, Ortega A, Galarraga E, Bargas J, Lara-González E. Synaptic determinants of cholinergic interneurons hyperactivity during parkinsonism. Front Synaptic Neurosci 2022; 14:945816. [PMID: 36147730 PMCID: PMC9485566 DOI: 10.3389/fnsyn.2022.945816] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/21/2022] [Indexed: 11/25/2022] Open
Abstract
Parkinson’s disease is a neurodegenerative ailment generated by the loss of dopamine in the basal ganglia, mainly in the striatum. The disease courses with increased striatal levels of acetylcholine, disrupting the balance among these modulatory transmitters. These modifications disturb the excitatory and inhibitory balance in the striatal circuitry, as reflected in the activity of projection striatal neurons. In addition, changes in the firing pattern of striatal tonically active interneurons during the disease, including cholinergic interneurons (CINs), are being searched. Dopamine-depleted striatal circuits exhibit pathological hyperactivity as compared to controls. One aim of this study was to show how striatal CINs contribute to this hyperactivity. A second aim was to show the contribution of extrinsic synaptic inputs to striatal CINs hyperactivity. Electrophysiological and calcium imaging recordings in Cre-mice allowed us to evaluate the activity of dozens of identified CINs with single-cell resolution in ex vivo brain slices. CINs show hyperactivity with bursts and silences in the dopamine-depleted striatum. We confirmed that the intrinsic differences between the activity of control and dopamine-depleted CINs are one source of their hyperactivity. We also show that a great part of this hyperactivity and firing pattern change is a product of extrinsic synaptic inputs, targeting CINs. Both glutamatergic and GABAergic inputs are essential to sustain hyperactivity. In addition, cholinergic transmission through nicotinic receptors also participates, suggesting that the joint activity of CINs drives the phenomenon; since striatal CINs express nicotinic receptors, not expressed in striatal projection neurons. Therefore, CINs hyperactivity is the result of changes in intrinsic properties and excitatory and inhibitory inputs, in addition to the modification of local circuitry due to cholinergic nicotinic transmission. We conclude that CINs are the main drivers of the pathological hyperactivity present in the striatum that is depleted of dopamine, and this is, in part, a result of extrinsic synaptic inputs. These results show that CINs may be a main therapeutic target to treat Parkinson’s disease by intervening in their synaptic inputs.
Collapse
Affiliation(s)
- Montserrat Padilla-Orozco
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mariana Duhne
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Alejandra Fuentes-Serrano
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Aidán Ortega
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Elvira Galarraga
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - José Bargas
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
- *Correspondence: José Bargas,
| | - Esther Lara-González
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Esther Lara-González,
| |
Collapse
|
9
|
Oyanagi K, Hayashi H, Yamada M, Kakita A. The large neuron involvement in the neostriatum in Lewy body diseases. Neuropathology 2022; 42:459-463. [PMID: 35860863 DOI: 10.1111/neup.12819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Kiyomitsu Oyanagi
- Department of Brain Disease Research, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hideki Hayashi
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Mitsunori Yamada
- Department of Brain Disease Research, Shinshu University School of Medicine, Matsumoto, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
10
|
Planar cell polarity and the pathogenesis of Tourette Disorder: New hypotheses and perspectives. Dev Biol 2022; 489:14-20. [DOI: 10.1016/j.ydbio.2022.05.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/02/2022] [Accepted: 05/23/2022] [Indexed: 11/20/2022]
|
11
|
Nosaka D, Wickens JR. Striatal Cholinergic Signaling in Time and Space. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041202. [PMID: 35208986 PMCID: PMC8878708 DOI: 10.3390/molecules27041202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 11/30/2022]
Abstract
The cholinergic interneurons of the striatum account for a small fraction of all striatal cell types but due to their extensive axonal arborization give the striatum the highest content of acetylcholine of almost any nucleus in the brain. The prevailing theory of striatal cholinergic interneuron signaling is that the numerous varicosities on the axon produce an extrasynaptic, volume-transmitted signal rather than mediating rapid point-to-point synaptic transmission. We review the evidence for this theory and use a mathematical model to integrate the measurements reported in the literature, from which we estimate the temporospatial distribution of acetylcholine after release from a synaptic vesicle and from multiple vesicles during tonic firing and pauses. Our calculations, together with recent data from genetically encoded sensors, indicate that the temporospatial distribution of acetylcholine is both short-range and short-lived, and dominated by diffusion. These considerations suggest that acetylcholine signaling by cholinergic interneurons is consistent with point-to-point transmission within a steep concentration gradient, marked by transient peaks of acetylcholine concentration adjacent to release sites, with potential for faithful transmission of spike timing, both bursts and pauses, to the postsynaptic cell. Release from multiple sites at greater distance contributes to the ambient concentration without interference with the short-range signaling. We indicate several missing pieces of evidence that are needed for a better understanding of the nature of synaptic transmission by the cholinergic interneurons of the striatum.
Collapse
|
12
|
Lousada E, Boudreau M, Cohen-Adad J, Nait Oumesmar B, Burguière E, Schreiweis C. Reduced Axon Calibre in the Associative Striatum of the Sapap3 Knockout Mouse. Brain Sci 2021; 11:1353. [PMID: 34679417 PMCID: PMC8570333 DOI: 10.3390/brainsci11101353] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/28/2022] Open
Abstract
Pathological repetitive behaviours are a common feature of various neuropsychiatric disorders, including compulsions in obsessive-compulsive disorder or tics in Gilles de la Tourette syndrome. Clinical research suggests that compulsive-like symptoms are related to associative cortico-striatal dysfunctions, and tic-like symptoms to sensorimotor cortico-striatal dysfunctions. The Sapap3 knockout mouse (Sapap3-KO), the current reference model to study such repetitive behaviours, presents both associative as well as sensorimotor cortico-striatal dysfunctions. Previous findings point to deficits in both macro-, as well as micro-circuitry, both of which can be affected by neuronal structural changes. However, to date, structural connectivity has not been analysed. Hence, in the present study, we conducted a comprehensive structural characterisation of both associative and sensorimotor striatum as well as major cortical areas connecting onto these regions. Besides a thorough immunofluorescence study on oligodendrocytes, we applied AxonDeepSeg, an open source software, to automatically segment and characterise myelin thickness and axon area. We found that axon calibre, the main contributor to changes in conduction speed, is specifically reduced in the associative striatum of the Sapap3-KO mouse; myelination per se seems unaffected in associative and sensorimotor cortico-striatal circuits.
Collapse
Affiliation(s)
- Eliana Lousada
- Team ‘Neurophysiology of Repetitive Behaviours’ (NERB), Institut du Cerveau, Inserm U1127, Centre National de la Recherche Scientifique (CNRS) U7225, Sorbonne Universités, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France; (E.L.); (E.B.)
| | - Mathieu Boudreau
- Montreal Heart Institute, Montréal, QC H1T 1C8, Canada;
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, QC H3T 1J4, Canada;
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, QC H3T 1J4, Canada;
- Functional Neuroimaging Unit, Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal (CRIUGM), Université de Montréal, Montréal, QC H3W 1W5, Canada
- Mila—Quebec AI Institute, Montréal, QC H2S 3H1, Canada
| | - Brahim Nait Oumesmar
- Team ‘Myelin Plasticity and Regeneration’, Institut du Cerveau, Inserm U1127, Centre National de la Recherche Scientifique (CNRS) U7225, Sorbonne Universités, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France;
| | - Eric Burguière
- Team ‘Neurophysiology of Repetitive Behaviours’ (NERB), Institut du Cerveau, Inserm U1127, Centre National de la Recherche Scientifique (CNRS) U7225, Sorbonne Universités, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France; (E.L.); (E.B.)
| | - Christiane Schreiweis
- Team ‘Neurophysiology of Repetitive Behaviours’ (NERB), Institut du Cerveau, Inserm U1127, Centre National de la Recherche Scientifique (CNRS) U7225, Sorbonne Universités, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France; (E.L.); (E.B.)
| |
Collapse
|
13
|
Iarkov A, Mendoza C, Echeverria V. Cholinergic Receptor Modulation as a Target for Preventing Dementia in Parkinson's Disease. Front Neurosci 2021; 15:665820. [PMID: 34616271 PMCID: PMC8488354 DOI: 10.3389/fnins.2021.665820] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 08/26/2021] [Indexed: 12/20/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative condition characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) in the midbrain resulting in progressive impairment in cognitive and motor abilities. The physiological and molecular mechanisms triggering dopaminergic neuronal loss are not entirely defined. PD occurrence is associated with various genetic and environmental factors causing inflammation and mitochondrial dysfunction in the brain, leading to oxidative stress, proteinopathy, and reduced viability of dopaminergic neurons. Oxidative stress affects the conformation and function of ions, proteins, and lipids, provoking mitochondrial DNA (mtDNA) mutation and dysfunction. The disruption of protein homeostasis induces the aggregation of alpha-synuclein (α-SYN) and parkin and a deficit in proteasome degradation. Also, oxidative stress affects dopamine release by activating ATP-sensitive potassium channels. The cholinergic system is essential in modulating the striatal cells regulating cognitive and motor functions. Several muscarinic acetylcholine receptors (mAChR) and nicotinic acetylcholine receptors (nAChRs) are expressed in the striatum. The nAChRs signaling reduces neuroinflammation and facilitates neuronal survival, neurotransmitter release, and synaptic plasticity. Since there is a deficit in the nAChRs in PD, inhibiting nAChRs loss in the striatum may help prevent dopaminergic neurons loss in the striatum and its pathological consequences. The nAChRs can also stimulate other brain cells supporting cognitive and motor functions. This review discusses the cholinergic system as a therapeutic target of cotinine to prevent cognitive symptoms and transition to dementia in PD.
Collapse
Affiliation(s)
- Alexandre Iarkov
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile
| | - Cristhian Mendoza
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile
| | - Valentina Echeverria
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile.,Research & Development Service, Bay Pines VA Healthcare System, Bay Pines, FL, United States
| |
Collapse
|
14
|
Sippy T, Chaimowitz C, Crochet S, Petersen CCH. Cell Type-Specific Membrane Potential Changes in Dorsolateral Striatum Accompanying Reward-Based Sensorimotor Learning. FUNCTION (OXFORD, ENGLAND) 2021; 2:zqab049. [PMID: 35330797 PMCID: PMC8788857 DOI: 10.1093/function/zqab049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 01/07/2023]
Abstract
The striatum integrates sensorimotor and motivational signals, likely playing a key role in reward-based learning of goal-directed behavior. However, cell type-specific mechanisms underlying reinforcement learning remain to be precisely determined. Here, we investigated changes in membrane potential dynamics of dorsolateral striatal neurons comparing naïve mice and expert mice trained to lick a reward spout in response to whisker deflection. We recorded from three distinct cell types: (i) direct pathway striatonigral neurons, which express type 1 dopamine receptors; (ii) indirect pathway striatopallidal neurons, which express type 2 dopamine receptors; and (iii) tonically active, putative cholinergic, striatal neurons. Task learning was accompanied by cell type-specific changes in the membrane potential dynamics evoked by the whisker deflection and licking in successfully-performed trials. Both striatonigral and striatopallidal types of striatal projection neurons showed enhanced task-related depolarization across learning. Striatonigral neurons showed a prominent increase in a short latency sensory-evoked depolarization in expert compared to naïve mice. In contrast, the putative cholinergic striatal neurons developed a hyperpolarizing response across learning, driving a pause in their firing. Our results reveal cell type-specific changes in striatal membrane potential dynamics across the learning of a simple goal-directed sensorimotor transformation, helpful for furthering the understanding of the various potential roles of different basal ganglia circuits.
Collapse
Affiliation(s)
| | - Corryn Chaimowitz
- Department of Psychiatry and Physiology and Neuroscience, New York University Langone Medical Center, New York, NY 10016, USA
| | | | | |
Collapse
|
15
|
Loftén A, Adermark L, Ericson M, Söderpalm B. An acetylcholine-dopamine interaction in the nucleus accumbens and its involvement in ethanol's dopamine-releasing effect. Addict Biol 2021; 26:e12959. [PMID: 32789970 PMCID: PMC8244087 DOI: 10.1111/adb.12959] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/02/2020] [Accepted: 07/29/2020] [Indexed: 11/28/2022]
Abstract
Alcohol use disorder is a chronic, relapsing brain disorder causing substantial morbidity and mortality. Cholinergic interneurons (CIN) within the nucleus accumbens (nAc) have been suggested to exert a regulatory impact on dopamine (DA) neurotransmission locally, and defects in CIN have been implied in several psychiatric disorders. The aim of this study was to investigate the role of CIN in regulation of basal extracellular levels of DA and in modulation of nAc DA release following ethanol administration locally within the nAc of male Wistar rats. Using reversed in vivo microdialysis, the acetylcholinesterase inhibitor physostigmine was administered locally in the nAc followed by addition of either the muscarinic acetylcholine (ACh) receptor antagonist scopolamine or the nicotinic ACh receptor antagonist mecamylamine. Further, ethanol was locally perfused in the nAc following pretreatment with scopolamine and/or mecamylamine. Lastly, ethanol was administered locally into the nAc of animals with accumbal CIN‐ablation induced by anticholine acetyl transferase‐saporin. Physostigmine increased accumbal DA levels via activation of muscarinic ACh receptors. Neither scopolamine and/or mecamylamine nor CIN‐ablation altered basal DA levels, suggesting that extracellular DA levels are not tonically controlled by ACh in the nAc. In contrast, ethanol‐induced DA elevation was prevented following coadministration of scopolamine and mecamylamine and blunted in CIN‐ablated animals, suggesting involvement of CIN‐ACh in ethanol‐mediated DA signaling. The data presented in this study suggest that basal extracellular levels of DA within the nAc are not sustained by ACh, whereas accumbal CIN‐ACh is involved in mediating ethanol‐induced DA release.
Collapse
Affiliation(s)
- Anna Loftén
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology The Sahlgrenska Academy at University of Gothenburg Gothenburg Sweden
- Beroendekliniken Sahlgrenska University Hospital Gothenburg Sweden
| | - Louise Adermark
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology The Sahlgrenska Academy at University of Gothenburg Gothenburg Sweden
- Department of Pharmacology, Institute of Neuroscience and Physiology The Sahlgrenska Academy at University of Gothenburg Gothenburg Sweden
| | - Mia Ericson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology The Sahlgrenska Academy at University of Gothenburg Gothenburg Sweden
| | - Bo Söderpalm
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology The Sahlgrenska Academy at University of Gothenburg Gothenburg Sweden
- Beroendekliniken Sahlgrenska University Hospital Gothenburg Sweden
| |
Collapse
|
16
|
Poppi LA, Ho-Nguyen KT, Shi A, Daut CT, Tischfield MA. Recurrent Implication of Striatal Cholinergic Interneurons in a Range of Neurodevelopmental, Neurodegenerative, and Neuropsychiatric Disorders. Cells 2021; 10:907. [PMID: 33920757 PMCID: PMC8071147 DOI: 10.3390/cells10040907] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/03/2021] [Accepted: 04/12/2021] [Indexed: 12/17/2022] Open
Abstract
Cholinergic interneurons are "gatekeepers" for striatal circuitry and play pivotal roles in attention, goal-directed actions, habit formation, and behavioral flexibility. Accordingly, perturbations to striatal cholinergic interneurons have been associated with many neurodevelopmental, neurodegenerative, and neuropsychiatric disorders. The role of acetylcholine in many of these disorders is well known, but the use of drugs targeting cholinergic systems fell out of favor due to adverse side effects and the introduction of other broadly acting compounds. However, in response to recent findings, re-examining the mechanisms of cholinergic interneuron dysfunction may reveal key insights into underlying pathogeneses. Here, we provide an update on striatal cholinergic interneuron function, connectivity, and their putative involvement in several disorders. In doing so, we aim to spotlight recurring physiological themes, circuits, and mechanisms that can be investigated in future studies using new tools and approaches.
Collapse
Affiliation(s)
- Lauren A. Poppi
- Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA;
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA; (K.T.H.-N.); (A.S.); (C.T.D.)
- Tourette International Collaborative (TIC) Genetics Study, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Khue Tu Ho-Nguyen
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA; (K.T.H.-N.); (A.S.); (C.T.D.)
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Anna Shi
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA; (K.T.H.-N.); (A.S.); (C.T.D.)
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Cynthia T. Daut
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA; (K.T.H.-N.); (A.S.); (C.T.D.)
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Max A. Tischfield
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA; (K.T.H.-N.); (A.S.); (C.T.D.)
- Tourette International Collaborative (TIC) Genetics Study, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
17
|
Laurent V, Balleine BW. How predictive learning influences choice: Evidence for a GPCR-based memory process necessary for Pavlovian-instrumental transfer. J Neurochem 2021; 157:1436-1449. [PMID: 33662158 DOI: 10.1111/jnc.15339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/25/2021] [Accepted: 02/28/2021] [Indexed: 12/13/2022]
Abstract
Predictive learning endows stimuli with the capacity to signal both the sensory-specific and general motivational properties of their associated rewards or outcomes. These two signals can be distinguished behaviorally by their influence on the selection and performance of instrumental actions, respectively. This review focuses on how sensory-specific predictive learning guides choice between actions that earn otherwise equally desirable outcomes. We describe evidence that outcome-specific predictive learning is encoded in the basolateral amygdala and drives the accumulation of delta-opioid receptors on the surface of cholinergic interneurons located in the nucleus accumbens shell. This accumulation constitutes a novel form of cellular memory, not for outcome-specific predictive learning per se but for the selection of, and choice between, future instrumental actions. We describe recent evidence regarding the cascade of events necessary for the formation and expression of this cellular memory and point to open questions for future research into this process. Beyond these mechanistic considerations, the discovery of this new form of memory is consistent with recent evidence suggesting that intracellular rather than synaptic changes can mediate learning-related plasticity to modify brain circuitry to prepare for future significant events.
Collapse
Affiliation(s)
- Vincent Laurent
- Decision Neuroscience Laboratory, School of Psychology, UNSW SYDNEY, Randwick, NSW, Australia
| | - Bernard W Balleine
- Decision Neuroscience Laboratory, School of Psychology, UNSW SYDNEY, Randwick, NSW, Australia
| |
Collapse
|
18
|
Suzuki E, Momiyama T. M1 muscarinic acetylcholine receptor-mediated inhibition of GABA release from striatal medium spiny neurons onto cholinergic interneurons. Eur J Neurosci 2020; 53:796-813. [PMID: 33270289 DOI: 10.1111/ejn.15074] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/10/2020] [Accepted: 11/24/2020] [Indexed: 11/26/2022]
Abstract
Acetylcholine (ACh) modulates neurotransmitter release in the central nervous system. Although GABAergic transmission onto the striatal cholinergic interneurons (ChIN) is modulated by dopamine receptors, cholinergic modulation of the same synapse is still unknown. In the present study, modulatory roles of ACh in the GABAergic transmission from striatal medium spiny neurons (MSNs) onto ChIN were investigated using optogenetics and whole-cell patch-clamp technique in juvenile and young-adult mice brain slices. GABAA receptor-mediated inhibitory postsynaptic currents (IPSCs) were evoked by focal electrical- or blue-light stimulation. Bath application of carbachol, a muscarinic ACh receptor agonist, suppressed the amplitude of IPSCs in a concentration-dependent manner in both age groups. A choline esterase inhibitor, physostigmine, also suppressed the amplitude of IPSCs. In the presence of a membrane permeable M1 muscarine receptor antagonist, pirenzepine, carbachol-induced suppression of IPSCs was antagonized, whereas a M2 muscarine receptor antagonist, a M4 receptor antagonist, or a membrane impermeable M1 receptor antagonist did not antagonize carbachol-induced suppression of IPSCs. Retrograde cannabinoid cascade via cannabinoid receptor 1 was not involved in carbachol-induced inhibition. Furthermore, carbachol did not affect amplitude of inward currents induced by puff application of GABA, whereas coefficient of variation of IPSCs was significantly increased by carbachol. These results suggest that activation of presynaptic M1 muscarine receptors located on the GABAergic terminals including intracellular organelle of MSNs inhibits GABA release onto ChIN.
Collapse
Affiliation(s)
- Etsuko Suzuki
- Department of Pharmacology, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Toshihiko Momiyama
- Department of Pharmacology, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| |
Collapse
|
19
|
Collins AL, Saunders BT. Heterogeneity in striatal dopamine circuits: Form and function in dynamic reward seeking. J Neurosci Res 2020; 98:1046-1069. [PMID: 32056298 PMCID: PMC7183907 DOI: 10.1002/jnr.24587] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 01/08/2020] [Accepted: 01/16/2020] [Indexed: 01/03/2023]
Abstract
The striatal dopamine system has long been studied in the context of reward learning, motivation, and movement. Given the prominent role dopamine plays in a variety of adaptive behavioral states, as well as diseases like addiction, it is essential to understand the full complexity of dopamine neurons and the striatal systems they target. A growing number of studies are uncovering details of the heterogeneity in dopamine neuron subpopulations. Here, we review that work to synthesize current understanding of dopamine system heterogeneity across three levels, anatomical organization, functions in behavior, and modes of action, wherein we focus on signaling profiles and local mechanisms for modulation of dopamine release. Together, these studies reveal new and emerging dimensions of the striatal dopamine system, informing its contribution to dynamic motivational and decision-making processes.
Collapse
Affiliation(s)
- Anne L. Collins
- University of Minnesota, Department of Neuroscience, Medical Discovery Team on Addiction, Minneapolis, MN 55455
| | - Benjamin T. Saunders
- University of Minnesota, Department of Neuroscience, Medical Discovery Team on Addiction, Minneapolis, MN 55455
| |
Collapse
|
20
|
Martel AC, Elseedy H, Lavigne M, Scapula J, Ghestem A, Kremer EJ, Esclapez M, Apicella P. Targeted Transgene Expression in Cholinergic Interneurons in the Monkey Striatum Using Canine Adenovirus Serotype 2 Vectors. Front Mol Neurosci 2020; 13:76. [PMID: 32499678 PMCID: PMC7242643 DOI: 10.3389/fnmol.2020.00076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/17/2020] [Indexed: 12/12/2022] Open
Abstract
The striatum, the main input structure of the basal ganglia, is critical for action selection and adaptive motor control. To understand the neuronal mechanisms underlying these functions, an analysis of microcircuits that compose the striatum is necessary. Among these, cholinergic interneurons (ChIs) provide intrinsic striatal innervation whose dysfunction is implicated in neuropsychiatric diseases, such as Parkinson’s disease and Tourette syndrome. The ability to experimentally manipulate the activity of ChIs is critical to gain insights into their contribution to the normal function of the striatum and the emergence of behavioral abnormalities in pathological states. In this study, we generated and tested CAV-pChAT-GFP, a replication-defective canine adenovirus type 2 (CAV-2) vector carrying the green fluorescent protein (GFP) sequence under the control of the human choline acetyltransferase (ChAT) promoter. We first tested the potential specificity of CAV-pChAT-GFP to label striatal ChIs in a rat before performing experiments on two macaque monkeys. In the vector-injected rat and monkey striatum, we found that GFP expression preferentially colocalized with ChAT-immunoreactivity throughout the striatum, including those from local circuit interneurons. CAV-2 vectors containing transgene driven by the ChAT promoter provide a powerful tool for investigating ChI contributions to circuit function and behavior in nonhuman primates.
Collapse
Affiliation(s)
- Anne-Caroline Martel
- CNRS, Institut de Neurosciences de la Timone, Aix Marseille University, Marseille, France
| | - Heba Elseedy
- INSERM, Institut de Neurosciences des Systèmes, Aix Marseille University, Marseille, France.,Department of Zoology, Alexandria University, Alexandria, Egypt
| | - Marina Lavigne
- CNRS, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
| | - Jennyfer Scapula
- INSERM, Institut de Neurosciences des Systèmes, Aix Marseille University, Marseille, France
| | - Antoine Ghestem
- INSERM, Institut de Neurosciences des Systèmes, Aix Marseille University, Marseille, France
| | - Eric J Kremer
- CNRS, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
| | - Monique Esclapez
- INSERM, Institut de Neurosciences des Systèmes, Aix Marseille University, Marseille, France
| | - Paul Apicella
- CNRS, Institut de Neurosciences de la Timone, Aix Marseille University, Marseille, France
| |
Collapse
|
21
|
Tubert C, Murer MG. What’s wrong with the striatal cholinergic interneurons in Parkinson’s disease? Focus on intrinsic excitability. Eur J Neurosci 2020; 53:2100-2116. [DOI: 10.1111/ejn.14742] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/04/2020] [Accepted: 04/05/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Cecilia Tubert
- Instituto de Fisiología y Biofísica “Bernardo Houssay”, (IFIBIO‐Houssay) Grupo de Neurociencia de Sistemas Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires Argentina
| | - Mario Gustavo Murer
- Instituto de Fisiología y Biofísica “Bernardo Houssay”, (IFIBIO‐Houssay) Grupo de Neurociencia de Sistemas Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires Argentina
| |
Collapse
|
22
|
Abstract
Motor control in the striatum is an orchestra played by various neuronal populations. Loss of harmony due to dopamine deficiency is considered the primary pathological cause of the symptoms of Parkinson’s disease (PD). Recent progress in experimental approaches has enabled us to examine the striatal circuitry in a much more comprehensive manner, not only reshaping our understanding of striatal functions in movement regulation but also leading to new opportunities for the development of therapeutic strategies for treating PD. In addition to dopaminergic innervation, giant aspiny cholinergic interneurons (ChIs) within the striatum have long been recognized as a critical node for balancing dopamine signaling and regulating movement. With the roles of ChIs in motor control further uncovered and more specific manipulations available, striatal ChIs and their corresponding receptors are emerging as new promising therapeutic targets for PD. This review summarizes recent progress in functional studies of striatal circuitry and discusses the translational implications of these new findings for the treatment of PD.
Collapse
|
23
|
Walker LC, Lawrence AJ. Allosteric modulation of muscarinic receptors in alcohol and substance use disorders. FROM STRUCTURE TO CLINICAL DEVELOPMENT: ALLOSTERIC MODULATION OF G PROTEIN-COUPLED RECEPTORS 2020; 88:233-275. [DOI: 10.1016/bs.apha.2020.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
24
|
Castro DC, Bruchas MR. A Motivational and Neuropeptidergic Hub: Anatomical and Functional Diversity within the Nucleus Accumbens Shell. Neuron 2019; 102:529-552. [PMID: 31071288 PMCID: PMC6528838 DOI: 10.1016/j.neuron.2019.03.003] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/22/2019] [Accepted: 03/01/2019] [Indexed: 01/14/2023]
Abstract
The mesocorticolimbic pathway is canonically known as the "reward pathway." Embedded within the center of this circuit is the striatum, a massive and complex network hub that synthesizes motivation, affect, learning, cognition, stress, and sensorimotor information. Although striatal subregions collectively share many anatomical and functional similarities, it has become increasingly clear that it is an extraordinarily heterogeneous region. In particular, the nucleus accumbens (NAc) medial shell has repeatedly demonstrated that the rules dictated by more dorsal aspects of the striatum do not apply or are even reversed in functional logic. These discrepancies are perhaps most easily captured when isolating the functions of various neuromodulatory peptide systems within the striatum. Endogenous peptides are thought to play a critical role in modulating striatal signals to either amplify or dampen evoked behaviors. Here we describe the anatomical-functional backdrop upon which several neuropeptides act within the NAc to modulate behavior, with a specific emphasis on nucleus accumbens medial shell and stress responsivity. Additionally, we propose that, as the field continues to dissect fast neurotransmitter systems within the NAc, we must also provide considerable contextual weight to the roles local peptides play in modulating these circuits to more comprehensively understand how this important subregion gates motivated behaviors.
Collapse
Affiliation(s)
- Daniel C Castro
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Michael R Bruchas
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
25
|
Ztaou S, Amalric M. Contribution of cholinergic interneurons to striatal pathophysiology in Parkinson's disease. Neurochem Int 2019; 126:1-10. [PMID: 30825602 DOI: 10.1016/j.neuint.2019.02.019] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/25/2019] [Accepted: 02/24/2019] [Indexed: 01/22/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder caused by the loss of nigral dopaminergic neurons innervating the striatum, the main input structure of the basal ganglia. This creates an imbalance between dopaminergic inputs and cholinergic interneurons (ChIs) within the striatum. The efficacy of anticholinergic drugs, one of the earliest therapy for PD before the discovery of L-3,4-dihydroxyphenylalanine (L-DOPA) suggests an increased cholinergic tone in this disease. The dopamine (DA)-acetylcholine (ACh) balance hypothesis is now revisited with the use of novel cutting-edge techniques (optogenetics, pharmacogenetics, new electrophysiological recordings). This review will provide the background of the specific contribution of ChIs to striatal microcircuit organization in physiological and pathological conditions. The second goal of this review is to delve into the respective contributions of nicotinic and muscarinic receptor cholinergic subunits to the control of striatal afferent and efferent neuronal systems. Special attention will be given to the role played by muscarinic acetylcholine receptors (mAChRs) in the regulation of striatal network which may have important implications in the development of novel therapeutic strategies for motor and cognitive impairment in PD.
Collapse
Affiliation(s)
- Samira Ztaou
- Aix Marseille Univ, CNRS, LNC, FR3C, Marseille, France; Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA; Department of Psychiatry, Columbia University, New York, NY, 10032, USA
| | | |
Collapse
|
26
|
Aono Y, Watanabe Y, Ishikawa M, Kuboyama N, Waddington JL, Saigusa T. In vivo neurochemical evidence that stimulation of accumbal GABAAand GABABreceptors each reduce acetylcholine efflux without affecting dopamine efflux in the nucleus accumbens of freely moving rats. Synapse 2018; 73:e22081. [DOI: 10.1002/syn.22081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/30/2018] [Accepted: 11/13/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Yuri Aono
- Department of Pharmacology; Nihon University School of Dentistry at Matsudo; Chiba Japan
| | - Yuriko Watanabe
- Oral surgery; Nihon University Graduate School of Dentistry at Matsudo; Chiba Japan
| | - Manabu Ishikawa
- Department of Anesthesiology; Nihon University School of Dentistry at Matsudo; Chiba Japan
| | - Noboru Kuboyama
- Department of Pharmacology; Nihon University School of Dentistry at Matsudo; Chiba Japan
| | - John L. Waddington
- Molecular and Cellular Therapeutics; Royal College of Surgeons in Ireland; Dublin Ireland
| | - Tadashi Saigusa
- Department of Pharmacology; Nihon University School of Dentistry at Matsudo; Chiba Japan
| |
Collapse
|
27
|
Abudukeyoumu N, Hernandez-Flores T, Garcia-Munoz M, Arbuthnott GW. Cholinergic modulation of striatal microcircuits. Eur J Neurosci 2018; 49:604-622. [PMID: 29797362 PMCID: PMC6587740 DOI: 10.1111/ejn.13949] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/30/2018] [Accepted: 04/04/2018] [Indexed: 12/15/2022]
Abstract
The purpose of this review is to bridge the gap between earlier literature on striatal cholinergic interneurons and mechanisms of microcircuit interaction demonstrated with the use of newly available tools. It is well known that the main source of the high level of acetylcholine in the striatum, compared to other brain regions, is the cholinergic interneurons. These interneurons provide an extensive local innervation that suggests they may be a key modulator of striatal microcircuits. Supporting this idea requires the consideration of functional properties of these interneurons, their influence on medium spiny neurons, other interneurons, and interactions with other synaptic regulators. Here, we underline the effects of intrastriatal and extrastriatal afferents onto cholinergic interneurons and discuss the activation of pre‐ and postsynaptic muscarinic and nicotinic receptors that participate in the modulation of intrastriatal neuronal interactions. We further address recent findings about corelease of other transmitters in cholinergic interneurons and actions of these interneurons in striosome and matrix compartments. In addition, we summarize recent evidence on acetylcholine‐mediated striatal synaptic plasticity and propose roles for cholinergic interneurons in normal striatal physiology. A short examination of their role in neurological disorders such as Parkinson's, Huntington's, and Tourette's pathologies and dystonia is also included.
Collapse
Affiliation(s)
| | | | | | - Gordon W Arbuthnott
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
28
|
Mao LM, He N, Jin DZ, Wang JQ. Regulation of Phosphorylation of AMPA Glutamate Receptors by Muscarinic M4 Receptors in the Striatum In vivo. Neuroscience 2018; 375:84-93. [PMID: 29432883 DOI: 10.1016/j.neuroscience.2018.01.063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 10/18/2022]
Abstract
The acetylcholine muscarinic 4 (M4) receptor is a principal muscarinic receptor subtype present in the striatum. Notably, Gαi/o-coupled M4 receptors and Gαs/Golf-coupled dopamine D1 receptors are coexpressed in striatonigral projection neurons and are thought to interact with each other to regulate neuronal excitability, although underlying molecular mechanisms are poorly understood. In this study, we investigated the role of M4 receptors in the regulation of phosphorylation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in the rat normal and dopamine-stimulated striatum in vivo. We found that a systemic injection of a M4 antagonist tropicamide increased AMPA receptor GluA1 subunit phosphorylation at a protein kinase A-dependent site (S845) in the striatum. The tropicamide-induced S845 phosphorylation was rapid, reversible, and dose-dependent and occurred in the two subdivisions of the striatum, i.e., the caudate putamen and nucleus accumbens. Coadministration of subthreshold doses of tropicamide and a D1 agonist SKF81297 induced a significant increase in S845 phosphorylation. Coadministered tropicamide and a dopamine psychostimulant amphetamine at their subthreshold doses also elevated S845 phosphorylation. Tropicamide alone or coinjected with SKF81297 or amphetamine had no effect on GluA1 phosphorylation at S831. Tropicamide did not affect GluA2 phosphorylation at S880. These results reveal a selective inhibitory linkage from M4 receptors to GluA1 in S845 phosphorylation in striatal neurons. Blockade of the M4-mediated inhibition significantly augments constitutive and dopamine-stimulated GluA1 S845 phosphorylation.
Collapse
Affiliation(s)
- Li-Min Mao
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Nan He
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Dao-Zhong Jin
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - John Q Wang
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA; Department of Anesthesiology, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA.
| |
Collapse
|
29
|
Klenowski PM, Tapper AR. Molecular, Neuronal, and Behavioral Effects of Ethanol and Nicotine Interactions. Handb Exp Pharmacol 2018; 248:187-212. [PMID: 29423839 DOI: 10.1007/164_2017_89] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
30
|
Hawlitschka A, Holzmann C, Witt S, Spiewok J, Neumann AM, Schmitt O, Wree A, Antipova V. Intrastriatally injected botulinum neurotoxin-A differently effects cholinergic and dopaminergic fibers in C57BL/6 mice. Brain Res 2017; 1676:46-56. [DOI: 10.1016/j.brainres.2017.09.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 08/10/2017] [Accepted: 09/12/2017] [Indexed: 11/29/2022]
|
31
|
Muscarinic receptor subtype distribution in the central nervous system and relevance to aging and Alzheimer's disease. Neuropharmacology 2017; 136:362-373. [PMID: 29138080 DOI: 10.1016/j.neuropharm.2017.11.018] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 11/04/2017] [Accepted: 11/10/2017] [Indexed: 12/14/2022]
Abstract
Muscarinic acetylcholine receptors (mAChRs) are G proteincoupled receptors (GPCRs) that mediate the metabotropic actions of acetylcholine (ACh). There are five subtypes of mAChR, M1 - M5, which are expressed throughout the central nervous system (CNS) on numerous cell types and represent promising treatment targets for a number of different diseases, disorders, and conditions of the CNS. Although the present review will focus on Alzheimer's disease (AD) and amnestic mild cognitive impairment (aMCI), a number of conditions such as Parkinson's disease (PD), schizophrenia, and others represent significant unmet medical needs for which selective muscarinic agents could offer therapeutic benefits. Numerous advances have been made regarding mAChR localization through the use of subtype-selective antibodies and radioligand binding studies and these efforts have helped propel a number of mAChR therapeutics into clinical trials. However, much of what we know about mAChR localization in the healthy and diseased brain has come from studies employing radioligand binding with relatively modest selectivity. The development of subtype-selective small molecule radioligands suitable for in vitro and in vivo use, as well as robust, commercially-available antibodies remains a critical need for the field. Additionally, novel genetic tools should be developed and leveraged to help move the field increasingly towards a systems-level understanding of mAChR subtype action. Finally, functional, proteomic, and genetic data from ongoing human studies hold great promise for optimizing the design and interpretation of studies examining receptor levels by enabling patient stratification. This article is part of the Special Issue entitled 'Neuropharmacology on Muscarinic Receptors'.
Collapse
|
32
|
Apicella P. The role of the intrinsic cholinergic system of the striatum: What have we learned from TAN recordings in behaving animals? Neuroscience 2017; 360:81-94. [PMID: 28768155 DOI: 10.1016/j.neuroscience.2017.07.060] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 07/24/2017] [Accepted: 07/24/2017] [Indexed: 11/28/2022]
Abstract
Cholinergic interneurons provide rich local innervation of the striatum and play an important role in controlling behavior, as evidenced by the variety of movement and psychiatric disorders linked to disrupted striatal cholinergic transmission. Much progress has been made in recent years regarding our understanding of how these interneurons contribute to the processing of information in the striatum. In particular, investigation of the activity of presumed striatal cholinergic interneurons, identified as tonically active neurons or TANs in behaving animals, has pointed to their role in the signaling and learning of the motivational relevance of environmental stimuli. Although the bulk of this work has been conducted in monkeys, several studies have also been carried out in behaving rats, but information remains rather disparate across studies and it is still questionable whether rodent TANs correspond to TANs described in monkeys. Consequently, our current understanding of the function of cholinergic transmission in the striatum is challenged by the rapidly growing, but often confusing literature on the relationship between TAN activity and specific behaviors. As regards the precise nature of the information conveyed by the cholinergic TANs, a recent influential view emphasized that these local circuit neurons may play a special role in the processing of contextual information that is important for reinforcement learning and selection of appropriate actions. This review provides a summary of recent progress in TAN physiology from which it is proposed that striatal cholinergic interneurons are crucial elements for flexible switching of behaviors under changing environmental conditions.
Collapse
Affiliation(s)
- Paul Apicella
- Institut de Neurosciences de la Timone UMR 7289, Aix Marseille Université, CNRS, 13385 Marseille, France.
| |
Collapse
|
33
|
Background activity and visual responsiveness of caudate nucleus neurons in halothane anesthetized and in awake, behaving cats. Neuroscience 2017; 356:182-192. [PMID: 28546109 DOI: 10.1016/j.neuroscience.2017.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 05/11/2017] [Accepted: 05/15/2017] [Indexed: 11/20/2022]
Abstract
This study focuses on the important question whether brain activity recorded from anesthetized, paralyzed animals is comparable to that recorded from awake, behaving ones. We compared neuronal activity recorded from the caudate nucleus (CN) of two halothane-anesthetized, paralyzed and two awake, behaving cats. In both models, extracellular recordings were made from the CN during static and dynamic visual stimulation. The anesthesia was maintained during the recordings by a gaseous mixture of air and halothane (1.0%). The behaving animals were trained to perform a visual fixation task. Based on their electrophysiological properties, the recorded CN neurons were separated into three different classes: phasically active (PANs), high firing (HFNs), and tonically active (TANs) neurons. Halothane anesthesia significantly decreased the background activity of the CN neurons in all three classes. The anesthesia had the most remarkable suppressive effect on PANs, where the background activity was consistently under 1 spike/s. The analysis of these responses was almost impossible due to the extremely low activity. The evoked responses during both static and dynamic visual stimulation were obvious in the behaving cats. On the other hand, only weak visual responses were found in some neurons of halothane anesthetized cats. These results show that halothane gas anesthesia has a marked suppressive effect on the feline CN. We suggest that for the purposes of the visual and related multisensory/sensorimotor electrophysiological exploration of the CN, behaving animal models are preferable over anesthetized ones.
Collapse
|
34
|
Nanoscale imaging of clinical specimens using pathology-optimized expansion microscopy. Nat Biotechnol 2017; 35:757-764. [PMID: 28714966 PMCID: PMC5548617 DOI: 10.1038/nbt.3892] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 04/28/2017] [Indexed: 01/10/2023]
Abstract
Expansion microscopy (ExM), a method for improving the resolution of light microscopy by physically expanding the specimen, has not been applied to clinical tissue samples. Here we report a clinically optimized form of ExM that supports nanoscale imaging of human tissue specimens that have been fixed with formalin, embedded in paraffin, stained with hematoxylin and eosin (H&E), and/or fresh frozen. The method, which we call expansion pathology (ExPath), converts clinical samples into an ExM-compatible state, then applies an ExM protocol with protein anchoring and mechanical homogenization steps optimized for clinical samples. ExPath enables ~70 nm resolution imaging of diverse biomolecules in intact tissues using conventional diffraction-limited microscopes, and standard antibody and fluorescent DNA in situ hybridization reagents. We use ExPath for optical diagnosis of kidney minimal-change disease, which previously required electron microscopy (EM), and demonstrate high-fidelity computational discrimination between early breast neoplastic lesions that to date have challenged human judgment. ExPath may enable the routine use of nanoscale imaging in pathology and clinical research.
Collapse
|
35
|
Accumbal Cholinergic Interneurons Differentially Influence Motivation Related to Satiety Signaling. eNeuro 2017; 4:eN-NWR-0328-16. [PMID: 28497110 PMCID: PMC5422920 DOI: 10.1523/eneuro.0328-16.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 03/15/2017] [Accepted: 03/30/2017] [Indexed: 11/30/2022] Open
Abstract
Satiety, rather than all or none, can instead be viewed as a cumulative decrease in the drive to eat that develops over the course of a meal. The nucleus accumbens (NAc) is known to play a critical role in this type of value reappraisal, but the underlying circuits that influence such processes are unclear. Although NAc cholinergic interneurons (CINs) comprise only a small proportion of NAc neurons, their local impact on reward-based processes provides a candidate cell population for investigating the neural underpinnings of satiety. The present research therefore aimed to determine the role of NAc-CINs in motivation for food reinforcers in relation to satiety signaling. Through bidirectional control of CIN activity in mice, we show that when motivated by food restriction, increasing CIN activity led to a reduction in palatable food consumption while reducing CIN excitability enhanced food intake. These activity-dependent changes developed only late in the session and were unlikely to be driven by the innate reinforcer strength, suggesting that CIN modulation was instead impacting the cumulative change in motivation underlying satiety signaling. We propose that on a circuit level, an overall increase in inhibitory tone onto NAc output neurons played a role in the behavioral results, as activating NAc-CINs led to an inhibition of medium spiny neurons that was dependent on nicotinic receptor activation. Our results reveal an important role for NAc-CINs in controlling motivation for food intake and additionally provide a circuit-level framework for investigating the endogenous cholinergic circuits that signal satiety.
Collapse
|
36
|
Sgambato-Faure V. Control of the direct pathway by cholinergic interneurons is involved in parkinsonian motor symptoms. Mov Disord 2016; 32:393. [PMID: 27804149 DOI: 10.1002/mds.26840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/07/2016] [Accepted: 09/18/2016] [Indexed: 11/06/2022] Open
Affiliation(s)
- V Sgambato-Faure
- Institut des Sciences Cognitives Marc Jeannerod CNRS UMR 5229, Bron, France.,Université Lyon 1, Lyon, France
| |
Collapse
|
37
|
Deng YP, Reiner A. Cholinergic interneurons in the Q140 knockin mouse model of Huntington's disease: Reductions in dendritic branching and thalamostriatal input. J Comp Neurol 2016; 524:3518-3529. [PMID: 27219491 DOI: 10.1002/cne.24013] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/29/2016] [Accepted: 04/06/2016] [Indexed: 12/19/2022]
Abstract
We have previously found that thalamostriatal axodendritic terminals are reduced as early as 1 month of age in heterozygous Q140 HD mice (Deng et al. [] Neurobiol Dis 60:89-107). Because cholinergic interneurons are a major target of thalamic axodendritic terminals, we examined the VGLUT2-immunolabeled thalamic input to striatal cholinergic interneurons in heterozygous Q140 males at 1 and 4 months of age, using choline acetyltransferase (ChAT) immunolabeling to identify cholinergic interneurons. Although blinded neuron counts showed that ChAT+ perikarya were in normal abundance in Q140 mice, size measurements indicated that they were significantly smaller. Sholl analysis further revealed the dendrites of Q140 ChAT+ interneurons were significantly fewer and shorter. Consistent with the light microscopic data, ultrastructural analysis showed that the number of ChAT+ dendritic profiles per unit area of striatum was significantly decreased in Q140 striata, as was the abundance of VGLUT2+ axodendritic terminals making synaptic contact with ChAT+ dendrites per unit area of striatum. The density of thalamic terminals along individual cholinergic dendrites was, however, largely unaltered, indicating that the reduction in the areal striatal density of axodendritic thalamic terminals on cholinergic neurons was due to their dendritic territory loss. These results show that the abundance of thalamic input to individual striatal cholinergic interneurons is reduced early in the life span of Q140 mice, raising the possibility that this may occur in human HD as well. Because cholinergic interneurons differentially affect striatal direct vs. indirect pathway spiny projection neurons, their reduced thalamic excitatory drive may contribute to early abnormalities in movement in HD. J. Comp. Neurol. 524:3518-3529, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yun-Ping Deng
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee, 38163
| | - Anton Reiner
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee, 38163.
| |
Collapse
|
38
|
Xue B, Chen EC, He N, Jin DZ, Mao LM, Wang JQ. Integrated regulation of AMPA glutamate receptor phosphorylation in the striatum by dopamine and acetylcholine. Neuropharmacology 2016; 112:57-65. [PMID: 27060412 DOI: 10.1016/j.neuropharm.2016.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 04/01/2016] [Accepted: 04/05/2016] [Indexed: 12/16/2022]
Abstract
Dopamine (DA) and acetylcholine (ACh) signals converge onto protein kinase A (PKA) in medium spiny neurons of the striatum to control cellular and synaptic activities of these neurons, although underlying molecular mechanisms are less clear. Here we measured phosphorylation of the α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR) at a PKA site (S845) as an indicator of AMPAR responses in adult rat brains in vivo to explore how DA and ACh interact to modulate AMPARs. We found that subtype-selective activation of DA D1 receptors (D1Rs), D2 receptors (D2Rs), or muscarinic M4 receptors (M4Rs) induced specific patterns of GluA1 S845 responses in the striatum. These defined patterns support a local multitransmitter interaction model in which D2Rs inhibited an intrinsic inhibitory element mediated by M4Rs to enhance the D1R efficacy in modulating AMPARs. Consistent with this, selective enhancement of M4R activity by a positive allosteric modulator resumed the cholinergic inhibition of D1Rs. In addition, D1R and D2R coactivation recruited GluA1 and PKA preferentially to extrasynaptic sites. In sum, our in vivo data support an existence of a dynamic DA-ACh balance in the striatum which actively modulates GluA1 AMPAR phosphorylation and trafficking. This article is part of the Special Issue entitled 'Ionotropic glutamate receptors'.
Collapse
Affiliation(s)
- Bing Xue
- Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Elton C Chen
- Department of Anesthesiology, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Nan He
- Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Dao-Zhong Jin
- Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Li-Min Mao
- Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - John Q Wang
- Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA; Department of Anesthesiology, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA; Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.
| |
Collapse
|
39
|
Zhao Z, Zhang K, Liu X, Yan H, Ma X, Zhang S, Zheng J, Wang L, Wei X. Involvement of HCN Channel in Muscarinic Inhibitory Action on Tonic Firing of Dorsolateral Striatal Cholinergic Interneurons. Front Cell Neurosci 2016; 10:71. [PMID: 27047336 PMCID: PMC4801847 DOI: 10.3389/fncel.2016.00071] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 03/04/2016] [Indexed: 11/13/2022] Open
Abstract
The striatum is the most prominent nucleus in the basal ganglia and plays an important role in motor movement regulation. The cholinergic interneurons (ChIs) in striatum are involved in the motion regulation by releasing acetylcholine (ACh) and modulating the output of striatal projection neurons. Here, we report that muscarinic ACh receptor (M receptor) agonists, ACh and Oxotremorine (OXO-M), decreased the firing frequency of ChIs by blocking the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. Scopolamine (SCO), a nonselective antagonist of M receptors, abolished the inhibition. OXO-M exerted its function by activating the Gi/o cAMP signaling cascade. The single-cell reverse transcription polymerase chain reaction (scRT-PCR) revealed that all the five subtypes of M receptors and four subtypes of HCN channels were expressed on ChIs. Among them, M2 receptors and HCN2 channels were the most dominant ones and expressed in every single studied cholinergic interneuron (ChI).Our results suggest that ACh regulates not only the output of striatal projection neurons, but also the firing activity of ChIs themselves by activating presynaptic M receptors in the dorsal striatum. The activation of M2 receptors and blockage of HCN2 channels may play an important role in ACh inhibition on the excitability of ChIs. This finding adds a new G-protein coupled receptor mediated regulation on ChIs and provides a cellular mechanism for control of cholinergic activity and ACh release in the dorsal striatum.
Collapse
Affiliation(s)
- Zhe Zhao
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology Beijing, China
| | - Kang Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology Beijing, China
| | - Xiaoyan Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology Beijing, China
| | - Haitao Yan
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology Beijing, China
| | - Xiaoyun Ma
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology Beijing, China
| | - Shuzhuo Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology Beijing, China
| | - Jianquan Zheng
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology Beijing, China
| | - Liyun Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology Beijing, China
| | - Xiaoli Wei
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology Beijing, China
| |
Collapse
|
40
|
Transcriptome Analysis of the Human Striatum in Tourette Syndrome. Biol Psychiatry 2016; 79:372-382. [PMID: 25199956 PMCID: PMC4305353 DOI: 10.1016/j.biopsych.2014.07.018] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 07/04/2014] [Accepted: 07/11/2014] [Indexed: 12/16/2022]
Abstract
BACKGROUND Genome-wide association studies have not revealed any risk-conferring common genetic variants in Tourette syndrome (TS), requiring the adoption of alternative approaches to investigate the pathophysiology of this disorder. METHODS We obtained the basal ganglia transcriptome by RNA sequencing in the caudate and putamen of nine TS and nine matched normal control subjects. RESULTS We found 309 downregulated and 822 upregulated genes in the caudate and putamen (striatum) of TS individuals. Using data-driven gene network analysis, we identified 17 gene coexpression modules associated with TS. The top-scoring downregulated module in TS was enriched in striatal interneuron transcripts, which was confirmed by decreased numbers of cholinergic and gamma-aminobutyric acidergic interneurons by immunohistochemistry in the same regions. The top-scoring upregulated module was enriched in immune-related genes, consistent with activation of microglia in patients' striatum. Genes implicated by copy number variants in TS were enriched in the interneuron module, as well as in a protocadherin module. Module clustering revealed that the interneuron module was correlated with a neuronal metabolism module. CONCLUSIONS Convergence of differential expression, network analyses, and module clustering, together with copy number variants implicated in TS, strongly implicates disrupted interneuron signaling in the pathophysiology of severe TS and suggests that metabolic alterations may be linked to their death or dysfunction.
Collapse
|
41
|
Nagypál T, Gombkötő P, Barkóczi B, Benedek G, Nagy A. Activity of Caudate Nucleus Neurons in a Visual Fixation Paradigm in Behaving Cats. PLoS One 2015; 10:e0142526. [PMID: 26544604 PMCID: PMC4636356 DOI: 10.1371/journal.pone.0142526] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 10/22/2015] [Indexed: 11/25/2022] Open
Abstract
Beside its motor functions, the caudate nucleus (CN), the main input structure of the basal ganglia, is also sensitive to various sensory modalities. The goal of the present study was to investigate the effects of visual stimulation on the CN by using a behaving, head-restrained, eye movement-controlled feline model developed recently for this purpose. Extracellular multielectrode recordings were made from the CN of two cats in a visual fixation paradigm applying static and dynamic stimuli. The recorded neurons were classified in three groups according to their electrophysiological properties: phasically active (PAN), tonically active (TAN) and high-firing (HFN) neurons. The response characteristics were investigated according to this classification. The PAN and TAN neurons were sensitive primarily to static stimuli, while the HFN neurons responded primarily to changes in the visual environment i.e. to optic flow and the offset of the stimuli. The HFNs were the most sensitive to visual stimulation; their responses were stronger than those of the PANs and TANs. The majority of the recorded units were insensitive to the direction of the optic flow, regardless of group, but a small number of direction-sensitive neurons were also found. Our results demonstrate that both the static and the dynamic components of the visual information are represented in the CN. Furthermore, these results provide the first piece of evidence on optic flow processing in the CN, which, in more general terms, indicates the possible role of this structure in dynamic visual information processing.
Collapse
Affiliation(s)
- Tamás Nagypál
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Péter Gombkötő
- Center for Molecular and Behavioral Neuroscience Rutgers University, Newark, New Jersey, United States of America
| | - Balázs Barkóczi
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - György Benedek
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Attila Nagy
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
- * E-mail:
| |
Collapse
|
42
|
Maurice N, Liberge M, Jaouen F, Ztaou S, Hanini M, Camon J, Deisseroth K, Amalric M, Kerkerian-Le Goff L, Beurrier C. Striatal Cholinergic Interneurons Control Motor Behavior and Basal Ganglia Function in Experimental Parkinsonism. Cell Rep 2015; 13:657-666. [PMID: 26489458 DOI: 10.1016/j.celrep.2015.09.034] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 08/25/2015] [Accepted: 09/10/2015] [Indexed: 01/29/2023] Open
Abstract
Despite evidence showing that anticholinergic drugs are of clinical relevance in Parkinson's disease (PD), the causal role of striatal cholinergic interneurons (CINs) in PD pathophysiology remains elusive. Here, we show that optogenetic inhibition of CINs alleviates motor deficits in PD mouse models, providing direct demonstration for their implication in parkinsonian motor dysfunctions. As neural correlates, CIN inhibition in parkinsonian mice differentially impacts the excitability of striatal D1 and D2 medium spiny neurons, normalizes pathological bursting activity in the main basal ganglia output structure, and increases the functional weight of the direct striatonigral pathway in cortical information processing. By contrast, CIN inhibition in non-lesioned mice does not affect locomotor activity, equally modulates medium spiny neuron excitability, and does not modify spontaneous or cortically driven activity in the basal ganglia output, suggesting that the role of these interneurons in motor function is highly dependent on dopamine tone.
Collapse
Affiliation(s)
- Nicolas Maurice
- Aix-Marseille Université (AMU), Centre National de la Recherche Scientifique (CNRS), UMR 7288, Institut de Biologie du Développement de Marseille (IBDM), 13288 Marseille cedex 9, France
| | - Martine Liberge
- Aix-Marseille Université (AMU), Centre National de la Recherche Scientifique (CNRS), UMR 7291, FR3C 3512, Laboratoire de Neurosciences Cognitives, 13331 Marseille cedex 3, France
| | - Florence Jaouen
- Aix-Marseille Université (AMU), Centre National de la Recherche Scientifique (CNRS), UMR 7288, Institut de Biologie du Développement de Marseille (IBDM), 13288 Marseille cedex 9, France
| | - Samira Ztaou
- Aix-Marseille Université (AMU), Centre National de la Recherche Scientifique (CNRS), UMR 7291, FR3C 3512, Laboratoire de Neurosciences Cognitives, 13331 Marseille cedex 3, France
| | - Marwa Hanini
- Aix-Marseille Université (AMU), Centre National de la Recherche Scientifique (CNRS), UMR 7288, Institut de Biologie du Développement de Marseille (IBDM), 13288 Marseille cedex 9, France
| | - Jeremy Camon
- Aix-Marseille Université (AMU), Centre National de la Recherche Scientifique (CNRS), UMR 7291, FR3C 3512, Laboratoire de Neurosciences Cognitives, 13331 Marseille cedex 3, France
| | - Karl Deisseroth
- Departments of Bioengineering and Psychiatry and Howard Hughes Medical Institute, Stanford University, Palo Alto, CA 94305, USA
| | - Marianne Amalric
- Aix-Marseille Université (AMU), Centre National de la Recherche Scientifique (CNRS), UMR 7291, FR3C 3512, Laboratoire de Neurosciences Cognitives, 13331 Marseille cedex 3, France
| | - Lydia Kerkerian-Le Goff
- Aix-Marseille Université (AMU), Centre National de la Recherche Scientifique (CNRS), UMR 7288, Institut de Biologie du Développement de Marseille (IBDM), 13288 Marseille cedex 9, France
| | - Corinne Beurrier
- Aix-Marseille Université (AMU), Centre National de la Recherche Scientifique (CNRS), UMR 7288, Institut de Biologie du Développement de Marseille (IBDM), 13288 Marseille cedex 9, France.
| |
Collapse
|
43
|
Sizemore RJ, Zhang R, Lin N, Goddard L, Wastney T, Parr-Brownlie LC, Reynolds JNJ, Oorschot DE. Marked differences in the number and type of synapses innervating the somata and primary dendrites of midbrain dopaminergic neurons, striatal cholinergic interneurons, and striatal spiny projection neurons in the rat. J Comp Neurol 2015; 524:1062-80. [PMID: 26355230 DOI: 10.1002/cne.23891] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 08/17/2015] [Accepted: 09/02/2015] [Indexed: 12/24/2022]
Abstract
Elucidating the link between cellular activity and goal-directed behavior requires a fuller understanding of the mechanisms underlying burst firing in midbrain dopaminergic neurons and those that suppress activity during aversive or non-rewarding events. We have characterized the afferent synaptic connections onto these neurons in the rat substantia nigra pars compacta (SNpc) and ventral tegmental area (VTA), and compared these findings with cholinergic interneurons and spiny projection neurons in the striatum. We found that the average absolute number of synapses was three to three and one-half times greater onto the somata of dorsal striatal spiny projection neurons than onto the somata of dopaminergic neurons in the SNpc or dorsal striatal cholinergic interneurons. A similar comparison between populations of dopamine neurons revealed a two times greater number of somatic synapses on VTA dopaminergic neurons than SNpc dopaminergic neurons. The percentage of symmetrical, presumably inhibitory, synaptic inputs on somata was significantly higher on spiny projection neurons and cholinergic interneurons compared with SNpc dopaminergic neurons. Synaptic data on the primary dendrites yielded similar significant differences for the percentage of symmetrical synapses for VTA dopaminergic vs. striatal neurons. No differences in the absolute number or type of somatic synapses were evident for dopaminergic neurons in the SNpc of Wistar vs. Sprague-Dawley rat strains. These data from identified neurons are pivotal for interpreting their electrophysiological responses to afferent activity and for generating realistic computer models of neuronal networks of striatal and midbrain dopaminergic function.
Collapse
Affiliation(s)
- Rachel J Sizemore
- Department of Anatomy, Otago School of Medical Sciences, and the Brain Health Research Centre, University of Otago, Dunedin, 9054, New Zealand
| | - Rong Zhang
- Department of Anatomy, Otago School of Medical Sciences, and the Brain Health Research Centre, University of Otago, Dunedin, 9054, New Zealand
| | - Naili Lin
- Department of Anatomy, Otago School of Medical Sciences, and the Brain Health Research Centre, University of Otago, Dunedin, 9054, New Zealand
| | - Liping Goddard
- Department of Anatomy, Otago School of Medical Sciences, and the Brain Health Research Centre, University of Otago, Dunedin, 9054, New Zealand
| | - Timothy Wastney
- Department of Anatomy, Otago School of Medical Sciences, and the Brain Health Research Centre, University of Otago, Dunedin, 9054, New Zealand
| | - Louise C Parr-Brownlie
- Department of Anatomy, Otago School of Medical Sciences, and the Brain Health Research Centre, University of Otago, Dunedin, 9054, New Zealand
| | - John N J Reynolds
- Department of Anatomy, Otago School of Medical Sciences, and the Brain Health Research Centre, University of Otago, Dunedin, 9054, New Zealand
| | - Dorothy E Oorschot
- Department of Anatomy, Otago School of Medical Sciences, and the Brain Health Research Centre, University of Otago, Dunedin, 9054, New Zealand
| |
Collapse
|
44
|
Hirata H, Umemori J, Yoshioka H, Koide T, Watanabe K, Shimoda Y. Cell adhesion molecule contactin-associated protein 3 is expressed in the mouse basal ganglia during early postnatal stages. J Neurosci Res 2015; 94:74-89. [DOI: 10.1002/jnr.23670] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 08/14/2015] [Accepted: 08/31/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Haruna Hirata
- Department of Bioengineering; Nagaoka University of Technology; Nagaoka Niigata Japan
| | - Juzoh Umemori
- Mouse Genomics Resource Laboratory; National Institute of Genetics; Mishima Shizuoka Japan
| | - Hiroki Yoshioka
- Mouse Genomics Resource Laboratory; National Institute of Genetics; Mishima Shizuoka Japan
| | - Tsuyoshi Koide
- Mouse Genomics Resource Laboratory; National Institute of Genetics; Mishima Shizuoka Japan
| | - Kazutada Watanabe
- Department of Bioengineering; Nagaoka University of Technology; Nagaoka Niigata Japan
- Nagaoka National College of Technology; Nagaoka Niigata Japan
| | - Yasushi Shimoda
- Department of Bioengineering; Nagaoka University of Technology; Nagaoka Niigata Japan
| |
Collapse
|
45
|
Mao LM, Wang JQ. Dopaminergic and cholinergic regulation of Fyn tyrosine kinase phosphorylation in the rat striatum in vivo. Neuropharmacology 2015; 99:491-9. [PMID: 26277342 DOI: 10.1016/j.neuropharm.2015.08.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 07/27/2015] [Accepted: 08/11/2015] [Indexed: 12/21/2022]
Abstract
Src and Fyn are two Src family kinase (SFK) members that are expressed in mammalian brains and play important roles in the regulation of a variety of neuronal and synaptic substrates. Here we investigated the responsiveness of these SFKs to changing dopamine receptor signals in dopamine responsive regions of adult rat brains in vivo. Pharmacological activation of dopamine D1 receptors (D1Rs) by a systemic injection of the selective agonist SKF81297 increased phosphorylation of SFKs at a conserved and activation-associated autophosphorylation site (Y416) in the striatum, indicating activation of SFKs following SKF81297 injection. The dopamine D2 receptor (D2R) agonist quinpirole had no effect. Blockade of D1Rs with an antagonist SCH23390 did not alter striatal Y416 phosphorylation, while the D2R antagonist eticlopride elevated it. Between Src and Fyn, SKF81297 seemed to preferentially facilitate Fyn phosphorylation. Activation of muscarinic acetylcholine M4 receptors (M4Rs) with a positive allosteric modulator VU0152100 suppressed SFK Y416 responses to SKF81297. Additionally, SKF81297 induced a correlated increase in phosphorylation of N-methyl-D-aspartate (NMDA) receptor GluN2B subunits at a Fyn site (Y1472), which was attenuated by VU0152100. SKF81297 also enhanced synaptic recruitments of active Fyn and GluN1/GluN2B-containing NMDA receptors. These data demonstrate that D1Rs regulate Fyn and downstream NMDA receptors in striatal neurons in vivo. Acetylcholine through activating M4Rs inhibits Fyn and NMDA receptors in their sensitivity to D1R signaling.
Collapse
Affiliation(s)
- Li-Min Mao
- Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - John Q Wang
- Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA; Department of Anesthesiology, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA; Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.
| |
Collapse
|
46
|
Feduccia AA, Simms JA, Mill D, Yi HY, Bartlett SE. Varenicline decreases ethanol intake and increases dopamine release via neuronal nicotinic acetylcholine receptors in the nucleus accumbens. Br J Pharmacol 2015; 171:3420-31. [PMID: 24628360 PMCID: PMC4105930 DOI: 10.1111/bph.12690] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 03/08/2014] [Accepted: 03/10/2014] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND AND PURPOSE Varenicline, a neuronal nicotinic acetylcholine receptor (nAChR) modulator, decreases ethanol consumption in rodents and humans. The proposed mechanism of action for varenicline to reduce ethanol consumption has been through modulation of dopamine (DA) release in the nucleus accumbens (NAc) via α4*-containing nAChRs in the ventral tegmental area (VTA). However, presynaptic nAChRs on dopaminergic terminals in the NAc have been shown to directly modulate dopaminergic signalling independently of neuronal activity from the VTA. In this study, we determined whether nAChRs in the NAc play a role in varenicline's effects on ethanol consumption. EXPERIMENTAL APPROACH Rats were trained to consume ethanol using the intermittent-access two-bottle choice protocol for 10 weeks. Ethanol intake was measured after varenicline or vehicle was microinfused into the NAc (core, shell or core-shell border) or the VTA (anterior or posterior). The effect of varenicline treatment on DA release in the NAc was measured using both in vivo microdialysis and in vitro fast-scan cyclic voltammetry (FSCV). KEY RESULTS Microinfusion of varenicline into the NAc core and core-shell border, but not into the NAc shell or VTA, reduced ethanol intake following long-term ethanol consumption. During microdialysis, a significant enhancement in accumbal DA release occurred following systemic administration of varenicline and FSCV showed that varenicline also altered the evoked release of DA in the NAc. CONCLUSION AND IMPLICATIONS Following long-term ethanol consumption, varenicline in the NAc reduces ethanol intake, suggesting that presynaptic nAChRs in the NAc are important for mediating varenicline's effects on ethanol consumption.
Collapse
Affiliation(s)
- A A Feduccia
- Ernest Gallo Clinic and Research Center, University of California San Francisco, Emeryville, CA, USA
| | | | | | | | | |
Collapse
|
47
|
Gonzales KK, Smith Y. Cholinergic interneurons in the dorsal and ventral striatum: anatomical and functional considerations in normal and diseased conditions. Ann N Y Acad Sci 2015; 1349:1-45. [PMID: 25876458 DOI: 10.1111/nyas.12762] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Striatal cholinergic interneurons (ChIs) are central for the processing and reinforcement of reward-related behaviors that are negatively affected in states of altered dopamine transmission, such as in Parkinson's disease or drug addiction. Nevertheless, the development of therapeutic interventions directed at ChIs has been hampered by our limited knowledge of the diverse anatomical and functional characteristics of these neurons in the dorsal and ventral striatum, combined with the lack of pharmacological tools to modulate specific cholinergic receptor subtypes. This review highlights some of the key morphological, synaptic, and functional differences between ChIs of different striatal regions and across species. It also provides an overview of our current knowledge of the cellular localization and function of cholinergic receptor subtypes. The future use of high-resolution anatomical and functional tools to study the synaptic microcircuitry of brain networks, along with the development of specific cholinergic receptor drugs, should help further elucidate the role of striatal ChIs and permit efficient targeting of cholinergic systems in various brain disorders, including Parkinson's disease and addiction.
Collapse
Affiliation(s)
- Kalynda K Gonzales
- Yerkes National Primate Research Center, Department of Neurology and Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, Georgia.,Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | - Yoland Smith
- Yerkes National Primate Research Center, Department of Neurology and Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, Georgia
| |
Collapse
|
48
|
Topographic mapping between basal forebrain cholinergic neurons and the medial prefrontal cortex in mice. J Neurosci 2015; 34:16234-46. [PMID: 25471564 DOI: 10.1523/jneurosci.3011-14.2014] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The basal forebrain cholinergic innervation of the medial prefrontal cortex (mPFC) is crucial for cognitive performance. However, little is known about the organization of connectivity between the basal forebrain and the mPFC in the mouse. Using focal virus injections inducing Cre-dependent enhanced yellow fluorescent protein expression in ChAT-IRES-Cre mice, we tested the hypothesis that there is a topographic mapping between the basal forebrain cholinergic neurons and their axonal projections to the mPFC. We found that ascending cholinergic fibers to the mPFC follow four pathways and that cholinergic neurons take these routes depending on their location in the basal forebrain. In addition, a general mapping pattern was observed in which the position of cholinergic neurons measured along a rostral to caudal extent in the basal forebrain correlated with a ventral to dorsal and a rostral to caudal shift of cholinergic fiber distribution in mPFC. Finally, we found that neurons in the rostral and caudal parts of the basal forebrain differentially innervate the superficial and deep layers of the ventral regions of the mPFC. Thus, a frontocaudal organization of the cholinergic system exists in which distinct mPFC areas and cortical layers are targeted depending on the location of the cholinergic neuron in the basal forebrain.
Collapse
|
49
|
Muñoz-Manchado AB, Foldi C, Szydlowski S, Sjulson L, Farries M, Wilson C, Silberberg G, Hjerling-Leffler J. Novel Striatal GABAergic Interneuron Populations Labeled in the 5HT3a(EGFP) Mouse. Cereb Cortex 2014; 26:96-105. [PMID: 25146369 DOI: 10.1093/cercor/bhu179] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Histological and morphological studies indicate that approximately 5% of striatal neurons are cholinergic or γ-aminobutyric acidergic (GABAergic) interneurons (gINs). However, the number of striatal neurons expressing known interneuron markers is too small to account for the entire interneuron population. We therefore studied the serotonin (5HT) receptor 3a-enhanced green fluorescent protein (5HT3a(EGFP)) mouse, in which we found that a large number of striatal gINs are labeled. Roughly 20% of 5HT3a(EGFP)-positive cells co-express parvalbumin and exhibit fast-spiking (FS) electrophysiological properties. However, the majority of labeled neurons do not overlap with known molecular interneuron markers. Intrinsic electrical properties reveal at least 2 distinct novel subtypes: a late-spiking (LS) neuropeptide-Y (NPY)-negative neurogliaform (NGF) interneuron, and a large heterogeneous population with several features resembling low-threshold-spiking (LTS) interneurons that do not express somatostatin, NPY, or neuronal nitric oxide synthase. Although the 5HT3a(EGFP) NGF and LTS-like interneurons have electrophysiological properties similar to previously described populations, they are pharmacologically distinct. In direct contrast to previously described NPY(+) LTS and NGF cells, LTS-like 5HT3a(EGFP) cells show robust responses to nicotine administration, while the 5HT3a(EGFP) NGF cell type shows little or no response. By constructing a molecular map of the overlap between these novel populations and existing interneuron populations, we are able to reconcile the morphological and molecular estimates of striatal interneuron numbers.
Collapse
Affiliation(s)
| | - C Foldi
- Department of Medical Biochemistry and Biophysics
| | - S Szydlowski
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - L Sjulson
- Department of Psychiatry.,Department of Neuroscience and Physiology, NYU Neuroscience Institute, NYU Langone Medical Center, New York, NY, USA
| | - M Farries
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, USA
| | - C Wilson
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, USA
| | - G Silberberg
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
50
|
Wouterlood FG, Bloem B, Mansvelder HD, Luchicchi A, Deisseroth K. A fourth generation of neuroanatomical tracing techniques: exploiting the offspring of genetic engineering. J Neurosci Methods 2014; 235:331-48. [PMID: 25107853 DOI: 10.1016/j.jneumeth.2014.07.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 07/28/2014] [Accepted: 07/29/2014] [Indexed: 11/18/2022]
Abstract
The first three generations of neuroanatomical tract-tracing methods include, respectively, techniques exploiting degeneration, retrograde cellular transport and anterograde cellular transport. This paper reviews the most recent development in third-generation tracing, i.e., neurochemical fingerprinting based on BDA tracing, and continues with an emerging tracing technique called here 'selective fluorescent protein expression' that in our view belongs to an entirely new 'fourth-generation' class. Tracing techniques in this class lean on gene expression technology designed to 'label' projections exclusively originating from neurons expressing a very specific molecular phenotype. Genetically engineered mice that express cre-recombinase in a neurochemically specific neuronal population receive into a brain locus of interest an injection of an adeno-associated virus (AAV) carrying a double-floxed promoter-eYFP DNA sequence. After transfection this sequence is expressed only in neurons metabolizing recombinase protein. These particular neurons promptly start manufacturing the fluorescent protein which then accumulates and labels to full detail all the neuronal processes, including fibers and terminal arborizations. All other neurons remain optically 'dark'. The AAV is not replicated by the neurons, prohibiting intracerebral spread of 'infection'. The essence is that the fiber projections of discrete subpopulations of neurochemically specific neurons can be traced in full detail. One condition is that the transgenic mouse strain is recombinase-perfect. We illustrate selective fluorescent protein expression in parvalbumin-cre (PV-cre) mice and choline acetyltransferase-cre (ChAT-cre) mice. In addition we compare this novel tracing technique with observations in brains of native PV mice and ChAT-GFP mice. We include a note on tracing techniques using viruses.
Collapse
Affiliation(s)
- Floris G Wouterlood
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, Vrije University Medical Center, Amsterdam, The Netherlands.
| | - Bernard Bloem
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands; Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - Antonio Luchicchi
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - Karl Deisseroth
- Bioengineering Department, James E. Clark Center, Stanford University, Stanford, CA, USA
| |
Collapse
|