1
|
Saunders NR, Dziegielewska KM, Whish SC, Hinds LA, Wheaton BJ, Huang Y, Henry S, Habgood MD. A bipedal mammalian model for spinal cord injury research: The tammar wallaby. F1000Res 2017; 6:921. [PMID: 28721206 PMCID: PMC5497825 DOI: 10.12688/f1000research.11712.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/12/2017] [Indexed: 12/16/2022] Open
Abstract
Background: Most animal studies of spinal cord injury are conducted in quadrupeds, usually rodents. It is unclear to what extent functional results from such studies can be translated to bipedal species such as humans because bipedal and quadrupedal locomotion involve very different patterns of spinal control of muscle coordination. Bipedalism requires upright trunk stability and coordinated postural muscle control; it has been suggested that peripheral sensory input is less important in humans than quadrupeds for recovery of locomotion following spinal injury. Methods: We used an Australian macropod marsupial, the tammar wallaby
(Macropuseugenii), because tammars exhibit an upright trunk posture, human-like alternating hindlimb movement when swimming and bipedal over-ground locomotion. Regulation of their muscle movements is more similar to humans than quadrupeds. At different postnatal (P) days (P7–60) tammars received a complete mid-thoracic spinal cord transection. Morphological repair, as well as functional use of hind limbs, was studied up to the time of their pouch exit. Results: Growth of axons across the lesion restored supraspinal innervation in animals injured up to 3 weeks of age but not in animals injured after 6 weeks of age. At initial pouch exit (P180), the young injured at P7-21 were able to hop on their hind limbs similar to age-matched controls and to swim albeit with a different stroke. Those animals injured at P40-45 appeared to be incapable of normal use of hind limbs even while still in the pouch. Conclusions: Data indicate that the characteristic over-ground locomotion of tammars provides a model in which regrowth of supraspinal connections across the site of injury can be studied in a bipedal animal. Forelimb weight-bearing motion and peripheral sensory input appear not to compensate for lack of hindlimb control, as occurs in quadrupeds. Tammars may be a more appropriate model for studies of therapeutic interventions relevant to humans.
Collapse
Affiliation(s)
- Norman R Saunders
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Katarzyna M Dziegielewska
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Sophie C Whish
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Lyn A Hinds
- Health and Biosecurity Business Unit, Commonwealth Science and Industrial Research Organisation (CSIRO), Canberra, ACT, 2601, Australia
| | - Benjamin J Wheaton
- Centre for Evolutionary and Theoretical Immunology, The University of New Mexico, Albuquerque, NM, 87131, USA
| | - Yifan Huang
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Steve Henry
- Health and Biosecurity Business Unit, Commonwealth Science and Industrial Research Organisation (CSIRO), Canberra, ACT, 2601, Australia
| | - Mark D Habgood
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, VIC, 3010, Australia
| |
Collapse
|
2
|
Etherington SJ, Hong IHK, Wong CJW, Stephens N, Warburton NM. Heterochronic neuromuscular junction development in an Australian marsupial (Macropus fuliginosus
). J Zool (1987) 2016. [DOI: 10.1111/jzo.12367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- S. J. Etherington
- School of Veterinary and Life Sciences; Murdoch University; Murdoch Western Australia Australia
| | - I. H. K. Hong
- School of Veterinary and Life Sciences; Murdoch University; Murdoch Western Australia Australia
| | - C. J. W. Wong
- School of Veterinary and Life Sciences; Murdoch University; Murdoch Western Australia Australia
| | - N. Stephens
- School of Veterinary and Life Sciences; Murdoch University; Murdoch Western Australia Australia
| | - N. M. Warburton
- School of Veterinary and Life Sciences; Murdoch University; Murdoch Western Australia Australia
| |
Collapse
|
3
|
Chan WY, Lorke DE, Tiu SC, Yew DT. Proliferation and apoptosis in the developing human neocortex. THE ANATOMICAL RECORD 2002; 267:261-76. [PMID: 12124904 DOI: 10.1002/ar.10100] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The cell kinetics of the developing central nervous system (CNS) is determined by both proliferation and apoptosis. In the human neocortex at week 6 of gestation, proliferation is confined to the ventricular zone, where mitotic figures and nuclear immunoreactivity for proliferating cell nuclear antigen (PCNA) are detectable. Cell division is symmetric, with both daughter cells reentering mitosis. At week 7, the subventricular zone, a secondary proliferative zone, appears. It mainly gives rise to local circuit neurons and glial cells. Around week 12, the ventricular and subventricular zones are thickest, and the nuclear PCNA label is strongest, indicating that proliferation peaks at this stage. Thereafter, asymmetric division becomes the predominant mode of proliferation, with one daughter cell reentering mitosis and the other one migrating out. Towards late gestation, the ventricular and subventricular zones almost completely disappear and proliferation shifts towards the intermediate and subplate zones, where mainly glial cells are generated. A remnant of the subventricular zone with proliferative activity persists into adulthood. In general, proliferation follows a latero-medial gradient in the neocortex lasting longer in its lateral parts. Apoptotic nuclei have been detected around week 5, occurring in low numbers in the ventricular zone at this stage. Apoptotic cell death increases around midgestation and then spreads throughout all cortical layers, with most dying cells located in the ventricular and subventricular zones. This spatial distribution of apoptosis extends into late gestation. During the early postnatal period, most apoptotic cells are still located in the subcortical layers. During early embryonic development, proliferation and apoptosis are closely related, and are probably regulated by common regulators. In the late fetal and early postnatal periods, when proliferation has considerably declined in all cortical layers, apoptosis may occur in neurons whose sprouting axons do not find their targets.
Collapse
Affiliation(s)
- Wood Yee Chan
- Department of Anatomy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | | | | | | |
Collapse
|
4
|
Ho SM, Stirling RV. Development of muscle afferents in the spinal cord of the tammar wallaby. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1998; 106:79-91. [PMID: 9554961 DOI: 10.1016/s0165-3806(97)00198-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The development of muscle afferents in the tammar wallaby was examined to address whether proprioceptive input contributes to the marked asymmetry of the fore and hindlimb movement. Anatomical tracing with biocytin showed that the muscle afferents had reached the brachial motor horn by postnatal day (P1), but were less advanced in the lumbar region. Labelled cells lying outside the motor horn, presumably filled via gap junctions, were evident in the neonatal lumbar cord. By the 4th postnatal week, the afferent innervation of both brachial and lumbar cords became similar. Afferent discharges from stretching the biceps muscle could be recorded at birth, but not until P4 from the hindlimb gastrocnemius muscle. The discharges were predominantly phasic until P35 when tonic activity could also be recorded. Short latency spinal reflex responses superimposed upon a longer lasting potential were present in the brachial cord at birth, appearing in the lumbar cord at P4. By the 3rd postnatal week, spinal reflex became comparable in both segmental levels. The time course of muscle afferent development was compared to the progression of natural cell death in the lumbar cord. Sensorimotor connections were established towards the end of the rapid phase cell death as observed in other vertebrates.
Collapse
Affiliation(s)
- S M Ho
- Developmental Neurobiology, Research School of Biological Sciences, Australian National University, Canberra, Australia.
| | | |
Collapse
|
5
|
Ho SM. Rhythmic motor activity and interlimb co-ordination in the developing pouch young of a wallaby (Macropus eugenii). J Physiol 1997; 501 ( Pt 3):623-36. [PMID: 9218221 PMCID: PMC1159462 DOI: 10.1111/j.1469-7793.1997.623bm.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
1. The forelimb motor behaviour of developing wallaby was studied. A clock-like alternating movement was reactivated whenever the animal was removed from the pouch. 2. Forelimb stepping frequency increased during the first 3 weeks of development, while the phase relationship remained constant. Forelimb activity could be affected by altering the afferent feedback from the contralateral limb, or an increase in ambient temperature. 3. In vitro experiments were performed using an isolated brainstem-spinal cord preparation from animals up to 6 weeks postnatal. Fictive locomotor activity could be evoked by electrical stimulation or bath-applied NMDA (< 10 microM). 4. Bath-applied strychnine (10-25 microM) and bicuculline (10-50 microM) disrupted the phase relationship between motor pools, while rhythmic motor discharge remained in the absence of these inhibitory pathways. 5. The present findings indicate that the pattern generator that underlies the robust forelimb movement during the first journey to the pouch is retained for different motor functions during in-pouch development. The neural network that underlies such behaviour can be divided into two major components, a rhythm generator within each hemicord, and a pattern co-ordinating pathway which involve both glycinergic and GABAergic interneurones.
Collapse
Affiliation(s)
- S M Ho
- Developmental Neurobiology Group, Research School of Biological Sciences, Australian National University, Canberra, Australia.
| |
Collapse
|
6
|
Abstract
In this review, apoptosis during normal development of the CNS and abnormal apoptosis inducing hydrocephaly and arhinencephaly will be discussed. As the prominent sites of apoptosis during normal development of the CNS, we focused on the area of fusion of the neural plate to form the neural tube, the developing rhombomeres, and neuronal loss in the CNS during embryogenesis and postnatal development. As examples of abnormal apoptosis inducing abnormal brain morphogenesis, we will discuss genetically induced arhinencephaly and hydrocephaly. It was suggested that apoptosis of the precursor mitral cells in the anlage of the olfactory bulb was induced by non-innervation of olfactory neurons, and apoptosis of the precursor neurons in the pyriform cortex was induced by the non-innervation caused by the death of mitral cells in the mutant arhinencephalic mouse brain (Pdn/Pdn). Thus, sequential apoptosis of the precursor neurons and sequential manifestation of the brain abnormalities were proposed in arhinencephalic mutant mouse embryos and also in the arhinencephalic brains induced experimentally by fetal laser surgery exo utero. Meanwhile, it was speculated that the Gli3 gene, mutation of which is responsible for the arhinencephaly in Pdn/Pdn mice, might play a role in mesenchymal programmed cell death during development.
Collapse
Affiliation(s)
- I Naruse
- Department of Morphology, Aichi Human Service Center, Kasugai, Japan
| | | |
Collapse
|
7
|
Friedland DR, Eden AR, Laitman JT. Naturally occurring motoneuron cell death in rat upper respiratory tract motor nuclei: a histological, fast DiI and immunocytochemical study in the hypoglossal nucleus. JOURNAL OF NEUROBIOLOGY 1995; 27:520-34. [PMID: 7561831 DOI: 10.1002/neu.480270407] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have previously reported on our investigation of motoneuron cell death (MCD) in the rat nucleus ambiguus (NA). This article focuses on the other major upper respiratory tract motor nucleus: the hypoglossal. The hypoglossal nucleus (XII) contains motoneurons to the tongue and, as such, plays a critical role in defining patterns of respiration, deglutition, and vocalization. Motoneuron counts were made in XII in a developmental series of rats. In addition, the neural tracer fast DiI was used to ensure that all hypoglossal motoneurons had migrated into the nucleus at the time cell death was assessed. Furthermore, an antibody to gamma-aminobutyric acid (GABA) was used to determine the potential effect of inadvertently counting large interneurons on motoneuron counts. Cell death in XII was shown to occur entirely prenatally with a loss of 35% of cells between embryonic day 16 (E16) and birth. Fast DiI tracings of the prenatal hypoglossal nerve indicated that all motoneurons were present in a well-defined nucleus by E15. Immunocytochemical staining for GABA demonstrated considerably fewer interneurons than motoneurons in XII. These findings in XII, in comparison with those previously reported for NA, demonstrate differences in the timing and amount of cell death between upper respiratory tract motor nuclei. These differences establish periods during which one nucleus may be preferentially insulted by environmental or teratogenic factors. Preferential insults may underlie some of the upper respiratory tract incoordination pathologies seen in the newborn such as the sudden infant death syndrome (SIDS).
Collapse
Affiliation(s)
- D R Friedland
- Department of Cell Biology and Anatomy, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | |
Collapse
|
8
|
Abstract
Enzymes of the transglutaminase family catalyze the Ca(2+)-dependent covalent cross-linking of peptide-bound glutamine residues of proteins and glycoproteins to the epsilon-amino group of lysine residues to create inter- or intramolecular isopeptide bonds. Transglutaminases can also covalently link a variety of primary amines to peptide-bound glutamine residues giving rise to two possibilities; firstly, where the primary amine has two or more amino groups, further catalysis can result in the formation of cross-linked bridges between glutamine residues, and secondly, where the primary amine is a monoamine, glutamine residues are rendered inert to further modification. The products are therefore in the main, homo- or heterodimers, or extensive, metabolically-stable multimeric complexes or matrices. Ca(2+)-dependent transglutaminase activity is present in the mammalian peripheral and central nervous systems and transglutaminase-catalyzed cross-linking of endogenous substrates has been demonstrated in neurons of Aplysia and the mammalian brain. Transglutaminase activity increases in the brain during development, principally owing to the increasing preponderance of glial cell activity. In a few regions including the cerebellar cortex, activity is also high in early development. Cellular transglutaminases occur widely in differentiating cells and tissues in mammals, with more than one transglutaminase frequently associated with a single cell type. The primary protein sequences of three cellular transglutaminases have been fully determined in different species, together with that of a mammalian protein homologue (band 4.2) which shares extensive sequence homologies with transglutaminases, but lacks the active site cysteine residue. The upstream sequences of two mammalian cellular transglutaminase genes (C and K) contain numerous regulatory sites, and an invertebrate transglutaminase, annulin, is spatially regulated within homeodomains. Multiple molecular forms of transglutaminase C and possibly other cellular transglutaminases exist in mammalian brain. The emerging picture is one of a family of cytosolic and membrane-bound proteins central to several regulatory pathways whose functions is to stabilize the cellular and intercellular superstructure in growing organisms. The targeted formation of glu-lys isopeptide bonds between proteins is central to this function. Cytoskeletal proteins, membrane-associated receptors, enzymes in signal transduction pathways and extracellular glycoproteins are candidate substrates as are polyamines, but few cellular proteins have been identified as components of naturally-occurring covalently-bonded matrices. Transglutaminases participate in the programme of neuronal differentiation in some but not all classes of neurone. Both neuronal and non-neuronal expression of transglutaminases may be important for guidance of migrating neurons or growth cones and sustainment of cell shape and coordinates during development.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- D Hand
- Department of Zoology, University of Bristol, U.K
| | | | | |
Collapse
|
9
|
Perry MJ, Haynes LW. Localization and activity of transglutaminase, a retinoid-inducible protein, in developing rat spinal cord. Int J Dev Neurosci 1993; 11:325-37. [PMID: 8102831 DOI: 10.1016/0736-5748(93)90004-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The distribution of the retinoid-inducible enzyme, tissue transglutaminase (tTG) in developing rat spinal cord was determined by enzyme assay and immunocytochemistry. tTG activity was at its highest in the forebrain in late foetal development. In hindbrain and spinal cord, elevated activity persisted until after birth. In spinal cord only, a second peak of activity occurred during the first week post partum (P3). tTG was associated with both the cytosolic and particulate tissue fractions throughout spinal cord development, but the particulate component was more prominent in the early postnatal period. tTG was more concentrated during this period in the ventral horn, where the particulate-associated enzyme activity was highest. In spinal cord at 3 days post partum, particulate tTG could be solubilized with lubrol-PX, dithiothreitol and potassium thiocyanate. Both soluble and particulate-associated tTG coeluted with guinea-pig liver transglutaminase C by DEAE-sephacel chromatography. The first peak of tTG activity during late foetal life coincided with the transient localization of the enzyme by immunocytochemistry in vascular endothelia throughout the spinal cord. The second peak of activity at 3 days post partum, by which time vascular immunoreactivity was absent, coincided with the occurrence of small numbers of intensely immunoreactive motor neurones in the ventral horn. Immunoreactive motor neurones were seen predominantly at two levels: the lower thoracic segments and lumbar enlargement. The abnormal appearance of many immunoreactive neurones suggested degenerative changes were occurring. tTG was also present in central canal cluster cells from birth onwards. No neuronal immunoreactivity was seen throughout foetal development. A proportion of motor neurones prepared from E15 spinal cord and grown in coculture with spinal cord astrocytes, were immunoreactive for tTG. All immunoreactive neurones showed signs of degeneration. Addition of myotube-conditioned medium (a source of cholinergic differentiation factor, CDF) reduced the proportion of tTG-immunoreactive neurons in the cultures. Schwann cell-conditioned medium (a source of ciliary neurotrophic factor, CNTF) had a similar but less potent effect on the numbers of immunoreactive neurones. The possibility that tTG is a marker for late, but not early-phase programmed cell death in the developing rat spinal cord is discussed in the light of a proposed role for tTG in the mechanism of natural cell death by apoptosis.
Collapse
Affiliation(s)
- M J Perry
- Department of Zoology, University of Bristol, U.K
| | | |
Collapse
|
10
|
Harrison PH, Porter M. Development of the brachial spinal cord in the marsupial Macropus eugenii (tammar wallaby). BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1992; 70:139-44. [PMID: 1473273 DOI: 10.1016/0165-3806(92)90112-a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The development of the brachial spinal cord was studied in the marsupial Macropus eugenii (tammar wallaby) on postnatal days 1-34. On day 1 the spinal cord was histologically immature, with a deep central canal, proliferating neuroepithelium and roof and floor plates. The lateral motor column had formed, and forelimb muscles contained primary myotubes. The spinal cord gradually attained a mature appearance between days 1-34. The results confirm the suitability of the wallaby spinal cord for studies of early mammalian development.
Collapse
Affiliation(s)
- P H Harrison
- Developmental Neurobiology Group, Research School of Biological Sciences, Australian National University, Canberra
| | | |
Collapse
|
11
|
Ferrer I, Soriano E, del Rio JA, Alcántara S, Auladell C. Cell death and removal in the cerebral cortex during development. Prog Neurobiol 1992; 39:1-43. [PMID: 1589584 DOI: 10.1016/0301-0082(92)90029-e] [Citation(s) in RCA: 171] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- I Ferrer
- Depto. Anatomía Patológica, Hospital Príncipes de España
| | | | | | | | | |
Collapse
|
12
|
Harrison PH. Development of hindlimb muscle spindles in the marsupial Macropus eugenii (tammar wallaby). BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1991; 62:277-80. [PMID: 1837499 DOI: 10.1016/0165-3806(91)90176-j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The development of muscle spindles was studied in the hindlimb of pouch young of the marsupial Macropus eugenii (tammar wallaby) from birth to 100 days. Primary myogenesis was evident in hindlimb muscles at birth. Presumptive muscle spindles were identified as early as day 30 postnatally. The intrafusal muscle fibres developed sequentially, to form the full juvenile complement by day 50, followed by development of the periaxial space. The formation of muscle spindles in the marsupial's hindlimb after birth was in contrast to the mainly prenatal development of spindles noted in placental mammals.
Collapse
Affiliation(s)
- P H Harrison
- Developmental Neurobiology Group, Research School of Biological Sciences, Australian National University, Canberra
| |
Collapse
|
13
|
Comans PE, McLennan IS, Mark RF, Hendry IA. Mammalian motoneuron development: effect of peripheral deprivation on motoneuron numbers in a marsupial. J Comp Neurol 1988; 270:111-20. [PMID: 3372733 DOI: 10.1002/cne.902700109] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In nonmammalian vertebrates, the survival of developing motoneurons is dependent on their contacting appropriate target cells. It is generally accepted that developing mammalian motoneurons have a similar dependency on their target, but as yet there is little experimental evidence to support this contention. This is mainly because of the difficulty of experimenting on eutherian embryos. We have, therefore, been studying neuronal development in the tammar (an Australian marsupial) as its nervous system is immature at birth. Radical or partial removal of hindlimb buds from newborn tammars resulted in an increased motoneuron cell death. The motoneurons which survived in the operated tammars did so by innervating muscle remnants. In the instances where a group of muscles was totally removed, the corresponding motonuclei appeared to be totally lost. This study supports the hypothesis that mammalian motoneurons must contact their appropriate muscle in order to survive through the period of natural neuronal cell death.
Collapse
Affiliation(s)
- P E Comans
- Developmental Neurobiology Group, Research School of Biological Sciences, Australian National University, Canberra, ACT
| | | | | | | |
Collapse
|