1
|
Sugimura T, Miyashita T, Yamamoto M, Kobayashi K, Yoshimura Y, Saito Y. An Indirect Pathway from the Rat Interstitial Nucleus of Cajal to the Vestibulocerebellum Involved in Vertical Gaze Holding. eNeuro 2024; 11:ENEURO.0294-24.2024. [PMID: 39467649 PMCID: PMC11540594 DOI: 10.1523/eneuro.0294-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/19/2024] [Indexed: 10/30/2024] Open
Abstract
The neural network, including the interstitial nucleus of Cajal (INC), functions as an oculomotor neural integrator involved in the control of vertical gaze holding. Impairment of the vestibulocerebellum (VC), including the flocculus (FL), has been shown to affect vertical gaze holding, indicating that the INC cooperates with the VC in controlling this function. However, a network between the INC and VC has not been identified. In this study, we aimed to obtain anatomical evidence of a neural pathway from the INC to the VC (the INC-VC pathway) in rats. Injection of dextran-conjugated Alexa Fluor 488 or adeno-associated virus 2-retro (AAV2retro) expressing GFP into the FL or another VC region (uvula/nodulus) did not reveal any retrogradely labeled neurons in the INC, suggesting that INC neurons do not project directly to the VC. Rabies virus-based transsynaptic tracing experiments revealed that the INC-VC pathway is mediated via synaptic connections with the prepositus hypoglossi nucleus (PHN) and medial vestibular nucleus (MVN). The INC neurons in the INC-VC pathway were mainly localized bilaterally within the rostral region of the INC. Transsynaptic tracing experiments involving the INC-FL pathway revealed that INC neurons connected to the FL via the bilateral PHN and MVN. These results indicate that the INC-VC pathway is not a direct pathway but is mediated via the PHN and MVN. These findings can provide clues for understanding the network mechanisms responsible for vertical gaze holding.
Collapse
Affiliation(s)
- Taketoshi Sugimura
- Department of Neurophysiology, Nara Medical University, Kashihara 634-8521, Japan
| | - Toshio Miyashita
- Division of Visual Information Processing, National Institute for Physiological Sciences and School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan
- Department of Anatomy, Teikyo University School of Medicine, Itabashi 173-8605, Japan
| | - Mariko Yamamoto
- Division of Visual Information Processing, National Institute for Physiological Sciences and School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological Sciences and School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan
| | - Yumiko Yoshimura
- Division of Visual Information Processing, National Institute for Physiological Sciences and School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan
| | - Yasuhiko Saito
- Department of Neurophysiology, Nara Medical University, Kashihara 634-8521, Japan
| |
Collapse
|
2
|
Liu D, Wang J, Tian E, Chen J, Kong W, Lu Y, Zhang S. mGluR1/IP3/ERK signaling pathway regulates vestibular compensation in ON UBCs of the cerebellar flocculus. CNS Neurosci Ther 2024; 30:e14419. [PMID: 37622292 PMCID: PMC10848063 DOI: 10.1111/cns.14419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/16/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023] Open
Abstract
AIMS To investigate the role of mGluR1α in cerebellar unipolar brush cells (UBC) in mediating vestibular compensation (VC), using mGluR1α agonist and antagonist to modulate ON UBC neurons, and explore the mGluR1/IP3/extracellular signal-regulated kinase (ERK) signaling pathway. METHODS First, AAV virus that knockdown ON UBC (mGluR1α) were injected into cerebellar UBC by stereotactic, and verified by immunofluorescence and western blot. The effect on VC was evaluated after unilateral labyrinthectomy (UL). Second, saline, (RS)-3,5-dihydroxyphenylglycine (DHPG), and LY367385 were injected into tubes implanted in rats at different time points after UL separately. The effect on ON UBC neuron activity was evaluated by immunofluorescence. Then, Phosphoinositide (PI) and p-ERK1/2 levels of mGluR1α were analyzed by ELISA after UL. The protein levels of p-ERK and total ERK were verified by western blot. In addition, the effect of mGluR1α activation or inhibition on VC-related behavior was observed. RESULTS mGluR1α knockdown induced VC phenotypes. DHPG increased ON UBC activity, while LY367385 reduced ON UBC activity. DHPG group showed an increase in PI and p-ERK1/2 levels, while LY367385 group showed a decrease in PI and p-ERK1/2 levels in cerebellar UBC of rats. The western blot results of p-ERK and total ERK confirm and support the observations. DHPG alleviated VC-related behavior phenotypes, while LY367385 exacerbated vestibular decompensation-like behavior induced by UL. CONCLUSION mGluR1α activity in cerebellar ON UBC is crucial for mediating VC through the mGluR1/IP3/ERK signaling pathway, which affects ON UBC neuron activity and contributes to the pathogenesis of VC.
Collapse
Affiliation(s)
- Dan Liu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jun Wang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - E. Tian
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jingyu Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Weijia Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yisheng Lu
- Department of Physiology, School of Basic MedicineHuazhong University of Science and TechnologyWuhanChina
- Institute of Brain Research, Collaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhanChina
| | - Sulin Zhang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
3
|
Okkels N, Horsager J, Labrador-Espinosa M, Kjeldsen PL, Damholdt MF, Mortensen J, Vestergård K, Knudsen K, Andersen KB, Fedorova TD, Skjærbæk C, Gottrup H, Hansen AK, Grothe MJ, Borghammer P. Severe cholinergic terminal loss in newly diagnosed dementia with Lewy bodies. Brain 2023; 146:3690-3704. [PMID: 37279796 DOI: 10.1093/brain/awad192] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/03/2023] [Accepted: 05/23/2023] [Indexed: 06/08/2023] Open
Abstract
Cholinergic changes play a fundamental role in the natural history of dementia with Lewy bodies and Lewy body disease in general. Despite important achievements in the field of cholinergic research, significant challenges remain. We conducted a study with four main objectives: (i) to examine the integrity of cholinergic terminals in newly diagnosed dementia with Lewy bodies; (ii) to disentangle the cholinergic contribution to dementia by comparing cholinergic changes in Lewy body patients with and without dementia; (iii) to investigate the in vivo relationship between cholinergic terminal loss and atrophy of cholinergic cell clusters in the basal forebrain at different stages of Lewy body disease; and (iv) to test whether any asymmetrical degeneration in cholinergic terminals would correlate with motor dysfunction and hypometabolism. To achieve these objectives, we conducted a comparative cross-sectional study of 25 newly diagnosed dementia with Lewy bodies patients (age 74 ± 5 years, 84% male), 15 healthy control subjects (age 75 ± 6 years, 67% male) and 15 Parkinson's disease patients without dementia (age 70 ± 7 years, 60% male). All participants underwent 18F-fluoroetoxybenzovesamicol PET and high-resolution structural MRI. In addition, we collected clinical 18F-fluorodeoxyglucose PET images. Brain images were normalized to standard space and regional tracer uptake and volumetric indices of basal forebrain degeneration were extracted. Patients with dementia showed spatially distinct reductions in cholinergic terminals across the cerebral cortex, limbic system, thalamus and brainstem. Also, cholinergic terminal binding in cortical and limbic regions correlated quantitatively and spatially with atrophy of the basal forebrain. In contrast, patients without dementia showed decreased cholinergic terminal binding in the cerebral cortex despite preserved basal forebrain volumes. In patients with dementia, cholinergic terminal reductions were most severe in limbic regions and least severe in occipital regions compared to those without dementia. Interhemispheric asymmetry of cholinergic terminals correlated with asymmetry of brain metabolism and lateralized motor function. In conclusion, this study provides robust evidence for severe cholinergic terminal loss in newly diagnosed dementia with Lewy bodies, which correlates with structural imaging measures of cholinergic basal forebrain degeneration. In patients without dementia, our findings suggest that loss of cholinergic terminal function occurs 'before' neuronal cell degeneration. Moreover, the study supports that degeneration of the cholinergic system is important for brain metabolism and may be linked with degeneration in other transmitter systems. Our findings have implications for understanding how cholinergic system pathology contributes to the clinical features of Lewy body disease, changes in brain metabolism and disease progression patterns.
Collapse
Affiliation(s)
- Niels Okkels
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
- Department of Neurology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Jacob Horsager
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Miguel Labrador-Espinosa
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Pernille L Kjeldsen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
- Department of Neurology, Aalborg University Hospital, 9000 Aalborg, Denmark
| | - Malene F Damholdt
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Janne Mortensen
- Department of Neurology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Karsten Vestergård
- Department of Neurology, Aalborg University Hospital, 9000 Aalborg, Denmark
| | - Karoline Knudsen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Katrine B Andersen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Tatyana D Fedorova
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Casper Skjærbæk
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Hanne Gottrup
- Department of Neurology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Allan K Hansen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Nuclear Medicine, Aalborg University Hospital, 9000 Aalborg, Denmark
| | - Michel J Grothe
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Per Borghammer
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
4
|
Okkels N, Horsager J, Labrador-Espinosa MA, Hansen FO, Andersen KB, Just MK, Fedorova TD, Skjærbæk C, Munk OL, Hansen KV, Gottrup H, Hansen AK, Grothe MJ, Borghammer P. Distribution of cholinergic nerve terminals in the aged human brain measured with [ 18F]FEOBV PET and its correlation with histological data. Neuroimage 2023; 269:119908. [PMID: 36720436 DOI: 10.1016/j.neuroimage.2023.119908] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/10/2023] [Accepted: 01/27/2023] [Indexed: 01/30/2023] Open
Abstract
INTRODUCTION [18F]fluoroetoxybenzovesamicol ([18F]FEOBV) is a positron emission topography (PET) tracer for the vesicular acetylcholine transporter (VAChT), a protein located predominantly in synaptic vesicles in cholinergic nerve terminals. We aimed to use [18F]FEOBV PET to study the cholinergic topography of the healthy human brain. MATERIALS AND METHODS [18F]FEOBV PET brain data volumes of healthy elderly humans were normalized to standard space and intensity-normalized to the white matter. Stereotactic atlases of regions of interest were superimposed to describe and quantify tracer distribution. The spatial distribution of [18F]FEOBV PET uptake was compared with histological and gene expression data. RESULTS Twenty participants of both sexes and a mean age of 73.9 ± 6.0 years, age-range [64; 86], were recruited. Highest tracer binding was present in the striatum, some thalamic nuclei, and the basal forebrain. Intermediate binding was found in most nuclei of the brainstem, thalamus, and hypothalamus; the vermis and flocculonodular lobe; and the hippocampus, amygdala, insula, cingulate, olfactory cortex, and Heschl's gyrus. Lowest binding was present in most areas of the cerebral cortex, and in the cerebellar nuclei and hemispheres. The spatial distribution of tracer correlated with immunohistochemical post-mortem data, as well as with regional expression levels of SLC18A3, the VAChT coding gene. DISCUSSION Our in vivo findings confirm the regional cholinergic distribution in specific brain structures as described post-mortem. A positive spatial correlation between tracer distribution and regional gene expression levels further corroborates [18F]FEOBV PET as a validated tool for in vivo cholinergic imaging. The study represents an advancement in the continued efforts to delineate the spatial topography of the human cholinergic system in vivo.
Collapse
Affiliation(s)
- Niels Okkels
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Neurology, Aarhus University Hospital, Aarhus, Denmark.
| | - Jacob Horsager
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | - Miguel A Labrador-Espinosa
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Frederik O Hansen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Katrine B Andersen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mie Kristine Just
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Tatyana D Fedorova
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Casper Skjærbæk
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Ole L Munk
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Kim V Hansen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | - Hanne Gottrup
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Allan K Hansen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark; Department of Nuclear Medicine, Aalborg University Hospital, Aalborg, Denmark
| | - Michel J Grothe
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Per Borghammer
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
5
|
Horsager J, Okkels N, Hansen AK, Damholdt MF, Andersen KH, Fedorova TD, Munk OL, Danielsen EH, Pavese N, Brooks DJ, Borghammer P. Mapping Cholinergic Synaptic Loss in Parkinson's Disease: An [18F]FEOBV PET Case-Control Study. JOURNAL OF PARKINSON'S DISEASE 2022; 12:2493-2506. [PMID: 36336941 DOI: 10.3233/jpd-223489] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Cholinergic degeneration is strongly associated with cognitive decline in patients with Parkinson's disease (PD) but may also cause motor symptoms and olfactory dysfunction. Regional differences are striking and may reflect different PD related symptoms and disease progression patterns. OBJECTIVE To map and quantify the regional cerebral cholinergic alterations in non-demented PD patients. METHODS We included 15 non-demented PD patients in early-moderate disease stage and 15 age- and sex-matched healthy controls for [18F]FEOBV positron emission tomography imaging. We quantitated regional variations using VOI-based analyses which were supported by a vertex-wise cluster analysis. Correlations between imaging data and clinical and neuropsychological data were explored. RESULTS We found significantly decreased [18F]FEOBV uptake in global neocortex (38%, p = 0.0002). The most severe reductions were seen in occipital and posterior temporo-parietal regions (p < 0.0001). The vertex-wise cluster analysis corroborated these findings. All subcortical structures showed modest non-significant reductions. Motor symptoms (postural instability and gait difficulty) and cognition (executive function and composite z-score) correlated with regional [18F]FEOBV uptake (thalamus and cingulate cortex/insula/hippocampus, respectively), but the correlations were not statistically significant after multiple comparison correction. A strong correlation was found between interhemispheric [18F]FEOBV asymmetry, and motor symptom asymmetry of the extremities (r = 0.84, p = 0.0001). CONCLUSION Cortical cholinergic degeneration is prominent in non-demented PD patients, but more subtle in subcortical structures. Regional differences suggest uneven involvement of cholinergic nuclei in the brain and may represent a window to follow disease progression. The correlation between asymmetric motor symptoms and neocortical [18F]FEOBV asymmetry indicates that unilateral cholinergic degeneration parallels ipsilateral dopaminergic degeneration.
Collapse
Affiliation(s)
- Jacob Horsager
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Niels Okkels
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Allan K Hansen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Katrine H Andersen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Tatyana D Fedorova
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Ole Lajord Munk
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | - Erik H Danielsen
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Nicola Pavese
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark.,Institute of Translational and Clinical Research, University of Newcastle upon Tyne, UK
| | - David J Brooks
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark.,Institute of Translational and Clinical Research, University of Newcastle upon Tyne, UK
| | - Per Borghammer
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
6
|
Sugimura T, Saito Y. Distinct proportions of cholinergic neurons in the rat prepositus hypoglossi nucleus according to their cerebellar projection targets. J Comp Neurol 2021; 529:1541-1552. [PMID: 32949021 DOI: 10.1002/cne.25035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 11/07/2022]
Abstract
Cerebellar functions are modulated by cholinergic inputs, the density of which varies among cerebellar regions. Although the prepositus hypoglossi nucleus (PHN), a brainstem structure involved in controlling gaze holding, is known as one of the major sources of these cholinergic inputs, the proportions of cholinergic neurons in PHN projections to distinct cerebellar regions have not been quantitatively analyzed. In this study, we identified PHN neurons projecting to the cerebellum by applying retrograde labeling with dextran-conjugated Alexa 488 in choline acetyltransferase (ChAT)-tdTomato transgenic rats and compared the proportion of cholinergic PHN neurons in the PHN projections to four different regions of the cerebellum, namely the flocculus (FL), the uvula and nodulus (UN), lobules III-V in the vermis (VM), and the hemispheric paramedian lobule and crus 2 (PC). In the PHN, the percentage of cholinergic PHN neurons was lower in the projection to the FL than in the projection to the UN, VM or PC. Preposito-cerebellar neurons, except for preposito-FL neurons, included different proportions of cholinergic neurons at different rostrocaudal positions in the PHN. These results suggest that cholinergic PHN neurons project to not only the vestibulocerebellum but also the anterior vermis and posterior hemisphere and that the proportion of cholinergic neurons among projection neurons from the PHN differs depending on cerebellar target areas and the rostro-caudal regions of the PHN. This study provides insights regarding the involvement of cerebellar cholinergic networks in gaze holding.
Collapse
Affiliation(s)
- Taketoshi Sugimura
- Department of Neurophysiology, Nara Medical University, Kashihara, Nara, Japan
| | - Yasuhiko Saito
- Department of Neurophysiology, Nara Medical University, Kashihara, Nara, Japan
| |
Collapse
|
7
|
Kharlamova A, Proshchina A, Gulimova V, Krivova Y, Soldatov P, Saveliev S. Cerebellar morphology and behavioural correlations of the vestibular function alterations in weightlessness. Neurosci Biobehav Rev 2021; 126:314-328. [PMID: 33766673 DOI: 10.1016/j.neubiorev.2021.03.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 01/11/2021] [Accepted: 03/10/2021] [Indexed: 11/25/2022]
Abstract
In humans and other vertebrates, the range of disturbances and behavioural changes induced by spaceflight conditions are well known. Sensory organs and the central nervous system (CNS) are forced to adapt to new environmental conditions of weightlessness. In comparison with peripheral vestibular organs and behavioural disturbances in weightlessness conditions, the CNS vestibular centres of vertebrates, including the cerebellum, have been poorly examined in orbital experiments, as well as in experimental micro- and hypergravity. However, the cerebellum serves as a critical control centre for learning and sensory system integration during space-flight. Thus, it is referred to as a principal brain structure for adaptation to gravity and the entire sensorimotor adaptation and learning during weightlessness. This paper is focused on the prolonged spaceflight effects on the vestibular cerebellum evidenced from animal models used in the Bion-M1 project. The changes in the peripheral vestibular apparatus and brainstem primary vestibular centres with appropriate behavioural disorders after altered gravity exposure are briefly reviewed. The cerebellum studies in space missions and altered gravity are discussed.
Collapse
Affiliation(s)
- Anastasia Kharlamova
- Research Institute of Human Morphology, 117418, Tsyurupy St., 3, Moscow, Russia.
| | | | - Victoria Gulimova
- Research Institute of Human Morphology, 117418, Tsyurupy St., 3, Moscow, Russia
| | - Yulia Krivova
- Research Institute of Human Morphology, 117418, Tsyurupy St., 3, Moscow, Russia
| | - Pavel Soldatov
- State Scientific Center of Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 123007, Khoroshevskoyoe Shosse, 76A, Moscow, Russia
| | - Sergey Saveliev
- Research Institute of Human Morphology, 117418, Tsyurupy St., 3, Moscow, Russia
| |
Collapse
|
8
|
Barmack NH, Pettorossi VE. Adaptive Balance in Posterior Cerebellum. Front Neurol 2021; 12:635259. [PMID: 33767662 PMCID: PMC7985352 DOI: 10.3389/fneur.2021.635259] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/16/2021] [Indexed: 11/26/2022] Open
Abstract
Vestibular and optokinetic space is represented in three-dimensions in vermal lobules IX-X (uvula, nodulus) and hemisphere lobule X (flocculus) of the cerebellum. Vermal lobules IX-X encodes gravity and head movement using the utricular otolith and the two vertical semicircular canals. Hemispheric lobule X encodes self-motion using optokinetic feedback about the three axes of the semicircular canals. Vestibular and visual adaptation of this circuitry is needed to maintain balance during perturbations of self-induced motion. Vestibular and optokinetic (self-motion detection) stimulation is encoded by cerebellar climbing and mossy fibers. These two afferent pathways excite the discharge of Purkinje cells directly. Climbing fibers preferentially decrease the discharge of Purkinje cells by exciting stellate cell inhibitory interneurons. We describe instances adaptive balance at a behavioral level in which prolonged vestibular or optokinetic stimulation evokes reflexive eye movements that persist when the stimulation that initially evoked them stops. Adaptation to prolonged optokinetic stimulation also can be detected at cellular and subcellular levels. The transcription and expression of a neuropeptide, corticotropin releasing factor (CRF), is influenced by optokinetically-evoked olivary discharge and may contribute to optokinetic adaptation. The transcription and expression of microRNAs in floccular Purkinje cells evoked by long-term optokinetic stimulation may provide one of the subcellular mechanisms by which the membrane insertion of the GABAA receptors is regulated. The neurosteroids, estradiol (E2) and dihydrotestosterone (DHT), influence adaptation of vestibular nuclear neurons to electrically-induced potentiation and depression. In each section of this review, we discuss how adaptive changes in the vestibular and optokinetic subsystems of lobule X, inferior olivary nuclei and vestibular nuclei may contribute to the control of balance.
Collapse
Affiliation(s)
- Neal H. Barmack
- Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, OR, United States
| | - Vito Enrico Pettorossi
- Section of Human Physiology and Biochemistry, Department of Experimental Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
9
|
Baek H, Sariev A, Lee S, Dong SY, Royer S, Kim H. Deep Cerebellar Low-Intensity Focused Ultrasound Stimulation Restores Interhemispheric Balance after Ischemic Stroke in Mice. IEEE Trans Neural Syst Rehabil Eng 2020; 28:2073-2079. [PMID: 32746292 DOI: 10.1109/tnsre.2020.3002207] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ischemic damage after stroke disrupts the complex balance of inhibitory and excitatory activity within cortical network causing brain functional asymmetry. Cerebellar deep nuclei with its extensive projections to cortical regions could be a prospective target for stimulation to restore inter-hemispheric balance and enhance neural plasticity after stroke. In our study, we repeatedly stimulated the lateral cerebellar nucleus (LCN) by low-intensity focused ultrasound (LIFU) for 3 days to enhance rehabilitation after middle cerebral artery occlusion (MCAO) in a mouse stroke model. The neural activity of the mice sensorimotor cortex was measured using epidural electrodes and analyzed with quantified electroencephalography (qEEG). Pairwise derived Brain Symmetry Index (pdBSI) and delta power were used to assess the neurorehabilitative effect of LIFU stimulation. Compared to the Stroke (non-treated) group, the LIFU group exhibited a decrease in cortical pathological delta activity, significant recovery in pdBSI and enhanced performance on the balance beam walking test. These results suggest that cerebellar LIFU stimulation could be a non-invasive method for stroke rehabilitation through the restoration of interhemispheric balance.
Collapse
|
10
|
Acetylcholine Modulates Cerebellar Granule Cell Spiking by Regulating the Balance of Synaptic Excitation and Inhibition. J Neurosci 2020; 40:2882-2894. [PMID: 32111698 DOI: 10.1523/jneurosci.2148-19.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 02/03/2020] [Accepted: 02/20/2020] [Indexed: 12/20/2022] Open
Abstract
Sensorimotor integration in the cerebellum is essential for refining motor output, and the first stage of this processing occurs in the granule cell layer. Recent evidence suggests that granule cell layer synaptic integration can be contextually modified, although the circuit mechanisms that could mediate such modulation remain largely unknown. Here we investigate the role of ACh in regulating granule cell layer synaptic integration in male rats and mice of both sexes. We find that Golgi cells, interneurons that provide the sole source of inhibition to the granule cell layer, express both nicotinic and muscarinic cholinergic receptors. While acute ACh application can modestly depolarize some Golgi cells, the net effect of longer, optogenetically induced ACh release is to strongly hyperpolarize Golgi cells. Golgi cell hyperpolarization by ACh leads to a significant reduction in both tonic and evoked granule cell synaptic inhibition. ACh also reduces glutamate release from mossy fibers by acting on presynaptic muscarinic receptors. Surprisingly, despite these consistent effects on Golgi cells and mossy fibers, ACh can either increase or decrease the spike probability of granule cells as measured by noninvasive cell-attached recordings. By constructing an integrate-and-fire model of granule cell layer population activity, we find that the direction of spike rate modulation can be accounted for predominately by the initial balance of excitation and inhibition onto individual granule cells. Together, these experiments demonstrate that ACh can modulate population-level granule cell responses by altering the ratios of excitation and inhibition at the first stage of cerebellar processing.SIGNIFICANCE STATEMENT The cerebellum plays a key role in motor control and motor learning. While it is known that behavioral context can modify motor learning, the circuit basis of such modulation has remained unclear. Here we find that a key neuromodulator, ACh, can alter the balance of excitation and inhibition at the first stage of cerebellar processing. These results suggest that ACh could play a key role in altering cerebellar learning by modifying how sensorimotor input is represented at the input layer of the cerebellum.
Collapse
|
11
|
Ando T, Ueda M, Luo Y, Sugihara I. Heterogeneous vestibulocerebellar mossy fiber projections revealed by single axon reconstruction in the mouse. J Comp Neurol 2020; 528:1775-1802. [PMID: 31904871 DOI: 10.1002/cne.24853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 02/01/2023]
Abstract
A significant population of neurons in the vestibular nuclei projects to the cerebellum as mossy fibers (MFs) which are involved in the control and adaptation of posture, eye-head movements, and autonomic function. However, little is known about their axonal projection patterns. We studied the morphology of single axons of medial vestibular nucleus (MVN) neurons as well as those originating from primary afferents, by labeling with biotinylated dextran amine (BDA). MVN axons (n = 35) were classified into three types based on their major predominant termination patterns. The Cbm-type terminated only in the cerebellum (15 axons), whereas others terminated in the cerebellum and contralateral vestibular nuclei (cVN/Cbm-type, 13 axons), or in the cerebellum and ipsilateral vestibular nuclei (iVN/Cbm-type, 7 axons). Cbm- and cVN/Cbm-types mostly projected to the nodulus and uvula without any clear relationship with longitudinal stripes in these lobules. They were often bilateral, and sometimes sent branches to the flocculus and to other vermal lobules. Also, the iVN/Cbm-type projected mainly to the ipsilateral nodulus. Neurons of these types of axons showed different distribution within the MVN. The number of MF terminals of some vestibulocerebellar axons, iVN/Cbm-type axons in particular, and primary afferent axons were much smaller than observed in previously studied MF axons originating from major precerebellar nuclei and the spinal cord. The results demonstrated that a heterogeneous population of MVN neurons provided divergent MF inputs to the cerebellum. The cVN/Cbm- and iVN/Cbm-types indicate that some excitatory neuronal circuits within the vestibular nuclei supply their collaterals to the vestibulocerebellum as MFs.
Collapse
Affiliation(s)
- Takahiro Ando
- Department of Systems Neurophysiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mitsuhito Ueda
- Department of Systems Neurophysiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuanjun Luo
- Department of Systems Neurophysiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Izumi Sugihara
- Department of Systems Neurophysiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
12
|
Abstract
Although motion of the head and body has been suspected or known as the provocative cause for the production of motion sickness for centuries, it is only within the last 20 yr that the source of the signal generating motion sickness and its neural basis has been firmly established. Here, we briefly review the source of the conflicts that cause the body to generate the autonomic signs and symptoms that constitute motion sickness and provide a summary of the experimental data that have led to an understanding of how motion sickness is generated and can be controlled. Activity and structures that produce motion sickness include vestibular input through the semicircular canals, the otolith organs, and the velocity storage integrator in the vestibular nuclei. Velocity storage is produced through activity of vestibular-only (VO) neurons under control of neural structures in the nodulus of the vestibulo-cerebellum. Separate groups of nodular neurons sense orientation to gravity, roll/tilt, and translation, which provide strong inhibitory control of the VO neurons. Additionally, there are acetylcholinergic projections from the nodulus to the stomach, which along with other serotonergic inputs from the vestibular nuclei, could induce nausea and vomiting. Major inhibition is produced by the GABAB receptors, which modulate and suppress activity in the velocity storage integrator. Ingestion of the GABAB agonist baclofen causes suppression of motion sickness. Hopefully, a better understanding of the source of sensory conflict will lead to better ways to avoid and treat the autonomic signs and symptoms that constitute the syndrome.
Collapse
Affiliation(s)
- Bernard Cohen
- Department of Neurology, Icahn School of Medicine at Mount Sinai , New York, New York.,Department of Neurology, New York University, New York
| | - Mingjia Dai
- Department of Neurology, Icahn School of Medicine at Mount Sinai , New York, New York.,Department of Neurology, New York University, New York
| | - Sergei B Yakushin
- Department of Neurology, Icahn School of Medicine at Mount Sinai , New York, New York.,Department of Neurology, New York University, New York
| | - Catherine Cho
- Department of Neurology, Icahn School of Medicine at Mount Sinai , New York, New York.,Department of Neurology, New York University, New York
| |
Collapse
|
13
|
Albin RL, Bohnen NI, Muller MLTM, Dauer WT, Sarter M, Frey KA, Koeppe RA. Regional vesicular acetylcholine transporter distribution in human brain: A [ 18 F]fluoroethoxybenzovesamicol positron emission tomography study. J Comp Neurol 2018; 526:2884-2897. [PMID: 30255936 DOI: 10.1002/cne.24541] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/07/2018] [Accepted: 09/10/2018] [Indexed: 12/21/2022]
Abstract
Prior efforts to image cholinergic projections in human brain in vivo had significant technical limitations. We used the vesicular acetylcholine transporter (VAChT) ligand [18 F]fluoroethoxybenzovesamicol ([18 F]FEOBV) and positron emission tomography to determine the regional distribution of VAChT binding sites in normal human brain. We studied 29 subjects (mean age 47 [range 20-81] years; 18 men; 11 women). [18 F]FEOBV binding was highest in striatum, intermediate in the amygdala, hippocampal formation, thalamus, rostral brainstem, some cerebellar regions, and lower in other regions. Neocortical [18 F]FEOBV binding was inhomogeneous with relatively high binding in insula, BA24, BA25, BA27, BA28, BA34, BA35, pericentral cortex, and lowest in BA17-19. Thalamic [18 F]FEOBV binding was inhomogeneous with greatest binding in the lateral geniculate nuclei and relatively high binding in medial and posterior thalamus. Cerebellar cortical [18 F]FEOBV binding was high in vermis and flocculus, and lower in the lateral cortices. Brainstem [18 F]FEOBV binding was most prominent at the mesopontine junction, likely associated with the pedunculopontine-laterodorsal tegmental complex. Significant [18 F]FEOBV binding was present throughout the brainstem. Some regions, including the striatum, primary sensorimotor cortex, and anterior cingulate cortex exhibited age-related decreases in [18 F]FEOBV binding. These results are consistent with prior studies of cholinergic projections in other species and prior postmortem human studies. There is a distinctive pattern of human neocortical VChAT expression. The patterns of thalamic and cerebellar cortical cholinergic terminal distribution are likely unique to humans. Normal aging is associated with regionally specific reductions in [18 F]FEOBV binding in some cortical regions and the striatum.
Collapse
Affiliation(s)
- Roger L Albin
- Neurology Service & GRECC, VAAAHS, Ann Arbor, Michigan.,Department of Neurology, University of Michigan, Ann Arbor, Michigan.,University of Michigan Morris K. Udall Center of Excellence for Research in Parkinson's Disease, Ann Arbor, Michigan.,Michigan Alzheimer Disease Center, Ann Arbor, Michigan
| | - Nicolaas I Bohnen
- Neurology Service & GRECC, VAAAHS, Ann Arbor, Michigan.,Department of Neurology, University of Michigan, Ann Arbor, Michigan.,University of Michigan Morris K. Udall Center of Excellence for Research in Parkinson's Disease, Ann Arbor, Michigan.,Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | - Martijn L T M Muller
- University of Michigan Morris K. Udall Center of Excellence for Research in Parkinson's Disease, Ann Arbor, Michigan.,Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | - William T Dauer
- Neurology Service & GRECC, VAAAHS, Ann Arbor, Michigan.,Department of Neurology, University of Michigan, Ann Arbor, Michigan.,University of Michigan Morris K. Udall Center of Excellence for Research in Parkinson's Disease, Ann Arbor, Michigan.,Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Martin Sarter
- University of Michigan Morris K. Udall Center of Excellence for Research in Parkinson's Disease, Ann Arbor, Michigan.,Department of Psychology, University of Michigan, Ann Arbor, Michigan
| | - Kirk A Frey
- Department of Neurology, University of Michigan, Ann Arbor, Michigan.,Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | - Robert A Koeppe
- University of Michigan Morris K. Udall Center of Excellence for Research in Parkinson's Disease, Ann Arbor, Michigan.,Department of Radiology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
14
|
Jaarsma D, Blot FGC, Wu B, Venkatesan S, Voogd J, Meijer D, Ruigrok TJH, Gao Z, Schonewille M, De Zeeuw CI. The basal interstitial nucleus (BIN) of the cerebellum provides diffuse ascending inhibitory input to the floccular granule cell layer. J Comp Neurol 2018; 526:2231-2256. [PMID: 29943833 DOI: 10.1002/cne.24479] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/14/2018] [Accepted: 05/17/2018] [Indexed: 11/12/2022]
Abstract
The basal interstitial nucleus (BIN) in the white matter of the vestibulocerebellum has been defined more than three decades ago, but has since been largely ignored. It is still unclear which neurotransmitters are being used by BIN neurons, how these neurons are connected to the rest of the brain and what their activity patterns look like. Here, we studied BIN neurons in a range of mammals, including macaque, human, rat, mouse, rabbit, and ferret, using tracing, immunohistological and electrophysiological approaches. We show that BIN neurons are GABAergic and glycinergic, that in primates they also express the marker for cholinergic neurons choline acetyl transferase (ChAT), that they project with beaded fibers to the glomeruli in the granular layer of the ipsilateral floccular complex, and that they are driven by excitation from the ipsilateral and contralateral medio-dorsal medullary gigantocellular reticular formation. Systematic analysis of codistribution of the inhibitory synapse marker VIAAT, BIN axons, and Golgi cell marker mGluR2 indicate that BIN axon terminals complement Golgi cell axon terminals in glomeruli, accounting for a considerable proportion ( > 20%) of the inhibitory terminals in the granule cell layer of the floccular complex. Together, these data show that BIN neurons represent a novel and relevant inhibitory input to the part of the vestibulocerebellum that controls compensatory and smooth pursuit eye movements.
Collapse
Affiliation(s)
- Dick Jaarsma
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | | | - Bin Wu
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | | | - Jan Voogd
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Dies Meijer
- Centre of neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom
| | - Tom J H Ruigrok
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Zhenyu Gao
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | | | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands.,Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts & Sciences, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Cohen B, Yakushin SB, Cho C. Hypothesis: The Vestibular and Cerebellar Basis of the Mal de Debarquement Syndrome. Front Neurol 2018; 9:28. [PMID: 29459843 PMCID: PMC5807657 DOI: 10.3389/fneur.2018.00028] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 01/12/2018] [Indexed: 11/13/2022] Open
Abstract
The Mal de Debarquement syndrome (MdDS) generally follows sea voyages, but it can occur after turbulent flights or spontaneously. The primary features are objective or perceived continuous rocking, swaying, and/or bobbing at 0.2 Hz after sea voyages or 0.3 Hz after flights. The oscillations can continue for months or years and are immensely disturbing. Associated symptoms appear to be secondary to the incessant sensation of movement. We previously suggested that the illness can be attributed to maladaptation of the velocity storage integrator in the vestibular system, but the actual neural mechanisms driving the MdDS are unknown. Here, based on experiments in subhuman primates, we propose a series of postulates through which the MdDS is generated: (1) The MdDS is produced in the velocity storage integrator by activation of vestibular-only (VO) neurons on either side of the brainstem that are oscillating back and forth at 0.2 or 0.3 Hz. (2) The groups of VO neurons are driven by signals that originate in Purkinje cells in the cerebellar nodulus. (3) Prolonged exposure to roll, either on the sea or in the air, conditions the roll-related neurons in the nodulus. (4) The prolonged exposure causes a shift of the pitch orientation vector from its original position aligned with gravity to a position tilted in roll. (5) Successful treatment involves exposure to a full-field optokinetic stimulus rotating around the spatial vertical countering the direction of the vestibular imbalance. This is done while rolling the head at the frequency of the perceived rocking, swaying, or bobbing. We also note experiments that could be used to verify these postulates, as well as considering potential flaws in the logic. Important unanswered questions: (1) Why does the MdDS predominantly affect women? (2) What aspect of roll causes the prolongation of the tilted orientation vector, and why is it so prolonged in some individuals? (3) What produces the increase in symptoms of some patients when returning home after treatment, and how can this be avoided? We also posit that the same mechanisms underlie the less troublesome and shorter duration Mal de Debarquement.
Collapse
Affiliation(s)
- Bernard Cohen
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Sergei B Yakushin
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Catherine Cho
- Department of Neurology, NYU School of Medicine, New York, NY, United States.,Department of Otolaryngology, NYU School of Medicine, New York, NY, United States
| |
Collapse
|
16
|
Lobular homology in cerebellar hemispheres of humans, non-human primates and rodents: a structural, axonal tracing and molecular expression analysis. Brain Struct Funct 2017; 222:2449-2472. [PMID: 28508291 DOI: 10.1007/s00429-017-1436-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 04/28/2017] [Indexed: 02/07/2023]
Abstract
Comparative neuroanatomy provides insights into the evolutionary functional adaptation of specific mammalian cerebellar lobules, in which the lobulation pattern and functional localization are conserved. However, accurate identification of homologous lobules among mammalian species is challenging. In this review, we discuss the inter-species homology of crus I and II lobules which occupy a large volume in the posterior cerebellar hemisphere, particularly in humans. Both crus I/II in humans are homologous to crus I/II in non-human primates, according to Paxinos and colleagues; however, this area has been defined as crus I alone in non-human primates, according to Larsell and Brodal. Our neuroanatomical analyses in humans, macaques, marmosets, rats, and mice demonstrate that both crus I/II in humans are homologous to crus I/II or crus I alone in non-human primates, depending on previous definitions, and to crus I alone in rodents. Here, we refer to the region homologous to human crus I/II lobules as "ansiform area (AA)" across animals. Our results show that the AA's olivocerebellar climbing fiber and Purkinje cell projections as well as aldolase C gene expression patterns are both distinct and conserved in marmosets and rodents. The relative size of the AA, as represented by the AA volume fraction in the whole cerebellum was 0.34 in human, 0.19 in macaque, and approximately 0.1 in marmoset and rodents. These results indicate that the AA reflects an evolutionarily conserved structure in the mammalian cerebellum, which is characterized by distinct connectivity from neighboring lobules and a massive expansion in skillful primates.
Collapse
|
17
|
|
18
|
Zhang C, Zhou P, Yuan T. The cholinergic system in the cerebellum: from structure to function. Rev Neurosci 2016; 27:769-776. [DOI: 10.1515/revneuro-2016-0008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 06/30/2016] [Indexed: 11/15/2022]
Abstract
AbstractThe cerebellar cholinergic system belongs to the third type of afferent nerve fiber system (after the climbing and mossy fibers), and has important modulatory effects on cerebellar circuits and cerebellar-mediated functions. In this report, we review the cerebellar cholinergic system, including cholinergic origins and innervations, acetylcholine receptor expression and distributions, cholinergic modulations of neuronal firing and synaptic plasticity, the cholinergic role in cerebellar-mediated integral functions, and cholinergic changes during development and aging. Because some motor and mental disorders, such as cerebellar ataxia and autism, are accompanied with cerebellar cholinergic disorders, we also discuss the correlations between cerebellar cholinergic dysfunctions and these disorders. The cerebellar cholinergic input plays an important role in the modulation of cerebellar functions; therefore, cholinergic abnormalities could induce physiological dysfunctions.
Collapse
Affiliation(s)
- Changzheng Zhang
- 1School of Psychology, Nanjing Normal University, Nanjing, Jiangsu 210097, China
- 2School of Life Sciences, Anqing Normal University, Anqing, Anhui 246133, China
| | - Peiling Zhou
- 3School of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Tifei Yuan
- 1School of Psychology, Nanjing Normal University, Nanjing, Jiangsu 210097, China
| |
Collapse
|
19
|
Hoxha E, Tempia F, Lippiello P, Miniaci MC. Modulation, Plasticity and Pathophysiology of the Parallel Fiber-Purkinje Cell Synapse. Front Synaptic Neurosci 2016; 8:35. [PMID: 27857688 PMCID: PMC5093118 DOI: 10.3389/fnsyn.2016.00035] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 10/19/2016] [Indexed: 12/24/2022] Open
Abstract
The parallel fiber-Purkinje cell (PF-PC) synapse represents the point of maximal signal divergence in the cerebellar cortex with an estimated number of about 60 billion synaptic contacts in the rat and 100,000 billions in humans. At the same time, the Purkinje cell dendritic tree is a site of remarkable convergence of more than 100,000 parallel fiber synapses. Parallel fiber activity generates fast postsynaptic currents via α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, and slower signals, mediated by mGlu1 receptors, resulting in Purkinje cell depolarization accompanied by sharp calcium elevation within dendritic regions. Long-term depression (LTD) and long-term potentiation (LTP) have been widely described for the PF-PC synapse and have been proposed as mechanisms for motor learning. The mechanisms of induction for LTP and LTD involve different signaling mechanisms within the presynaptic terminal and/or at the postsynaptic site, promoting enduring modification in the neurotransmitter release and change in responsiveness to the neurotransmitter. The PF-PC synapse is finely modulated by several neurotransmitters, including serotonin, noradrenaline and acetylcholine. The ability of these neuromodulators to gate LTP and LTD at the PF-PC synapse could, at least in part, explain their effect on cerebellar-dependent learning and memory paradigms. Overall, these findings have important implications for understanding the cerebellar involvement in a series of pathological conditions, ranging from ataxia to autism. For example, PF-PC synapse dysfunctions have been identified in several murine models of spino-cerebellar ataxia (SCA) types 1, 3, 5 and 27. In some cases, the defect is specific for the AMPA receptor signaling (SCA27), while in others the mGlu1 pathway is affected (SCA1, 3, 5). Interestingly, the PF-PC synapse has been shown to be hyper-functional in a mutant mouse model of autism spectrum disorder, with a selective deletion of Pten in Purkinje cells. However, the full range of methodological approaches, that allowed the discovery of the physiological principles of PF-PC synapse function, has not yet been completely exploited to investigate the pathophysiological mechanisms of diseases involving the cerebellum. We, therefore, propose to extend the spectrum of experimental investigations to tackle this problem.
Collapse
Affiliation(s)
- Eriola Hoxha
- Neuroscience Institute Cavalieri Ottolenghi (NICO) and Department of Neuroscience, University of TorinoTorino, Italy
| | - Filippo Tempia
- Neuroscience Institute Cavalieri Ottolenghi (NICO) and Department of Neuroscience, University of TorinoTorino, Italy
| | | | | |
Collapse
|
20
|
Zampini V, Liu JK, Diana MA, Maldonado PP, Brunel N, Dieudonné S. Mechanisms and functional roles of glutamatergic synapse diversity in a cerebellar circuit. eLife 2016; 5. [PMID: 27642013 PMCID: PMC5074806 DOI: 10.7554/elife.15872] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 09/17/2016] [Indexed: 02/04/2023] Open
Abstract
Synaptic currents display a large degree of heterogeneity of their temporal characteristics, but the functional role of such heterogeneities remains unknown. We investigated in rat cerebellar slices synaptic currents in Unipolar Brush Cells (UBCs), which generate intrinsic mossy fibers relaying vestibular inputs to the cerebellar cortex. We show that UBCs respond to sinusoidal modulations of their sensory input with heterogeneous amplitudes and phase shifts. Experiments and modeling indicate that this variability results both from the kinetics of synaptic glutamate transients and from the diversity of postsynaptic receptors. While phase inversion is produced by an mGluR2-activated outward conductance in OFF-UBCs, the phase delay of ON UBCs is caused by a late rebound current resulting from AMPAR recovery from desensitization. Granular layer network modeling indicates that phase dispersion of UBC responses generates diverse phase coding in the granule cell population, allowing climbing-fiber-driven Purkinje cell learning at arbitrary phases of the vestibular input. DOI:http://dx.doi.org/10.7554/eLife.15872.001 Whether walking, riding a bicycle or simply standing still, we continually adjust our posture in small ways to prevent ourselves from falling. Our sense of balance depends on a set of structures inside the inner ear called the vestibular system. These structures detect movements of the head and relay this information to the brain in the form of electrical signals. A brain area called the vestibulo-cerebellum then combines these signals with sensory input from the eyes and muscles, before sending out further signals to trigger any adjustments necessary for balance. One of the main cell types within the vestibulo-cerebellum is the unipolar brush cell (or UBC for short). UBCs pass on signals to another type of neuron called Purkinje cells, which support the learning of motor skills such as adjusting posture. Zampini, Liu et al. set out to test the idea that UBCs transform inputs from the vestibular system into a format that makes it easier for cerebellar Purkinje cells to drive this kind of learning. First, recordings from slices of rodent brain revealed that UBCs respond in highly variable ways to vestibular input, with both the size and timing of responses varying between cells. This is because vestibular signals trigger the release of a chemical messenger called glutamate onto UBCs, but UBCs possess a variety of different types of glutamate receptors. Vestibular input therefore activates distinct signaling cascades from one UBC to the next. According to a computer model, this variability in UBC responses ensures that a subset of UBCs will always be active at any point during vestibular input. This in turn means that Purkinje cells can fire at any stage of a movement, which boosts the learning of motor skills. The next steps will be to test this hypothesis using mutant mice that lack specific receptor subtypes in UBCs or UBCs completely. A further challenge for the future will be to build a computer model of the vestibulo-cerebellar system that includes all of its component cell types. DOI:http://dx.doi.org/10.7554/eLife.15872.002
Collapse
Affiliation(s)
- Valeria Zampini
- Institut de Biologie de l'ENS, Ecole Normale Supérieure, Paris, France.,Inserm, U1024, Paris, France.,CNRS, UMR 8197, Paris, France
| | - Jian K Liu
- Neurosciences Federation, Université Paris Descartes, Paris, France.,Department of Ophthalmology, University Medical Center Goettingen, Goettingen, Germany.,Bernstein Center for Computational Neuroscience, Göttingen, Germany
| | - Marco A Diana
- Institut de Biologie de l'ENS, Ecole Normale Supérieure, Paris, France.,Inserm, U1024, Paris, France.,CNRS, UMR 8197, Paris, France
| | - Paloma P Maldonado
- Institut de Biologie de l'ENS, Ecole Normale Supérieure, Paris, France.,Inserm, U1024, Paris, France.,CNRS, UMR 8197, Paris, France
| | - Nicolas Brunel
- Neurosciences Federation, Université Paris Descartes, Paris, France.,Department of Statistics and Neurobiology, University of Chicago, Chicago, United States
| | - Stéphane Dieudonné
- Institut de Biologie de l'ENS, Ecole Normale Supérieure, Paris, France.,Inserm, U1024, Paris, France.,CNRS, UMR 8197, Paris, France
| |
Collapse
|
21
|
Sauerbrei BA, Lubenov EV, Siapas AG. Structured Variability in Purkinje Cell Activity during Locomotion. Neuron 2015; 87:840-52. [PMID: 26291165 DOI: 10.1016/j.neuron.2015.08.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 06/19/2015] [Accepted: 08/03/2015] [Indexed: 10/23/2022]
Abstract
The cerebellum is a prominent vertebrate brain structure that is critically involved in sensorimotor function. During locomotion, cerebellar Purkinje cells are rhythmically active, shaping descending signals and coordinating commands from higher brain areas with the step cycle. However, the variation in this activity across steps has not been studied, and its statistical structure, afferent mechanisms, and relationship to behavior remain unknown. Here, using multi-electrode recordings in freely moving rats, we show that behavioral variables systematically influence the shape of the step-locked firing rate. This effect depends strongly on the phase of the step cycle and reveals a functional clustering of Purkinje cells. Furthermore, we find a pronounced disassociation between patterns of variability driven by the parallel and climbing fibers. These results suggest that Purkinje cell activity not only represents step phase within each cycle but also is shaped by behavior across steps, facilitating control of movement under dynamic conditions.
Collapse
Affiliation(s)
- Britton A Sauerbrei
- Computation and Neural Systems Program, California Institute of Technology, Pasadena, CA 91125, USA
| | - Evgueniy V Lubenov
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Athanassios G Siapas
- Computation and Neural Systems Program, California Institute of Technology, Pasadena, CA 91125, USA; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
22
|
Rahimi-Balaei M, Afsharinezhad P, Bailey K, Buchok M, Yeganeh B, Marzban H. Embryonic stages in cerebellar afferent development. CEREBELLUM & ATAXIAS 2015; 2:7. [PMID: 26331050 PMCID: PMC4552263 DOI: 10.1186/s40673-015-0026-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/19/2015] [Indexed: 02/04/2023]
Abstract
The cerebellum is important for motor control, cognition, and language processing. Afferent and efferent fibers are major components of cerebellar circuitry and impairment of these circuits causes severe cerebellar malfunction, such as ataxia. The cerebellum receives information from two major afferent types – climbing fibers and mossy fibers. In addition, a third set of afferents project to the cerebellum as neuromodulatory fibers. The spatiotemporal pattern of early cerebellar afferents that enter the developing embryonic cerebellum is not fully understood. In this review, we will discuss the cerebellar architecture and connectivity specifically related to afferents during development in different species. We will also consider the order of afferent fiber arrival into the developing cerebellum to establish neural connectivity.
Collapse
Affiliation(s)
- Maryam Rahimi-Balaei
- Department of Human Anatomy and Cell Science, College of Medicine, Faculty of Health Sciences, University of Manitoba, Rm129, BMSB, 745 Bannatyne Avenue, Winnipeg, Manitoba R3E 0J9 Canada ; College of Medicine, Faculty of Health Sciences, Manitoba Institute of Child Health (MICH), University of Manitoba, Winnipeg, Manitoba Canada
| | - Pegah Afsharinezhad
- Department of Human Anatomy and Cell Science, College of Medicine, Faculty of Health Sciences, University of Manitoba, Rm129, BMSB, 745 Bannatyne Avenue, Winnipeg, Manitoba R3E 0J9 Canada
| | - Karen Bailey
- Department of Human Anatomy and Cell Science, College of Medicine, Faculty of Health Sciences, University of Manitoba, Rm129, BMSB, 745 Bannatyne Avenue, Winnipeg, Manitoba R3E 0J9 Canada
| | - Matthew Buchok
- Department of Human Anatomy and Cell Science, College of Medicine, Faculty of Health Sciences, University of Manitoba, Rm129, BMSB, 745 Bannatyne Avenue, Winnipeg, Manitoba R3E 0J9 Canada
| | - Behzad Yeganeh
- Program in Physiology and Experimental Medicine, Hospital for Sick Children and University of Toronto, Toronto, Ontario Canada
| | - Hassan Marzban
- Department of Human Anatomy and Cell Science, College of Medicine, Faculty of Health Sciences, University of Manitoba, Rm129, BMSB, 745 Bannatyne Avenue, Winnipeg, Manitoba R3E 0J9 Canada ; College of Medicine, Faculty of Health Sciences, Manitoba Institute of Child Health (MICH), University of Manitoba, Winnipeg, Manitoba Canada
| |
Collapse
|
23
|
Weerts AP, Putcha L, Hoag SW, Hallgren E, Van Ombergen A, Van de Heyning PH, Wuyts FL. Intranasal scopolamine affects the semicircular canals centrally and peripherally. J Appl Physiol (1985) 2015; 119:213-8. [PMID: 25953832 DOI: 10.1152/japplphysiol.00149.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/03/2015] [Indexed: 11/22/2022] Open
Abstract
Space motion sickness (SMS), a condition caused by an intravestibular conflict, remains an important obstacle that astronauts encounter during the first days in space. Promethazine is currently the standard treatment of SMS, but scopolamine is used by some astronauts to prevent SMS. However, the oral and transdermal routes of administration of scopolamine are known to have substantial drawbacks. Intranasal administration of scopolamine ensures a fast absorption and rapid onset of therapeutic effect, which might prove to be suitable for use during spaceflights. The aim of this study was to evaluate the effects of intranasally administered scopolamine (0.4 mg) on the semicircular canals (SCCs) and the otoliths. This double-blind, placebo-controlled study was performed on 19 healthy male subjects. The function of the horizontal SCC and the vestibulo-ocular reflex, as well as the saccular function and utricular function, were evaluated. Scopolamine turned out to affect mainly the SCCs centrally and peripherally but also the utricles to a lesser extent. Centrally, the most probable site of action is the medial vestibular nucleus, where the highest density of muscarinic receptors has been demonstrated and afferent fibers from the SCCs and utricles synapse. Furthermore, our results suggest the presence of muscarinic receptors in the peripheral vestibular system on which scopolamine has a suppressive effect. Given the depressant actions on the SCCs, it is suggested that the pharmacodynamic effect of scopolamine may be attributed to the obliteration of intravestibular conflict that arises during (S)MS.
Collapse
Affiliation(s)
- Aurélie P Weerts
- Antwerp University Research Centre for Equilibrium and Aerospace, Antwerp University Hospital and University of Antwerp, Antwerp, Belgium
| | - Lakshmi Putcha
- Biomedical Operations and Research Branch, NASA Johnson Space Center, Houston, Texas; and
| | - Stephen W Hoag
- School of Pharmacy, Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland
| | - Emma Hallgren
- Antwerp University Research Centre for Equilibrium and Aerospace, Antwerp University Hospital and University of Antwerp, Antwerp, Belgium
| | - Angelique Van Ombergen
- Antwerp University Research Centre for Equilibrium and Aerospace, Antwerp University Hospital and University of Antwerp, Antwerp, Belgium
| | - Paul H Van de Heyning
- Antwerp University Research Centre for Equilibrium and Aerospace, Antwerp University Hospital and University of Antwerp, Antwerp, Belgium; Biomedical Operations and Research Branch, NASA Johnson Space Center, Houston, Texas; and School of Pharmacy, Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland
| | - Floris L Wuyts
- Antwerp University Research Centre for Equilibrium and Aerospace, Antwerp University Hospital and University of Antwerp, Antwerp, Belgium;
| |
Collapse
|
24
|
Beh SC, Frohman TC, Frohman EM. Neuro-ophthalmic Manifestations of Cerebellar Disease. Neurol Clin 2014; 32:1009-80. [DOI: 10.1016/j.ncl.2014.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Shin C Beh
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Teresa C Frohman
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Elliot M Frohman
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Department of Ophthalmology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| |
Collapse
|
25
|
Lee RX, Huang JJ, Huang C, Tsai ML, Yen CT. Collateral projections from vestibular nuclear and inferior olivary neurons to lobules I/II and IX/X of the rat cerebellar vermis: a double retrograde labeling study. Eur J Neurosci 2014; 40:2811-21. [PMID: 24964034 DOI: 10.1111/ejn.12648] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 04/11/2014] [Accepted: 05/04/2014] [Indexed: 11/29/2022]
Abstract
Axon collateral projections to various lobules of the cerebellar cortex are thought to contribute to the coordination of neuronal activities among different parts of the cerebellum. Even though lobules I/II and IX/X of the cerebellar vermis are located at the opposite poles in the anterior-posterior axis, they have been shown to receive dense vestibular mossy fiber projections. For climbing fibers, there is also a mirror-image-like organisation in their axonal collaterals between the anterior and posterior cerebellar cortex. However, the detailed organisation of mossy and climbing fiber collateral afferents to lobules I/II and IX/X is still unclear. Here, we carried out a double-labeling study with two retrograde tracers (FluoroGold and MicroRuby) in lobules I/II and IX/X. We examined labeled cells in the vestibular nuclei and inferior olive. We found a low percentage of double-labeled neurons in the vestibular nuclei (2.1 ± 0.9% of tracer-labeled neurons in this brain region), and a higher percentage of double-labeled neurons in the inferior olive (6.5 ± 1.9%), especially in its four small nuclei (18.5 ± 8.0%; including the β nucleus, dorsal cap of Kooy, ventrolateral outgrowth, and dorsomedial cell column), which are relevant for vestibular function. These results provide strong anatomical evidence for coordinated information processing in lobules I/II and IX/X for vestibular control.
Collapse
Affiliation(s)
- Ray X Lee
- Department of Life Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | | | | | | | | |
Collapse
|
26
|
Zhang Y, Kaneko R, Yanagawa Y, Saito Y. The vestibulo- and preposito-cerebellar cholinergic neurons of a ChAT-tdTomato transgenic rat exhibit heterogeneous firing properties and the expression of various neurotransmitter receptors. Eur J Neurosci 2014; 39:1294-313. [PMID: 24593297 DOI: 10.1111/ejn.12509] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 12/11/2013] [Accepted: 01/10/2014] [Indexed: 02/02/2023]
Abstract
Cerebellar function is regulated by cholinergic mossy fiber inputs that are primarily derived from the medial vestibular nucleus (MVN) and prepositus hypoglossi nucleus (PHN). In contrast to the growing evidence surrounding cholinergic transmission and its functional significance in the cerebellum, the intrinsic and synaptic properties of cholinergic projection neurons (ChPNs) have not been clarified. In this study, we generated choline acetyltransferase (ChAT)-tdTomato transgenic rats, which specifically express the fluorescent protein tdTomato in cholinergic neurons, and used them to investigate the response properties of ChPNs identified via retrograde labeling using whole-cell recordings in brainstem slices. In response to current pulses, ChPNs exhibited two afterhyperpolarisation (AHP) profiles and three firing patterns; the predominant AHP and firing properties differed between the MVN and PHN. Morphologically, the ChPNs were separated into two types based on their soma size and dendritic extensions. Analyses of the firing responses to time-varying sinusoidal current stimuli revealed that ChPNs exhibited different firing modes depending on the input frequencies. The maximum frequencies in which each firing mode was observed were different between the neurons that exhibited distinct firing patterns. Analyses of the current responses to the application of neurotransmitter receptor agonists revealed that the ChPNs expressed (i) AMPA- and NMDA-type glutamate receptors, (ii) GABAA and glycine receptors, and (iii) muscarinic and nicotinic acetylcholine receptors. The current responses mediated by these receptors of MVN ChPNs were not different from those of PHN ChPNs. These findings suggest that ChPNs receive various synaptic inputs and encode those inputs appropriately across different frequencies.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | | | | | | |
Collapse
|
27
|
Cellular and axonal diversity in molecular layer heterotopia of the rat cerebellar vermis. BIOMED RESEARCH INTERNATIONAL 2013; 2013:805467. [PMID: 24191251 PMCID: PMC3804155 DOI: 10.1155/2013/805467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 08/11/2013] [Accepted: 08/26/2013] [Indexed: 11/17/2022]
Abstract
Molecular layer heterotopia of the cerebellar primary fissure are a characteristic of many rat strains and are hypothesized to result from defect of granule cells exiting the external granule cell layer during cerebellar development. However, the cellular and axonal constituents of these malformations remain poorly understood. In the present report, we use histochemistry and immunocytochemistry to identify neuronal, glial, and axonal classes in molecular layer heterotopia. In particular, we identify parvalbumin-expressing molecular layer interneurons in heterotopia as well as three glial cell types including Bergmann glia, Olig2-expressing oligodendrocytes, and Iba1-expressing microglia. In addition, we document the presence of myelinated, serotonergic, catecholaminergic, and cholinergic axons in heterotopia indicating possible spinal and brainstem afferent projections to heterotopic cells. These findings are relevant toward understanding the mechanisms of normal and abnormal cerebellar development.
Collapse
|
28
|
Temporal changes of calbindin expression in the nodulus following unilateral labyrinthectomy in rats. Neurosci Lett 2013; 555:47-50. [PMID: 24055607 DOI: 10.1016/j.neulet.2013.09.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 08/09/2013] [Accepted: 09/10/2013] [Indexed: 11/20/2022]
Abstract
Following unilateral vestibular deafferentation, many of the oculomotor and postural symptoms, such as spontaneous ocular nystagmus and head tilt, gradually abate over time in a process known as 'vestibular compensation'. Although many experimental studies have indicated a role for the cerebellum during vestibular compensation, the effects of unilateral labyrinthectomy (UL) on cerebellar function and the role of cerebellum in post-lesional plasticity remain unclear. Thus, we investigated the temporal changes of calbindin expression in the ipsilateral and contralateral nodulus to the lesion side during vestibular compensation following UL in rats. Change of calbindin expression in the nodulus was measured by immunohistochemistry at 2, 6, 24 and 48hr following UL. The staining intensity of calbindin-positive Purkinje cells in the ipsilateral and contralateral nodulus to the lesion side was found to decrease 6hr after UL compared with the control and asymmetric calbindin expression between ipsilateral and contralateral nodulus 24hr after UL. Forty-eight hours after UL, calbindin expression returned to the control level, and asymmetric expression in both noduli also subsided. It is suggested that the regulation of calbindin expression may facilitate synaptic plasticity by adjusting the efficacy of biochemical responses of Purkinje cells according to the changes in neuronal activity in the vestibular nuclear complex during the early phase of vestibular compensation. Thus, the results revealed that the nodulus has a role during vestibular compensation through Purkinje cells.
Collapse
|
29
|
Meng H, Blázquez PM, Dickman JD, Angelaki DE. Diversity of vestibular nuclei neurons targeted by cerebellar nodulus inhibition. J Physiol 2013; 592:171-88. [PMID: 24127616 DOI: 10.1113/jphysiol.2013.259614] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
A functional role of the cerebellar nodulus and ventral uvula (lobules X and IXc,d of the vermis) for vestibular processing has been strongly suggested by direct reciprocal connections with the vestibular nuclei, as well as direct vestibular afferent inputs as mossy fibres. Here we have explored the types of neurons in the macaque vestibular nuclei targeted by nodulus/ventral uvula inhibition using orthodromic identification from the caudal vermis. We found that all nodulus-target neurons are tuned to vestibular stimuli, and most are insensitive to eye movements. Such non-eye-movement neurons are thought to project to vestibulo-spinal and/or thalamo-cortical pathways. Less than 20% of nodulus-target neurons were sensitive to eye movements, suggesting that the caudal vermis can also directly influence vestibulo-ocular pathways. In general, response properties of nodulus-target neurons were diverse, spanning the whole continuum previously described in the vestibular nuclei. Most nodulus-target cells responded to both rotation and translation stimuli and only a few were selectively tuned to translation motion only. Other neurons were sensitive to net linear acceleration, similar to otolith afferents. These results demonstrate that, unlike the flocculus and ventral paraflocculus which target a particular cell group, nodulus/ventral uvula inhibition targets a large diversity of cell types in the vestibular nuclei, consistent with a broad functional significance contributing to vestibulo-ocular, vestibulo-thalamic and vestibulo-spinal pathways.
Collapse
Affiliation(s)
- Hui Meng
- D. Angelaki: Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
30
|
Van Dine SE, Salem E, Patel DB, George E, Ramos RL. Axonal anatomy of molecular layer heterotopia of the cerebellar vermis. J Chem Neuroanat 2013; 47:90-5. [DOI: 10.1016/j.jchemneu.2012.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 12/10/2012] [Accepted: 12/10/2012] [Indexed: 01/27/2023]
|
31
|
Voogd J, Schraa-Tam CKL, van der Geest JN, De Zeeuw CI. Visuomotor cerebellum in human and nonhuman primates. CEREBELLUM (LONDON, ENGLAND) 2012; 11:392-410. [PMID: 20809106 PMCID: PMC3359447 DOI: 10.1007/s12311-010-0204-7] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this paper, we will review the anatomical components of the visuomotor cerebellum in human and, where possible, in non-human primates and discuss their function in relation to those of extracerebellar visuomotor regions with which they are connected. The floccular lobe, the dorsal paraflocculus, the oculomotor vermis, the uvula-nodulus, and the ansiform lobule are more or less independent components of the visuomotor cerebellum that are involved in different corticocerebellar and/or brain stem olivocerebellar loops. The floccular lobe and the oculomotor vermis share different mossy fiber inputs from the brain stem; the dorsal paraflocculus and the ansiform lobule receive corticopontine mossy fibers from postrolandic visual areas and the frontal eye fields, respectively. Of the visuomotor functions of the cerebellum, the vestibulo-ocular reflex is controlled by the floccular lobe; saccadic eye movements are controlled by the oculomotor vermis and ansiform lobule, while control of smooth pursuit involves all these cerebellar visuomotor regions. Functional imaging studies in humans further emphasize cerebellar involvement in visual reflexive eye movements and are discussed.
Collapse
Affiliation(s)
- Jan Voogd
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands.
| | | | | | | |
Collapse
|
32
|
Hull C, Regehr WG. Identification of an inhibitory circuit that regulates cerebellar Golgi cell activity. Neuron 2012; 73:149-58. [PMID: 22243753 DOI: 10.1016/j.neuron.2011.10.030] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2011] [Indexed: 11/24/2022]
Abstract
Here we provide evidence that revises the inhibitory circuit diagram of the cerebellar cortex. It was previously thought that Golgi cells, interneurons that are the sole source of inhibition onto granule cells, were exclusively coupled via gap junctions. Moreover, Golgi cells were believed to receive GABAergic inhibition from molecular layer interneurons (MLIs). Here we challenge these views by optogenetically activating the cerebellar circuitry to determine the timing and pharmacology of inhibition onto Golgi cells and by performing paired recordings to directly assess synaptic connectivity. In contrast to current thought, we find that Golgi cells, not MLIs, make inhibitory GABAergic synapses onto other Golgi cells. As a result, MLI feedback does not regulate the Golgi cell network, and Golgi cells are inhibited approximately 2 ms before Purkinje cells, following a mossy fiber input. Hence, Golgi cells and Purkinje cells receive unique sources of inhibition and can differentially process shared granule cell inputs.
Collapse
Affiliation(s)
- Court Hull
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
33
|
Parasagittal compartmentation of cerebellar mossy fibers as revealed by the patterned expression of vesicular glutamate transporters VGLUT1 and VGLUT2. Brain Struct Funct 2011; 217:165-80. [DOI: 10.1007/s00429-011-0339-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 07/20/2011] [Indexed: 12/20/2022]
|
34
|
Grybko MJ, Hahm ET, Perrine W, Parnes JA, Chick WS, Sharma G, Finger TE, Vijayaraghavan S. A transgenic mouse model reveals fast nicotinic transmission in hippocampal pyramidal neurons. Eur J Neurosci 2011; 33:1786-98. [PMID: 21501254 DOI: 10.1111/j.1460-9568.2011.07671.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The relative contribution to brain cholinergic signaling by synaptic- and diffusion-based mechanisms remains to be elucidated. In this study, we examined the prevalence of fast nicotinic signaling in the hippocampus. We describe a mouse model where cholinergic axons are labeled with the tauGFP fusion protein driven by the choline acetyltransferase promoter. The model provides for the visualization of individual cholinergic axons at greater resolution than other available models and techniques, even in thick, live, slices. Combining calcium imaging and electrophysiology, we demonstrate that local stimulation of visualized cholinergic fibers results in rapid excitatory postsynaptic currents mediated by the activation of α7-subunit-containing nicotinic acetylcholine receptors (α7-nAChRs) on CA3 pyramidal neurons. These responses were blocked by the α7-nAChR antagonist methyllycaconitine and potentiated by the receptor-specific allosteric modulator 1-(5-chloro-2,4-dimethoxy-phenyl)-3-(5-methyl-isoxanol-3-yl)-urea (PNU-120596). Our results suggest, for the first time, that synaptic nAChRs can modulate pyramidal cell plasticity and development. Fast nicotinic transmission might play a greater role in cholinergic signaling than previously assumed. We provide a model for the examination of synaptic properties of basal forebrain cholinergic innervation in the brain.
Collapse
Affiliation(s)
- Michael J Grybko
- Department of Physiology and Biophysics, School of Medicine, University of Colorado, Aurora, CO, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Baizer JS, Paolone NA, Witelson SF. Nonphosphorylated neurofilament protein is expressed by scattered neurons in the human vestibular brainstem. Brain Res 2011; 1382:45-56. [DOI: 10.1016/j.brainres.2011.01.079] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 01/21/2011] [Accepted: 01/22/2011] [Indexed: 12/25/2022]
|
36
|
Baizer JS, Broussard DM. Expression of calcium-binding proteins and nNOS in the human vestibular and precerebellar brainstem. J Comp Neurol 2010; 518:872-95. [PMID: 20058225 DOI: 10.1002/cne.22250] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Information about the position and movement of the head in space is coded by vestibular receptors and relayed to four nuclei that comprise the vestibular nuclear complex (VNC). Many additional brainstem nuclei are involved in the processing of vestibular information, receiving signals either directly from the eighth nerve or indirectly via projections from the VNC. In cats, squirrel monkeys, and macaque monkeys, we found neurochemically defined subdivisions within the medial vestibular nucleus (MVe) and within the functionally related nucleus prepositus hypoglossi (PrH). In humans, different studies disagree about the borders, sizes, and possible subdivisions of the vestibular brainstem. In an attempt to clarify this organization, we have begun an analysis of the neurochemical characteristics of the human using brains from the Witelson Normal Brain Collection and standard techniques for antigen retrieval and immunohistochemistry. Using antibodies to calbindin, calretinin, parvalbumin, and nitric oxide synthase, we find neurochemically defined subdivisions within the MVe similar to the subdivisions described in cats and monkeys. The neurochemical organization of PrH is different. We also find unique neurochemical profiles for several structures that suggest reclassification of nuclei. These data suggest both quantitative and qualitative differences among cats, monkeys, and humans in the organization of the vestibular brainstem. These results have important implications for the analysis of changes in that organization subsequent to aging, disease, or loss of input.
Collapse
Affiliation(s)
- Joan S Baizer
- Department of Physiology and Biophysics, University at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, New York 14214-3078, USA.
| | | |
Collapse
|
37
|
Sienkiewicz W, Dudek A, Kaleczyc J, Chrószcz A. Immunohistochemical Characterization of Neurones in the Hypoglossal Nucleus of the Pig. Anat Histol Embryol 2010; 39:152-9. [DOI: 10.1111/j.1439-0264.2009.00989.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Baizer JS. Nonphosphorylated neurofilament protein is expressed by scattered neurons in the vestibular and precerebellar brainstem. Brain Res 2009; 1298:46-56. [PMID: 19728992 PMCID: PMC2761759 DOI: 10.1016/j.brainres.2009.08.073] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 08/20/2009] [Accepted: 08/22/2009] [Indexed: 10/20/2022]
Abstract
Vestibular information is essential for the control of posture, balance, and eye movements. The vestibular nerve projects to the four nuclei of the vestibular nuclear complex (VNC), as well as to several additional brainstem nuclei and the cerebellum. We have found that expression of the calcium-binding proteins calretinin (CR) and calbindin (CB), and the synthetic enzyme for nitric oxide synthase (nNOS) define subdivisions of the medial vestibular nucleus (MVe) and the nucleus prepositus (PrH), in cat, monkey, and human. We have asked if the pattern of expression of nonphosphorylated neurofilament protein (NPNFP) might define additional subdivisions of these or other nuclei that participate in vestibular function. We studied the distribution of cells immunoreactive to NPNFP in the brainstems of 5 cats and one squirrel monkey. Labeled cells were scattered throughout the four nuclei of the VNC, as well as in PrH, the reticular formation (RF) and the external cuneate nucleus. We used double-label immunofluorescence to visualize the distribution of these cells relative to other neurochemically defined subdivisions. NPNFP cells were excluded from the CR and CB regions of the MVe. In PrH, NPNFP and nNOS were not colocalized. Cells in the lateral vestibular nucleus and RF colocalized NPNFP and a marker for glutamatergic neurons. We also found that the cholinergic cells and axons of cranial nerve nuclei 3, 4, 6, 7,10 and 12 colocalize NPNFP. The data suggest that NPNFP is expressed by a subset of glutamatergic projection neurons of the vestibular brainstem. NPNFP may be a marker for those cells that are especially vulnerable to the effects of normal aging, neurological disease or disruption of sensory input.
Collapse
Affiliation(s)
- Joan S Baizer
- Department of Physiology and Biophysics, University at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY 14214, USA.
| |
Collapse
|
39
|
Eisenman LM. Motion sickness may be caused by a neurohumoral action of acetylcholine. Med Hypotheses 2009; 73:790-3. [DOI: 10.1016/j.mehy.2009.04.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 04/15/2009] [Accepted: 04/17/2009] [Indexed: 11/30/2022]
|
40
|
Responses of caudal vestibular nucleus neurons of conscious cats to rotations in vertical planes, before and after a bilateral vestibular neurectomy. Exp Brain Res 2008; 188:175-86. [PMID: 18368395 DOI: 10.1007/s00221-008-1359-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Accepted: 03/08/2008] [Indexed: 10/22/2022]
Abstract
Although many previous experiments have considered the responses of vestibular nucleus neurons to rotations and translations of the head, little data are available regarding cells in the caudalmost portions of the vestibular nuclei (CVN), which mediate vestibulo-autonomic responses among other functions. This study examined the responses of CVN neurons of conscious cats to rotations in vertical planes, both before and after a bilateral vestibular neurectomy. None of the units included in the data sample had eye movement-related activity. In labyrinth-intact animals, some CVN neurons (22%) exhibited graviceptive responses consistent with inputs from otolith organs, but most (55%) had dynamic responses with phases synchronized with stimulus velocity. Furthermore, the large majority of CVN neurons had response vector orientations that were aligned either near the roll or vertical canal planes, and only 18% of cells were preferentially activated by pitch rotations. Sustained head-up rotations of the body provide challenges to the cardiovascular system and breathing, and thus the response dynamics of the large majority of CVN neurons were dissimilar to those of posturally-related autonomic reflexes. These data suggest that vestibular influences on autonomic control mediated by the CVN are more complex than previously envisioned, and likely involve considerable processing and integration of signals by brainstem regions involved in cardiovascular and respiratory regulation. Following a bilateral vestibular neurectomy, CVN neurons regained spontaneous activity within 24 h, and a very few neurons (<10%) responded to vertical tilts <15 degrees in amplitude. These findings indicate that nonlabyrinthine inputs are likely important in sustaining the activity of CVN neurons; thus, these inputs may play a role in functional recovery following peripheral vestibular lesions.
Collapse
|
41
|
Brown RW, Perna MK, Maple AM, Wilson TD, Miller BE. Adulthood olanzapine treatment fails to alleviate decreases of ChAT and BDNF RNA expression in rats quinpirole-primed as neonates. Brain Res 2008; 1200:66-77. [DOI: 10.1016/j.brainres.2008.01.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Revised: 12/31/2007] [Accepted: 01/12/2008] [Indexed: 12/29/2022]
|
42
|
Sun Y, Godfrey DA, Godfrey TG, Rubin AM. Changes of amino acid concentrations in the rat vestibular nuclei after inferior cerebellar peduncle transection. J Neurosci Res 2007; 85:558-74. [PMID: 17131392 DOI: 10.1002/jnr.21136] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although there is a close relationship between the vestibular nuclear complex (VNC) and the cerebellum, little is known about the contribution of cerebellar inputs to amino acid neurotransmission in the VNC. Microdissection of freeze-dried brain sections and high-performance liquid chromatography (HPLC) were combined to measure changes of amino acid concentrations within the VNC of rats following transection of the cerebellovestibular connections in the inferior cerebellar peduncle. Distributions of 12 amino acids within the VNC at 2, 4, 7, and 30 days after surgery were compared with those for control and sham-lesioned rats. Concentrations of gamma-aminobutyric acid (GABA) decreased by 2 days after unilateral peduncle transection in nearly all VNC regions on the lesioned side and to lesser extents on the unlesioned side and showed partial recovery up to 30 days postsurgery. Asymmetries between the two sides of the VNC were maintained through 30 days. Glutamate concentrations were reduced bilaterally in virtually all regions of the VNC by 2 days and showed complete recovery in most VNC regions by 30 days. Glutamine concentrations increased, starting 2 days after surgery, especially on the lesioned side, so that there was asymmetry generally opposite that of glutamate. Concentrations of taurine, aspartate, and glycine also underwent partially reversible changes after peduncle transection. The results suggest that GABA and glutamate are prominent neurotransmitters in bilateral projections from the cerebellum to the VNC and that amino acid metabolism in the VNC is strongly influenced by its cerebellar connections.
Collapse
Affiliation(s)
- Yizhe Sun
- Division of Otolaryngology and Dentistry, Department of Surgery, University of Toledo College of Medicine, Toledo, Ohio 43614, USA
| | | | | | | |
Collapse
|
43
|
Márquez-Ruiz J, Morcuende S, Navarro-López JDD, Escudero M. Anatomical and pharmacological relationship between acetylcholine and nitric oxide in the prepositus hypoglossi nucleus of the cat: Functional implications for eye-movement control. J Comp Neurol 2007; 503:407-20. [PMID: 17503470 DOI: 10.1002/cne.21397] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The prepositus hypoglossi (PH) nucleus has been proposed as a pivotal structure for horizontal eye-position generation in the oculomotor system. Recent studies have revealed that acetylcholine (ACh) in the PH nucleus could mediate the persistent activity necessary for this process, although the origin of this ACh remains unknown. It is also known that nitric oxide (NO) in the PH nucleus plays an important role in the control of velocity balance, being involved in a negative feedback control of tonic signals arriving at the PH nucleus. As it could be expected that neurons taking part in eye-position generation must control their tonic background inputs, the existence of a relationship between nitrergic and cholinergic neurons is hypothesized. In the present study we analyzed the distribution, size, and morphology of choline acetyltransferase-positive neurons, and their relationship with neuronal nitric oxide synthase in the PH nucleus of the cat. As presumed, some 96% of cholinergic neurons were also nitrergic in the PH nucleus, suggesting that NO is regulating the level of ACh released by cholinergic PH neurons. Furthermore, we studied the alterations induced by muscarinic-receptor agonists and antagonists on spontaneous and vestibularly induced eye movements in the alert cat and compared them with those induced in previous studies by modification of NO levels in the same animal preparation. The results suggest that ACh is necessary for the generation of saccadic and vestibular eye-position signals, whereas the NO is stabilizing the eye-position generator by controlling background activity reaching cholinergic neurons in the PH nucleus.
Collapse
Affiliation(s)
- Javier Márquez-Ruiz
- Neurociencia y Comportamiento. Fac. de Biología, Universidad de Sevilla, 41012-Sevilla, Spain
| | | | | | | |
Collapse
|
44
|
Yakhnitsa V, Barmack NH. Antiphasic Purkinje cell responses in mouse uvula-nodulus are sensitive to static roll-tilt and topographically organized. Neuroscience 2006; 143:615-26. [PMID: 16973298 DOI: 10.1016/j.neuroscience.2006.08.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 07/21/2006] [Accepted: 08/01/2006] [Indexed: 11/15/2022]
Abstract
Two vestibular pathways converge at the uvula-nodulus to modulate the discharge of Purkinje cell complex and simple spikes (CSs and SSs). In the mouse, vestibular primary afferent mossy fibers originate from each of the end organs of the ipsilateral labyrinth and terminate in the granule cell layers of folia 9c-10. Vestibular climbing fiber projections originate from the contralateral beta-nucleus and dorsomedial cell column (dmcc) and terminate directly on Purkinje cells. CSs and SSs could be regulated independently or they could be co-dependent. Here we examine how the discharges of CSs and SSs are modulated by sinusoidal and static roll-tilt in the uvula-nodulus of mice anesthetized with either chloralose-urethane or ketamine-xylazine. All vestibularly-driven CSs and SSs were sensitive to static roll-tilt. None were sensitive to horizontal vestibular stimulation. CSs were modulated in phase with ipsilateral roll-tilt. SSs were modulated out of phase. Spontaneous discharges of CSs were followed by a pause in SSs. Phase leads of CSs and SSs with respect to sinusoidal roll-tilt were advanced by ketamine-xylazine anesthesia relative to chloralose-urethane anesthesia by approximately 45 degrees. The antiphasic modulation of CSs and SSs was independent of anesthetic. Chloralose-urethane, but not ketamine-xylazine, induced spontaneous oscillations of CSs and SSs in 16% of Purkinje cells. Optimal planes of CSs in folia 9c-10 Purkinje cells were organized topographically into sagittal zones whose widths were approximately 400 microm. Purkinje cells with optimal planes in the posterior quadrant of the ipsilateral hemi-field were located in a medial zone. Purkinje cells with optimal planes in the anterior quadrant of the ipsilateral hemi-field were located in a lateral zone. The CS-associated pause in SSs establishes a vector-specific SS output. The amplitude of SS modulation may depend on parallel fiber-mediated signals to Purkinje cells as well as on the state of cerebellar interneurons.
Collapse
Affiliation(s)
- V Yakhnitsa
- Neurological Sciences Institute, Oregon Health and Sciences University, Beaverton, OR 97006, USA
| | | |
Collapse
|
45
|
Ito M. Cerebellar circuitry as a neuronal machine. Prog Neurobiol 2006; 78:272-303. [PMID: 16759785 DOI: 10.1016/j.pneurobio.2006.02.006] [Citation(s) in RCA: 557] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Accepted: 02/21/2006] [Indexed: 11/17/2022]
Abstract
Shortly after John Eccles completed his studies of synaptic inhibition in the spinal cord, for which he was awarded the 1963 Nobel Prize in physiology/medicine, he opened another chapter of neuroscience with his work on the cerebellum. From 1963 to 1967, Eccles and his colleagues in Canberra successfully dissected the complex neuronal circuitry in the cerebellar cortex. In the 1967 monograph, "The Cerebellum as a Neuronal Machine", he, in collaboration with Masao Ito and Janos Szentágothai, presented blue-print-like wiring diagrams of the cerebellar neuronal circuitry. These stimulated worldwide discussions and experimentation on the potential operational mechanisms of the circuitry and spurred theoreticians to develop relevant network models of the machinelike function of the cerebellum. In following decades, the neuronal machine concept of the cerebellum was strengthened by additional knowledge of the modular organization of its structure and memory mechanism, the latter in the form of synaptic plasticity, in particular, long-term depression. Moreover, several types of motor control were established as model systems representing learning mechanisms of the cerebellum. More recently, both the quantitative preciseness of cerebellar analyses and overall knowledge about the cerebellum have advanced considerably at the cellular and molecular levels of analysis. Cerebellar circuitry now includes Lugaro cells and unipolar brush cells as additional unique elements. Other new revelations include the operation of the complex glomerulus structure, intricate signal transduction for synaptic plasticity, silent synapses, irregularity of spike discharges, temporal fidelity of synaptic activation, rhythm generators, a Golgi cell clock circuit, and sensory or motor representation by mossy fibers and climbing fibers. Furthermore, it has become evident that the cerebellum has cognitive functions, and probably also emotion, as well as better-known motor and autonomic functions. Further cerebellar research is required for full understanding of the cerebellum as a broad learning machine for neural control of these functions.
Collapse
Affiliation(s)
- Masao Ito
- RIKEN Brain Science Institute, Wako, Saitama, Japan.
| |
Collapse
|
46
|
Abstract
The vestibular portion of the eighth cranial nerve informs the brain about the linear and angular movements of the head in space and the position of the head with respect to gravity. The termination sites of these eighth nerve afferents define the territory of the vestibular nuclei in the brainstem. (There is also a subset of afferents that project directly to the cerebellum.) This chapter reviews the anatomical organization of the vestibular nuclei, and the anatomy of the pathways from the nuclei to various target areas in the brain. The cytoarchitectonics of the vestibular brainstem are discussed, since these features have been used to distinguish the individual nuclei. The neurochemical phenotype of vestibular neurons and pathways are also summarized because the chemical anatomy of the system contributes to its signal-processing capabilities. Similarly, the morphologic features of short-axon local circuit neurons and long-axon cells with extrinsic projections are described in detail, since these structural attributes of the neurons are critical to their functional potential. Finally, the composition and hodology of the afferent and efferent pathways of the vestibular nuclei are discussed. In sum, this chapter reviews the morphology, chemoanatomy, connectivity, and synaptology of the vestibular nuclei.
Collapse
Affiliation(s)
- Stephen M Highstein
- Washington University School of Medicine, Box 8115, 4566 Scott Avenue, St. Louis, MO 63110, USA.
| | | |
Collapse
|
47
|
Abstract
The anatomical, physiological, and behavioral evidence for the involvement of three regions of the cerebellum in oculomotor behavior is reviewed here: (1) the oculomotor vermis and paravermis of lobules V, IV, and VII; (2) the uvula and nodulus; (3) flocculus and ventral paraflocculus. No region of the cerebellum controls eye movements exclusively, but each receives sensory information relevant for the control of multiple systems. An analysis of the microcircuitry suggests how sagittal climbing fiber zones bring visual information to the oculomotor vermis; convey vestibular information to the uvula and nodulus, while optokinetic space is represented in the flocculus. The mossy fiber projections are more heterogeneous. The importance of the inferior olive in modulating Purkinje cell responses is discussed.
Collapse
Affiliation(s)
- Jan Voogd
- Department of Neuroscience, Erasmus Medical Center Rotterdam, Box 1738, 3000 DR Rotterdam, The Netherlands.
| | | |
Collapse
|
48
|
Sekerková G, Ilijic E, Mugnaini E, Baker JF. Otolith organ or semicircular canal stimulation induces c-fos expression in unipolar brush cells and granule cells of cat and squirrel monkey. Exp Brain Res 2005; 164:286-300. [PMID: 15940501 DOI: 10.1007/s00221-005-2252-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Accepted: 11/30/2004] [Indexed: 11/29/2022]
Abstract
Immediate early gene expression in the cerebellar vermis of cats and squirrel monkeys was stimulated by prolonged whole body rotations. Continuous, earth-horizontal axis rotations that excited only otoliths or high velocity vertical axis rotations that excited only semicircular canals resulted in c-fos immunoreactive nuclei concentrated in the granular layer of lobules X and ventral IX (the nodulus and ventral uvula), which represent the medial parts of the vestibulo-cerebellum. Large clusters of labeled nuclei consisting mainly of granule cells and calretinin-positive unipolar brush cells were present in the granular layer, whereas Purkinje cell nuclei were unlabeled, and labeled basket and stellate cell nuclei were scattered in the molecular layer. In other vermal lobules there was a significant but less dense label than in the nodulus and ventral uvula. Generally, the extent of c-fos labeling of molecular layer interneurons was in relation to nuclear labeling of granular layer neurons: labeling of both basket and stellate cells accompanied nuclear labeling of neurons throughout the depth of the granular layer, whereas only stellate cells were labeled when nuclear labeling was restricted to the superficial granular layer. Yaw horizontal or roll vertical rotations each stimulated c-fos expression in the cat medial vestibulo-cerebellum to approximately the same extent. Low-velocity rotations resulted in much less c-fos expression. Similar, albeit less intense, patterns of c-fos activation were observed in monkeys. Concentrated c-fos expression in the medial vestibulo-cerebellum after exposure to a strong head velocity signal that could originate from either otolith or canal excitation suggests that granule and unipolar brush cells participate in a neuronal network for estimating head velocity, irrespective of the signal source.
Collapse
Affiliation(s)
- Gabriella Sekerková
- Northwestern University Institute for Neuroscience, Searle 5-474, 320 E. Superior Street, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
49
|
Kalinichenko SG, Okhotin VE. Unipolar brush cells--a new type of excitatory interneuron in the cerebellar cortex and cochlear nuclei of the brainstem. ACTA ACUST UNITED AC 2005; 35:21-36. [PMID: 15739785 DOI: 10.1023/b:neab.0000049648.20702.ad] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Published data and the authors' own studies on the morphology, neurochemical specialization, and spatial organization of unipolar brush neurons (UBN) in the cerebellar cortex and cochlear nuclei of the brainstem are reviewed. UBN represent an exclusive category of excitatory interneurons, with a single dendrite which forms a compact branching with a shape reminiscent of that of a brush in its terminal segment. These cells are characterized by an uneven distribution in the granular layer of the cerebellum, being located mainly in its vestibular zones. UBN synthesize glutamate, calretinin, and metabotropic and ionotropic glutamate receptors. The dendritic brush of UBN form giant synapses with the rosettes of glutamatergic and cholinergic mossy afferent fibers. UBN axons form an intracortical system of mossy fibers which, forming rosettes and glomeruli, make contact with the dendrites of other UBN and granule cells. In the circuits of interneuronal communications, UBN can be regarded as an intermediate component, amplifying the excitatory effects of mossy afferent fibers on granule cells in the cerebellar cortex and cochlear nuclei of the brainstem.
Collapse
|
50
|
Baizer JS, Baker JF. Immunoreactivity for calcium-binding proteins defines subregions of the vestibular nuclear complex of the cat. Exp Brain Res 2005; 164:78-91. [PMID: 15662522 PMCID: PMC1201542 DOI: 10.1007/s00221-004-2211-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2004] [Accepted: 11/22/2004] [Indexed: 12/18/2022]
Abstract
The vestibular nuclear complex (VNC) is classically divided into four nuclei on the basis of cytoarchitectonics. However, anatomical data on the distribution of afferents to the VNC and the distribution of cells of origin of different efferent pathways suggest a more complex internal organization. Immunoreactivity for calcium-binding proteins has proven useful in many areas of the brain for revealing structure not visible with cell, fiber or Golgi stains. We have looked at the VNC of the cat using immunoreactivity for the calcium-binding proteins calbindin, calretinin and parvalbumin. Immunoreactivity for calretinin revealed a small, intensely stained region of cell bodies and processes just beneath the fourth ventricle in the medial vestibular nucleus. A presumably homologous region has been described in rodents. The calretinin-immunoreactive cells in this region were also immunoreactive for choline acetyltransferase. Evidence from other studies suggests that the calretinin region contributes to pathways involved in eye movement modulation but not generation. There were focal dense regions of fibers immunoreactive to calbindin in the medial and inferior nuclei, with an especially dense region of label at the border of the medial nucleus and the nucleus prepositus hypoglossi. There is anatomical evidence that suggests that the likely source of these calbindin-immunoreactive fibers is the flocculus of the cerebellum. The distribution of calbindin-immunoreactive fibers in the lateral and superior nuclei was much more uniform. Immunoreactivity to parvalbumin was widespread in fibers distributed throughout the VNC. The results suggest that neurochemical techniques may help to reveal the internal complexity in VNC organization.
Collapse
Affiliation(s)
- Joan S Baizer
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, University at Buffalo, 123 Sherman Hall, Buffalo, NY, 14214-3078, USA.
| | | |
Collapse
|