1
|
Chen XY, Xue Y, Chen H, Chen L. The globus pallidus as a target for neuropeptides and endocannabinoids participating in central activities. Peptides 2020; 124:170210. [PMID: 31778724 DOI: 10.1016/j.peptides.2019.170210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 11/14/2019] [Accepted: 11/21/2019] [Indexed: 12/12/2022]
Abstract
The globus pallidus in the basal ganglia plays an important role in movement regulation. Neuropeptides and endocannabinoids are neuronal signalling molecules that influence the functions of the whole brain. Endocannabinoids, enkephalin, substance P, neurotensin, orexin, somatostatin and pituitary adenylate cyclase-activating polypeptides are richly concentrated in the globus pallidus. Neuropeptides and endocannabinoids exert excitatory or inhibitory effects in the globus pallidus mainly by modulating GABAergic, glutamatergic and dopaminergic neurotransmission, as well as many ionic mechanisms. Pallidal neuropeptides and endocannabinoids are associated with the pathophysiology of a number of neurological disorders, such as Parkinson's disease, Huntington's disease, schizophrenia, and depression. The levels of neuropeptides and endocannabinoids and their receptors in the globus pallidus change in neurological diseases. It has been demonstrated that spontaneous firing activity of globus pallidus neurons is closely related to the manifestations of Parkinson's disease. Therefore, the neuropeptides and endocannabinoids in the globus pallidus may function as potential targets for treatment in some neurological diseases. In this review, we highlight the morphology and function of neuropeptides and endocannabinoids in the globus pallidus and their involvement in neurological diseases.
Collapse
Affiliation(s)
- Xin-Yi Chen
- Department of Pathology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China; Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yan Xue
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Hua Chen
- Department of Pathology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.
| | - Lei Chen
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
2
|
Zhang H, Dong H, Lei S. Neurotensinergic augmentation of glutamate release at the perforant path-granule cell synapse in rat dentate gyrus: Roles of L-Type Ca²⁺ channels, calmodulin and myosin light-chain kinase. Neuropharmacology 2015; 95:252-60. [PMID: 25842242 DOI: 10.1016/j.neuropharm.2015.03.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 01/12/2023]
Abstract
Neurotensin (NT) serves as a neuromodulator in the brain where it is involved in modulating a variety of physiological functions including nociception, temperature, blood pressure and cognition, and many neurological diseases such as Alzheimer's disease, schizophrenia and Parkinson's disease. Whereas there is compelling evidence demonstrating that NT facilitates cognitive processes, the underlying cellular and molecular mechanisms have not been fully determined. Because the dentate gyrus expresses high densities of NT and NT receptors, we examined the effects of NT on the synaptic transmission at the synapse formed between the perforant path (PP) and granule cells (GC) in the rats. Our results demonstrate that NT persistently increased the amplitude of the AMPA receptor-mediated EPSCs at the PP-GC synapse. NT-induced increases in AMPA EPSCs were mediated by presynaptic NTS1 receptors. NT reduced the coefficient of variation and paired-pulse ratio of AMPA EPSCs suggesting that NT facilitates presynaptic glutamate release. NT increased the release probability and the number of readily releasable vesicles with no effects on the rate of recovery from vesicle depletion. NT-mediated augmentation of glutamate release required the influx of Ca(2+) via L-type Ca(2+) channels and the functions of calmodulin and myosin light chain kinase. Our results provide a cellular and molecular mechanism to explain the roles of NT in the hippocampus.
Collapse
Affiliation(s)
- Haopeng Zhang
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA; Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, PR China
| | - Hailong Dong
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, PR China
| | - Saobo Lei
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA.
| |
Collapse
|
3
|
Zhang H, Dong H, Cilz NI, Kurada L, Hu B, Wada E, Bayliss DA, Porter JE, Lei S. Neurotensinergic Excitation of Dentate Gyrus Granule Cells via Gαq-Coupled Inhibition of TASK-3 Channels. Cereb Cortex 2014; 26:977-90. [PMID: 25405940 DOI: 10.1093/cercor/bhu267] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Neurotensin (NT) is a 13-amino acid peptide and serves as a neuromodulator in the brain. Whereas NT has been implicated in learning and memory, the underlying cellular and molecular mechanisms are ill-defined. Because the dentate gyrus receives profound innervation of fibers containing NT and expresses high density of NT receptors, we examined the effects of NT on the excitability of dentate gyrus granule cells (GCs). Our results showed that NT concentration dependently increased action potential (AP) firing frequency of the GCs by the activation of NTS1 receptors resulting in the depolarization of the GCs. NT-induced enhancement of AP firing frequency was not caused indirectly by releasing glutamate, GABA, acetylcholine, or dopamine, but due to the inhibition of TASK-3 K(+) channels. NT-mediated excitation of the GCs was G protein dependent, but independent of phospholipase C, intracellular Ca(2+) release, and protein kinase C. Immunoprecipitation experiment demonstrates that the activation of NTS1 receptors induced the association of Gαq/11 and TASK-3 channels suggesting a direct coupling of Gαq/11 to TASK-3 channels. Endogenously released NT facilitated the excitability of the GCs contributing to the induction of long-term potentiation at the perforant path-GC synapses. Our results provide a cellular mechanism that helps to explain the roles of NT in learning and memory.
Collapse
Affiliation(s)
- Haopeng Zhang
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Hailong Dong
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Nicholas I Cilz
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Lalitha Kurada
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Binqi Hu
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Etsuko Wada
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, Tokyo, Japan
| | - Douglas A Bayliss
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - James E Porter
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Saobo Lei
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| |
Collapse
|
4
|
Neurotensin: revealing a novel neuromodulator circuit in the nucleus accumbens–parabrachial nucleus projection of the domestic chick. Brain Struct Funct 2014; 221:605-16. [DOI: 10.1007/s00429-014-0928-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 10/18/2014] [Indexed: 11/30/2022]
|
5
|
Activation of neurotensin receptor 1 facilitates neuronal excitability and spatial learning and memory in the entorhinal cortex: beneficial actions in an Alzheimer's disease model. J Neurosci 2014; 34:7027-42. [PMID: 24828655 DOI: 10.1523/jneurosci.0408-14.2014] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neurotensin (NT) is a tridecapeptide distributed in the CNS, including the entorhinal cortex (EC), a structure that is crucial for learning and memory and undergoes the earliest pathological alterations in Alzheimer's disease (AD). Whereas NT has been implicated in modulating cognition, the cellular and molecular mechanisms by which NT modifies cognitive processes and the potential therapeutic roles of NT in AD have not been determined. Here we examined the effects of NT on neuronal excitability and spatial learning in the EC, which expresses high density of NT receptors. Brief application of NT induced persistent increases in action potential firing frequency, which could last for at least 1 h. NT-induced facilitation of neuronal excitability was mediated by downregulation of TREK-2 K(+) channels and required the functions of NTS1, phospholipase C, and protein kinase C. Microinjection of NT or NTS1 agonist, PD149163, into the EC increased spatial learning as assessed by the Barnes Maze Test. Activation of NTS1 receptors also induced persistent increases in action potential firing frequency and significantly improved the memory status in APP/PS1 mice, an animal model of AD. Our study identifies a cellular substrate underlying learning and memory and suggests that NTS1 agonists may exert beneficial actions in an animal model of AD.
Collapse
|
6
|
Postnatal Nitric Oxide Inhibition Modifies Neurotensin Effect on ATPase Activity. Neurochem Res 2011; 36:2278-86. [DOI: 10.1007/s11064-011-0552-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 07/05/2011] [Accepted: 07/14/2011] [Indexed: 11/26/2022]
|
7
|
Singh SM, Basu D. The P300 event-related potential and its possible role as an endophenotype for studying substance use disorders: a review. Addict Biol 2009; 14:298-309. [PMID: 18811679 DOI: 10.1111/j.1369-1600.2008.00124.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The concept of endophenotypes has gained popularity in recent years. This is because of the potential that endophenotypes provide of measuring objective trait markers that are simpler to access and assess than complex behavioral disease phenotypes themselves. The simplicity, ease of measurement and the putative links to the etiology of the disease in the study of an endophenotype has the potential promise of unraveling the genetic basis of the disease in question. Of the various proposed endophenotypes, the P300 component of the event-related potential has been used in studies on alcoholism, schizophrenia and externalizing disorders. The current state of knowledge regarding the concept of endophenotypes, P300 and the validity of P300 as an endophenotype with special reference to substance use disorders is discussed in this review. The implications of the above are discussed.
Collapse
Affiliation(s)
- Shubh M Singh
- Department of Psychiatry, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | | |
Collapse
|
8
|
Geisler S, Bérod A, Zahm DS, Rostène W. Brain neurotensin, psychostimulants, and stress--emphasis on neuroanatomical substrates. Peptides 2006; 27:2364-84. [PMID: 16934369 DOI: 10.1016/j.peptides.2006.03.037] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Accepted: 03/05/2006] [Indexed: 12/29/2022]
Abstract
Neurotensin (NT) is a peptide that is widely distributed throughout the brain. NT is involved in locomotion, reward, stress and pain modulation, and in the pathophysiology of drug addiction and depression. In its first part this review brings together relevant literature about the neuroanatomy of NT and its receptors. The second part focuses on functional-anatomical interactions between NT, the mesotelencephalic dopamine system and structures targeted by dopaminergic projections. Finally, recent data about the actions of NT in processes underlying behavioral sensitization to psychostimulant drugs and the involvement of NT in the regulation of the hypothalamo-pituitary-adrenal gland axis are considered.
Collapse
Affiliation(s)
- Stefanie Geisler
- Department of Pharmacological and Physiological Science, Saint Louis University, School of Medicine, St. Louis, MO 63104, USA
| | | | | | | |
Collapse
|
9
|
Abstract
Neurotensin (NT) can produce a profound analgesia or enhance pain responses, depending on the circumstances. Recent evidence suggests that this may be due to a dose-dependent recruitment of distinct populations of pain modulatory neurons. NT knockout mice display defects in both basal nociceptive responses and stress-induced analgesia. Stress-induced antinociception is absent in these mice and instead stress induces a hyperalgesic response, suggesting that NT plays a key role in the stress-induced suppression of pain. Cold water swim stress results in increased NT mRNA expression in hypothalamic regions known to project to periaqueductal gray, a key region involved in pain modulation. Thus, stress-induced increases in NT signaling in pain modulatory regions may be responsible for the transition from pain facilitation to analgesia. This review focuses on recent advances that have provided insights into the role of NT in pain modulation.
Collapse
Affiliation(s)
- Paul R Dobner
- Department of Molecular Genetics and Microbiology, Program in Neuroscience, University of Massachusetts Medical School, 55 Lake Ave. North, Worcester, MA 01655, USA.
| |
Collapse
|
10
|
Chen L, Yung KKL, Yung WH. Neurotensin selectively facilitates glutamatergic transmission in globus pallidus. Neuroscience 2006; 141:1871-8. [PMID: 16814931 DOI: 10.1016/j.neuroscience.2006.05.049] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2006] [Revised: 05/19/2006] [Accepted: 05/22/2006] [Indexed: 11/26/2022]
Abstract
The tridecapeptide neurotensin has been demonstrated to modulate neurotransmission in a number of brain regions. There is evidence that neurotensin receptors exist in globus pallidus presynaptically and postsynaptically. Whole-cell patch-clamp recordings were used to investigate the modulatory effects of neurotensin on glutamate and GABA transmission in this basal ganglia nucleus in rats. Neurotensin at 1 microM significantly increased the frequency of glutamate receptor-mediated miniature excitatory postsynaptic currents. In contrast, neurotensin had no effect on GABA(A) receptor-mediated miniature inhibitory postsynaptic currents. The presynaptic facilitation of neurotensin on glutamatergic transmission could be mimicked by the C-terminal fragment, neurotensin (8-13), but not by the N-terminal fragment, neurotensin (1-8). The selective neurotensin type-1 receptor antagonist, SR48692 {2-[(1-(7-chloro-4-quinolinyl)-5-2(2,6-dimethoxyphenyl)pyrazol-3-yl)carbonylamino]-tricyclo(3.3.1.1.(3.7))-decan-2-carboxylic acid}, blocked this facilitatory effect of neurotensin, and which itself had no effect on miniature excitatory postsynaptic currents. The specific phospholipase C inhibitor, U73122 {1-[6-[[17beta-3-methoyyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione}, significantly inhibit neurotensin-induced facilitation on glutamate release. Taken together with the reported postsynaptic depolarization of neurotensin in globus pallidus, it is suggested that neurotensin excites the globus pallidus neurons by multiple mechanisms which may provide a rationale for further investigations into its involvement in motor disorders originating from the basal ganglia.
Collapse
Affiliation(s)
- L Chen
- Department of Physiology, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | | | | |
Collapse
|
11
|
Brunjes PC, Illig KR, Meyer EA. A field guide to the anterior olfactory nucleus (cortex). ACTA ACUST UNITED AC 2005; 50:305-35. [PMID: 16229895 DOI: 10.1016/j.brainresrev.2005.08.005] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Revised: 08/25/2005] [Accepted: 08/25/2005] [Indexed: 02/05/2023]
Abstract
While portions of the mammalian olfactory system have been studied extensively, the anterior olfactory nucleus (AON) has been relatively ignored. Furthermore, the existing research is dispersed and obscured by many different nomenclatures and approaches. The present review collects and assembles the relatively sparse literature regarding the portion of the brain situated between the olfactory bulb and primary olfactory (piriform) cortex. Included is an overview of the area's organization, the functional, morphological and neurochemical characteristics of its cells and a comprehensive appraisal of its efferent and afferent fiber systems. Available evidence suggests the existence of subdivisions within the AON and demonstrates that the structure influences ongoing activity in many other olfactory areas. We conclude with a discussion of the AON's mysterious but complex role in olfactory information processing.
Collapse
Affiliation(s)
- Peter C Brunjes
- Department of Psychology, University of Virginia, 102 Gilmer Hall PO Box 400400, Charlottesville, VA 22904-4400, USA
| | | | | |
Collapse
|
12
|
Gomide VC, de Francisco AC, Chadi G. Localization of neurotensin immunoreactivity in neurons and organ of corti of rat cochlea. Hear Res 2005; 205:1-6. [PMID: 15953510 DOI: 10.1016/j.heares.2005.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Accepted: 02/26/2005] [Indexed: 11/20/2022]
Abstract
The distribution of neurotensin-containing cell bodies and fibers has been observed in the central and peripheral nervous system, including sensory ganglia, but no description has been found in the peripheral auditory system. Here, we investigated the presence of neurotensin immunoreactivity in the cochlea of the adult Wistar rat. Strong neurotensin immunoreactivity was detected in the cytoplasm of the inner hair cells (IHC) and Deiters' cells of the organ of Corti. Outer hair cells (OHC) show weak immunoreaction. Neurotensin immunoreactivity was also found in the neurons and fibers of the spiral ganglia. Quantitative microdensitometric image analysis of the neurotensin immunoreactivity showed a strong immunoreaction in the hair cells of organ of Corti and a moderate to strong labeling in the spiral ganglion neurons. A series of double immunolabeling experiments demonstrated a strong neurotensin immunoreactivity in the parvalbumin immunoreactive IHC and also in the calbindin immunoreactive Deiters' cells. Weak neurotensin immunoreactivity was seen in the calbindin positive OHC. Neurofilament and parvalbumin immunoreactive neurons and fibers in the spiral ganglia showed neurotensin immunoreactivity. Calbindin immunoreactivity was not detected in the spiral ganglion neurons, which are labeled by neurotensin immunoreactivity. The presence of neurotensin in the cochlea may be related to its modulation of neurotransmission in the peripheral auditory pathway.
Collapse
Affiliation(s)
- Vânia C Gomide
- Laboratory of Neuroregeneration, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, Brazil
| | | | | |
Collapse
|
13
|
Delle Donne KT, Chan J, Boudin H, Pélaprat D, Rostène W, Pickel VM. Electron microscopic dual labeling of high-affinity neurotensin and dopamine D2 receptors in the rat nucleus accumbens shell. Synapse 2004; 52:176-87. [PMID: 15065218 DOI: 10.1002/syn.20018] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The dopamine D2 receptor (D2R) in the nucleus accumbens (NAc) shell is implicated in schizophrenia and in psychostimulant-induced drug-seeking behavior, both of which are affected by activation of the functionally opposed high-affinity neurotensin receptor (NTS1). To determine the functionally relevant sites, we examined the dual electron microscopic immunocytochemical localization of D2R and NTS1 in the NAc shell of rat brain. Immunolabeling for each receptor was seen in association with cytoplasmic organelles, or more rarely, on the plasma membrane of both axonal and somatodendritic profiles. Some of the axonal and many of the dendritic processes colocalized the two receptors. The dually labeled axon terminals often formed symmetric synapses or appositional contacts with unlabeled dendritic profiles. The morphology of these terminals suggests that they contain either inhibitory amino acids or dopamine. Other axonal profiles expressing exclusively NTS1 or D2R were without synaptic specializations or formed asymmetric, excitatory-type synapses mainly on unlabeled dendritic spines. In addition, however, several D2R-immunoreactive terminals were observed presynaptic to dendrites containing NTS1. The somatodendritic profiles immunolabeled for NTS1 and/or D2R had morphological features typical of inhibitory spiny projection neurons in the NAc. These results suggest that activation of NTS1 and D2R can dually modulate transmitter release from the same or separate phenotypically distinct axon terminals in the NAc shell. These presynaptic receptors as well as the postsynaptic NTS1 distribution in neurons that also contain or receive input from terminals containing D2R may mediate the opposing actions of neurotensin and dopamine in the NAc.
Collapse
Affiliation(s)
- Karen T Delle Donne
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
14
|
Chen L, Yung KKL, Yung WH. Neurotensin depolarizes globus pallidus neurons in rats via neurotensin type-1 receptor. Neuroscience 2004; 125:853-9. [PMID: 15120846 DOI: 10.1016/j.neuroscience.2004.02.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2004] [Indexed: 11/16/2022]
Abstract
The globus pallidus is a major component in the indirect pathway of the basal ganglia. There is evidence that neurotensin receptors exist in this nucleus. To determine the electrophysiological effects of neurotensin on pallidal neurons, whole-cell patch-clamp recordings were performed in the acutely prepared brain slices. Under current-clamp recordings, neurotensin at 1 microM depolarized pallidal neurons. Voltage-clamp recordings also showed an inward current induced by neurotensin. The depolarizing effect of neurotensin could be mimicked by the C-terminal fragment, neurotensin (8-13), but not by the N-terminal fragment, neurotensin (1-8). Both SR 142948A, a non-selective neurotensin receptor type-1 and type-2 antagonist, and SR 48692, a selective type-1 receptor antagonist, blocked the depolarizing effect of neurotensin, and which themselves had no effect on membrane potential. Thus, neurotensin type-1 receptors appear to mediate the effect of neurotensin. The depolarization evoked by neurotensin persisted in the presence of tetrodotoxin, ionotropic and metabotropic glutamate and GABA receptor antagonists, indicating that neurotensin excited the pallidal neurons by activating the receptor expressed on the neurons recorded. Current-voltage relationship revealed that both the suppression of a potassium conductance and the activation of a cationic conductance are involved in the neurotensin-induced depolarization. Based on the action of neurotensin in the globus pallidus we hypothesize that alterations of the striatopallidal neurotensin system contribute to symptoms of basal ganglia motor disorders.
Collapse
Affiliation(s)
- L Chen
- Department of Physiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | | | | |
Collapse
|
15
|
López Ordieres MG, Rodríguez de Lores Arnaiz G. K(+)-p-nitrophenylphosphatase inhibition by neurotensin involves high affinity neurotensin receptor: influence of potassium concentration and enzyme phosphorylation. REGULATORY PEPTIDES 2001; 101:183-7. [PMID: 11495695 DOI: 10.1016/s0167-0115(01)00286-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Neurotensin (NT), a 13-amino acid peptide, is widely distributed in the brain and peripheral tissues of several mammalian species including man. In adult rat brain NT can bind to two distinct sites, one of high and the other of low affinity, corresponding to NT(1) and NT(2) receptor, respectively; structurally unrelated to these two, a third NT receptor (NT(3)) has been described. We have previously shown that Na(+), K(+)-ATPase is inhibited by NT when using ATP as substrate. In order to determine whether K(+)-stimulated dephosphorylation of this enzyme is involved, we tested NT effect by using p-nitrophenylphosphate, a non-natural substrate. K(+)-p-nitrophenylphosphatase activity was inhibited 42% by NT at 8.6 x 10(-6) M using an incubation medium containing 2 mM KCl but was unaffected in the presence of 5 or 20 mM KCl; however, with such KCl concentrations, NT was enabled to inhibit enzyme activity ( congruent with 35%) provided a suitable ATP:NaCl mixture (0.6:45.0 mM) was added. Mg(2+)-p-nitrophenylphosphatase activity remained unaltered at all conditions tested. Since SR 48692, a selective non-peptide NT(1) antagonist, abolished NT effect, involvement of NT(1) receptor in enzyme inhibition is suggested.
Collapse
Affiliation(s)
- M G López Ordieres
- Cátedra de Farmacología, Facultad de Farmacia, Universidad de Buenos Aires, Paraguay 2155, 1121-Buenos Aires, Argentina
| | | |
Collapse
|
16
|
Pritchard TC, Hamilton RB, Norgren R. Projections of the parabrachial nucleus in the old world monkey. Exp Neurol 2000; 165:101-17. [PMID: 10964489 DOI: 10.1006/exnr.2000.7450] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The efferent projections of the pontine parabrachial nucleus (PBN) were examined in the Old World monkey (Macaca fascicularis) using tritiated amino acid autoradiography and horseradish peroxidase histochemistry. Parabrachiofugal fibers ascended to the forebrain along three pathways: the central tegmental tract, the ventral ascending catecholaminergic pathway, and a pathway located on the midline between the medial longitudinal fasciculi. The PBN projected heavily to the central nucleus of the amygdala and the lateral division of the bed nucleus of the stria terminalis and moderately to the ventral tegmental area and the substantia nigra. Light terminal label also was present within the dorsomedial, ventromedial, lateral, supramammillary, and infundibular nuclei of the hypothalamus and the annular nucleus and the dorsal raphe nucleus within the brain stem. The overall pattern of terminal label was similar to that previously reported for nonprimate species, but several differences were notable. In monkey the projection to the ventrobasal thalamus did not coincide with the region that contains gustatory-responsive neurons. In rats, these parabrachiothalamic fibers convey gustatory activity but in the monkey these fibers may carry visceral afferent information. The projections from the PBN to the hypothalamus in the monkey were neither as widespread nor as intense as in the rat, and the monkey lacks a projection from the PBN to the frontal and insular cortices.
Collapse
Affiliation(s)
- T C Pritchard
- Department of Behavioral Science, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | |
Collapse
|
17
|
Andrén PE, Caprioli RM. Determination of extracellular release of neurotensin in discrete rat brain regions utilizing in vivo microdialysis/electrospray mass spectrometry. Brain Res 1999; 845:123-9. [PMID: 10536191 DOI: 10.1016/s0006-8993(99)01751-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In vivo microdialysis was used together with structure-specific high sensitivity nano-flow capillary liquid chromatography/micro-electrospray mass spectrometry to quantify and compare extracellular neurotensin from discrete regions of the rat brain. Microdialysis probes were implanted in the hypothalamus or globus pallidus/ventral pallidum in unanesthetized freely moving animals. Utilizing this specific methodology, recovered basal levels of neurotensin were detectable in hypothalamus and globus pallidus/ventral pallidum. The basal level of neurotensin in these regions were slightly higher in hypothalamus (101+/-11 amol/10 microl, n=6) compared to those in the globus pallidus/ventral pallidum region (74+/-12 amol/10 microl, n=8) in samples collected for 30 min at a flow-rate of 0.4 microl/min 150-180 min after the microdialysis probe implantation. After a pulse of 1.0 microl of 100 mM KCl-containing artificial cerebrospinal fluid during the next 30-min sampling period (180-210 min), the recovered neurotensin increased in hypothalamus and globus pallidus/ventral pallidum by 544% (548+/-90 amol/10 microl) and 674% (499+/-99 amol/10 microl), respectively. The basal levels of endogenously released neurotensin in the hypothalamus and globus pallidus/ventral pallidum were lower in the present study compared to those previously reported in the rat brain using in vivo microdialysis and radioimmunoassays. Our data demonstrate the effectiveness of combining in vivo microdialysis and structure-specific micro-electrospray mass spectrometry for the quantitation of basal and stimulated in vivo levels of endogenous neurotensin (NT) in different brain areas.
Collapse
Affiliation(s)
- P E Andrén
- Department of Pharmaceutical Biosciences, Uppsala University, P.O. Box 591, Biomedicum, SE-75124, Uppsala, Sweden.
| | | |
Collapse
|
18
|
Esposito V, De Girolamo P, Gargiulo G. Neurotensin-like immunoreactivity in the brain of the chicken, Gallus domesticus. J Anat 1997; 191 ( Pt 4):537-46. [PMID: 9449073 PMCID: PMC1467721 DOI: 10.1046/j.1469-7580.1997.19140537.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The distribution of neurons containing neurotensin in the central nervous system of the chicken was studied immunohistochemically. The majority of the neurotensin-immunoreactive (-ir) cell bodies were located in the hypothalamus. Extensive groups of labelled perikarya were found in the hypothalamic periventricular nucleus and in the magnocellular periventricular nucleus. In addition, ir-perikarya were scattered throughout the lateral hypothalamic area and in the ventromedial hypothalamic nucleus. The only extrahypothalamic site of ir-perikarya was in the region immediately under the lateral forebrain bundle. Immunoreactive fibres were detected in the hippocampus, the parahippocampal area, the hypothalamus, the region of the tractus corticohabenular and corticoseptal tracts, the median eminence, the region above the posterior commissure and in the intercollicular nucleus. The distribution pattern of the neurotensin-ir neurons suggests that neurotensin-like peptides are involved in the hypophysiotropic functions.
Collapse
Affiliation(s)
- V Esposito
- Department of Structures, Functions and Biological Technologies, University of Naples Federico II, Italy
| | | | | |
Collapse
|
19
|
Camby I, Salmon I, Bourdel E, Nagy N, Danguy A, Brotchi J, Pasteels JL, Martinez J, Kiss R. Neurotensin-mediated effects on astrocytic tumor cell proliferation. Neuropeptides 1996; 30:133-9. [PMID: 8771555 DOI: 10.1016/s0143-4179(96)90080-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Neurotensin (NT) and neurotensin receptors (NTRs) are widely found in the brain, NT may be considered as a mitogen factor in some tissues. However, no NT-mediated effects on glioma cell proliferation have been reported so far. In our present study we investigated the influence of NT on the proliferation of astrocytic tumor cell lines. To this end we used a synthetic NT agonist (JMV-449), a protease inhibitor which blocks the natural degradation of NT (JMV-531), and NT. The in vitro biological models used in the present study included the low grade SW1088, and the high grade U87, U373 and A172 astrocytic tumor cell lines. The peptide-induced influence on astrocytic tumor cell proliferation was investigated by means of the colorimetric MTT assay. Our results show that the NT and the NT agonist significantly stimulated the proliferation in 2/4 and 3/4 of the astrocytic cell lines respectively. Similarly, compound JMV-531 also induced an increase in the proliferation of 2/4 of the astrocytic cell lines. This marked influence of the NT and NT agonists, or the enzyme-endogenous prevention of its degradation on the regulation of astrocytic tumor growth therefore suggests that NT antagonists might be used to treat certain patients with high grade astrocytic tumors that do not respond to chemotherapy and/or radiotherapy.
Collapse
Affiliation(s)
- I Camby
- Laboratoire d'Histologie, Faculté de Médecine, Université Libre de Bruxelles, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|