1
|
Chen Y, Hagopian B, Tan S. Cholesterol metabolism and intrabacterial potassium homeostasis are intrinsically related in Mycobacterium tuberculosis. PLoS Pathog 2025; 21:e1013207. [PMID: 40402977 DOI: 10.1371/journal.ppat.1013207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 05/12/2025] [Indexed: 05/24/2025] Open
Abstract
Potassium (K+) is the most abundant intracellular cation, but much remains unknown regarding how K+ homeostasis is integrated with other key bacterial biology aspects. Here, we show that K+ homeostasis disruption (CeoBC K+ uptake system deletion) impedes Mycobacterium tuberculosis (Mtb) response to, and growth in, cholesterol, a critical carbon source during infection, with K+ augmenting activity of the Mtb ATPase MceG that is vital for bacterial cholesterol import. Reciprocally, cholesterol directly binds to CeoB, modulating its function, with a residue critical for this interaction identified. Finally, cholesterol binding-deficient CeoB mutant Mtb are attenuated for growth in lipid-rich foamy macrophages and in vivo colonization. Our findings raise the concept of a role for cholesterol as a key co-factor, beyond its role as a carbon source, and illuminate how changes in intrabacterial K+ levels can act as part of the metabolic adaptation critical for bacterial survival and growth in the host.
Collapse
Affiliation(s)
- Yue Chen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Berge Hagopian
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Shumin Tan
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| |
Collapse
|
2
|
Wumaier R, Zhang K, Zhou J, Wen Z, Chen Z, Luo G, Wang H, Qin J, Du B, Ren H, Song Y, Gao Q, Yan B. Mycobacteria Exploit Host GPR84 to Dampen Pro-Inflammatory Responses and Promote Infection in Macrophages. Microorganisms 2025; 13:110. [PMID: 39858878 PMCID: PMC11767743 DOI: 10.3390/microorganisms13010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/24/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
Tuberculosis (TB) remains the major cause of mortality and morbidity, causing approximately 1.3 million deaths annually. As a highly successful pathogen, Mycobacterium tuberculosis (Mtb) has evolved numerous strategies to evade host immune responses, making it essential to understand the interactions between Mtb and host cells. G-protein-coupled receptor 84 (GPR84), a member of the G-protein-coupled receptor family, contributes to the regulation of pro-inflammatory reactions and the migration of innate immune cells, such as macrophages. Its role in mycobacterial infection, however, has not yet been explored. We found that GPR84 is induced in whole blood samples from tuberculosis patients and Mycobacterium marinum (Mm)-infected macrophage models. Using a Mm-wasabi infection model in mouse tails, we found that GPR84 is an important determinant of the extent of tissue damage. Furthermore, from our studies in an in vitro macrophage Mm infection model, it appears that GPR84 inhibits pro-inflammatory cytokines expression and increases intracellular lipid droplet (LD) accumulation, thereby promoting intracellular bacterial survival. Our findings suggest that GPR84 could be a potential therapeutic target for host-directed anti-TB therapeutics.
Collapse
Affiliation(s)
- Reziya Wumaier
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Shanghai Public Health Clinical Center, Fudan University, Shanghai 200433, China;
| | - Ke Zhang
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China;
| | - Jing Zhou
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China; (J.Z.); (Z.W.); (Z.C.); (G.L.); (H.W.); (Y.S.)
| | - Zilu Wen
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China; (J.Z.); (Z.W.); (Z.C.); (G.L.); (H.W.); (Y.S.)
| | - Zihan Chen
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China; (J.Z.); (Z.W.); (Z.C.); (G.L.); (H.W.); (Y.S.)
- Pathology Department, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen 518035, China
| | - Geyang Luo
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China; (J.Z.); (Z.W.); (Z.C.); (G.L.); (H.W.); (Y.S.)
| | - Hao Wang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China; (J.Z.); (Z.W.); (Z.C.); (G.L.); (H.W.); (Y.S.)
| | - Juliang Qin
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai 200241, China; (J.Q.); (B.D.); (H.R.)
| | - Bing Du
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai 200241, China; (J.Q.); (B.D.); (H.R.)
| | - Hua Ren
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai 200241, China; (J.Q.); (B.D.); (H.R.)
| | - Yanzheng Song
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China; (J.Z.); (Z.W.); (Z.C.); (G.L.); (H.W.); (Y.S.)
| | - Qian Gao
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Shanghai Public Health Clinical Center, Fudan University, Shanghai 200433, China;
| | - Bo Yan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China; (J.Z.); (Z.W.); (Z.C.); (G.L.); (H.W.); (Y.S.)
| |
Collapse
|
3
|
Chen Y, Hagopian B, Tan S. Cholesterol metabolism and intrabacterial potassium homeostasis are intrinsically related in Mycobacterium tuberculosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.10.622811. [PMID: 39605342 PMCID: PMC11601456 DOI: 10.1101/2024.11.10.622811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Potassium (K+) is the most abundant intracellular cation, but much remains unknown regarding how K+ homeostasis is integrated with other key bacterial biology aspects. Here, we show that K+ homeostasis disruption (CeoBC K+ uptake system deletion) impedes Mycobacterium tuberculosis (Mtb) response to, and growth in, cholesterol, a critical carbon source during infection, with K+ augmenting activity of the Mtb ATPase MceG that is vital for bacterial cholesterol import. Reciprocally, cholesterol directly binds to CeoB, modulating its function, with a residue critical for this interaction identified. Finally, cholesterol binding-deficient CeoB mutant Mtb are attenuated for growth in lipid-rich foamy macrophages and in vivo colonization. Our findings raise the concept of a role for cholesterol as a key co-factor, beyond its role as a carbon source, and illuminate how changes in bacterial intrabacterial K+ levels can act as part of the metabolic adaptation critical for bacterial survival and growth in the host.
Collapse
Affiliation(s)
- Yue Chen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | - Berge Hagopian
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | - Shumin Tan
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| |
Collapse
|
4
|
Yu H, Li X, Zhao J, Wang W, Wei Q, Mao D. NR4A1-mediated regulation of lipid droplets in progesterone synthesis in goat luteal cells†. Biol Reprod 2024; 111:640-654. [PMID: 38936833 DOI: 10.1093/biolre/ioae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/03/2024] [Indexed: 06/29/2024] Open
Abstract
Nuclear receptor NR4A1 is a key factor in glycolipid metabolism and steroidogenesis, while lipid droplets serve as crucial dynamic organelles for lipid metabolism in luteal cells. To investigate the effects of NR4A1 on lipid droplet metabolism and progesterone (P4) synthesis in goat corpus luteum in vitro, luteal cells from the middle-cyclic corpus luteum were isolated and treated with Cytosporone B (CSNB, an agonist) or siRNA of NR4A1. Results showed that both low (1 μM) and high (50 μM) concentrations of CSNB promoted lipid droplet accumulation, while NR4A1 knockdown reduced lipid droplet content. CSNB increased while siNR4A1 decreased total cholesterol content; however, CSNB and siNR4A1 did not change triglyceride content. CSNB increased the expression of perilipins at mRNA and protein levels, also increased LDLR, SCARB1, SREBFs, and HMGCR mRNA abundance. Treatment with siNR4A1 revealed opposite results of CSNB, except for HMCGR and SREBF2. For steroidogenesis, 1 μM CSNB increased, but 50 μM CSNB inhibited P4 synthesis, NR4A1 knockdown also reduced the P4 level. Further analysis demonstrated that 1 μM CSNB increased the protein levels of StAR, HSD3B, and P-HSL, while 50 μM CSNB decreased StAR, HSD3B, and CYP11A1 protein levels. Moreover, 50 μM CSNB impaired active mitochondria, reduced the BCL2, and increased DRP1, Caspase 3, and cleaved-Caspase 3 protein levels. siNR4A1 consistently downregulated the P-HSL/HSL ratio and the steroidogenic protein levels. In conclusion, NR4A1-mediated lipid droplets are involved in the regulation of progesterone synthesis in goat luteal cells.
Collapse
Affiliation(s)
- Hao Yu
- Animal Reproduction Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaotong Li
- Animal Reproduction Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Zhao
- Animal Reproduction Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Wang
- Animal Reproduction Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Quanwei Wei
- Animal Reproduction Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Dagan Mao
- Animal Reproduction Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
5
|
Hernández-Juárez C, Calahorra M, Peña A, Jiménez-Sánchez A. Fluorescent Probe as Dual-Organelle Localizer Through Differential Proton Gradients Between Lipid Droplets and Mitochondria. Anal Chem 2024; 96:9262-9269. [PMID: 38760019 PMCID: PMC11154735 DOI: 10.1021/acs.analchem.4c01703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024]
Abstract
Dual-organelle molecular localizers represent powerful new tools allowing the exploration of interorganelle physical contacts and subcellular chemical communication. Here, we describe new dynamic molecular probes to localize mitochondria and lipid droplets taking advantage of the differential proton gradients present in these organelles as well as the activity of mitochondrial esterase. We unveil their potential utility when organelle retention mechanisms and proton gradients are synchronized, an insight that has not been documented previously. Our discoveries indicate that dual-organelle probes serve as a valuable multiplexing assay during starvation-induced autophagy. The pioneering molecular mechanism they employ opens doors to avoid using labile esters such as acetoxymethyl derivatives which are not optimal in imaging microscopy assays.
Collapse
Affiliation(s)
- Cinthia Hernández-Juárez
- Instituto
de Química, Universidad Nacional Autónoma de México,
Ciudad Universitaria, Circuito Exterior s/n. Coyoacán 04510, Ciudad de México, México
| | - Martha Calahorra
- Instituto
de Fisiología Celular, Universidad Nacional Autónoma
de México, Ciudad Universitaria, Circuito Exterior s/n. Coyoacán 04510, Ciudad de México, México
| | - Antonio Peña
- Instituto
de Fisiología Celular, Universidad Nacional Autónoma
de México, Ciudad Universitaria, Circuito Exterior s/n. Coyoacán 04510, Ciudad de México, México
| | - Arturo Jiménez-Sánchez
- Instituto
de Química, Universidad Nacional Autónoma de México,
Ciudad Universitaria, Circuito Exterior s/n. Coyoacán 04510, Ciudad de México, México
| |
Collapse
|
6
|
Gou Y, Huang Y, Luo W, Li Y, Zhao P, Zhong J, Dong X, Guo M, Li A, Hao A, Zhao G, Wang Y, Zhu Y, Zhang H, Shi Y, Wagstaff W, Luu HH, Shi LL, Reid RR, He TC, Fan J. Adipose-derived mesenchymal stem cells (MSCs) are a superior cell source for bone tissue engineering. Bioact Mater 2024; 34:51-63. [PMID: 38186960 PMCID: PMC10770370 DOI: 10.1016/j.bioactmat.2023.12.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/26/2023] [Accepted: 12/02/2023] [Indexed: 01/09/2024] Open
Abstract
Effective bone regeneration through tissue engineering requires a combination of osteogenic progenitors, osteoinductive biofactors and biocompatible scaffold materials. Mesenchymal stem cells (MSCs) represent the most promising seed cells for bone tissue engineering. As multipotent stem cells that can self-renew and differentiate into multiple lineages including bone and fat, MSCs can be isolated from numerous tissues and exhibit varied differentiation potential. To identify an optimal progenitor cell source for bone tissue engineering, we analyzed the proliferative activity and osteogenic potential of four commonly-used mouse MSC sources, including immortalized mouse embryonic fibroblasts (iMEF), immortalized mouse bone marrow stromal stem cells (imBMSC), immortalized mouse calvarial mesenchymal progenitors (iCAL), and immortalized mouse adipose-derived mesenchymal stem cells (iMAD). We found that iMAD exhibited highest osteogenic and adipogenic capabilities upon BMP9 stimulation in vitro, whereas iMAD and iCAL exhibited highest osteogenic capability in BMP9-induced ectopic osteogenesis and critical-sized calvarial defect repair. Transcriptomic analysis revealed that, while each MSC line regulated a distinct set of target genes upon BMP9 stimulation, all MSC lines underwent osteogenic differentiation by regulating osteogenesis-related signaling including Wnt, TGF-β, PI3K/AKT, MAPK, Hippo and JAK-STAT pathways. Collectively, our results demonstrate that adipose-derived MSCs represent optimal progenitor sources for cell-based bone tissue engineering.
Collapse
Affiliation(s)
- Yannian Gou
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Yanran Huang
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Wenping Luo
- Laboratory Animal Center, Southwest University, Chongqing, 400715, China
| | - Yanan Li
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, The Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China
| | - Piao Zhao
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jiamin Zhong
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Xiangyu Dong
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Meichun Guo
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Aohua Li
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Ailing Hao
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Guozhi Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yonghui Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of Geriatrics, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, 200000, China
| | - Yi Zhu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of Orthopaedic Surgery, Beijing Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Hui Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- The Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing, 4000430, China
| | - Yunhan Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of Psychology, School of Arts and Sciences, University of Rochester, Rochester, NY, 14627, USA
- Department of Surgery, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Lewis L. Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Jiaming Fan
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
7
|
Castillejo-López C, Bárcenas-Walls JR, Cavalli M, Larsson A, Wadelius C. A regulatory element associated to NAFLD in the promoter of DIO1 controls LDL-C, HDL-C and triglycerides in hepatic cells. Lipids Health Dis 2024; 23:48. [PMID: 38365720 PMCID: PMC10870585 DOI: 10.1186/s12944-024-02029-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/22/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) have identified genetic variants linked to fat metabolism and related traits, but rarely pinpoint causative variants. This limitation arises from GWAS not considering functional implications of noncoding variants that can affect transcription factor binding and potentially regulate gene expression. The aim of this study is to investigate a candidate noncoding functional variant within a genetic locus flagged by a GWAS SNP associated with non-alcoholic fatty liver disease (NAFLD), a condition characterized by liver fat accumulation in non-alcohol consumers. METHODS CRISPR-Cas9 gene editing in HepG2 cells was used to modify the regulatory element containing the candidate functional variant linked to NAFLD. Global gene expression in mutant cells was assessed through RT-qPCR and targeted transcriptomics. A phenotypic assay measured lipid droplet accumulation in the CRISPR-Cas9 mutants. RESULTS The candidate functional variant, rs2294510, closely linked to the NAFLD-associated GWAS SNP rs11206226, resided in a regulatory element within the DIO1 gene's promoter region. Altering this element resulted in changes in transcription factor binding sites and differential expression of candidate target genes like DIO1, TMEM59, DHCR24, and LDLRAD1, potentially influencing the NAFLD phenotype. Mutant HepG2 cells exhibited increased lipid accumulation, a hallmark of NAFLD, along with reduced LDL-C, HDL-C and elevated triglycerides. CONCLUSIONS This comprehensive approach, that combines genome editing, transcriptomics, and phenotypic assays identified the DIO1 promoter region as a potential enhancer. Its activity could regulate multiple genes involved in the NAFLD phenotype or contribute to defining a polygenic risk score for enhanced risk assessment in NAFLD patients.
Collapse
Affiliation(s)
- Casimiro Castillejo-López
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, 751 08 , Uppsala, Sweden, Box 815, Husargatan 3, BMC
| | - José Ramón Bárcenas-Walls
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, 751 08 , Uppsala, Sweden, Box 815, Husargatan 3, BMC
| | - Marco Cavalli
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, 751 08 , Uppsala, Sweden, Box 815, Husargatan 3, BMC
| | - Anders Larsson
- Department of Medical Sciences, Clinical Chemistry, Uppsala University Hospital, 751 85, Uppsala, Sweden
| | - Claes Wadelius
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, 751 08 , Uppsala, Sweden, Box 815, Husargatan 3, BMC.
| |
Collapse
|
8
|
Larson TS, DiProspero TJ, Glish GL, Lockett MR. Differential lipid analysis of oxaliplatin-sensitive and resistant HCT116 cells reveals different levels of drug-induced lipid droplet formation. Anal Bioanal Chem 2024; 416:151-162. [PMID: 37917349 PMCID: PMC10771862 DOI: 10.1007/s00216-023-05010-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 11/04/2023]
Abstract
Lipid droplets (LDs) are intracellular storage vesicles composed of a neutral lipid core surrounded by a glycerophospholipid membrane. LD accumulation is associated with different stages of cancer progression and stress responses resulting from chemotherapy. In previous work, a novel dual nano-electrospray ionization source and data-dependent acquisition method for measuring the relative abundances of lipid species between two extracts were described and validated. Here, this same source and method were used to determine if oxaliplatin-sensitive and resistant cells undergo similar lipid profile changes, with the goal of identifying potential signatures that could predict the effectiveness of an oxaliplatin-containing treatment. Oxaliplatin is commonly used in the treatment of colorectal cancer. When compared to a no-drug control, oxaliplatin dosing caused significant increases in triglyceride (TG) and cholesterol ester (CE) species. These increases were more pronounced in the oxaliplatin-sensitive cells than in oxaliplatin-resistant cells. The increased neutral lipid abundance correlated with LD formation, as confirmed by confocal micrographs of Nile Red-stained cells. Untargeted proteomic analyses also support LD formation after oxaliplatin treatment, with an increased abundance of LD-associated proteins in both the sensitive and resistant cells.
Collapse
Affiliation(s)
- Tyler S Larson
- Department of Chemistry, University of North Carolina at Chapel Hill, Kenan and Caudill Laboratories, Chapel Hill, NC, 27599-3290, USA
| | - Thomas J DiProspero
- Department of Chemistry, University of North Carolina at Chapel Hill, Kenan and Caudill Laboratories, Chapel Hill, NC, 27599-3290, USA
| | - Gary L Glish
- Department of Chemistry, University of North Carolina at Chapel Hill, Kenan and Caudill Laboratories, Chapel Hill, NC, 27599-3290, USA.
| | - Matthew R Lockett
- Department of Chemistry, University of North Carolina at Chapel Hill, Kenan and Caudill Laboratories, Chapel Hill, NC, 27599-3290, USA.
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7295, USA.
| |
Collapse
|
9
|
Krohn J, Domart F, Do TT, Dresbach T. The synaptic vesicle protein Mover/TPRG1L is associated with lipid droplets in astrocytes. Glia 2023; 71:2799-2814. [PMID: 37539560 DOI: 10.1002/glia.24452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 07/06/2023] [Accepted: 07/24/2023] [Indexed: 08/05/2023]
Abstract
Crucial brain functions such as neurotransmission, myelination, and signaling pose a high demand for lipids. Lipid dysregulation is associated with neuroinflammation and neurodegeneration. Astrocytes protect neurons from lipid induced damage by accumulating and metabolizing toxic lipids in organelles called lipid droplets (LDs). LDs have long been considered as lipid storage compartments in adipocytes, but less is known about their biogenesis and composition in the brain. In particular, proteins covering the LD surface are not yet fully identified. Here, we report that the presynaptic protein Mover/TPRG1L, which regulates the probability of neurotransmitter release in neurons, is a component of the LD coat in astrocytes. Using conventional and super-resolution microscopy, we demonstrate that Mover surrounds naive and oleic acid induced astrocytic LDs. We confirm the identity of astrocytic LDs using the neutral lipid stains Bodipy and LipidTox, as well as immunofluorescence for perilipin-2, a known component of the LD coat. In astrocytes, recombinant Mover was sufficient to induce an accumulation of LDs. Furthermore, we identified point mutations that abolish targeting to LDs and show similarities in the required binding sequences for association to the presynapse and LDs. Our results show that Mover is not only a presynaptic protein but also a candidate for LD regulation. This highlights the dual role of Mover in synaptic transmission and regulation of astrocytic LDs, which may be particularly important in the context of lipid-related neurological disorders.
Collapse
Affiliation(s)
- Jeremy Krohn
- Institute of Anatomy and Embryology, University Medical Center Göttingen, Georg-August University of Göttingen, Göttingen, Germany
| | - Florelle Domart
- Institute of Anatomy and Embryology, University Medical Center Göttingen, Georg-August University of Göttingen, Göttingen, Germany
| | - Thanh Thao Do
- Institute of Anatomy and Embryology, University Medical Center Göttingen, Georg-August University of Göttingen, Göttingen, Germany
| | - Thomas Dresbach
- Institute of Anatomy and Embryology, University Medical Center Göttingen, Georg-August University of Göttingen, Göttingen, Germany
| |
Collapse
|
10
|
Abstract
The steatotic diseases of metabolic dysfunction-associated steatotic liver disease (MASLD), alcohol-associated liver disease (ALD), and chronic hepatitis C (HCV) account for the majority of liver disease prevalence, morbidity, and mortality worldwide. While these diseases have distinct pathogenic and clinical features, dysregulated lipid droplet (LD) organelle biology represents a convergence of pathogenesis in all three. With increasing understanding of hepatocyte LD biology, we now understand the roles of LD proteins involved in these diseases but also how genetics modulate LD biology to either exacerbate or protect against the phenotypes associated with steatotic liver diseases. Here, we review the history of the LD organelle and its biogenesis and catabolism. We also review how this organelle is critical not only for the steatotic phenotype of liver diseases but also for their advanced phenotypes. Finally, we summarize the latest attempts and challenges of leveraging LD biology for therapeutic gain in steatotic diseases. In conclusion, the study of dysregulated LD biology may lead to novel therapeutics for the prevention of disease progression in the highly prevalent steatotic liver diseases of MASLD, ALD, and HCV.
Collapse
Affiliation(s)
- Joseph L Dempsey
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of Washington, Seattle, Washington
| | - George N Ioannou
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of Washington, Seattle, Washington
- Division of Gastroenterology, Veterans Affairs Puget Sound Healthcare System Seattle, Washington
| | - Rotonya M Carr
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
11
|
Gholami Farashah MS, Mohammadi A, Javadi M, Soleimani Rad J, Shakouri SK, Meshgi S, Roshangar L. Bone marrow mesenchymal stem cells' osteogenic potential: superiority or non-superiority to other sources of mesenchymal stem cells? Cell Tissue Bank 2023; 24:663-681. [PMID: 36622494 DOI: 10.1007/s10561-022-10066-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 12/14/2022] [Indexed: 01/10/2023]
Abstract
Skeletal problems are an increasing issue due to the increase in the global aging population. Different statistics reports show that today, the global population is aging that results in skeletal problems, increased health system costs, and even higher mortality associated with skeletal problems. Common treatments such as surgery and bone grafts are not always effective and in some cases, they can even cause secondary problems such as infections or improper repair. Cell therapy is a method that can be utilized along with common treatments independently. Mesenchymal stem cells (MSCs) are a very important and efficient source in terms of different diseases, especially bone problems. These cells are present in different tissues such as bone marrow, adipose tissue, umbilical cord, placenta, dental pulp, peripheral blood, amniotic fluid and others. Among the types of MSCs, bone marrow mesenchymal stem cells (BMMSCs) are the most widely used source of these cells, which have appeared to be very effective and promising in terms of skeletal diseases, especially compared to the other sources of MSCs. This study focuses on the specific potential and content of BMMSCs from which the specific capacity of these cells originates, and compares their osteogenic potential with other types of MSCs, and also the future directions in the application of BMMSCs as a source for cell therapy.
Collapse
Affiliation(s)
- Mohammad Sadegh Gholami Farashah
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhossein Mohammadi
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Javadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleimani Rad
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Kazem Shakouri
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahla Meshgi
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
12
|
Ghorpade M, Regar R, Soppina V, Kanvah S. N-Functionalized fluorophores: detecting urinary albumin and imaging lipid droplets. Org Biomol Chem 2023; 21:6995-7004. [PMID: 37584648 DOI: 10.1039/d3ob01010d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
A series of novel N-sulfonyl pyridinium fluorophores were designed, synthesized, and explored in terms of their ability to bind with serum albumins. Upon binding the fluorophores with BSA, noticeable emission wavelength or intensity changes accompanied by color changes were observed. Competitive binding studies revealed that the fluorophore selectively binds to the warfarin site, but the binding affinity also depends on the nature of the scaffold. Additionally, the fluorophores were employed to detect spiked serum albumin in artificial urine. Cellular imaging experiments indicated that the fluorophores accumulate within lipid droplets (LDs), suggesting their potential as promising biomarkers for lipid droplets. Furthermore, the fluorescence intensity, number, and size of LDs increased upon serum starvation.
Collapse
Affiliation(s)
- Mohini Ghorpade
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382055, India.
| | - Ramprasad Regar
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382055, India.
| | - Virupakshi Soppina
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar - 382055, India.
| | - Sriram Kanvah
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382055, India.
| |
Collapse
|
13
|
Neikirk K, Vue Z, Katti P, Rodriguez BI, Omer S, Shao J, Christensen T, Garza Lopez E, Marshall A, Palavicino-Maggio CB, Ponce J, Alghanem AF, Vang L, Barongan T, Beasley HK, Rodman T, Stephens D, Mungai M, Correia M, Exil V, Damo S, Murray SA, Crabtree A, Glancy B, Pereira RO, Abel ED, Hinton AO. Systematic Transmission Electron Microscopy-Based Identification and 3D Reconstruction of Cellular Degradation Machinery. Adv Biol (Weinh) 2023; 7:e2200221. [PMID: 36869426 DOI: 10.1002/adbi.202200221] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 01/16/2023] [Indexed: 03/05/2023]
Abstract
Various intracellular degradation organelles, including autophagosomes, lysosomes, and endosomes, work in tandem to perform autophagy, which is crucial for cellular homeostasis. Altered autophagy contributes to the pathophysiology of various diseases, including cancers and metabolic diseases. This paper aims to describe an approach to reproducibly identify and distinguish subcellular structures involved in macroautophagy. Methods are provided that help avoid common pitfalls. How to distinguish between lysosomes, lipid droplets, autolysosomes, autophagosomes, and inclusion bodies are also discussed. These methods use transmission electron microscopy (TEM), which is able to generate nanometer-scale micrographs of cellular degradation components in a fixed sample. Serial block face-scanning electron microscopy is also used to visualize the 3D morphology of degradation machinery using the Amira software. In addition to TEM and 3D reconstruction, other imaging techniques are discussed, such as immunofluorescence and immunogold labeling, which can be used to classify cellular organelles, reliably and accurately. Results show how these methods may be used to accurately quantify cellular degradation machinery under various conditions, such as treatment with the endoplasmic reticulum stressor thapsigargin or ablation of the dynamin-related protein 1.
Collapse
Affiliation(s)
- Kit Neikirk
- Department of Biology, University of Hawaii at Hilo, Hilo, HI, 96720, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37235, USA
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37235, USA
| | - Prasanna Katti
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ben I Rodriguez
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37235, USA
| | - Salem Omer
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37235, USA
| | - Jianqiang Shao
- Central Microscopy Research Facility, University of Iowa, Iowa City, IA, 52242, USA
| | - Trace Christensen
- Microscopy and Cell Analysis Core Facility, Mayo Clinic, Rochester, MN, 55905, USA
| | - Edgar Garza Lopez
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37235, USA
| | - Andrea Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37235, USA
| | | | - Jessica Ponce
- School of Medicine, University of Utah, Salt Lake City, UT, 84112, USA
| | - Ahmad F Alghanem
- Eastern Region, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Al Hasa, Riyadh 14611, Saudi Arabia
| | - Larry Vang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37235, USA
| | - Taylor Barongan
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37235, USA
| | - Heather K Beasley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37235, USA
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, 37208, USA
| | - Taylor Rodman
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37235, USA
| | - Dominique Stephens
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37235, USA
| | - Margaret Mungai
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Marcelo Correia
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Vernat Exil
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Steven Damo
- Department of Life and Physical Sciences, Fisk University, Nashville, TN, 37208, USA
| | - Sandra A Murray
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Amber Crabtree
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37235, USA
| | - Brian Glancy
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Renata O Pereira
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, Iowa City, IA, 52242, USA
| | - E Dale Abel
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, Iowa City, IA, 52242, USA
| | - Antentor O Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37235, USA
| |
Collapse
|
14
|
Islam KU, Anwar S, Patel AA, Mirdad MT, Mirdad MT, Azmi MI, Ahmad T, Fatima Z, Iqbal J. Global Lipidome Profiling Revealed Multifaceted Role of Lipid Species in Hepatitis C Virus Replication, Assembly, and Host Antiviral Response. Viruses 2023; 15:v15020464. [PMID: 36851679 PMCID: PMC9965260 DOI: 10.3390/v15020464] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
Hepatitis C virus (HCV) is a major human pathogen that requires a better understanding of its interaction with host cells. There is a close association of HCV life cycle with host lipid metabolism. Lipid droplets (LDs) have been found to be crucial organelles that support HCV replication and virion assembly. In addition to their role in replication, LDs also have protein-mediated antiviral properties that are activated during HCV infection. Studies have shown that HCV replicates well in cholesterol and sphingolipid-rich membranes, but the ways in which HCV alters host cell lipid dynamics are not yet known. In this study, we performed a kinetic study to check the enrichment of LDs at different time points of HCV infection. Based on the LD enrichment results, we selected early and later time points of HCV infection for global lipidomic study. Early infection represents the window period for HCV sensing and host immune response while later infection represents the establishment of viral RNA replication, virion assembly, and egress. We identified the dynamic profile of lipid species at early and later time points of HCV infection by global lipidomic study using mass spectrometry. At early HCV infection, phosphatidylinositol phospholipids (PIPs), lysophosphatidic acid (LPA), triacyl glycerols (TAG), phosphatidylcholine (PC), and trihexosylceramides (Hex3Cer) were observed to be enriched. Similarly, free fatty acids (FFA), phosphatidylethanolamine (PE), N-acylphosphatidylethanolamines (NAPE), and tri acylglycerols were enriched at later time points of HCV infection. Lipids enriched at early time of infection may have role in HCV sensing, viral attachment, and immune response as LPA and PIPs are important for immune response and viral attachment, respectively. Moreover, lipid species observed at later infection may contribute to HCV replication and virion assembly as PE, FFA, and triacylglycerols are known for the similar function. In conclusion, we identified lipid species that exhibited dynamic profile across early and later time points of HCV infection compared to mock cells, which could be therapeutically relevant in the design of more specific and effective anti-viral therapies.
Collapse
Affiliation(s)
- Khursheed Ul Islam
- Multidisciplinary Center for Advanced Research and Studies, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Saleem Anwar
- Multidisciplinary Center for Advanced Research and Studies, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ayyub A. Patel
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia
| | | | | | - Md Iqbal Azmi
- Multidisciplinary Center for Advanced Research and Studies, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Tanveer Ahmad
- Multidisciplinary Center for Advanced Research and Studies, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Zeeshan Fatima
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
- Amity Institute of Biotechnology, Amity University Haryana, Manesar, Gurugram 122413, India
- Correspondence: (Z.F.); (J.I.)
| | - Jawed Iqbal
- Multidisciplinary Center for Advanced Research and Studies, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
- Correspondence: (Z.F.); (J.I.)
| |
Collapse
|
15
|
Ganji R, Paulo JA, Xi Y, Kline I, Zhu J, Clemen CS, Weihl CC, Purdy JG, Gygi SP, Raman M. The p97-UBXD8 complex regulates ER-Mitochondria contact sites by altering membrane lipid saturation and composition. Nat Commun 2023; 14:638. [PMID: 36746962 PMCID: PMC9902492 DOI: 10.1038/s41467-023-36298-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/25/2023] [Indexed: 02/08/2023] Open
Abstract
The intimate association between the endoplasmic reticulum (ER) and mitochondrial membranes at ER-Mitochondria contact sites (ERMCS) is a platform for critical cellular processes, particularly lipid synthesis. How contacts are remodeled and the impact of altered contacts on lipid metabolism remains poorly understood. We show that the p97 AAA-ATPase and its adaptor ubiquitin-X domain adaptor 8 (UBXD8) regulate ERMCS. The p97-UBXD8 complex localizes to contacts and its loss increases contacts in a manner that is dependent on p97 catalytic activity. Quantitative proteomics and lipidomics of ERMCS demonstrates alterations in proteins regulating lipid metabolism and a significant change in membrane lipid saturation upon UBXD8 deletion. Loss of p97-UBXD8 increased membrane lipid saturation via SREBP1 and the lipid desaturase SCD1. Aberrant contacts can be rescued by unsaturated fatty acids or overexpression of SCD1. We find that the SREBP1-SCD1 pathway is negatively impacted in the brains of mice with p97 mutations that cause neurodegeneration. We propose that contacts are exquisitely sensitive to alterations to membrane lipid composition and saturation.
Collapse
Affiliation(s)
- Rakesh Ganji
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Yuecheng Xi
- Department of Immunobiology, BIO5 Institute, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Ian Kline
- Department of Immunobiology, BIO5 Institute, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Jiang Zhu
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
- Ilumina Inc., San Diego, CA, USA
| | - Christoph S Clemen
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Conrad C Weihl
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - John G Purdy
- Department of Immunobiology, BIO5 Institute, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Steve P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Malavika Raman
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
16
|
Paraoxonase-2 contributes to promoting lipid metabolism and mitochondrial function via autophagy activation. Sci Rep 2022; 12:21483. [PMID: 36509805 PMCID: PMC9744871 DOI: 10.1038/s41598-022-25802-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is an increasingly prevalent immuno-metabolic disease that can progress to hepatic cirrhosis and cancer. NAFLD pathogenesis is extremely complex and is characterized by oxidative stress, impaired mitochondrial function and lipid metabolism, and cellular inflammation. Thus, in-depth research on its underlying mechanisms and subsequent investigation into a potential drug target that has overarching effects on these features will help in the discovery of effective treatments for NAFLD. Our study examines the role of endogenous paraoxonase-2 (PON2), a membrane protein with reported antioxidant activity, in an in vitro cell model of NAFLD. We found that the hepatic loss of PON2 activity aggravated steatosis and oxidative stress under lipotoxic conditions, and our transcriptome analysis revealed that the loss of PON2 disrupts the activation of numerous functional pathways closely related to NAFLD pathogenesis, including mitochondrial respiratory capacity, lipid metabolism, and hepatic fibrosis and inflammation. We found that PON2 promoted the activation of the autophagy pathway, specifically the mitophagy cargo sequestration, which could potentially aid PON2 in alleviating oxidative stress, mitochondrial dysfunction, lipid accumulation, and inflammation. These results provide a mechanistic foundation for the prospect of PON2 as a drug target, leading to the development of novel therapeutics for NAFLD.
Collapse
|
17
|
Wang Y, Yang J, Chen Q, Su J, Shi WJ, Zhang L, Xia C, Yan J. Rotor-Tuning Boron Dipyrromethenes for Dual-Functional Imaging of Aβ Oligomers and Viscosity. ACS APPLIED BIO MATERIALS 2022; 5:3049-3056. [PMID: 35671477 DOI: 10.1021/acsabm.2c00335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease (AD), known as a common incurable and elderly neurodegenerative disease, has been widely explored for accurate detection of its biomarker (Aβ oligomers) for early diagnosis. Although great efforts have been made, it is still of great importance to develop fluorescence probes for Aβ oligomers with good selectivity and low background. Herein, starting from BODIPY493/503 (a commercial dye for neutral lipid droplets), which exhibited a small Stokes shift and no response toward Aβ peptides, two fluorescence probes 5MB-SZ and B-SZ with a benzothiazole rotor at the 2-position of the BODIPY core and a methyl or benzyl group at the meso position have been designed and synthesized, which exhibited excellent optical properties/stability and could successfully image β-amyloid fibrils and viscosity. Upon exposure to Aβ oligomers, the fluorescence intensity of 5MB-SZ was enhanced by 43.64-fold with the corresponding fluorescence quantum yields changing from 0.85% to 27.43%. Meanwhile, probe 5MB-SZ showed a highly sensitive viscosity response in both solutions and living cells. In vitro and in vivo experiments confirmed that probe 5MB-SZ exhibited an excellent capacity for imaging β-amyloid fibrils. Therefore, 5MB-SZ, as a rotor-tuning BODIPY analogue, could possibly serve as a highly potential and powerful fluorescence probe for early diagnosis of AD.
Collapse
Affiliation(s)
- Yuxuan Wang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Jinrong Yang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Qingxiu Chen
- Department of Bioengineering, Zunyi Medical University Zhuhai Campus, Zhuhai 519041, PR China
| | - Junyi Su
- Department of Bioengineering, Zunyi Medical University Zhuhai Campus, Zhuhai 519041, PR China
| | - Wen-Jing Shi
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Lei Zhang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Chunli Xia
- Department of Bioengineering, Zunyi Medical University Zhuhai Campus, Zhuhai 519041, PR China
| | - Jinwu Yan
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
18
|
Schefer L, Schwarz KRL, Paschoal DM, de Castro FC, Fernandes H, Botigelli RC, Leal CLV. Effects of different stimulators of cGMP synthesis on lipid content in bovine oocytes matured in vitro. Anim Reprod 2021; 18:e20210072. [PMID: 34925559 PMCID: PMC8677350 DOI: 10.1590/1984-3143-ar2021-0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/25/2021] [Indexed: 11/21/2022] Open
Abstract
Bovine oocytes and blastocysts produced in vitro are frequently of lower quality and less cryotolerant than those produced in vivo, and greater accumulation of lipids in the cytoplasm has been pointed out as one of the reasons. In human adipocytes cGMP signaling through the activation of PKG appears to be involved in lipid metabolism, and components of this pathway have been detected in bovine cumulus-oocyte complexes (COCs). The aim of this study was to investigate the influence of this pathway on the lipid content in oocytes and expression of PLIN2 (a lipid metabolism-related gene) in cumulus cells. COCs were matured in vitro for 24 h with different stimulators of cGMP synthesis. The activation of soluble guanylyl cyclase (sGC) by Protoporphyrin IX reduced lipid content (22.7 FI) compared to control oocytes (36.45 FI; P <0.05). Stimulation of membrane guanylyl cyclase (mGC) with natriuretic peptides precursors A and C (NPPA and NPPC) had no effect (36.5 FI; P>0.05). When the PKG inhibitor KT5823 was associated with Protoporphyrin IX, its effect was reversed and lipid contents increased (52.71 FI; P<0.05). None of the stimulators of cGMP synthesis affected the expression of PLIN2 in cumulus cells. In conclusion, stimulation of sGC for cGMP synthesis promotes lipolytic activities in bovine oocytes matured in vitro and such effect is mediated by PKG. However, such effect may vary depending on the stimulus received and/or which synthesis enzyme was activated, as stimulation of mGC had no effects.
Collapse
Affiliation(s)
- Letícia Schefer
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brasil
| | - Kátia Regina Lancelloti Schwarz
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brasil
| | - Daniela Martins Paschoal
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brasil
| | - Fernanda Cavallari de Castro
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brasil
| | - Hugo Fernandes
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brasil
| | - Ramon César Botigelli
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brasil
| | - Cláudia Lima Verde Leal
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brasil
| |
Collapse
|
19
|
Taatjes DJ, Roth J. In focus in HCB. Histochem Cell Biol 2021; 154:347-354. [PMID: 32984928 DOI: 10.1007/s00418-020-01921-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Douglas J Taatjes
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA.
| | - Jürgen Roth
- University of Zurich, 8091, Zurich, Switzerland
| |
Collapse
|
20
|
Tabernilla A, dos Santos Rodrigues B, Pieters A, Caufriez A, Leroy K, Van Campenhout R, Cooreman A, Gomes AR, Arnesdotter E, Gijbels E, Vinken M. In Vitro Liver Toxicity Testing of Chemicals: A Pragmatic Approach. Int J Mol Sci 2021; 22:5038. [PMID: 34068678 PMCID: PMC8126138 DOI: 10.3390/ijms22095038] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023] Open
Abstract
The liver is among the most frequently targeted organs by noxious chemicals of diverse nature. Liver toxicity testing using laboratory animals not only raises serious ethical questions, but is also rather poorly predictive of human safety towards chemicals. Increasing attention is, therefore, being paid to the development of non-animal and human-based testing schemes, which rely to a great extent on in vitro methodology. The present paper proposes a rationalized tiered in vitro testing strategy to detect liver toxicity triggered by chemicals, in which the first tier is focused on assessing general cytotoxicity, while the second tier is aimed at identifying liver-specific toxicity as such. A state-of-the-art overview is provided of the most commonly used in vitro assays that can be used in both tiers. Advantages and disadvantages of each assay as well as overall practical considerations are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (A.T.); (B.d.S.R.); (A.P.); (A.C.); (K.L.); (R.V.C.); (A.C.); (A.R.G.); (E.A.); (E.G.)
| |
Collapse
|
21
|
Increased lipid metabolism impairs NK cell function and mediates adaptation to the lymphoma environment. Blood 2021; 136:3004-3017. [PMID: 32818230 DOI: 10.1182/blood.2020005602] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/06/2020] [Indexed: 12/15/2022] Open
Abstract
Natural killer (NK) cells play critical roles in protection against hematological malignancies but can acquire a dysfunctional state, which limits antitumor immunity. However, the underlying reasons for this impaired NK cell function remain to be uncovered. We found that NK cells in aggressive B-cell lymphoma underwent substantial transcriptional reprogramming associated with increased lipid metabolism, including elevated expression of the transcriptional regulator peroxisome activator receptor-γ (PPAR-γ). Exposure to fatty acids in the lymphoma environment potently suppressed NK cell effector response and cellular metabolism. NK cells from both diffuse large B-cell lymphoma patients and Eµ-myc B-cell lymphoma-bearing mice displayed reduced interferon-γ (IFN-γ) production. Activation of PPAR-γ partially restored mitochondrial membrane potential and IFN-γ production. Overall, our data indicate that increased lipid metabolism, while impairing their function, is a functional adaptation of NK cells to the fatty-acid rich lymphoma environment.
Collapse
|
22
|
Guillon C, Ferraro S, Clément S, Bouschbacher M, Sigaudo-Roussel D, Bonod C. Glycation by glyoxal leads to profound changes in the behavior of dermal fibroblasts. BMJ Open Diabetes Res Care 2021; 9:9/1/e002091. [PMID: 33903117 PMCID: PMC8076933 DOI: 10.1136/bmjdrc-2020-002091] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/17/2021] [Accepted: 03/21/2021] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Diabetes is a worldwide health problem that is associated with severe complications. Advanced Glycation End products (AGEs) such as Nε-(carboxymethyl)lysine, which result from chronic hyperglycemia, accumulate in the skin of patients with diabetes. The effect of AGEs on fibroblast functionality and their impact on wound healing are still poorly understood. RESEARCH DESIGN AND METHODS To investigate this, we treated cultured human fibroblasts with 0.6 mM glyoxal to induce acute glycation. The behavior of fibroblasts was analyzed by time-lapse monolayer wounding healing assay, seahorse technology and atomic force microscopy. Production of extracellular matrix was studied by transmission electronic microscopy and western blot. Lipid metabolism was investigated by staining of lipid droplets (LDs) with BODIPY 493/503. RESULTS We found that the proliferative and migratory capacities of the cells were greatly reduced by glycation, which could be explained by an increase in fibroblast tensile strength. Measurement of the cellular energy balance did not indicate that there was a change in the rate of oxygen consumption of the fibroblasts. Assessment of collagen I revealed that glyoxal did not influence type I collagen secretion although it did disrupt collagen I maturation and it prevented its deposition in the extracellular matrix. We noted a pronounced increase in the number of LDs after glyoxal treatment. AMPK phosphorylation was reduced by glyoxal treatment but it was not responsible for the accumulation of LDs. CONCLUSION Glyoxal promotes a change in fibroblast behavior in favor of lipogenic activity that could be involved in delaying wound healing.
Collapse
Affiliation(s)
- Cécile Guillon
- Urgo Research Innovation and Development, Chenôve, France
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, LBTI UMR 5305, Lyon, France
| | - Sandra Ferraro
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, LBTI UMR 5305, Lyon, France
| | - Sophie Clément
- Urgo Research Innovation and Development, Chenôve, France
| | | | | | - Christelle Bonod
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, LBTI UMR 5305, Lyon, France
| |
Collapse
|
23
|
Wylot M, Whittaker DTE, Wren SAC, Bothwell JH, Hughes L, Griffin JL. Monitoring apoptosis in intact cells by high-resolution magic angle spinning 1 H NMR spectroscopy. NMR IN BIOMEDICINE 2021; 34:e4456. [PMID: 33398876 DOI: 10.1002/nbm.4456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 11/09/2020] [Accepted: 11/13/2020] [Indexed: 06/12/2023]
Abstract
Apoptosis maintains an equilibrium between cell proliferation and cell death. Many diseases, including cancer, develop because of defects in apoptosis. A known metabolic marker of apoptosis is a notable increase in 1 H NMR-observable resonances associated with lipids stored in lipid droplets. However, standard one-dimensional NMR experiments allow the quantification of lipid concentration only, without providing information about physical characteristics such as the size of lipid droplets, viscosity of the cytosol, or cytoskeletal rigidity. This additional information can improve monitoring of apoptosis-based cancer treatments in intact cells and provide us with mechanistic insight into why these changes occur. In this paper, we use high-resolution magic angle spinning (HRMAS) 1 H NMR spectroscopy to monitor lipid concentrations and apparent diffusion coefficients of mobile lipid in intact cells treated with the apoptotic agents cisplatin or etoposide. We also use solution-state NMR spectroscopy to study changes in lipid profiles of organic solvent cell extracts. Both NMR techniques show an increase in the concentration of lipids but the relative changes are 10 times larger by HRMAS 1 H NMR spectroscopy. Moreover, the apparent diffusion rates of lipids in apoptotic cells measured by HRMAS 1 H NMR spectroscopy decrease significantly as compared with control cells. Slower diffusion rates of mobile lipids in apoptotic cells correlate well with the formation of larger lipid droplets as observed by microscopy. We also compared the mean lipid droplet displacement values calculated from the two methods. Both methods showed shorter displacements of lipid droplets in apoptotic cells. Our results demonstrate that the NMR-based diffusion experiments on intact cells discriminate between control and apoptotic cells. Apparent diffusion measurements in conjunction with 1 H NMR spectroscopy-derived lipid signals provide a novel means of following apoptosis in intact cells. This method could have potential application in enhancing drug discovery by monitoring drug treatments in vitro, particularly for agents that cause portioning of lipids such as apoptosis.
Collapse
Affiliation(s)
- Marta Wylot
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - David T E Whittaker
- Early Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield, UK
| | - Stephen A C Wren
- New Modalities & Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | | | - Leslie Hughes
- New Modalities & Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - Julian L Griffin
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Section of Biomolecular Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| |
Collapse
|
24
|
Abstract
Mechanical stress has been shown to induce the degradation of lipid droplets in kidney epithelial cells. Here, we illustrate the technical equipment and devices that are currently used in our laboratory to apply shear stress on cells. We provide a detailed protocol to monitor lipophagy in response to shear stress. The aim of this review is to guide and help people understand the challenges in studying acidic lipolysis in cells subjected to fluid flow.
Collapse
|
25
|
Negron SG, Ercan-Sencicek AG, Freed J, Walters M, Lin Z. Both proliferation and lipogenesis of brown adipocytes contribute to postnatal brown adipose tissue growth in mice. Sci Rep 2020; 10:20335. [PMID: 33230135 PMCID: PMC7683731 DOI: 10.1038/s41598-020-77362-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 10/26/2020] [Indexed: 02/03/2023] Open
Abstract
Brown adipose tissue (BAT) is the primary non-shivering thermogenesis organ in mammals, which plays essential roles in maintaining the body temperature of infants. Although the development of BAT during embryogenesis has been well addressed in rodents, how BAT grows after birth remains unknown. Using mouse interscapular BAT (iBAT) as an example, we studied the cellular and molecular mechanisms that regulate postnatal BAT growth. By analyzing the developmental dynamics of brown adipocytes (BAs), we found that BAs size enlargement partially accounts for iBAT growth. By investigating the BAs cell cycle activities, we confirmed the presence of proliferative BAs in the neonatal mice. Two weeks after birth, most of the BAs exit cell cycle, and the further expansion of the BAT was mainly due to lipogenesis-mediated BAs volume increase. Microscopy and fluorescence-activated cell sorting analyses suggest that most BAs are mononuclear and diploid. Based on the developmental dynamics of brown adipocytes, we propose that the murine iBAT has two different growth phases between birth and weaning: increase of BAs size and number in the first two weeks, and BAs size enlargement thereafter. In summary, our data demonstrate that both lipogenesis and proliferation of BAs contribute to postnatal iBAT growth in mice.
Collapse
Affiliation(s)
- Steven G Negron
- Masonic Medical Research Institute, 2150 Bleecker Street, Utica, NY, 13501, USA
| | - A Gulhan Ercan-Sencicek
- Masonic Medical Research Institute, 2150 Bleecker Street, Utica, NY, 13501, USA
- Department of Neurosurgery, Program On Neurogenetics, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Jessica Freed
- Masonic Medical Research Institute, 2150 Bleecker Street, Utica, NY, 13501, USA
| | - Madeline Walters
- Masonic Medical Research Institute, 2150 Bleecker Street, Utica, NY, 13501, USA
| | - Zhiqiang Lin
- Masonic Medical Research Institute, 2150 Bleecker Street, Utica, NY, 13501, USA.
| |
Collapse
|
26
|
Eördögh Á, Paganini C, Pinotsi D, Arosio P, Rivera-Fuentes P. A Molecular Logic Gate Enables Single-Molecule Imaging and Tracking of Lipids in Intracellular Domains. ACS Chem Biol 2020; 15:2597-2604. [PMID: 32803945 DOI: 10.1021/acschembio.0c00639] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Photoactivatable dyes enable single-molecule imaging and tracking in biology. Despite progress in the development of new fluorophores and labeling strategies, many intracellular compartments remain difficult to image beyond the limit of diffraction in living cells. For example, lipid domains, e.g., membranes and droplets, remain difficult to image with nanometric resolution. To visualize these challenging subcellular targets, it is necessary to develop new fluorescent molecular devices beyond simple on/off switches. Here, we report a fluorogenic molecular logic gate that can be used to image single molecules associated with lipid domains, most notably droplets, with excellent specificity. This probe requires the subsequent action of light, a lipophilic environment, and a competent nucleophile to produce a fluorescent product. The combination of these inputs results in a probe that can be used to image the boundary of lipid droplets in three dimensions with resolution beyond the limit of diffraction. Moreover, this probe enables single-molecule tracking of lipid trafficking between droplets and the endoplasmic reticulum.
Collapse
Affiliation(s)
- Ádám Eördögh
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
- Institute of Chemical Sciences and Engineering, EPF Lausanne, 1015 Lausanne, Switzerland
| | - Carolina Paganini
- Institute for Chemical and Bioengineering, ETH Zurich, 8093 Zurich, Switzerland
| | - Dorothea Pinotsi
- Scientific Center for Optical and Electron Microscopy, ETH Zurich, 8093 Zurich, Switzerland
| | - Paolo Arosio
- Institute for Chemical and Bioengineering, ETH Zurich, 8093 Zurich, Switzerland
| | - Pablo Rivera-Fuentes
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
- Institute of Chemical Sciences and Engineering, EPF Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
27
|
Eosinophils and Neutrophils-Molecular Differences Revealed by Spontaneous Raman, CARS and Fluorescence Microscopy. Cells 2020; 9:cells9092041. [PMID: 32906767 PMCID: PMC7563840 DOI: 10.3390/cells9092041] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/14/2022] Open
Abstract
Leukocytes are a part of the immune system that plays an important role in the host’s defense against viral, bacterial, and fungal infections. Among the human leukocytes, two granulocytes, neutrophils (Ne) and eosinophils (EOS) play an important role in the innate immune system. For that purpose, eosinophils and neutrophils contain specific granules containing protoporphyrin-type proteins such as eosinophil peroxidase (EPO) and myeloperoxidase (MPO), respectively, which contribute directly to their anti-infection activity. Since both proteins are structurally and functionally different, they could potentially be a marker of both cells’ types. To prove this hypothesis, UV−Vis absorption spectroscopy and Raman imaging were applied to analyze EPO and MPO and their content in leukocytes isolated from the whole blood. Moreover, leukocytes can contain lipidic structures, called lipid bodies (LBs), which are linked to the regulation of immune responses and are considered to be a marker of cell inflammation. In this work, we showed how to determine the number of LBs in two types of granulocytes, EOS and Ne, using fluorescence and coherent anti-Stokes Raman scattering (CARS) microscopy. Spectroscopic differences of EPO and MPO can be used to identify these cells in blood samples, while the detection of LBs can indicate the cell inflammation process.
Collapse
|
28
|
Kim TH, Banini BA, Asumda FZ, Campbell NA, Hu C, Moser CD, Shire AM, Han S, Ma C, Krishnan A, Mounajjed T, White TA, Gores GJ, LeBrasseur NK, Charlton MR, Roberts LR. Knockout of sulfatase 2 is associated with decreased steatohepatitis and fibrosis in a mouse model of nonalcoholic fatty liver disease. Am J Physiol Gastrointest Liver Physiol 2020; 319:G333-G344. [PMID: 32683952 PMCID: PMC7509257 DOI: 10.1152/ajpgi.00150.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Sulfatase 2 (SULF2) is a heparan sulfate editing enzyme that regulates the milieu of growth factors and cytokines involved in a variety of cellular processes. We used a murine model of diet-induced steatohepatitis to assess the effect of SULF2 downregulation on the development of nonalcoholic steatohepatitis (NASH) and liver fibrosis. Wild-type B6;129 mice (WT) and Sulf2-knockout B6;129P2-SULF2Gt(PST111)Byg mice (Sulf2-KO) were fed a fast-food diet (FFD) rich in saturated fats, cholesterol, and fructose or a standard chow diet (SC) ad libitum for 9 mo. WT mice on FFD showed a threefold increase in hepatic Sulf2 mRNA expression, and a 2.2-fold increase in hepatic SULF2 protein expression compared with WT mice on SC. Knockout of Sulf2 led to a significant decrease in diet-mediated weight gain and dyslipidemia compared with WT mice on FFD. Knockout of Sulf2 also abrogated diet-induced steatohepatitis and hepatic fibrosis compared with WT mice on FFD. Furthermore, expression levels of the profibrogenic receptors TGFβR2 and PDGFRβ were significantly decreased in Sulf2-KO mice compared with WT mice on FFD. Together, our data suggest that knockout of Sulf2 significantly downregulates dyslipidemia, steatohepatitis, and hepatic fibrosis in a diet-induced mouse model of NAFLD, suggesting that targeting of SULF2 signaling may be a potential therapeutic mechanism in NASH.NEW & NOTEWORTHY We report for the first time that in wild-type (WT) mice, fast-food diet (FFD) induced a threefold increase in hepatic Sulf2 mRNA and a 2.2-fold increase in sulfatase 2 (SULF2) protein expression compared with WT mice on standard chow diet (SC). We showed that knockout of SULF2 ameliorates FFD-induced obesity, hyperlipidemia, steatohepatitis, and fibrosis. These data, along with work from other laboratories, suggest that SULF2 may be critical to the ability of the liver to progress to nonalcoholic steatohepatitis and fibrosis in conditions of overnutrition.
Collapse
Affiliation(s)
- Tae Hyo Kim
- 1Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, and Mayo Clinic Cancer Center, Rochester, Minnesota,2Department of Internal Medicine, Gyeongsang National University School of Medicine, Jinju, South Korea
| | - Bubu A. Banini
- 1Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, and Mayo Clinic Cancer Center, Rochester, Minnesota
| | - Faizal Z. Asumda
- 3Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Nellie A. Campbell
- 1Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, and Mayo Clinic Cancer Center, Rochester, Minnesota
| | - Chunling Hu
- 1Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, and Mayo Clinic Cancer Center, Rochester, Minnesota
| | - Catherine D. Moser
- 1Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, and Mayo Clinic Cancer Center, Rochester, Minnesota
| | - Abdirashid M. Shire
- 1Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, and Mayo Clinic Cancer Center, Rochester, Minnesota
| | - Shaoshan Han
- 1Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, and Mayo Clinic Cancer Center, Rochester, Minnesota
| | - Chenchao Ma
- 1Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, and Mayo Clinic Cancer Center, Rochester, Minnesota
| | - Anuradha Krishnan
- 1Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, and Mayo Clinic Cancer Center, Rochester, Minnesota
| | - Taofic Mounajjed
- 4Division of Anatomic Pathology, Mayo Clinic College of Medicine and Science, and Mayo Clinic Cancer Center, Rochester, Minnesota
| | - Thomas A. White
- 5Robert & Arlene Kogod Center on Aging, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Gregory J. Gores
- 1Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, and Mayo Clinic Cancer Center, Rochester, Minnesota
| | - Nathan K. LeBrasseur
- 4Division of Anatomic Pathology, Mayo Clinic College of Medicine and Science, and Mayo Clinic Cancer Center, Rochester, Minnesota
| | - Michael R. Charlton
- 1Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, and Mayo Clinic Cancer Center, Rochester, Minnesota
| | - Lewis Rowland Roberts
- 1Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, and Mayo Clinic Cancer Center, Rochester, Minnesota
| |
Collapse
|
29
|
Strauss JA, Shepherd DA, Macey M, Jevons EFP, Shepherd SO. Divergence exists in the subcellular distribution of intramuscular triglyceride in human skeletal muscle dependent on the choice of lipid dye. Histochem Cell Biol 2020; 154:369-382. [PMID: 32627050 PMCID: PMC7532971 DOI: 10.1007/s00418-020-01898-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2020] [Indexed: 01/19/2023]
Abstract
Despite over 50 years of research, a comprehensive understanding of how intramuscular triglyceride (IMTG) is stored in skeletal muscle and its contribution as a fuel during exercise is lacking. Immunohistochemical techniques provide information on IMTG content and lipid droplet (LD) morphology on a fibre type and subcellular-specific basis, and the lipid dye Oil Red O (ORO) is commonly used to achieve this. BODIPY 493/503 (BODIPY) is an alternative lipid dye with lower background staining and narrower emission spectra. Here we provide the first quantitative comparison of BODIPY and ORO for investigating exercise-induced changes in IMTG content and LD morphology on a fibre type and subcellular-specific basis. Estimates of IMTG content were greater when using BODIPY, which was predominantly due to BODIPY detecting a larger number of LDs, compared to ORO. The subcellular distribution of intramuscular lipid was also dependent on the lipid dye used; ORO detects a greater proportion of IMTG in the periphery (5 μm below cell membrane) of the fibre, whereas IMTG content was higher in the central region using BODIPY. In response to 60 min moderate-intensity cycling exercise, IMTG content was reduced in both the peripheral (− 24%) and central region (− 29%) of type I fibres (P < 0.05) using BODIPY, whereas using ORO, IMTG content was only reduced in the peripheral region of type I fibres (− 31%; P < 0.05). As well as highlighting some methodological considerations herein, our investigation demonstrates that important differences exist between BODIPY and ORO for detecting and quantifying IMTG on a fibre type and subcellular-specific basis.
Collapse
Affiliation(s)
- Juliette A Strauss
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, L3 3AF, UK.
| | - Daisy A Shepherd
- Clinical Epidemiology and Biostatistics Unit, Murdoch Children's Research Institute, Royal Children's Hospital, Victoria, 3052, Australia.,Department of Paediatrics, The University of Melbourne, Victoria, 3010, Australia
| | - Myfanwy Macey
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Emily F P Jevons
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Sam O Shepherd
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, L3 3AF, UK
| |
Collapse
|
30
|
Wiggenhauser PS, Kuhlmann C, Blum J, Giunta RE, Schenck T. Influence of software parameters on measurements in automatized image-based analysis of fat tissue histology. Acta Histochem 2020; 122:151537. [PMID: 32197756 DOI: 10.1016/j.acthis.2020.151537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 02/26/2020] [Accepted: 03/03/2020] [Indexed: 12/11/2022]
Abstract
The understanding of fat tissue plays an eminent role in plastic surgery as well as in metabolic research. Histopathological analysis of tissue samples provides insight in free fat graft survival and culture experiments help to better understand fat tissue derived stem cells (ASCs). To facilitate such experiments, modern image-based histology could provide an automatized approach to a large amount of data to gain not only qualitative but also quantitative data. This study was designed to critically evaluate image-based analysis of fat tissue samples in cell culture or in tissue probes and to identify critical parameters to avoid bias in further studies. In the first part of the study, ASCs were harvested and differentiated into adipocytes in cell culture. Histology was performed with the fluorescent dye BODIPY and the obtained digital images were analyzed using Image J software. In the second part of the study, digitalized histology of a previous in vivo study was subjected to automatized fat vacuole quantification using Image J. Both approaches were critically reviewed, and different software parameter settings were tested. Results showed that automatized digital image analysis allows the quantification of fat tissue probes with enough precision giving significant results. But the testing of different software parameters revealed a significant influence of parameters themselves on calculated results. Therefore, we recommend the use of image-based analysis to quantify fat tissue probes to improve the comparability of studies. But we also emphasize to calibrate software using internal controls in every single experimental approach.
Collapse
Affiliation(s)
- P S Wiggenhauser
- Department of Hand, Plastic and Aesthetic Surgery, University of Munich, Pettenkoferstr. 8a, 80336, Munich, Germany.
| | - C Kuhlmann
- Department of Hand, Plastic and Aesthetic Surgery, University of Munich, Pettenkoferstr. 8a, 80336, Munich, Germany
| | - J Blum
- Department of Hand, Plastic and Aesthetic Surgery, University of Munich, Pettenkoferstr. 8a, 80336, Munich, Germany
| | - R E Giunta
- Department of Hand, Plastic and Aesthetic Surgery, University of Munich, Pettenkoferstr. 8a, 80336, Munich, Germany
| | - T Schenck
- Department of Hand, Plastic and Aesthetic Surgery, University of Munich, Pettenkoferstr. 8a, 80336, Munich, Germany
| |
Collapse
|
31
|
Ambrosone A, Matteis LD, Serrano-Sevilla I, Tortiglione C, De La Fuente JM. Glycogen Synthase Kinase 3β Inhibitor Delivered by Chitosan Nanocapsules Promotes Safe, Fast, and Efficient Activation of Wnt Signaling In Vivo. ACS Biomater Sci Eng 2020; 6:2893-2903. [DOI: 10.1021/acsbiomaterials.9b01820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Alfredo Ambrosone
- Instituto de Ciencia de Materiales de Aragón-CSIC/Universidad de Zaragoza and CIBER in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - Laura De Matteis
- CIBER-BBN, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, C/Mariano Esquillor s/n, 50018 Zaragoza, Spain
| | - Inés Serrano-Sevilla
- Instituto de Ciencia de Materiales de Aragón-CSIC/Universidad de Zaragoza and CIBER in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
- CIBER-BBN, Instituto de Salud Carlos III, Madrid, Spain
| | - Claudia Tortiglione
- Istituto di scienze applicate e sistemi intelligenti “E. Caianiello”, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Jesús M. De La Fuente
- Instituto de Ciencia de Materiales de Aragón-CSIC/Universidad de Zaragoza and CIBER in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
- CIBER-BBN, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
32
|
Wang H, Cao Y, Shu L, Zhu Y, Peng Q, Ran L, Wu J, Luo Y, Zuo G, Luo J, Zhou L, Shi Q, Weng Y, Huang A, He TC, Fan J. Long non-coding RNA (lncRNA) H19 induces hepatic steatosis through activating MLXIPL and mTORC1 networks in hepatocytes. J Cell Mol Med 2020; 24:1399-1412. [PMID: 31809000 PMCID: PMC6991647 DOI: 10.1111/jcmm.14818] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/04/2019] [Accepted: 09/16/2019] [Indexed: 12/11/2022] Open
Abstract
Liver plays an essential role in regulating lipid metabolism, and chronically disturbed hepatic metabolism may cause obesity and metabolic syndrome, which may lead to non-alcoholic fatty liver disease (NAFLD). Increasing evidence indicates long non-coding RNAs (lncRNAs) play an important role in energy metabolism. Here, we investigated the role of lncRNA H19 in hepatic lipid metabolism and its potential association with NAFLD. We found that H19 was up-regulated in oleic acid-induced steatosis and during the development of high-fat diet (HFD)-induced NAFLD. Exogenous overexpression of H19 in hepatocytes induced lipid accumulation and up-regulated the expression of numerous genes involved in lipid synthesis, storage and breakdown, while silencing endogenous H19 led to a decreased lipid accumulation in hepatocytes. Mechanistically, H19 was shown to promote hepatic steatosis by up-regulating lipogenic transcription factor MLXIPL. Silencing Mlxipl diminished H19-induced lipid accumulation in hepatocytes. Furthermore, H19-induced lipid accumulation was effectively inhibited by PI3K/mTOR inhibitor PF-04691502. Accordingly, H19 overexpression in hepatocytes up-regulated most components of the mTORC1 signalling axis, which were inhibited by silencing endogenous H19. In vivo hepatocyte implantation studies further confirm that H19 promoted hepatic steatosis by up-regulating both mTORC1 signalling axis and MLXIPL transcriptional network. Collectively, these findings strongly suggest that H19 may play an important role in regulating hepatic lipid metabolism and may serve as a potential therapeutic target for NAFLD.
Collapse
Affiliation(s)
- Hao Wang
- Ministry of Education Key Laboratory of Diagnostic Medicine, and School of Laboratory Medicine, Chongqing Medical University, Chongqing, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Youde Cao
- Department of Pathology, Chongqing Medical University, Chongqing, China
| | - Liqing Shu
- Department of Pathology, Chongqing Medical University, Chongqing, China
| | - Ying Zhu
- Ministry of Education Key Laboratory of Diagnostic Medicine, and School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Qi Peng
- Ministry of Education Key Laboratory of Diagnostic Medicine, and School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Longke Ran
- Department of Bioinformatics, Chongqing Medical University, Chongqing, China
| | - Jinghong Wu
- Ministry of Education Key Laboratory of Diagnostic Medicine, and School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yetao Luo
- Department of Biostatistics, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Guowei Zuo
- Ministry of Education Key Laboratory of Diagnostic Medicine, and School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Jinyong Luo
- Ministry of Education Key Laboratory of Diagnostic Medicine, and School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Lan Zhou
- Ministry of Education Key Laboratory of Diagnostic Medicine, and School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Qiong Shi
- Ministry of Education Key Laboratory of Diagnostic Medicine, and School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yaguang Weng
- Ministry of Education Key Laboratory of Diagnostic Medicine, and School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Ailong Huang
- Key Laboratory of Molecular Biology for Infectious Diseases of The Ministry of Education of China, Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Jiaming Fan
- Ministry of Education Key Laboratory of Diagnostic Medicine, and School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
33
|
Liquid-crystalline phase transitions in lipid droplets are related to cellular states and specific organelle association. Proc Natl Acad Sci U S A 2019; 116:16866-16871. [PMID: 31375636 PMCID: PMC6708344 DOI: 10.1073/pnas.1903642116] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Lipids have essential roles in cellular energy homeostasis and are key structural components of membranes and thereby provide the basis of cellular compartmentalization. The maintenance of lipid homeostasis is of fundamental importance to cellular physiology. Lipid droplets (LDs) are central organelles orchestrating lipid fluxes inside cells. By examining pristinely preserved frozen-hydrated HeLa cells with cryoelectron microscopy, we show that LDs exhibit different internal organizations, as well as organelle associations, depending on cellular states. We demonstrate the presence of a liquid-crystalline phase under certain conditions, which are likely to impact the physiological functions of LDs. Furthermore, crystalline droplets are a major component of atherosclerotic lesions in human arteries. Crystalline LDs secreted by cells may therefore have a direct link to pathologies. Lipid droplets (LDs) are ubiquitous organelles comprising a central hub for cellular lipid metabolism and trafficking. This role is tightly associated with their interactions with several cellular organelles. Here, we provide a systematic and quantitative structural description of LDs in their native state in HeLa cells enabled by cellular cryoelectron microscopy. LDs consist of a hydrophobic neutral lipid mixture of triacylglycerols (TAG) and cholesteryl esters (CE), surrounded by a single monolayer of phospholipids. We show that under normal culture conditions, LDs are amorphous and that they transition into a smectic liquid-crystalline phase surrounding an amorphous core at physiological temperature under certain cell-cycle stages or metabolic scenarios. Following determination of the crystal lattice spacing of 3.5 nm and of a phase transition temperature below 43 °C, we attributed the liquid-crystalline phase to CE. We suggest that under mitotic arrest and starvation, relative CE levels increase, presumably due to the consumption of TAG metabolites for membrane synthesis and mitochondrial respiration, respectively, supported by direct visualization of LD–mitochondrial membrane contact sites. We hypothesize that the structural phase transition may have a major impact on the accessibility of lipids in LDs to enzymes or lipid transporters. These may become restricted in the smectic phase, affecting the exchange rate of lipids with surrounding membranes and lead to a different surface occupancy of LD-associated proteins. Therefore, the composition and the resulting internal structure of LDs is expected to play a key role in their function as hubs of cellular lipid flux.
Collapse
|
34
|
Cordero A, Kanojia D, Miska J, Panek WK, Xiao A, Han Y, Bonamici N, Zhou W, Xiao T, Wu M, Ahmed AU, Lesniak MS. FABP7 is a key metabolic regulator in HER2+ breast cancer brain metastasis. Oncogene 2019; 38:6445-6460. [PMID: 31324889 PMCID: PMC6742563 DOI: 10.1038/s41388-019-0893-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 05/08/2019] [Accepted: 05/08/2019] [Indexed: 11/09/2022]
Abstract
Overexpression of human epidermal growth factor receptor 2 (HER2) in breast cancer patients is associated with increased incidence of breast cancer brain metastases (BCBM), but the mechanisms underlying this phenomenon remain unclear. Here, to identify brain-predominant genes critical for the establishment of BCBM, we conducted an in silico screening analysis and identified that increased levels of fatty acid-binding protein 7 (FABP7) correlate with a lower survival and higher incidence of brain metastases in breast cancer patients. We validated these findings using HER2+ BCBM cells compared with parental breast cancer cells. Importantly, through knockdown and overexpression assays, we characterized the role of FABP7 in the BCBM process in vitro and in vivo. Our results uncover a key role of FABP7 in metabolic reprogramming of HER2 + breast cancer cells, supporting a glycolytic phenotype and storage of lipid droplets that enable their adaptation and survival in the brain microenvironment. In addition, FABP7 is shown to be required for upregulation of key metastatic genes and pathways, such as integrins-Src and VEGFA, and for the growth of HER2+ breast cancer cells in the brain microenvironment in vivo. Together, our results support FABP7 as a potential target for the treatment of HER2+ BCBM.
Collapse
Affiliation(s)
- Alex Cordero
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Deepak Kanojia
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Jason Miska
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Wojciech K Panek
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Annie Xiao
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Yu Han
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Nicolas Bonamici
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Weidong Zhou
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA
| | - Ting Xiao
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Meijing Wu
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Atique U Ahmed
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Maciej S Lesniak
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
35
|
Development of Technetium-99m-Labeled BODIPY-Based Probes Targeting Lipid Droplets Toward the Diagnosis of Hyperlipidemia-Related Diseases. Molecules 2019; 24:molecules24122283. [PMID: 31248199 PMCID: PMC6631856 DOI: 10.3390/molecules24122283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/16/2019] [Accepted: 06/17/2019] [Indexed: 01/23/2023] Open
Abstract
Hyperlipidemia causes systemic lipid disorder, which leads to hepatic steatosis and atherosclerosis. Thus, it is necessary to detect these syndromes early and precisely to improve prognosis. In the affected regions, abnormal formation and growth of lipid droplets is observed; therefore, lipid droplets may be a suitable target for the diagnosis of hyperlipidemia-related syndromes. In this study, we designed and synthesized [99mTc]Tc-BOD and [99mTc]Tc-MBOD composed of one technetium-99m and two BODIPY scaffolds with hydroxamamide (Ham) or N-methylated hydroxamamide (MHam) in radiochemical yields of 54 and 35%, respectively, with a radiochemical purity of over 95%. [99mTc]Tc-BOD showed significantly higher accumulation levels in foam cells than in non-foam cells (foam cells: 213.8 ± 64.8, non-foam cell: 126.2 ± 26.9 %dose/mg protein, p < 0.05) 2 h after incubation. In contrast, [99mTc]Tc-MBOD showed similar accumulation levels in foam cells and non-foam cells (foam cells: 92.2 ± 23.3, non-foam cell: 83.8 ± 19.8 %dose/mg protein). In normal mice, [99mTc]Tc-BOD exhibited gradual blood clearance (0.5 h: 4.98 ± 0.35, 6 h: 1.94 ± 0.12 %ID/g) and relatively high accumulation in the liver 6 h after administration (15.22 ± 1.72 %ID/g). Therefore, [99mTc]Tc-BOD may have potential as an imaging probe for detecting lipid droplets in disease lesions of hyperlipidemia.
Collapse
|
36
|
Linkage between lipid droplet formation and nuclear deformation in HeLa human cervical cancer cells. Biochem Biophys Res Commun 2018; 504:485-490. [DOI: 10.1016/j.bbrc.2018.08.200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 08/31/2018] [Indexed: 11/19/2022]
|
37
|
Intracellular Calcium Determines the Adipogenic Differentiation Potential of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells via the Wnt5a/ β-Catenin Signaling Pathway. Stem Cells Int 2018; 2018:6545071. [PMID: 30123291 PMCID: PMC6079381 DOI: 10.1155/2018/6545071] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/03/2018] [Indexed: 12/19/2022] Open
Abstract
Mesenchymal stem cells- (MSCs-) based therapies show different degrees of efficacies for the treatment of various diseases, including lipogenesis. We evaluated the adipogenic differentiation ability of human umbilical cord blood-derived MSCs (hUCB-MSCs) from different donors and examined the contribution of the intracellular calcium (Ca2+) level to this diversity. hUCB-MSCs treated with Ca2+ or the Ca2+ chelator BAPTA-AM increased and decreased adipogenic differentiation, respectively. Canonical Wnt5a/β-catenin expression decreased during adipogenic differentiation of hUCB-MSCs. Treatment with Wnt5a blocked the adipogenic differentiation of hUCB-MSCs and activated the Wnt pathway, with a decrease in the adipogenesis markers PPARγ and leptin, and reduced lipid vacuole-associated Oil red O activity. In contrast, inhibition of the Wnt pathway with dickkopf-1 and β-catenin small interfering RNA transfection promoted the adipogenic potential of hUCB-MSCs. Interestingly, the Ca2+-based system exhibited a synergic effect on adipogenic potential through the Wnt5a/β-catenin pathway. Our data suggest that the variable adipogenic differentiation potential of hUCB-MSCs from different lots is due to variation in the intracellular Ca2+ level, which can be used as a marker to predict hUCB-MSCs selection for lipogenesis therapy. Overall, these results demonstrate that exogenous calcium treatment enhanced the adipogenic differentiation of hUCB-MSCs via negatively regulating the Wnt5a/β-catenin signaling pathway.
Collapse
|
38
|
Wolins NE, DeHaan KN, Cifarelli V, Stoeckman AK. Normalized neutral lipid quantitation by flow cytometry. J Lipid Res 2018; 59:1294-1300. [PMID: 29764924 DOI: 10.1194/jlr.d084871] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/09/2018] [Indexed: 12/28/2022] Open
Abstract
Interest in measuring tissue lipids has increased as the link between fat-laden tissues and metabolic disease has become obvious; however, linking disease to a specific cell type within a tissue has been hampered by methodological limitations. Flow cytometry (FC) has been used to assess relative lipid levels in cells. Unfortunately, its usefulness is limited because comparisons between samples generated over several hours is problematic. We show that: 1) in lipophilic fluorophore stained cells, fluorescence intensity measured by FC reflects lipid levels; 2) this technique can be used to assess lipid levels in a mixed cell population; 3) normalizing to a control condition can decrease experiment-to-experiment variation; and 4) fluorescence intensity increases linearly with lipid levels. This allows triacylglycerol (TG) mass to be estimated in mixed cell populations comparing cells with known fluorescence and TG levels. We exploited this strategy to estimate lipid levels in monocytes within a mixed population of cells isolated from human blood. Using this strategy, we also confirmed that perilipin (PLIN)1 increases TG accumulation by ectopically expressing fluorescently tagged PLIN1 in Huh7 cells. In both examples, biochemically assaying for TG in specific cell populations is problematic due to limited cell numbers and isolation challenges. Other advantages are discussed.
Collapse
Affiliation(s)
- Nathan E Wolins
- Center for Human Nutrition, Washington University School of Medicine, Saint Louis, MO 63110
| | | | - Vincenza Cifarelli
- Center for Human Nutrition, Washington University School of Medicine, Saint Louis, MO 63110
| | | |
Collapse
|
39
|
Schnitzler JG, Bernelot Moens SJ, Tiessens F, Bakker GJ, Dallinga-Thie GM, Groen AK, Nieuwdorp M, Stroes ESG, Kroon J. Nile Red Quantifier: a novel and quantitative tool to study lipid accumulation in patient-derived circulating monocytes using confocal microscopy. J Lipid Res 2017; 58:2210-2219. [PMID: 28972117 PMCID: PMC5665660 DOI: 10.1194/jlr.d073197] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 09/07/2017] [Indexed: 01/19/2023] Open
Abstract
The inflammatory profile of circulating monocytes is an important biomarker for atherosclerotic plaque vulnerability. Recent research revealed that peripheral lipid uptake by monocytes alters their phenotype toward an inflammatory state and this coincides with an increased lipid droplet (LD) content. Determination of lipid content of circulating monocytes is, however, not very well established. Based on Nile Red (NR) neutral LD imaging, using confocal microscopy and computational analysis, we developed NR Quantifier (NRQ), a novel quantification method to assess LD content in monocytes. Circulating monocytes were isolated from blood and used for the NR staining procedure. In monocytes stained with NR, we clearly distinguished, based on 3D imaging, phospholipids and exclusively intracellular neutral lipids. Next, we developed and validated NRQ, a semi-automated quantification program that detects alterations in lipid accumulation. NRQ was able to detect LD alterations after ex vivo exposure of isolated monocytes to freshly isolated LDL in a time- and dose-dependent fashion. Finally, we validated NRQ in patients with familial hypercholesterolemia and obese subjects in pre- and postprandial state. In conclusion, NRQ is a suitable tool to detect even small differences in neutral LD content in circulating monocytes using NR staining.
Collapse
Affiliation(s)
- Johan G Schnitzler
- Departments of Vascular Medicine University of Amsterdam, Amsterdam, The Netherlands
| | | | - Feiko Tiessens
- Departments of Vascular Medicine University of Amsterdam, Amsterdam, The Netherlands
| | - Guido J Bakker
- Departments of Vascular Medicine University of Amsterdam, Amsterdam, The Netherlands
| | - Geesje M Dallinga-Thie
- Departments of Vascular Medicine University of Amsterdam, Amsterdam, The Netherlands.,Experimental Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Albert K Groen
- Departments of Vascular Medicine University of Amsterdam, Amsterdam, The Netherlands.,Department of Pediatrics, Laboratory of Metabolic Diseases, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Max Nieuwdorp
- Departments of Vascular Medicine University of Amsterdam, Amsterdam, The Netherlands.,Wallenberg Laboratory, University of Gothenberg, Gothenberg, Sweden.,Department of Internal Medicine, Diabetes Center, Vrije Universiteit (VU) University Medical Center, Amsterdam, The Netherlands.,Institute for Cardiovascular Research, Vrije Universiteit (VU) University Medical Center, Amsterdam, The Netherlands
| | - Erik S G Stroes
- Departments of Vascular Medicine University of Amsterdam, Amsterdam, The Netherlands
| | - Jeffrey Kroon
- Departments of Vascular Medicine University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
40
|
PPAR-delta modulates membrane cholesterol and cytokine signaling in malignant B cells. Leukemia 2017; 32:184-193. [PMID: 28555083 DOI: 10.1038/leu.2017.162] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 05/08/2017] [Accepted: 05/16/2017] [Indexed: 12/12/2022]
Abstract
A deeper understanding of the mechanisms that underlie aberrant signal transduction in B-cell cancers such as chronic lymphocytic leukemia (CLL) may reveal new treatment strategies. The lipid-activated nuclear receptor peroxisome proliferator-activated receptor delta (PPARδ) accounts for a number of properties of aggressive cancers and was found to enhance Janus kinase (JAK)-mediated phosphorylation of signal transducer and activator of transcription (STAT) proteins in B lymphoma cell lines and primary CLL cells. Autocrine production of cytokines such as IL10 and interferon-beta was not increased by PPARδ but signaling responses to these cytokines were amplified and associated with increased cholesterol biosynthesis and plasma membrane levels. Plasmalemmal cholesterol and STAT phosphorylation from type 1 interferons (IFNs) were increased by PPARδ agonists, transgenes and exogenous cholesterol, and decreased by cyclodextrin, PPARD deletion and chemical PPARδ inhibitors. Functional consequences of PPARδ-mediated perturbation of IFN signaling included impaired upregulation of co-stimulatory molecules. These observations suggest PPARδ modulates signaling processes in malignant B cells in part by altering cholesterol metabolism and changes the outcomes of signaling from cytokines such as IFNs. PPARδ antagonists may have therapeutic activity as anti-leukemic signal transduction modulators.
Collapse
|
41
|
Zhang Z, Zhao S, Yao Z, Wang L, Shao J, Chen A, Zhang F, Zheng S. Autophagy regulates turnover of lipid droplets via ROS-dependent Rab25 activation in hepatic stellate cell. Redox Biol 2016; 11:322-334. [PMID: 28038427 PMCID: PMC5199192 DOI: 10.1016/j.redox.2016.12.021] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/19/2016] [Accepted: 12/19/2016] [Indexed: 12/22/2022] Open
Abstract
Activation of hepatic stellate cells (HSCs) is a pivotal event in liver fibrosis, characterized by dramatic disappearance of lipid droplets (LDs). Although LD disappearance has long been considered one of the hallmarks of HSC activation, the underlying molecular mechanisms are largely unknown. In this study, we sought to investigate the role of autophagy in the process of LD disappearance, and to further examine the underlying mechanisms in this molecular context. We found that LD disappearance during HSC activation was associated with a coordinate increase in autophagy. Inhibition or depletion of autophagy by Atg5 siRNA impaired LD disappearance of quiescent HSCs, and also restored lipocyte phenotype of activated HSCs. In contrast, induction of autophagy by Atg5 plasmid accelerated LD loss of quiescent HSCs. Importantly, our study also identified a crucial role for reactive oxygen species (ROS) in the facilitation of autophagy activation. Antioxidants, such as glutathione and N-acetyl cysteine, significantly abrogated ROS production, and in turn, prevented autophagosome generation and autophagic flux during HSC activation. Besides, we found that HSC activation triggered Rab25 overexpression, and promoted the combination of Rab25 and PI3KCIII, which direct autophagy to recognize, wrap and degrade LDs. Down-regulation of Rab25 activity, using Rab25 siRNA, blocked the target recognition of autophagy on LDs, and inhibited LD disappearance of quiescent HSCs. Moreover, the scavenging of excessive ROS could disrupt the interaction between autophagy and Rab25, and increase intracellular lipid content. Overall, these results provide novel implications to reveal the molecular mechanism of LD disappearance during HSC activation, and also identify ROS-Rab25-dependent autophagy as a potential target for the treatment of liver fibrosis. Autophagosome generation and autophagic flux are increased during HSC activation. The inhibition of autophagy blocks LD disappearance of quiescent HSCs. The induction of autophagy accelerates LD disappearance of quiescent HSCs. Rab25 activation is required for autophagy to degrade LDs during HSC activation. Mitochondrial H2O2 production triggers autophagy activation during HSC activation.
Collapse
Affiliation(s)
- Zili Zhang
- Department of Pharmacology, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Shifeng Zhao
- Department of Pharmacology, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Zhen Yao
- Department of Pharmacology, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Ling Wang
- Department of Pharmacology, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Jiangjuan Shao
- Department of Pharmacy, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Anping Chen
- Department of Pathology, School of Medicine, Saint Louis University, St Louis., MO 63104, USA
| | - Feng Zhang
- Department of Pharmacology, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Shizhong Zheng
- Department of Pharmacology, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, PR China.
| |
Collapse
|