1
|
Riordan K, Dean AE, Kerr SJ, Thometz NM, Batac FI, Liwanag HEM. A novel comparison of southern sea otter (Enhydra lutris nereis) fur buoyancy across ontogeny. J Exp Biol 2024; 227:jeb247134. [PMID: 39265248 DOI: 10.1242/jeb.247134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 07/29/2024] [Indexed: 09/14/2024]
Abstract
Sea otters are extremely positively buoyant and spend most of their time resting at the water surface. It is understood that some of this buoyancy comes from the air layer that sea otters maintain in their pelage, with the lungs providing an additional source of positive buoyancy. Past studies have investigated the fur buoyant force in adult sea otters; however, little is known about the fur buoyant force in younger age classes. This study compared ontogenetic changes in the fur buoyant force of southern sea otter (Enhydra lutris nereis) pelage. We measured the fur buoyant force of pelt samples, scaled that to the whole animal, and calculated mass-specific fur buoyant force for six age classes: neonates (<1 month), small pups (1-2 months), large pups (3-5 months), juveniles (6 months-1 year), subadults (1-3 years) and adults (4-9 years). Each pelt sample was measured under three conditions: control, oiled and washed with Dawn® dish soap. Oiled and washed pelts had a lower fur buoyant force compared with the control pelts across all age classes. When oiled, the air layer of the pelt is ruined and no longer provides sufficient positive buoyancy. Pelts washed with Dawn® had higher variability in buoyant force compared with other conditions, and the air layer was not restored consistently. When we scaled up, we found that younger age classes were more buoyant because of their larger surface area to volume ratio. These differences in buoyancy may underlie variations in energetic costs and behavior among sea otters across development.
Collapse
Affiliation(s)
- Kate Riordan
- Department of Biological Sciences, California Polytechnic State University San Luis Obispo, 1 Grand Ave, San Luis Obispo, CA 93407, USA
| | - Annika E Dean
- Department of Biological Sciences, California Polytechnic State University San Luis Obispo, 1 Grand Ave, San Luis Obispo, CA 93407, USA
| | - Sarah J Kerr
- Department of Biological Sciences, California Polytechnic State University San Luis Obispo, 1 Grand Ave, San Luis Obispo, CA 93407, USA
- Department of Biology, Colorado State University, 1878 Campus Delivery, Fort Collins, CO 80523, USA
| | - Nicole M Thometz
- Department of Biology, University of San Francisco, 2130 Fulton Street, San Francisco, CA 94117, USA
| | - Francesca I Batac
- Marine Wildlife Veterinary Care and Research Center, California Department of Fish and Wildlife, 151 McAllister Way, Santa Cruz, CA 95060, USA
| | - Heather E M Liwanag
- Department of Biological Sciences, California Polytechnic State University San Luis Obispo, 1 Grand Ave, San Luis Obispo, CA 93407, USA
| |
Collapse
|
2
|
McRae TM, Volpov BL, Sidrow E, Fortune SME, Auger-Méthé M, Heckman N, Trites AW. Killer whale respiration rates. PLoS One 2024; 19:e0302758. [PMID: 38748652 PMCID: PMC11095751 DOI: 10.1371/journal.pone.0302758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/08/2024] [Indexed: 05/19/2024] Open
Abstract
Measuring breathing rates is a means by which oxygen intake and metabolic rates can be estimated to determine food requirements and energy expenditure of killer whales (Orcinus orca) and other cetaceans. This relatively simple measure also allows the energetic consequences of environmental stressors to cetaceans to be understood but requires knowing respiration rates while they are engaged in different behaviours such as resting, travelling and foraging. We calculated respiration rates for different behavioural states of southern and northern resident killer whales using video from UAV drones and concurrent biologging data from animal-borne tags. Behavioural states of dive tracks were predicted using hierarchical hidden Markov models (HHMM) parameterized with time-depth data and with labeled tracks of drone-identified behavioural states (from drone footage that overlapped with the time-depth data). Dive tracks were sequences of dives and surface intervals lasting ≥ 10 minutes cumulative duration. We calculated respiration rates and estimated oxygen consumption rates for the predicted behavioural states of the tracks. We found that juvenile killer whales breathed at a higher rate when travelling (1.6 breaths min-1) compared to resting (1.2) and foraging (1.5)-and that adult males breathed at a higher rate when travelling (1.8) compared to both foraging (1.7) and resting (1.3). The juveniles in our study were estimated to consume 2.5-18.3 L O2 min-1 compared with 14.3-59.8 L O2 min-1 for adult males across all behaviours based on estimates of mass-specific tidal volume and oxygen extraction. Our findings confirm that killer whales take single breaths between dives and indicate that energy expenditure derived from respirations requires using sex, age, and behavioural-specific respiration rates. These findings can be applied to bioenergetics models on a behavioural-specific basis, and contribute towards obtaining better predictions of dive behaviours, energy expenditure and the food requirements of apex predators.
Collapse
Affiliation(s)
- Tess M. McRae
- Institute for the Oceans and Fisheries, Marine Mammal Research Unit, University of British Columbia, Vancouver, BC, Canada
| | - Beth L. Volpov
- Institute for the Oceans and Fisheries, Marine Mammal Research Unit, University of British Columbia, Vancouver, BC, Canada
| | - Evan Sidrow
- Department of Statistics, University of British Columbia, Vancouver, BC, Canada
| | - Sarah M. E. Fortune
- Institute for the Oceans and Fisheries, Marine Mammal Research Unit, University of British Columbia, Vancouver, BC, Canada
| | - Marie Auger-Méthé
- Department of Statistics, University of British Columbia, Vancouver, BC, Canada
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada
| | - Nancy Heckman
- Department of Statistics, University of British Columbia, Vancouver, BC, Canada
| | - Andrew W. Trites
- Institute for the Oceans and Fisheries, Marine Mammal Research Unit, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
3
|
Yépez Y, Marcano-Ruiz M, Bortolini MC. Adaptive strategies of aquatic mammals: Exploring the role of the HIF pathway and hypoxia tolerance. Genet Mol Biol 2024; 46:e20230140. [PMID: 38252060 PMCID: PMC10802827 DOI: 10.1590/1678-4685-gmb-2023-0140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 12/06/2023] [Indexed: 01/23/2024] Open
Abstract
Aquatic mammals (marine and freshwater species) share significant and similar adaptations, enabling them to tolerate hypoxia during regular breath-hold diving. Despite the established importance of HIF1A, a master regulator in the molecular mechanism of hypoxia response, and other associated genes, their role in the evolutionary adaptation of aquatic mammals is not fully understood. In this study, we investigated this topic by employing a candidate gene approach to analyze 11 critical genes involved in the HIF1A signaling pathway in aquatic mammals. Our gene analyses included evaluating positive and negative selection, relaxation or constriction of selection, and molecular convergence compared to other terrestrial mammals, including subterranean mammals. Evidence of selection suggested a significant role of negative selection, as well as relaxation of the selective regime in cetaceans for most of these genes. We found that the glutamine 68 variant in the HIF3α protein is unique to cetaceans and initial evaluations indicated a destabilizing effect on protein structure. However, further analyses are necessary to evaluate its functional impact and adaptive relevance in this taxon.
Collapse
Affiliation(s)
- Yuri Yépez
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Laboratório de Evolução Humana e Molecular, Porto Alegre, RS, Brazil
| | - Mariana Marcano-Ruiz
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Laboratório de Evolução Humana e Molecular, Porto Alegre, RS, Brazil
| | - Maria Cátira Bortolini
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Laboratório de Evolução Humana e Molecular, Porto Alegre, RS, Brazil
| |
Collapse
|
4
|
Wendi W, Dongzhe W, Hao W, Yongjin S, Xiaolin G. Effect of dry dynamic apnea on aerobic power in elite rugby athletes: a warm-up method. Front Physiol 2024; 14:1269656. [PMID: 38292448 PMCID: PMC10824898 DOI: 10.3389/fphys.2023.1269656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 12/28/2023] [Indexed: 02/01/2024] Open
Abstract
Objective: While long-term dynamic breath-holding training has been extensively studied to enhance cardiopulmonary function in athletes, limited research has explored the impact of a single breath-holding session on subsequent athletic capacity. In addition, Dry Dynamic Apnea (DA) has a more immediate physiological response than wet and static breath-holding. This study aims to assess the immediate effects of a single session of DA on the aerobic power and hematological parameters of elite athletes. Methods: Seventeen elite male rugby athletes (average age 23.5 ± 1.8) participated in this study. Two warm-up protocols were employed prior to incremental exercise: a standard warm-up (10 min of no-load pedaling) and a DA warm-up (10 min of no-load pedaling accompanied by six maximum capacity breath holds, with 30 s between each breath hold). Fingertip blood indicators were measured before and after warm-up. The incremental exercise test assessed aerobic parameters with self-regulation applied throughout the study. Results: Compared to the baseline warm-up, the DA warm-up resulted in a significant increase in VO2peak from 3.14 to 3.38 L/min (7.64% change, p < 0.05). HRmax increased from 170 to 183 bpm (7.34% change, p < 0.05), and HRpeak increased from 169 to 182 bpm (7.52% change, p < 0.05). Hematocrit and hemoglobin showed differential changes between the two warm-up methods (PHematocrit = 0.674; Phemoglobin = 0.707). Conclusion: This study investigates how DA influences physiological factors such as spleen contraction, oxygen uptake, and sympathetic nerve activation compared to traditional warm-up methods. Immediate improvements in aerobic power suggest reduced vagus nerve stimulation, heightened sympathetic activity, and alterations in respiratory metabolism induced by the voluntarily hypoxia-triggered warm-up. Further research is warranted to comprehensively understand these physiological responses and optimize warm-up strategies for elite athletic performance.
Collapse
Affiliation(s)
- Wang Wendi
- Sports Rehabilitation Research Center, China Institute of Sport Science, Beijing, China
| | - Wu Dongzhe
- Sports Rehabilitation Research Center, China Institute of Sport Science, Beijing, China
| | - Wang Hao
- Sports Rehabilitation Research Center, China Institute of Sport Science, Beijing, China
| | - Shi Yongjin
- Department of Sports and Arts, China Agricultural University, Beijing, China
| | - Gao Xiaolin
- Sports Rehabilitation Research Center, China Institute of Sport Science, Beijing, China
| |
Collapse
|
5
|
Cansler R, Heidrich J, Whiting A, Tran D, Hall P, Tyler WJ. Influence of CrossFit and Deep End Fitness training on mental health and coping in athletes. Front Sports Act Living 2023; 5:1061492. [PMID: 37849685 PMCID: PMC10577405 DOI: 10.3389/fspor.2023.1061492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 09/19/2023] [Indexed: 10/19/2023] Open
Abstract
Physical exercise is known to improve mental health. Athletes can experience unique physical and emotional stressors, which can deteriorate mental health and cognitive function. Training apathy can lead to cognitive dissonance and further degrade performance by promoting maladaptive, avoidance coping strategies. Introduction of psychosocial and training variables, such as those used in CrossFit (CF) and other community-based fitness programs with strong peer support have been shown to help reduce training apathy and negative affect. Here, we explored whether addition of psychophysiological variation, experienced as "hunger for air" during underwater breath-hold exercises, could provide unique mental health benefits for athletes. We studied the influence of CF and Deep End Fitness (DEF), a community-based underwater fitness program, on several outcome measures of mental health and emotional well-being in volunteer athletes. We observed a significant reduction in stress scores of both the control CF training group and the experimental DEF group. We found that DEF produced a significant improvement in positive affect while CF training did not. Further supportive of our hypothesis that the psychological and biological stressors experienced in underwater, breath-hold training cause positive adaptive changes and benefits, DEF training uniquely increased problem-based coping. While our observations demonstrate both CF and DEF training can improve mental health in athletes, DEF produced additional, unique benefits to positive coping and attitudes of athletes. Future studies should further evaluate the broader benefits of community-based, underwater training programs on psychological and physiological health in athletes and the public.
Collapse
Affiliation(s)
- Rachel Cansler
- Department of Psychology, New York University, New York, NY, United States
- Deep End Fitness, San Diego, CA, United States
| | | | - Ali Whiting
- Deep End Fitness, San Diego, CA, United States
| | - Don Tran
- Deep End Fitness, San Diego, CA, United States
| | - Prime Hall
- Deep End Fitness, San Diego, CA, United States
| | - William J. Tyler
- Deep End Fitness, San Diego, CA, United States
- IST, LLC, Birmingham, AL, United States
| |
Collapse
|
6
|
Sackerson C, Garcia V, Medina N, Maldonado J, Daly J, Cartwright R. Comparative analysis of the myoglobin gene in whales and humans reveals evolutionary changes in regulatory elements and expression levels. PLoS One 2023; 18:e0284834. [PMID: 37643191 PMCID: PMC10464968 DOI: 10.1371/journal.pone.0284834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023] Open
Abstract
Cetacea and other diving mammals have undergone numerous adaptations to their aquatic environment, among them high levels of the oxygen-carrying intracellular hemoprotein myoglobin in skeletal muscles. Hypotheses regarding the mechanisms leading to these high myoglobin levels often invoke the induction of gene expression by exercise, hypoxia, and other physiological gene regulatory pathways. Here we explore an alternative hypothesis: that cetacean myoglobin genes have evolved high levels of transcription driven by the intrinsic developmental mechanisms that drive muscle cell differentiation. We have used luciferase assays in differentiated C2C12 cells to test this hypothesis. Contrary to our hypothesis, we find that the myoglobin gene from the minke whale, Balaenoptera acutorostrata, shows a low level of expression, only about 8% that of humans. This low expression level is broadly shared among cetaceans and artiodactylans. Previous work on regulation of the human gene has identified a core muscle-specific enhancer comprised of two regions, the "AT element" and a C-rich sequence 5' of the AT element termed the "CCAC-box". Analysis of the minke whale gene supports the importance of the AT element, but the minke whale CCAC-box ortholog has little effect. Instead, critical positive input has been identified in a G-rich region 3' of the AT element. Also, a conserved E-box in exon 1 positively affects expression, despite having been assigned a repressive role in the human gene. Last, a novel region 5' of the core enhancer has been identified, which we hypothesize may function as a boundary element. These results illustrate regulatory flexibility during evolution. We discuss the possibility that low transcription levels are actually beneficial, and that evolution of the myoglobin protein toward enhanced stability is a critical factor in the accumulation of high myoglobin levels in adult cetacean muscle tissue.
Collapse
Affiliation(s)
- Charles Sackerson
- Biology Department, California State University Channel Islands, Camarillo, California, United States of America
| | - Vivian Garcia
- Biology Department, California State University Channel Islands, Camarillo, California, United States of America
| | - Nicole Medina
- Biology Department, California State University Channel Islands, Camarillo, California, United States of America
| | - Jessica Maldonado
- Biology Department, California State University Channel Islands, Camarillo, California, United States of America
| | - John Daly
- Biology Department, California State University Channel Islands, Camarillo, California, United States of America
| | - Rachel Cartwright
- Biology Department, California State University Channel Islands, Camarillo, California, United States of America
- The Keiki Kohola Project, Lahaina, Hawaii, United States of America
| |
Collapse
|
7
|
Martens GA, Folkow LP, Burmester T, Geßner C. Elevated antioxidant defence in the brain of deep-diving pinnipeds. Front Physiol 2022; 13:1064476. [PMID: 36589435 PMCID: PMC9800987 DOI: 10.3389/fphys.2022.1064476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
While foraging, marine mammals undertake repetitive diving bouts. When the animal surfaces, reperfusion makes oxygen readily available for the electron transport chain, which leads to increased production of reactive oxygen species and risk of oxidative damage. In blood and several tissues, such as heart, lung, muscle and kidney, marine mammals generally exhibit an elevated antioxidant defence. However, the brain, whose functional integrity is critical to survival, has received little attention. We previously observed an enhanced expression of several antioxidant genes in cortical neurons of hooded seals (Cystophora cristata). Here, we studied antioxidant gene expression and enzymatic activity in the visual cortex, cerebellum and hippocampus of harp seals (Pagophilus groenlandicus) and hooded seals. Moreover, we tested several genes for positive selection. We found that antioxidants in the first line of defence, such as superoxide dismutase (SOD), glutathione peroxidase (GPX) and glutathione (GSH) were constitutively enhanced in the seal brain compared to mice (Mus musculus), whereas the glutaredoxin and thioredoxin systems were not. Possibly, the activity of the latter systems is stress-induced rather than constitutively elevated. Further, some, but not all members, of the glutathione-s-transferase (GST) family appear more highly expressed. We found no signatures of positive selection, indicating that sequence and function of the studied antioxidants are conserved in pinnipeds.
Collapse
Affiliation(s)
- Gerrit A. Martens
- Institute of Cell and Systems Biology of Animals, University of Hamburg, Hamburg, Germany
| | - Lars P. Folkow
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Thorsten Burmester
- Institute of Cell and Systems Biology of Animals, University of Hamburg, Hamburg, Germany
| | - Cornelia Geßner
- Institute of Cell and Systems Biology of Animals, University of Hamburg, Hamburg, Germany,*Correspondence: Cornelia Geßner,
| |
Collapse
|
8
|
Martens GA, Geßner C, Osterhof C, Hankeln T, Burmester T. Transcriptomes of Clusterin- and S100B-transfected neuronal cells elucidate protective mechanisms against hypoxia and oxidative stress in the hooded seal (Cystophora cristata) brain. BMC Neurosci 2022; 23:59. [PMID: 36243678 PMCID: PMC9571494 DOI: 10.1186/s12868-022-00744-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The hooded seal (Cystophora cristata) exhibits impressive diving skills and can tolerate extended durations of asphyxia, hypoxia and oxidative stress, without suffering from irreversible neuronal damage. Thus, when exposed to hypoxia in vitro, neurons of fresh cortical and hippocampal tissue from hooded seals maintained their membrane potential 4-5 times longer than neurons of mice. We aimed to identify the molecular mechanisms underlying the intrinsic neuronal hypoxia tolerance. Previous comparative transcriptomics of the visual cortex have revealed that S100B and clusterin (apolipoprotein J), two stress proteins that are involved in neurological disorders characterized by hypoxic conditions, have a remarkably high expression in hooded seals compared to ferrets. When overexpressed in murine neuronal cells (HN33), S100B and clusterin had neuroprotective effects when cells were exposed to hypoxia. However, their specific roles in hypoxia have remained largely unknown. METHODS In order to shed light on potential molecular pathways or interaction partners, we exposed HN33 cells transfected with either S100B, soluble clusterin (sCLU) or nuclear clusterin (nCLU) to normoxia, hypoxia and oxidative stress for 24 h. We then determined cell viability and compared the transcriptomes of transfected cells to control cells. Potential pathways and upstream regulators were identified via Gene Ontology (GO) and Ingenuity Pathway Analysis (IPA). RESULTS HN33 cells transfected with sCLU and S100B demonstrated improved glycolytic capacity and reduced aerobic respiration at normoxic conditions. Additionally, sCLU appeared to enhance pathways for cellular homeostasis to counteract stress-induced aggregation of proteins. S100B-transfected cells sustained lowered energy-intensive synaptic signaling. In response to hypoxia, hypoxia-inducible factor (HIF) pathways were considerably elevated in nCLU- and sCLU-transfected cells. In a previous study, S100B and sCLU decreased the amount of reactive oxygen species and lipid peroxidation in HN33 cells in response to oxidative stress, but in the present study, these functional effects were not mirrored in gene expression changes. CONCLUSIONS sCLU and S100B overexpression increased neuronal survival by decreasing aerobic metabolism and synaptic signaling in advance to hypoxia and oxidative stress conditions, possibly to reduce energy expenditure and the build-up of deleterious reactive oxygen species (ROS). Thus, a high expression of CLU isoforms and S100B is likely beneficial during hypoxic conditions.
Collapse
Affiliation(s)
- Gerrit A Martens
- Institute of Animal Cell and Systems Biology, Biocenter Grindel, University of Hamburg, 20146, Hamburg, Germany.
| | - Cornelia Geßner
- Institute of Animal Cell and Systems Biology, Biocenter Grindel, University of Hamburg, 20146, Hamburg, Germany
| | - Carina Osterhof
- Institute of Organismic and Molecular Evolution, Molecular Genetics & Genome Analysis, Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | - Thomas Hankeln
- Institute of Organismic and Molecular Evolution, Molecular Genetics & Genome Analysis, Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | - Thorsten Burmester
- Institute of Animal Cell and Systems Biology, Biocenter Grindel, University of Hamburg, 20146, Hamburg, Germany
| |
Collapse
|
9
|
Suzuki A, Shirakata C, Anzai H, Sumiyama D, Suzuki M. Vitamin B 12 biosynthesis of Cetobacterium ceti isolated from the intestinal content of captive common bottlenose dolphins ( Tursiops truncatus). MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36178719 DOI: 10.1099/mic.0.001244] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In comparison with terrestrial mammals, dolphins require a large amount of haemoglobin in blood and myoglobin in muscle to prolong their diving time underwater and increase the depth they can dive. The genus Cetobacterium is a common gastrointestinal bacterium in dolphins and includes two species: C. somerae and C. ceti. Whilst the former produces vitamin B12, which is essential for the biosynthesis of haem, a component of haemoglobin and myoglobin, but not produced by mammals, the production ability of the latter remains unknown. The present study aimed to isolate C. ceti from dolphins and reveal its ability to biosynthesize vitamin B12. Three strains of C. ceti, identified by phylogenetic analyses with 16S rRNA gene and genome-based taxonomy assignment and biochemical features, were isolated from faecal samples collected from two captive common bottlenose dolphins (Tursiops truncatus). A microbioassay using Lactobacillus leichmannii ATCC 7830 showed that the average concentration of vitamin B12 produced by the three strains was 11 (standard deviation: 2) pg ml-1. The biosynthesis pathway of vitamin B12, in particular, adenosylcobalamin, was detected in the draft genome of the three strains using blastKOALA. This is the first study to isolate C. ceti from common bottlenose dolphins and reveal its ability of vitamin B12 biosynthesis, and our findings emphasize the importance of C. ceti in supplying haemoglobin and myoglobin to dolphins.
Collapse
Affiliation(s)
- Akihiko Suzuki
- Laboratory of Aquatic Animal Physiology, Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880 Japan
- National Institute for Environmental Studies, Tsukuba, Ibaraki, 305-8506 Japan
| | - Chika Shirakata
- Enoshima Aquarium, Fujisawa, Kanagawa, 251-0035 Japan
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-0054 Japan
| | - Hiroshi Anzai
- Laboratory of Biotechnology in Dairy Life, Department of Bioscience in Dairy Life, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880 Japan
| | - Daisuke Sumiyama
- Laboratory of Biotechnology in Dairy Life, Department of Bioscience in Dairy Life, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880 Japan
| | - Miwa Suzuki
- Laboratory of Aquatic Animal Physiology, Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880 Japan
| |
Collapse
|
10
|
Noren SR, Jay CV, Burns JM, Fischbach AS. Correction: Rapid maturation of the muscle biochemistry that supports diving in Pacific walruses (Odobenus rosmarus divergens). J Exp Biol 2022; 225:273854. [PMID: 34982153 DOI: 10.1242/jeb.243854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Noren SR, Suydam R. Correction: Navigating under sea ice promotes rapid maturation of diving physiology and performance in beluga whales. J Exp Biol 2022; 225:273855. [PMID: 34982165 DOI: 10.1242/jeb.243855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Borque-Espinosa A, Rode KD, Ferrero-Fernández D, Forte A, Capaccioni-Azzati R, Fahlman A. Subsurface swimming and stationary diving are metabolically cheap in adult Pacific walruses (Odobenus rosmarus divergens). J Exp Biol 2021; 224:273381. [PMID: 34746957 DOI: 10.1242/jeb.242993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 11/02/2021] [Indexed: 11/20/2022]
Abstract
Walruses rely on sea-ice to efficiently forage and rest between diving bouts while maintaining proximity to prime foraging habitat. Recent declines in summer sea ice have resulted in walruses hauling out on land where they have to travel farther to access productive benthic habitat while potentially increasing energetic costs. Despite the need to better understand the impact of sea ice loss on energy expenditure, knowledge about metabolic demands of specific behaviours in walruses is scarce. In the present study, 3 adult female Pacific walruses (Odobenus rosmarus divergens) participated in flow-through respirometry trials to measure metabolic rates while floating inactive at the water surface during a minimum of 5 min, during a 180-second stationary dive, and while swimming horizontally underwater for ∼90 m. Metabolic rates during stationary dives (3.82±0.56 l O2 min-1) were lower than those measured at the water surface (4.64±1.04 l O2 min-1), which did not differ from rates measured during subsurface swimming (4.91±0.77 l O2 min-1). Thus, neither stationary diving nor subsurface swimming resulted in metabolic rates above those exhibited by walruses at the water surface. These results suggest that walruses minimize their energetic investment during underwater behaviours as reported for other marine mammals. Although environmental factors experienced by free-ranging walruses (e.g., winds or currents) likely affect metabolic rates, our results provide important information for understanding how behavioural changes affect energetic costs and can be used to improve bioenergetics models aimed at predicting the metabolic consequences of climate change on walruses.
Collapse
Affiliation(s)
- Alicia Borque-Espinosa
- Universitat de València, Av. de Blasco Ibáñez 13, 46010 Valencia, Spain.,Fundación Oceanogràfic de la Comunitat Valenciana, Gran Vía Marqués del Turia 19, 46005 Valencia, Spain
| | - Karyn D Rode
- U.S. Geological Survey Alaska Science Center, , 4210 University Dr, Anchorage, 99508 AK, USA
| | | | - Anabel Forte
- Universitat de València, Av. de Blasco Ibáñez 13, 46010 Valencia, Spain
| | | | - Andreas Fahlman
- Fundación Oceanogràfic de la Comunitat Valenciana, Gran Vía Marqués del Turia 19, 46005 Valencia, Spain.,Global Diving Research, Inc. Ottawa, K2J 5E8 ON, Canada
| |
Collapse
|
13
|
Piotrowski ER, Tift MS, Crocker DE, Pearson AB, Vázquez-Medina JP, Keith AD, Khudyakov JI. Ontogeny of Carbon Monoxide-Related Gene Expression in a Deep-Diving Marine Mammal. Front Physiol 2021; 12:762102. [PMID: 34744798 PMCID: PMC8567018 DOI: 10.3389/fphys.2021.762102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Marine mammals such as northern elephant seals (NES) routinely experience hypoxemia and ischemia-reperfusion events to many tissues during deep dives with no apparent adverse effects. Adaptations to diving include increased antioxidants and elevated oxygen storage capacity associated with high hemoprotein content in blood and muscle. The natural turnover of heme by heme oxygenase enzymes (encoded by HMOX1 and HMOX2) produces endogenous carbon monoxide (CO), which is present at high levels in NES blood and has been shown to have cytoprotective effects in laboratory systems exposed to hypoxia. To understand how pathways associated with endogenous CO production and signaling change across ontogeny in diving mammals, we measured muscle CO and baseline expression of 17 CO-related genes in skeletal muscle and whole blood of three age classes of NES. Muscle CO levels approached those of animals exposed to high exogenous CO, increased with age, and were significantly correlated with gene expression levels. Muscle expression of genes associated with CO production and antioxidant defenses (HMOX1, BVR, GPX3, PRDX1) increased with age and was highest in adult females, while that of genes associated with protection from lipid peroxidation (GPX4, PRDX6, PRDX1, SIRT1) was highest in adult males. In contrast, muscle expression of mitochondrial biogenesis regulators (PGC1A, ESRRA, ESRRG) was highest in pups, while genes associated with inflammation (HMOX2, NRF2, IL1B) did not vary with age or sex. Blood expression of genes involved in regulation of inflammation (IL1B, NRF2, BVR, IL10) was highest in pups, while HMOX1, HMOX2 and pro-inflammatory markers (TLR4, CCL4, PRDX1, TNFA) did not vary with age. We propose that ontogenetic upregulation of baseline HMOX1 expression in skeletal muscle of NES may, in part, underlie increases in CO levels and expression of genes encoding antioxidant enzymes. HMOX2, in turn, may play a role in regulating inflammation related to ischemia and reperfusion in muscle and circulating immune cells. Our data suggest putative ontogenetic mechanisms that may enable phocid pups to transition to a deep-diving lifestyle, including high baseline expression of genes associated with mitochondrial biogenesis and immune system activation during postnatal development and increased expression of genes associated with protection from lipid peroxidation in adulthood.
Collapse
Affiliation(s)
| | - Michael S. Tift
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, United States
| | - Daniel E. Crocker
- Biology Department, Sonoma State University, Rohnert Park, CA, United States
| | - Anna B. Pearson
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, United States
| | - José P. Vázquez-Medina
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Anna D. Keith
- Department of Biological Sciences, University of the Pacific, Stockton, CA, United States
| | - Jane I. Khudyakov
- Department of Biological Sciences, University of the Pacific, Stockton, CA, United States
| |
Collapse
|
14
|
Williams CL, Hindle AG. Field Physiology: Studying Organismal Function in the Natural Environment. Compr Physiol 2021; 11:1979-2015. [PMID: 34190338 DOI: 10.1002/cphy.c200005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Continuous physiological measurements collected in field settings are essential to understand baseline, free-ranging physiology, physiological range and variability, and the physiological responses of organisms to disturbances. This article presents a current summary of the available technologies to continuously measure the direct physiological parameters in the field at high-resolution/instantaneous timescales from freely behaving animals. There is a particular focus on advantages versus disadvantages of available methods as well as emerging technologies "on the horizon" that may have been validated in captive or laboratory-based scenarios but have yet to be applied in the wild. Systems to record physiological variables from free-ranging animals are reviewed, including radio (VHF/UFH) telemetry, acoustic telemetry, and dataloggers. Physiological parameters that have been continuously measured in the field are addressed in seven sections including heart rate and electrocardiography (ECG); electromyography (EMG); electroencephalography (EEG); body temperature; respiratory, blood, and muscle oxygen; gastric pH and motility; and blood pressure and flow. The primary focal sections are heart rate and temperature as these can be, and have been, extensively studied in free-ranging organisms. Predicted aspects of future innovation in physiological monitoring are also discussed. The article concludes with an overview of best practices and points to consider regarding experimental designs, cautions, and effects on animals. © 2021 American Physiological Society. Compr Physiol 11:1979-2015, 2021.
Collapse
Affiliation(s)
- Cassondra L Williams
- National Marine Mammal Foundation, San Diego, California, USA.,Department of Ecology and Evolutionary Biology, School of Biological Science, University of California Irvine, Irvine, California, USA
| | - Allyson G Hindle
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| |
Collapse
|
15
|
Patrician A, Dujić Ž, Spajić B, Drviš I, Ainslie PN. Breath-Hold Diving - The Physiology of Diving Deep and Returning. Front Physiol 2021; 12:639377. [PMID: 34093221 PMCID: PMC8176094 DOI: 10.3389/fphys.2021.639377] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/07/2021] [Indexed: 11/13/2022] Open
Abstract
Breath-hold diving involves highly integrative physiology and extreme responses to both exercise and asphyxia during progressive elevations in hydrostatic pressure. With astonishing depth records exceeding 100 m, and up to 214 m on a single breath, the human capacity for deep breath-hold diving continues to refute expectations. The physiological challenges and responses occurring during a deep dive highlight the coordinated interplay of oxygen conservation, exercise economy, and hyperbaric management. In this review, the physiology of deep diving is portrayed as it occurs across the phases of a dive: the first 20 m; passive descent; maximal depth; ascent; last 10 m, and surfacing. The acute risks of diving (i.e., pulmonary barotrauma, nitrogen narcosis, and decompression sickness) and the potential long-term medical consequences to breath-hold diving are summarized, and an emphasis on future areas of research of this unique field of physiological adaptation are provided.
Collapse
Affiliation(s)
- Alexander Patrician
- Center for Heart, Lung & Vascular Health, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Željko Dujić
- Department of Integrative Physiology, University of Split School of Medicine, Split, Croatia
| | - Boris Spajić
- Faculty of Kinesiology, University of Zagreb, Zagreb, Croatia
| | - Ivan Drviš
- Faculty of Kinesiology, University of Zagreb, Zagreb, Croatia
| | - Philip N Ainslie
- Center for Heart, Lung & Vascular Health, University of British Columbia Okanagan, Kelowna, BC, Canada
| |
Collapse
|
16
|
Lipid signature of neural tissues of marine and terrestrial mammals: consistency across species and habitats. J Comp Physiol B 2021; 191:815-829. [PMID: 33973058 DOI: 10.1007/s00360-021-01373-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/24/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023]
Abstract
Marine mammals are exposed to O2-limitation and increased N2 gas concentrations as they dive to exploit habitat and food resources. The lipid-rich tissues (blubber, acoustic, neural) are of particular concern as N2 is five times more soluble in lipid than in blood or muscle, creating body compartments that can become N2 saturated, possibly leading to gas emboli upon surfacing. We characterized lipids in the neural tissues of marine mammals to determine whether they have similar lipid profiles compared to terrestrial mammals. Lipid profiles (lipid content, lipid class composition, and fatty acid signatures) were determined in the neural tissues of 12 cetacean species with varying diving regimes, and compared to two species of terrestrial mammals. Neural tissue lipid profile was not significantly different in marine versus terrestrial mammals across tissue types. Within the marine species, average dive depth was not significantly associated with the lipid profile of cervical spinal cord. Across species, tissue type (brain, spinal cord, and spinal nerve) was a significant factor in lipid profile, largely due to the presence of storage lipids (triacylglycerol and wax ester/sterol ester) in spinal nerve tissue only. The stability of lipid signatures within the neural tissue types of terrestrial and marine species, which display markedly different dive behaviors, points to the consistent role of lipids in these tissues. These findings indicate that despite large differences in the level of N2 gas exposure by dive type in the species examined, the lipids of neural tissues likely do not have a neuroprotective role in marine mammals.
Collapse
|
17
|
Physiology, pathophysiology and (mal)adaptations to chronic apnoeic training: a state-of-the-art review. Eur J Appl Physiol 2021; 121:1543-1566. [PMID: 33791844 PMCID: PMC8144079 DOI: 10.1007/s00421-021-04664-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/04/2021] [Indexed: 02/08/2023]
Abstract
Breath-hold diving is an activity that humans have engaged in since antiquity to forage for resources, provide sustenance and to support military campaigns. In modern times, breath-hold diving continues to gain popularity and recognition as both a competitive and recreational sport. The continued progression of world records is somewhat remarkable, particularly given the extreme hypoxaemic and hypercapnic conditions, and hydrostatic pressures these athletes endure. However, there is abundant literature to suggest a large inter-individual variation in the apnoeic capabilities that is thus far not fully understood. In this review, we explore developments in apnoea physiology and delineate the traits and mechanisms that potentially underpin this variation. In addition, we sought to highlight the physiological (mal)adaptations associated with consistent breath-hold training. Breath-hold divers (BHDs) are evidenced to exhibit a more pronounced diving-response than non-divers, while elite BHDs (EBHDs) also display beneficial adaptations in both blood and skeletal muscle. Importantly, these physiological characteristics are documented to be primarily influenced by training-induced stimuli. BHDs are exposed to unique physiological and environmental stressors, and as such possess an ability to withstand acute cerebrovascular and neuronal strains. Whether these characteristics are also a result of training-induced adaptations or genetic predisposition is less certain. Although the long-term effects of regular breath-hold diving activity are yet to be holistically established, preliminary evidence has posed considerations for cognitive, neurological, renal and bone health in BHDs. These areas should be explored further in longitudinal studies to more confidently ascertain the long-term health implications of extreme breath-holding activity.
Collapse
|
18
|
Evolved increases in hemoglobin-oxygen affinity and the Bohr effect coincided with the aquatic specialization of penguins. Proc Natl Acad Sci U S A 2021; 118:2023936118. [PMID: 33753505 PMCID: PMC8020755 DOI: 10.1073/pnas.2023936118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In diving birds like penguins, physiologic considerations suggest that increased hemoglobin (Hb)-O2 affinity may improve pulmonary O2 extraction and enhance dive capacity. We integrated experimental tests on whole-blood and native Hbs of penguins with protein engineering experiments on reconstructed ancestral Hbs. The experiments involving ancestral protein resurrection enabled us to test for evolved changes in Hb function in the stem lineage of penguins after divergence from their closest nondiving relatives. We demonstrate that penguins evolved an increased Hb-O2 affinity in conjunction with a greatly augmented Bohr effect (i.e., reduction in Hb-O2 affinity at low pH) that should maximize pulmonary O2 extraction without compromising O2 delivery at systemic capillaries. Dive capacities of air-breathing vertebrates are dictated by onboard O2 stores, suggesting that physiologic specialization of diving birds such as penguins may have involved adaptive changes in convective O2 transport. It has been hypothesized that increased hemoglobin (Hb)-O2 affinity improves pulmonary O2 extraction and enhances the capacity for breath-hold diving. To investigate evolved changes in Hb function associated with the aquatic specialization of penguins, we integrated comparative measurements of whole-blood and purified native Hb with protein engineering experiments based on site-directed mutagenesis. We reconstructed and resurrected ancestral Hb representing the common ancestor of penguins and the more ancient ancestor shared by penguins and their closest nondiving relatives (order Procellariiformes, which includes albatrosses, shearwaters, petrels, and storm petrels). These two ancestors bracket the phylogenetic interval in which penguin-specific changes in Hb function would have evolved. The experiments revealed that penguins evolved a derived increase in Hb-O2 affinity and a greatly augmented Bohr effect (i.e., reduced Hb-O2 affinity at low pH). Although an increased Hb-O2 affinity reduces the gradient for O2 diffusion from systemic capillaries to metabolizing cells, this can be compensated by a concomitant enhancement of the Bohr effect, thereby promoting O2 unloading in acidified tissues. We suggest that the evolved increase in Hb-O2 affinity in combination with the augmented Bohr effect maximizes both O2 extraction from the lungs and O2 unloading from the blood, allowing penguins to fully utilize their onboard O2 stores and maximize underwater foraging time.
Collapse
|
19
|
Borque-Espinosa A, Ferrero-Fernández D, Capaccioni-Azzati R, Fahlman A. Lung function assessment in the Pacific walrus ( Odobenus rosmarus divergens) while resting on land and submerged in water. J Exp Biol 2021; 224:jeb227389. [PMID: 33188062 DOI: 10.1242/jeb.227389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 11/09/2020] [Indexed: 11/20/2022]
Abstract
In the present study, we examined lung function in healthy resting adult (born in 2003) Pacific walruses (Odobenus rosmarus divergens) by measuring respiratory flow ([Formula: see text]) using a custom-made pneumotachometer. Three female walruses (670-1025 kg) voluntarily participated in spirometry trials while spontaneously breathing on land (sitting and lying down in sternal recumbency) and floating in water. While sitting, two walruses performed active respiratory efforts, and one animal participated in lung compliance measurements. For spontaneous breaths, [Formula: see text] was lower when walruses were lying down (e.g. expiration: 7.1±1.2 l s-1) as compared with in water (9.9±1.4 l s-1), while tidal volume (VT, 11.5±4.6 l), breath duration (4.6±1.4 s) and respiratory frequency (7.6±2.2 breaths min-1) remained the same. The measured VT and specific dynamic lung compliance (0.32±0.07 cmH2O-1) for spontaneous breaths were higher than those estimated for similarly sized terrestrial mammals. VT increased with body mass (allometric mass-exponent=1.29) and ranged from 3% to 43% of the estimated total lung capacity (TLCest) for spontaneous breaths. When normalized for TLCest, the maximal expiratory [Formula: see text] ([Formula: see text]exp) was higher than that estimated in phocids, but lower than that reported in cetaceans and the California sea lion. [Formula: see text]exp was maintained over all lung volumes during spontaneous and active respiratory manoeuvres. We conclude that location (water or land) affects lung function in the walrus and should be considered when studying respiratory physiology in semi-aquatic marine mammals.
Collapse
Affiliation(s)
- Alicia Borque-Espinosa
- Fundación Oceanogràfic de la Comunitat Valenciana, Gran Vía Marqués del Turia 19, 46005 Valencia, Spain
- Universitat de València, Av. de Blasco Ibáñez 13, 46010 Valencia, Spain
| | | | | | - Andreas Fahlman
- Fundación Oceanogràfic de la Comunitat Valenciana, Gran Vía Marqués del Turia 19, 46005 Valencia, Spain
- Global Diving Research, Inc., Ottawa, ON, Canada, K2J 5E8
| |
Collapse
|
20
|
Suzuki M, Anraku M, Hakamata W, Kishida T, Ueda K, Endoh T. Antioxidative Potency of Dolphin Serum Albumin Is Stronger Than That of Human Serum Albumin Irrespective of Substitution of 34Cysteine With Serine. Front Physiol 2020; 11:598451. [PMID: 33224041 PMCID: PMC7667151 DOI: 10.3389/fphys.2020.598451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/06/2020] [Indexed: 11/13/2022] Open
Abstract
Serum albumin (SA), the most abundant protein in circulation, functions as a carrier protein, osmoregulator, and antioxidant. Generally, SA exerts its antioxidative effects by scavenging reactive oxygen species. Because marine mammals are superior divers, they are intermittently exposed to oxidative stress induced by rapid reperfusion of oxygen to ischemic tissues after the dive. Although several antioxidants in marine mammals have been described, SA activity remains largely uncharacterized. In this study, we investigated the antioxidative activity of SA in marine mammals by comparing features of the primary and steric structures, biochemical properties, and antioxidative activities of common bottlenose dolphin SA (DSA) and human SA (HSA). Our results revealed that DSA lacked free cysteine at position 34 that is important for the antioxidative activity of HSA; however, the antioxidative capacity and thiol activity of DSA were stronger than those of HSA. Circular dichroism spectra showed different patterns in DSA and HSA. Ultraviolet fluorescence intensities of DSA were higher than those of HSA, suggesting lower surface hydrophobicity of DSA. Additionally, DSA showed higher excess heat capacity than HSA. We then compared a homology model of DSA with a 3D model of HSA. Our results indicate that DSA was more unstable than HSA at least in the body-temperature range, probably due to the mode of molecules involved in the disulfide bonds and/or the lower surface hydrophobicity, and it may be related to the equivalent or stronger antioxidant potency of DSA. These data show that DSA is an effective antioxidant in the circulation of the dolphin.
Collapse
Affiliation(s)
- Miwa Suzuki
- Laboratory of Aquatic Animal Physiology, Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Makoto Anraku
- Laboratory of Physical Pharmaceutics, Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan
| | - Wataru Hakamata
- Laboratory of Biological Chemistry, Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Takushi Kishida
- Wildlife Research Center, Kyoto University, Kyoto, Japan.,Museum of Natural and Environmental History, Shizuoka, Japan
| | | | | |
Collapse
|
21
|
Arango BG, Harfush-Meléndez M, Marmolejo-Valencia JA, Merchant-Larios H, Crocker DE. Blood oxygen stores of olive ridley sea turtles, Lepidochelys olivacea are highly variable among individuals during arribada nesting. J Comp Physiol B 2020; 191:185-194. [PMID: 33064209 DOI: 10.1007/s00360-020-01321-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/14/2020] [Accepted: 09/29/2020] [Indexed: 11/25/2022]
Abstract
Sea turtles dive with a full lung of air and these O2 stores are supplemented by O2 stored in blood and muscle. Olive ridley sea turtles exhibit polymorphic nesting behavior, mass nesting behavior called arribada, where thousands of turtles will nest at once, and solitary nesting behavior. The potential physiological differences between the individuals using these strategies are not well understood. We measured blood volume and associated variables, including blood hemoglobin content and hematocrit, to estimate total blood O2 stores. There were no significant differences in mean values between nesting strategies, but arribada nesting individuals were more variable than those performing solitary nesting. Mass-specific plasma volume was relatively invariant among individuals but mass specific blood volume and blood oxygen stores varied widely, twofold and threefold, respectively. Blood O2 stores represented 32% of total body O2 stores. Under typical mean diving conditions of 26 °C and high levels of activity, blood stores confer ~ 14 min to aerobic dive times and are likely critical for the long duration, deep diving exhibited by the species. Individual differences in blood O2 stores strongly impact estimated aerobic dive limits and may constrain the ability of individuals to respond to changes on ocean climate.
Collapse
Affiliation(s)
- B Gabriela Arango
- Biology Department, Sonoma State University, 1801 East Cotati Ave, Rohnert Park, CA, 94928, USA.
| | | | | | - Horacio Merchant-Larios
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - Daniel E Crocker
- Biology Department, Sonoma State University, 1801 East Cotati Ave, Rohnert Park, CA, 94928, USA
| |
Collapse
|
22
|
Noren SR. Postnatal development of diving physiology: implications of anthropogenic disturbance for immature marine mammals. ACTA ACUST UNITED AC 2020; 223:223/17/jeb227736. [PMID: 32917778 DOI: 10.1242/jeb.227736] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Marine mammals endure extended breath-holds while performing active behaviors, which has fascinated scientists for over a century. It is now known that these animals have large onboard oxygen stores and utilize oxygen-conserving mechanisms to prolong aerobically supported dives to great depths, while typically avoiding (or tolerating) hypoxia, hypercarbia, acidosis and decompression sickness (DCS). Over the last few decades, research has revealed that diving physiology is underdeveloped at birth. Here, I review the postnatal development of the body's oxygen stores, cardiorespiratory system and other attributes of diving physiology for pinnipeds and cetaceans to assess how physiological immaturity makes young marine mammals vulnerable to disturbance. Generally, the duration required for body oxygen stores to mature varies across species in accordance with the maternal dependency period, which can be over 2 years long in some species. However, some Arctic and deep-diving species achieve mature oxygen stores comparatively early in life (prior to weaning). Accelerated development in these species supports survival during prolonged hypoxic periods when calves accompany their mothers under sea ice and to the bathypelagic zone, respectively. Studies on oxygen utilization patterns and heart rates while diving are limited, but the data indicate that immature marine mammals have a limited capacity to regulate heart rate (and hence oxygen utilization) during breath-hold. Underdeveloped diving physiology, in combination with small body size, limits diving and swimming performance. This makes immature marine mammals particularly vulnerable to mortality during periods of food limitation, habitat alterations associated with global climate change, fishery interactions and other anthropogenic disturbances, such as exposure to sonar.
Collapse
Affiliation(s)
- Shawn R Noren
- Institute of Marine Science, University of California, Santa Cruz, CA 95060, USA
| |
Collapse
|
23
|
Lessons from the post-genomic era: Globin diversity beyond oxygen binding and transport. Redox Biol 2020; 37:101687. [PMID: 32863222 PMCID: PMC7475203 DOI: 10.1016/j.redox.2020.101687] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 12/16/2022] Open
Abstract
Vertebrate hemoglobin (Hb) and myoglobin (Mb) were among the first proteins whose structures and sequences were determined over 50 years ago. In the subsequent pregenomic period, numerous related proteins came to light in plants, invertebrates and bacteria, that shared the myoglobin fold, a signature sequence motif characteristic of a 3-on-3 α-helical sandwich. Concomitantly, eukaryote and bacterial globins with a truncated 2-on-2 α-helical fold were discovered. Genomic information over the last 20 years has dramatically expanded the list of known globins, demonstrating their existence in a limited number of archaeal genomes, a majority of bacterial genomes and an overwhelming majority of eukaryote genomes. In vertebrates, 6 additional globin types were identified, namely neuroglobin (Ngb), cytoglobin (Cygb), globin E (GbE), globin X (GbX), globin Y (GbY) and androglobin (Adgb). Furthermore, functions beyond the familiar oxygen transport and storage have been discovered within the vertebrate globin family, including NO metabolism, peroxidase activity, scavenging of free radicals, and signaling functions. The extension of the knowledge on globin functions suggests that the original roles of bacterial globins must have been enzymatic, involved in defense against NO toxicity, and perhaps also as sensors of O2, regulating taxis away or towards high O2 concentrations. In this review, we aimed to discuss the evolution and remarkable functional diversity of vertebrate globins with particular focus on the variety of non-canonical expression sites of mammalian globins and their according impressive variability of atypical functions.
Collapse
|
24
|
Bird DJ, Hamid I, Fox‐Rosales L, Van Valkenburgh B. Olfaction at depth: Cribriform plate size declines with dive depth and duration in aquatic arctoid carnivorans. Ecol Evol 2020; 10:6929-6953. [PMID: 32760503 PMCID: PMC7391337 DOI: 10.1002/ece3.6343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/31/2020] [Accepted: 04/06/2020] [Indexed: 12/05/2022] Open
Abstract
It is widely accepted that obligate aquatic mammals, specifically toothed whales, rely relatively little on olfaction. There is less agreement about the importance of smell among aquatic mammals with residual ties to land, such as pinnipeds and sea otters. Field observations of marine carnivorans stress their keen use of smell while on land or pack ice. Yet, one dimension of olfactory ecology is often overlooked: while underwater, aquatic carnivorans forage "noseblind," diving with nares closed, removed from airborne chemical cues. For this reason, we predicted marine carnivorans would have reduced olfactory anatomy relative to closely related terrestrial carnivorans. Moreover, because species that dive deeper and longer forage farther removed from surface scent cues, we predicted further reductions in their olfactory anatomy. To test these hypotheses, we looked to the cribriform plate (CP), a perforated bone in the posterior nasal chamber of mammals that serves as the only passageway for olfactory nerves crossing from the periphery to the olfactory bulb and thus covaries in size with relative olfactory innervation. Using CT scans and digital quantification, we compared CP morphology across Arctoidea, a clade at the interface of terrestrial and aquatic ecologies. We found that aquatic carnivoran species from two lineages that independently reinvaded marine environments (Pinnipedia and Mustelidae), have significantly reduced relative CP than terrestrial species. Furthermore, within these aquatic lineages, diving depth and duration were strongly correlated with CP loss, and the most extreme divers, elephant seals, displayed the greatest reductions. These observations suggest that CP reduction in carnivorans is an adaptive response to shifting selection pressures during secondary invasion of marine environments, particularly to foraging at great depths. Because the CP is fairly well preserved in the fossil record, using methods presented here to quantify CP morphology in extinct species could further clarify evolutionary patterns of olfactory loss across aquatic mammal lineages that have independently committed to life in water.
Collapse
Affiliation(s)
- Deborah J. Bird
- Department of Ecology and Evolutionary BiologyUniversity of California Los AngelesLos AngelesCAUSA
| | - Iman Hamid
- Department of Ecology and Evolutionary BiologyUniversity of California Los AngelesLos AngelesCAUSA
| | - Lester Fox‐Rosales
- Department of Ecology and Evolutionary BiologyUniversity of California Los AngelesLos AngelesCAUSA
| | - Blaire Van Valkenburgh
- Department of Ecology and Evolutionary BiologyUniversity of California Los AngelesLos AngelesCAUSA
| |
Collapse
|
25
|
Collin SP, Davies WIL. Editorial: Biodiversity of Sensory Systems in Aquatic Vertebrates. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
26
|
Fahlman A, Sato K, Miller P. Improving estimates of diving lung volume in air-breathing marine vertebrates. ACTA ACUST UNITED AC 2020; 223:223/12/jeb216846. [PMID: 32587107 DOI: 10.1242/jeb.216846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The air volume in the respiratory system of marine tetrapods provides a store of O2 to fuel aerobic metabolism during dives; however, it can also be a liability, as the associated N2 can increase the risk of decompression sickness. In order to more fully understand the physiological limitations of different air-breathing marine vertebrates, it is therefore important to be able to accurately estimate the air volume in the respiratory system during diving. One method that has been used to do so is to calculate the air volume from glide phases - periods of movement during which no thrust is produced by the animal - which many species conduct during ascent periods, when gases are expanding owing to decreasing hydrostatic pressure. This method assumes that there is conservation of mass in the respiratory system, with volume changes only driven by pressure. In this Commentary, we use previously published data to argue that both the respiratory quotient and differences in tissue and blood gas solubility potentially alter the mass balance in the respiratory system throughout a dive. Therefore, near the end of a dive, the measured volume of gas at a given pressure may be 12-50% less than from the start of the dive; the actual difference will depend on the length of the dive, the cardiac output, the pulmonary shunt and the metabolic rate. Novel methods and improved understanding of diving physiology will be required to verify the size of the effects described here and to more accurately estimate the volume of gas inhaled at the start of a dive.
Collapse
Affiliation(s)
- Andreas Fahlman
- Global Diving Research Inc., Ottawa, ON, Canada, K2J 5E8 .,Fundación Oceanogràfic de la Comunitat Valenciana, Gran Vía Marqués del Turia 19, 46005 Valencia, Spain
| | - Katsufumi Sato
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan
| | - Patrick Miller
- SMRU (Sea Mammal Research Unit), University of St Andrews, St Andrews, Fife KY16 8LB, UK
| |
Collapse
|
27
|
Gabler-Smith MK, Westgate AJ, Koopman HN. Fatty acid composition and N 2 solubility in triacylglycerol-rich adipose tissue: the likely importance of intact molecular structure. ACTA ACUST UNITED AC 2020; 223:jeb.216770. [PMID: 32001545 DOI: 10.1242/jeb.216770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/23/2020] [Indexed: 12/25/2022]
Abstract
Diving tetrapods (sea turtles, seabirds and marine mammals) are a biologically diverse group, yet all are under similar constraints: oxygen limitation and increased hydrostatic pressure at depth. Adipose tissue is important in the context of diving because nitrogen gas (N2) is five times more soluble in fat than in blood, creating a potential N2 sink in diving animals. Previous research demonstrates that unusual lipid composition [waxes and short-chained fatty acids (FA)] in adipose tissue of some whales leads to increased N2 solubility. We evaluated the N2 solubility of adipose tissue from 12 species of diving tetrapods lacking these unusual lipids to explore whether solubility in this tissue can be linked to lipid structure. Across all taxonomic groups, the same eight FA accounted for 70-80% of the entire lipid profile; almost all adipose tissues were dominated by monounsaturated FA (40.2-67.4 mol%). However, even with consistent FA profiles, there was considerable variability in N2 solubility, ranging from 0.051±0.003 to 0.073±0.004 ml N2 ml-1 oil. Interestingly, differences in N2 solubility could not be attributed to taxonomic group (P=0.06) or FA composition (P>0.10). These results lead to two main conclusions: (1) in triacylglycerol-only adipose tissues, the FA pool itself may not have a strong influence on N2 solubility; and (2) samples with similar FA profiles can have different N2 solubility values, suggesting that 3D arrangement of individual FA within a triacylglycerol molecule may have important roles in determining N2 solubility.
Collapse
Affiliation(s)
- Molly K Gabler-Smith
- University of North Carolina Wilmington, 601 S. College Road, Wilmington, NC 28403, USA .,Harvard Museum of Comparative Zoology, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Andrew J Westgate
- University of North Carolina Wilmington, 601 S. College Road, Wilmington, NC 28403, USA
| | - Heather N Koopman
- University of North Carolina Wilmington, 601 S. College Road, Wilmington, NC 28403, USA
| |
Collapse
|
28
|
Hermann-Sorensen H, Thometz NM, Woodie K, Dennison-Gibby S, Reichmuth C. In Vivo Measurements of Lung Volumes in Ringed Seals: Insights from Biomedical Imaging. J Exp Biol 2020:jeb.235507. [PMID: 34005800 DOI: 10.1242/jeb.235507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/11/2020] [Indexed: 11/20/2022]
Abstract
Marine mammals rely on oxygen stored in blood, muscle, and lungs to support breath-hold diving and foraging at sea. Here, we used biomedical imaging to examine lung oxygen stores and other key respiratory parameters in living ringed seals (Pusa hispida). Three-dimensional models created from computed tomography (CT) images were used to quantify total lung capacity (TLC), respiratory dead space, minimum air volume, and total body volume to improve assessments of lung oxygen storage capacity, scaling relationships, and buoyant force estimates. Results suggest that lung oxygen stores determined in vivo are smaller than those derived from postmortem measurements. We also demonstrate that-while established allometric relationships hold well for most pinnipeds-these relationships consistently overestimate TLC for the smallest phocid seal. Finally, measures of total body volume reveal differences in body density and net vertical forces in the water column that influence costs associated with diving and foraging in free-ranging seals.
Collapse
Affiliation(s)
- Holly Hermann-Sorensen
- University of California Santa Cruz. Department of Ocean Sciences, 115 McAllister Way, Santa Cruz CA 95060, USA
| | - Nicole M Thometz
- University of San Francisco, Department of Biology. 2130 Fulton Street, San Francisco, CA 94117, USA
- University of California Santa Cruz. Institute of Marine Sciences, 115 McAllister Way, Santa Cruz CA 95060, USA
| | - Kathleen Woodie
- Alaska SeaLife Center, 301 Railway Ave, Seward, AK 99664, USA
| | | | - Colleen Reichmuth
- Alaska SeaLife Center, 301 Railway Ave, Seward, AK 99664, USA
- University of California Santa Cruz. Institute of Marine Sciences, 115 McAllister Way, Santa Cruz CA 95060, USA
| |
Collapse
|
29
|
Skeletal muscle, haematological and splenic volume characteristics of elite breath-hold divers. Eur J Appl Physiol 2019; 119:2499-2511. [PMID: 31542805 PMCID: PMC6858395 DOI: 10.1007/s00421-019-04230-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/29/2019] [Indexed: 11/25/2022]
Abstract
Purpose The aim of the study was to provide an evaluation of the oxygen transport, exchange and storage capacity of elite breath-hold divers (EBHD) compared with non-divers (ND). Methods Twenty-one healthy males’ (11 EBHD; 10 ND) resting splenic volumes were assessed by ultrasound and venous blood drawn for full blood count analysis. Percutaneous skeletal muscle biopsies were obtained from the m. vastus lateralis to measure capillarisation, and fibre type-specific localisation and distribution of myoglobin and mitochondrial content using quantitative immunofluorescence microscopy. Results Splenic volume was not different between groups. Reticulocytes, red blood cells and haemoglobin concentrations were higher (+ 24%, p < 0.05; + 9%, p < 0.05; + 3%, p < 0.05; respectively) and mean cell volume was lower (− 6.5%, p < 0.05) in the EBHD compared with ND. Haematocrit was not different between groups. Capillary density was greater (+ 19%; p < 0.05) in the EBHD. The diffusion distance (R95) was lower in type I versus type II fibres for both groups (EBHD, p < 0.01; ND, p < 0.001), with a lower R95 for type I fibres in the EBHD versus ND (− 13%, p < 0.05). Myoglobin content was higher in type I than type II fibres in EBHD (+ 27%; p < 0.01) and higher in the type I fibres of EBHD than ND (+ 27%; p < 0.05). No fibre type differences in myoglobin content were observed in ND. Mitochondrial content was higher in type I than type II fibres in EBHD (+ 35%; p < 0.05), with no fibre type differences in ND or between groups. Conclusions In conclusion, EBDH demonstrate enhanced oxygen storage in both blood and skeletal muscle and a more efficient oxygen exchange capacity between blood and skeletal muscle versus ND.
Collapse
|
30
|
Signore AV, Paijmans JLA, Hofreiter M, Fago A, Weber RE, Springer MS, Campbell KL. Emergence of a Chimeric Globin Pseudogene and Increased Hemoglobin Oxygen Affinity Underlie the Evolution of Aquatic Specializations in Sirenia. Mol Biol Evol 2019; 36:1134-1147. [PMID: 30828717 PMCID: PMC6526914 DOI: 10.1093/molbev/msz044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/13/2019] [Accepted: 02/27/2019] [Indexed: 12/13/2022] Open
Abstract
As limits on O2 availability during submergence impose severe constraints on aerobic respiration, the oxygen binding globin proteins of marine mammals are expected to have evolved under strong evolutionary pressures during their land-to-sea transition. Here, we address this question for the order Sirenia by retrieving, annotating, and performing detailed selection analyses on the globin repertoire of the extinct Steller’s sea cow (Hydrodamalis gigas), dugong (Dugong dugon), and Florida manatee (Trichechus manatus latirostris) in relation to their closest living terrestrial relatives (elephants and hyraxes). These analyses indicate most loci experienced elevated nucleotide substitution rates during their transition to a fully aquatic lifestyle. While most of these genes evolved under neutrality or strong purifying selection, the rate of nonsynonymous/synonymous replacements increased in two genes (Hbz-T1 and Hba-T1) that encode the α-type chains of hemoglobin (Hb) during each stage of life. Notably, the relaxed evolution of Hba-T1 is temporally coupled with the emergence of a chimeric pseudogene (Hba-T2/Hbq-ps) that contributed to the tandemly linked Hba-T1 of stem sirenians via interparalog gene conversion. Functional tests on recombinant Hb proteins from extant and ancestral sirenians further revealed that the molecular remodeling of Hba-T1 coincided with increased Hb–O2 affinity in early sirenians. Available evidence suggests that this trait evolved to maximize O2 extraction from finite lung stores and suppress tissue O2 offloading, thereby facilitating the low metabolic intensities of extant sirenians. In contrast, the derived reduction in Hb–O2 affinity in (sub)Arctic Steller’s sea cows is consistent with fueling increased thermogenesis by these once colossal marine herbivores.
Collapse
Affiliation(s)
- Anthony V Signore
- Department of Biological Sciences, University of Manitoba, Winnipeg, Canada.,School of Biological Sciences, University of Nebraska, Lincoln, NE
| | | | - Michael Hofreiter
- Institute of Biochemistry and Biology, University of Potsdam, Germany
| | - Angela Fago
- Department of Bioscience, Zoophysiology, Aarhus University, Denmark
| | - Roy E Weber
- Department of Bioscience, Zoophysiology, Aarhus University, Denmark
| | - Mark S Springer
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA
| | - Kevin L Campbell
- Department of Biological Sciences, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
31
|
Choy ES, Campbell KL, Berenbrink M, Roth JD, Loseto LL. Body condition impacts blood and muscle oxygen storage capacity of free-living beluga whales ( Delphinapterus leucas). ACTA ACUST UNITED AC 2019; 222:jeb.191916. [PMID: 31097602 DOI: 10.1242/jeb.191916] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 05/11/2019] [Indexed: 11/20/2022]
Abstract
Arctic marine ecosystems are currently undergoing rapid environmental changes. Over the past 20 years, individual growth rates of beluga whales (Delphinapterus leucas) have declined, which may be a response to climate change; however, the scarcity of physiological data makes it difficult to gauge the adaptive capacity and resilience of the species. We explored relationships between body condition and physiological parameters pertaining to oxygen (O2) storage capacity in 77 beluga whales in the eastern Beaufort Sea. Muscle myoglobin concentrations averaged 77.9 mg g-1, one of the highest values reported among mammals. Importantly, blood haematocrit, haemoglobin and muscle myoglobin concentrations correlated positively to indices of body condition, including maximum half-girth to length ratios. Thus, a whale with the lowest body condition index would have ∼27% lower blood (26.0 versus 35.7 ml kg-1) and 12% lower muscle (15.6 versus 17.7 ml kg-1) O2 stores than a whale of equivalent mass with the highest body condition index; with the conservative assumption that underwater O2 consumption rates are unaffected by body condition, this equates to a >3 min difference in maximal aerobic dive time between the two extremes (14.3 versus 17.4 min). Consequently, environmental changes that negatively impact body condition may hinder the ability of whales to reach preferred prey sources, evade predators and escape ice entrapments. The relationship between body condition and O2 storage capacity may represent a vicious cycle, in which environmental changes resulting in decreased body condition impair foraging, leading to further reductions in condition through diminished prey acquisition and/or increased foraging efforts.
Collapse
Affiliation(s)
- Emily S Choy
- Department of Natural Resource Sciences, McGill University, Ste Anne de Bellevue, QC, H9X 3V9, Canada .,Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Kevin L Campbell
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Michael Berenbrink
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - James D Roth
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Lisa L Loseto
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.,Freshwater Institute, Fisheries and Oceans Canada, Winnipeg, MB, R3T 2N6, Canada
| |
Collapse
|
32
|
Arranz P, Benoit-Bird KJ, Friedlaender AS, Hazen EL, Goldbogen JA, Stimpert AK, DeRuiter SL, Calambokidis J, Southall BL, Fahlman A, Tyack PL. Diving Behavior and Fine-Scale Kinematics of Free-Ranging Risso's Dolphins Foraging in Shallow and Deep-Water Habitats. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00053] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
33
|
Goertz CEC, Reichmuth C, Thometz NM, Ziel H, Boveng P. Comparative Health Assessments of Alaskan Ice Seals. Front Vet Sci 2019; 6:4. [PMID: 30792982 PMCID: PMC6375287 DOI: 10.3389/fvets.2019.00004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/10/2019] [Indexed: 01/07/2023] Open
Abstract
Bearded (Erignathus barbatus), ringed (Pusa hispida), spotted (Phoca largha), and ribbon (Histriophoca fasciata) seals rely on seasonal sea-ice in Arctic and sub-Arctic regions. Many aspects of the biology and physiology of these seals are poorly known, and species-typical health parameters are not available for all species. Such information has proven difficult to obtain due to the challenges of studying Arctic seals in the wild and their minimal historic representation in aquaria. Here, we combine diagnostic information gathered between 2000 and 2017 from free-ranging seals, seals in short-term rehabilitation, and seals living in long-term human care to evaluate and compare key health parameters. For individuals in apparent good health, hematology, and blood chemistry values are reported by the source group for 10 bearded, 13 ringed, 73 spotted, and 81 ribbon seals from Alaskan waters. For a smaller set of individuals handled during veterinary or necropsy procedures, the presence of parasites and pathogens is described, as well as exposure to a variety of infectious diseases known to affect marine mammals and/or humans, with positive titers observed for Brucella, Leptospira, avian influenza, herpesvirus PhHV-1, and morbillivirus. These data provide initial baseline parameters for hematology, serum chemistries, and other species-level indicators of health that can be used to assess the condition of individual seals, inform monitoring and management efforts, and guide directed research efforts for Alaskan populations of ice-associated seals.
Collapse
Affiliation(s)
| | - Colleen Reichmuth
- Alaska SeaLife Center, Seward, AK, United States.,Institute of Marine Sciences, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Nicole M Thometz
- Institute of Marine Sciences, University of California, Santa Cruz, Santa Cruz, CA, United States.,Department of Biology, University of San Francisco, San Francisco, CA, United States
| | - Heather Ziel
- Polar Ecosystems Program, Marine Mammal Laboratory, Alaska Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, WA, United States
| | - Peter Boveng
- Polar Ecosystems Program, Marine Mammal Laboratory, Alaska Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, WA, United States
| |
Collapse
|
34
|
Fahlman A, Jensen FH, Tyack PL, Wells RS. Modeling Tissue and Blood Gas Kinetics in Coastal and Offshore Common Bottlenose Dolphins, Tursiops truncatus. Front Physiol 2018; 9:838. [PMID: 30072907 PMCID: PMC6060447 DOI: 10.3389/fphys.2018.00838] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/14/2018] [Indexed: 01/07/2023] Open
Abstract
Bottlenose dolphins (Tursiops truncatus) are highly versatile breath-holding predators that have adapted to a wide range of foraging niches from rivers and coastal ecosystems to deep-water oceanic habitats. Considerable research has been done to understand how bottlenose dolphins manage O2 during diving, but little information exists on other gases or how pressure affects gas exchange. Here we used a dynamic multi-compartment gas exchange model to estimate blood and tissue O2, CO2, and N2 from high-resolution dive records of two different common bottlenose dolphin ecotypes inhabiting shallow (Sarasota Bay) and deep (Bermuda) habitats. The objective was to compare potential physiological strategies used by the two populations to manage shallow and deep diving life styles. We informed the model using species-specific parameters for blood hematocrit, resting metabolic rate, and lung compliance. The model suggested that the known O2 stores were sufficient for Sarasota Bay dolphins to remain within the calculated aerobic dive limit (cADL), but insufficient for Bermuda dolphins that regularly exceeded their cADL. By adjusting the model to reflect the body composition of deep diving Bermuda dolphins, with elevated muscle mass, muscle myoglobin concentration and blood volume, the cADL increased beyond the longest dive duration, thus reflecting the necessary physiological and morphological changes to maintain their deep-diving life-style. The results indicate that cardiac output had to remain elevated during surface intervals for both ecotypes, and suggests that cardiac output has to remain elevated during shallow dives in-between deep dives to allow sufficient restoration of O2 stores for Bermuda dolphins. Our integrated modeling approach contradicts predictions from simple models, emphasizing the complex nature of physiological interactions between circulation, lung compression, and gas exchange.
Collapse
Affiliation(s)
- Andreas Fahlman
- Global Diving Research, Ottawa, ON, Canada
- Fundación Oceanografic de la Comunidad Valenciana, Valencia, Spain
| | - Frants H. Jensen
- Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
| | - Peter L. Tyack
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, United Kingdom
| | - Randall S. Wells
- Chicago Zoological Society's Sarasota Dolphin Research Program, Mote Marine Laboratory, Sarasota, FL, United States
| |
Collapse
|
35
|
Narazaki T, Isojunno S, Nowacek DP, Swift R, Friedlaender AS, Ramp C, Smout S, Aoki K, Deecke VB, Sato K, Miller PJO. Body density of humpback whales (Megaptera novaengliae) in feeding aggregations estimated from hydrodynamic gliding performance. PLoS One 2018; 13:e0200287. [PMID: 30001369 PMCID: PMC6042725 DOI: 10.1371/journal.pone.0200287] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 06/22/2018] [Indexed: 02/04/2023] Open
Abstract
Many baleen whales undertake annual fasting and feeding cycles, resulting in substantial changes in their body condition, an important factor affecting fitness. As a measure of lipid-store body condition, tissue density of a few deep diving marine mammals has been estimated using a hydrodynamic glide model of drag and buoyancy forces. Here, we applied the method to shallow-diving humpback whales (Megaptera novaeangliae) in North Atlantic and Antarctic feeding aggregations. High-resolution 3-axis acceleration, depth and speed data were collected from 24 whales. Measured values of acceleration during 5 s glides were fitted to a hydrodynamic glide model to estimate unknown parameters (tissue density, drag term and diving gas volume) in a Bayesian framework. Estimated species-average tissue density (1031.6 ± 2.1 kg m-3, ±95% credible interval) indicates that humpback whale tissue is typically negatively buoyant although there was a large inter-individual variation ranging from 1025.2 to 1043.1 kg m-3. The precision of the individual estimates was substantially finer than the variation across different individual whales, demonstrating a progressive decrease in tissue density throughout the feeding season and comparably high lipid-store in pregnant females. The drag term (CDAm-1) was estimated to be relatively high, indicating a large effect of lift-related induced drag for humpback whales. Our results show that tissue density of shallow diving baleen whales can be estimated using the hydrodynamic gliding model, although cross-validation with other techniques is an essential next step. This method for estimating body condition is likely to be broadly applicable across a range of aquatic animals and environments.
Collapse
Affiliation(s)
- Tomoko Narazaki
- Sea Mammal Research Unit, University of St Andrews, Fife, United Kingdom
- Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Chiba, Japan
- * E-mail:
| | - Saana Isojunno
- Sea Mammal Research Unit, University of St Andrews, Fife, United Kingdom
| | - Douglas P. Nowacek
- Nicholas School of the Environment and Pratt School of Engineering, Duke University Marine Laboratory, Beaufort, North Carolina, United States of America
| | - Rene Swift
- Sea Mammal Research Unit, University of St Andrews, Fife, United Kingdom
| | - Ari S. Friedlaender
- Institute of Marine Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Christian Ramp
- Sea Mammal Research Unit, University of St Andrews, Fife, United Kingdom
- Mingan Island Cetacean Study, Longue-Pointe-de-Mingan, Québec, Canada
| | - Sophie Smout
- Sea Mammal Research Unit, University of St Andrews, Fife, United Kingdom
| | - Kagari Aoki
- Sea Mammal Research Unit, University of St Andrews, Fife, United Kingdom
- Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Chiba, Japan
| | - Volker B. Deecke
- Department of Science, Natural Resources and Outdoor Studies, University of Cumbria, Ambleside, United Kingdom
| | - Katsufumi Sato
- Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Chiba, Japan
| | | |
Collapse
|
36
|
Bi J, Hu B, Wang J, Liu X, Zheng J, Wang D, Xiao W. Beluga whale pVHL enhances HIF-2α activity via inducing HIF-2α proteasomal degradation under hypoxia. Oncotarget 2018; 8:42272-42287. [PMID: 28178687 PMCID: PMC5522066 DOI: 10.18632/oncotarget.15038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 01/09/2017] [Indexed: 12/19/2022] Open
Abstract
Aquatic mammals, such as cetaceans experience various depths, with accordingly diverse oxygenation, thus, cetaceans have developed adaptations for hypoxia, but mechanisms underlying this tolerance to low oxygen are unclear. Here we analyzed VHL and HIF-2α, in the hypoxia signaling pathway. Variations in VHL are greater than HIF-2α between cetaceans and terrestrial mammals, and beluga whale VHL (BW-VHL) promotes HIF-2α degradation under hypoxia. BW-VHL catalyzes BW-HIF-2α to form K48-linked poly-ubiquitin chains mainly at the lysine 429 of BW-HIF-2α (K429) and induces BW-HIF-2α for proteasomal degradation. W100 within BW-VHL is a key site for BW-VHL functionally and BW-VHL enhances transcriptional activity of BW-HIF-2α under hypoxia. Our data therefore reveal that BW-VHL has a unique function that may contribute to hypoxic adaptation.
Collapse
Affiliation(s)
- Jianling Bi
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, P. R. China
| | - Bo Hu
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, P. R. China
| | - Jing Wang
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, P. R. China
| | - Xing Liu
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, P. R. China
| | - Jinsong Zheng
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, P. R. China
| | - Ding Wang
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, P. R. China
| | - Wuhan Xiao
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, P. R. China.,State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, P. R. China
| |
Collapse
|
37
|
Kaczmarek J, Reichmuth C, McDonald BI, Kristensen JH, Larson J, Johansson F, Sullivan JL, Madsen PT. Drivers of the dive response in pinnipeds; apnea, submergence or temperature? J Exp Biol 2018; 221:jeb.176545. [DOI: 10.1242/jeb.176545] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 05/13/2018] [Indexed: 11/20/2022]
Abstract
Long and deep dives in marine mammals are enabled by high mass-specific oxygen stores and the dive response (DR), which reduces oxygen consumption in concert with increased peripheral vasoconstriction and a lowered heart rate during dives. Diving heart rates of pinnipeds are highly variable and modulated by many factors, such as breath holding (apnea), pressure, swimming activity, temperature, and even cognitive control. However, the individual effects of these factors on diving heart rate are poorly understood due to the difficulty of parsing their relative contributions in diving pinnipeds. Here, we examined the effects of apnea and external sensory inputs as autonomic drivers of bradycardia. Specifically, we hypothesized that 1) water stimulation of facial receptors would—as is the case for terrestrial mammals—enhance the dive response, 2) increasing the facial area stimulated would lead to a more intense bradycardia, and 3) cold water would elicit a more pronounced bradycardia than warm water. Three harbor seals (Phoca vitulina) and a California sea lion (Zalophus californianus) were trained to breath-hold in air and with their heads submerged in a basin with variable water level and temperature. We show that bradycardia occurs during apnea without immersion. We also demonstrate that bradycardia is strengthened with both increasing area of facial submersion and colder water. Thus, we conclude that initiation of the DR in pinnipeds is more strongly related to breath holding than in terrestrial mammals, but the degree of the DR is potentiated autonomically via stimulation of facial mechano- and thermoreceptors upon submergence.
Collapse
Affiliation(s)
- Jeppe Kaczmarek
- Zoophysiology, Department of Bioscience, Aarhus University, C. F. Moellers allé 3, DK-8000 Aarhus C, Denmark
| | - Colleen Reichmuth
- Institute of Marine Sciences, University of California, Santa Cruz, CA 95060, USA
| | - Birgitte I. McDonald
- Moss Landing Marine Laboratories, California State University, Moss Landing, CA 95039-9647, USA
| | | | - Josefin Larson
- Fjord and Belt Center, Magrethes plads 1, 5300 Kerteminde, Denmark
| | | | - Jenna L. Sullivan
- Institute of Marine Sciences, University of California, Santa Cruz, CA 95060, USA
| | - Peter T. Madsen
- Aarhus Institute of Advanced Studies, Høegh-Guldbergs Gade 6B, DK-8000 Aarhus C, Denmark
| |
Collapse
|
38
|
McCormley MC, Champagne CD, Deyarmin JS, Stephan AP, Crocker DE, Houser DS, Khudyakov JI. Repeated adrenocorticotropic hormone administration alters adrenal and thyroid hormones in free-ranging elephant seals. CONSERVATION PHYSIOLOGY 2018; 6:coy040. [PMID: 30034809 PMCID: PMC6048993 DOI: 10.1093/conphys/coy040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/30/2018] [Accepted: 06/27/2018] [Indexed: 05/18/2023]
Abstract
Understanding the physiological response of marine mammals to anthropogenic stressors can inform marine ecosystem conservation strategies. Stress stimulates the activation of the hypothalamic-pituitary-adrenal (HPA) axis and synthesis of glucocorticoid (GC) hormones, which increase energy substrate availability while suppressing energy-intensive processes. Exposure to repeated stressors can potentially affect an animal's ability to respond to and recover from subsequent challenges. To mimic repeated activation of the HPA axis by environmental stressors (or challenges), we administered adrenocorticotropic hormone (ACTH) to free-ranging juvenile northern elephant seals (Mirounga angustirostris; n = 7) once daily for 4 days. ACTH administration induced significant elevation in circulating cortisol and aldosterone levels. The cortisol responses did not vary in magnitude between the first ACTH administration on Day 1 and the last administration on Day 4. In contrast, aldosterone levels remained elevated above baseline for at least 24 h after each ACTH injection, and responses were greater on Day 4 than Day 1. Total triiodothyronine (tT3) levels were decreased on Day 4 relative to Day 1, while reverse triiodothyronine (rT3) concentrations increased relative to baseline on Days 1 and 4 in response to ACTH, indicating a suppression of thyroid hormone production. There was no effect of ACTH on the sex steroid dehydroepiandrosterone. These data suggest that elephant seals are able to mount adrenal responses to multiple ACTH administrations. However, repeated ACTH administration resulted in facilitation of aldosterone secretion and suppression of tT3, which may impact osmoregulation and metabolism, respectively. We propose that aldosterone and tT3 are informative additional indicators of repeated stress in marine mammals.
Collapse
Affiliation(s)
- Molly C McCormley
- Department of Biological Sciences, University of the Pacific, Stockton, CA, USA
| | - Cory D Champagne
- Conservation and Biological Research Program, National Marine Mammal Foundation, San Diego, CA, USA
| | - Jared S Deyarmin
- Department of Biological Sciences, University of the Pacific, Stockton, CA, USA
| | - Alicia P Stephan
- Department of Biological Sciences, University of the Pacific, Stockton, CA, USA
| | - Daniel E Crocker
- Biology Department, Sonoma State University, Rohnert Park, CA, USA
| | - Dorian S Houser
- Conservation and Biological Research Program, National Marine Mammal Foundation, San Diego, CA, USA
| | - Jane I Khudyakov
- Department of Biological Sciences, University of the Pacific, Stockton, CA, USA
- Conservation and Biological Research Program, National Marine Mammal Foundation, San Diego, CA, USA
- Corresponding author: Department of Biological Sciences, University of the Pacific, 3601 Pacific Ave. Stockton, CA 95211, USA.
| |
Collapse
|
39
|
SHORT DURATION IMMOBILIZATION OF ATLANTIC WALRUS (ODOBENUS ROSMARUS ROSMARUS) WITH ETORPHINE, AND REVERSAL WITH NALTREXONE. J Zoo Wildl Med 2017; 48:972-978. [DOI: 10.1638/2016-0232r.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
40
|
Pack AA, Herman LM, Craig AS, Spitz SS, Waterman JO, Herman EY, Deakos MH, Hakala S, Lowe C. Habitat preferences by individual humpback whale mothers in the Hawaiian breeding grounds vary with the age and size of their calves. Anim Behav 2017. [DOI: 10.1016/j.anbehav.2017.09.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
41
|
Thometz NM, Dearolf JL, Dunkin RC, Noren DP, Holt MM, Sims OC, Cathey BC, Williams TM. Comparative physiology of vocal musculature in two odontocetes, the bottlenose dolphin (Tursiops truncatus) and the harbor porpoise (Phocoena phocoena). J Comp Physiol B 2017; 188:177-193. [PMID: 28569355 DOI: 10.1007/s00360-017-1106-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/11/2017] [Indexed: 10/19/2022]
Abstract
The mechanism by which odontocetes produce sound is unique among mammals. To gain insight into the physiological properties that support sound production in toothed whales, we examined myoglobin content ([Mb]), non-bicarbonate buffering capacity (β), fiber-type profiles, and myosin heavy chain expression of vocal musculature in two odontocetes: the bottlenose dolphin (Tursiops truncatus; n = 4) and the harbor porpoise (Phocoena phocoena; n = 5). Both species use the same anatomical structures to produce sound, but differ markedly in their vocal repertoires. Tursiops produce both broadband clicks and tonal whistles, while Phocoena only produce higher frequency clicks. Specific muscles examined in this study included: (1) the nasal musculature around the phonic lips on the right (RNM) and left (LNM) sides of the head, (2) the palatopharyngeal sphincter (PPS), which surrounds the larynx and aids in pressurizing cranial air spaces, and (3) the genioglossus complex (GGC), a group of muscles positioned ventrally within the head. Overall, vocal muscles had significantly lower [Mb] and β than locomotor muscles from the same species. The PPS was predominately composed of small diameter slow-twitch fibers. Fiber-type and myosin heavy chain analyses revealed that the GGC was comprised largely of fast-twitch fibers (Tursiops: 88.6%, Phocoena: 79.7%) and had the highest β of all vocal muscles. Notably, there was a significant difference in [Mb] between the RNM and LNM in Tursiops, but not Phocoena. Our results reveal shared physiological characteristics of individual vocal muscles across species that enhance our understanding of key functional roles, as well as species-specific differences which appear to reflect differences in vocal capacities.
Collapse
Affiliation(s)
- Nicole M Thometz
- Department of Biology, University of San Francisco, 2130 Fulton St, San Francisco, CA, 94117, USA. .,Department of Ecology and Evolutionary Biology, Long Marine Laboratory, University of California at Santa Cruz, 115 McAllister Way, Santa Cruz, CA, 95060, USA.
| | - Jennifer L Dearolf
- Biology Department, Hendrix College, 1600 Washington Ave., Conway, AR, 72032, USA
| | - Robin C Dunkin
- Department of Ecology and Evolutionary Biology, Long Marine Laboratory, University of California at Santa Cruz, 115 McAllister Way, Santa Cruz, CA, 95060, USA
| | - Dawn P Noren
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Boulevard East, Seattle, WA, 98112, USA
| | - Marla M Holt
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Boulevard East, Seattle, WA, 98112, USA
| | - Olivia C Sims
- Biology Department, Hendrix College, 1600 Washington Ave., Conway, AR, 72032, USA
| | - Brandon C Cathey
- Biology Department, Hendrix College, 1600 Washington Ave., Conway, AR, 72032, USA
| | - Terrie M Williams
- Department of Ecology and Evolutionary Biology, Long Marine Laboratory, University of California at Santa Cruz, 115 McAllister Way, Santa Cruz, CA, 95060, USA
| |
Collapse
|
42
|
Fahlman A, Crespo-Picazo JL, Sterba-Boatwright B, Stacy BA, Garcia-Parraga D. Defining risk variables causing gas embolism in loggerhead sea turtles (Caretta caretta) caught in trawls and gillnets. Sci Rep 2017; 7:2739. [PMID: 28572687 PMCID: PMC5453929 DOI: 10.1038/s41598-017-02819-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/18/2017] [Indexed: 11/10/2022] Open
Abstract
Incidental capture, or 'bycatch' in fishing gear is a major global threat to sea turtle populations. A recent study showed that underwater entrapment in fishing gear followed by rapid decompression may cause gas bubble formation within the blood stream (embolism) and tissues leading to organ injury, impairment, and even mortality in some bycaught individuals. We analyzed data from 128 capture events using logistic and ordinal regression to examine risk factors associated with gas embolism in sea turtles captured in trawls and gillnets. Likelihood of fatal decompression increases with increasing depth of gear deployment. A direct relationship was found between depth, risk and severity of embolism, which has not been previously demonstrated in any breath-hold diving species. For the trawl fishery in this study, an average trawl depth of 65 m was estimated to result in 50% mortality in by-caught turtles throughout the year. This finding is critical for a more accurate estimation of sea turtle mortality rates resulting from different fisheries and for devising efforts to avoid or minimize the harmful effects of capture.
Collapse
Affiliation(s)
- Andreas Fahlman
- Fundación Oceanogràfic de la Comunidad Valenciana, Gran Vía Marqués del Turia 19, 46005, Valencia, Spain.
| | - Jose Luis Crespo-Picazo
- Fundación Oceanogràfic de la Comunidad Valenciana, Gran Vía Marqués del Turia 19, 46005, Valencia, Spain
| | | | - Brian A Stacy
- National Marine Fisheries Service, Office of Protected Resources, University of Florida, College of Veterinary Medicine (duty station), Post Office Box 110885, Gainesville, FL, 32611, USA
| | - Daniel Garcia-Parraga
- Fundación Oceanogràfic de la Comunidad Valenciana, Gran Vía Marqués del Turia 19, 46005, Valencia, Spain
| |
Collapse
|
43
|
Fahlman A, Moore MJ, Garcia-Parraga D. Respiratory function and mechanics in pinnipeds and cetaceans. J Exp Biol 2017; 220:1761-1773. [DOI: 10.1242/jeb.126870] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
In this Review, we focus on the functional properties of the respiratory system of pinnipeds and cetaceans, and briefly summarize the underlying anatomy; in doing so, we provide an overview of what is currently known about their respiratory physiology and mechanics. While exposure to high pressure is a common challenge among breath-hold divers, there is a large variation in respiratory anatomy, function and capacity between species – how are these traits adapted to allow the animals to withstand the physiological challenges faced during dives? The ultra-deep diving feats of some marine mammals defy our current understanding of respiratory physiology and lung mechanics. These animals cope daily with lung compression, alveolar collapse, transient hyperoxia and extreme hypoxia. By improving our understanding of respiratory physiology under these conditions, we will be better able to define the physiological constraints imposed on these animals, and how these limitations may affect the survival of marine mammals in a changing environment. Many of the respiratory traits to survive exposure to an extreme environment may inspire novel treatments for a variety of respiratory problems in humans.
Collapse
Affiliation(s)
- Andreas Fahlman
- Fundación Oceanográfic de la Comunidad Valenciana, Gran Vía Marques del Turia 19, Valencia 46005, Spain
- Department of Life Sciences, Texas A&M University-Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
| | - Michael J. Moore
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Daniel Garcia-Parraga
- Fundación Oceanográfic de la Comunidad Valenciana, Gran Vía Marques del Turia 19, Valencia 46005, Spain
- Oceanográfic-Avanqua, Ciudad de las Artes y las Ciencias, Valencia 46013, Spain
| |
Collapse
|
44
|
Hoff MLM, Fabrizius A, Czech-Damal NU, Folkow LP, Burmester T. Transcriptome Analysis Identifies Key Metabolic Changes in the Hooded Seal (Cystophora cristata) Brain in Response to Hypoxia and Reoxygenation. PLoS One 2017; 12:e0169366. [PMID: 28046118 PMCID: PMC5207758 DOI: 10.1371/journal.pone.0169366] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 12/15/2016] [Indexed: 11/21/2022] Open
Abstract
The brain of diving mammals tolerates low oxygen conditions better than the brain of most terrestrial mammals. Previously, it has been demonstrated that the neurons in brain slices of the hooded seal (Cystophora cristata) withstand hypoxia longer than those of mouse, and also tolerate reduced glucose supply and high lactate concentrations. This tolerance appears to be accompanied by a shift in the oxidative energy metabolism to the astrocytes in the seal while in terrestrial mammals the aerobic energy production mainly takes place in neurons. Here, we used RNA-Seq to compare the effect of hypoxia and reoxygenation in vitro on brain slices from the visual cortex of hooded seals. We saw no general reduction of gene expression, suggesting that the response to hypoxia and reoxygenation is an actively regulated process. The treatments caused the preferential upregulation of genes related to inflammation, as found before e.g. in stroke studies using mammalian models. Gene ontology and KEGG pathway analyses showed a downregulation of genes involved in ion transport and other neuronal processes, indicative for a neuronal shutdown in response to a shortage of O2 supply. These differences may be interpreted in terms of an energy saving strategy in the seal's brain. We specifically analyzed the regulation of genes involved in energy metabolism. Hypoxia and reoxygenation caused a similar response, with upregulation of genes involved in glucose metabolism and downregulation of the components of the pyruvate dehydrogenase complex. We also observed upregulation of the monocarboxylate transporter Mct4, suggesting increased lactate efflux. Together, these data indicate that the seal brain responds to the hypoxic challenge by a relative increase in the anaerobic energy metabolism.
Collapse
Affiliation(s)
| | - Andrej Fabrizius
- Institute of Zoology, Biocenter Grindel, University of Hamburg, Hamburg, Germany
| | | | - Lars P. Folkow
- Department of Arctic and Marine Biology, University of Tromsø – The Arctic University of Norway, Tromsø, Norway
| | - Thorsten Burmester
- Institute of Zoology, Biocenter Grindel, University of Hamburg, Hamburg, Germany
- * E-mail:
| |
Collapse
|
45
|
Fago A, Parraga DG, Petersen EE, Kristensen N, Giouri L, Jensen FB. A comparison of blood nitric oxide metabolites and hemoglobin functional properties among diving mammals. Comp Biochem Physiol A Mol Integr Physiol 2016; 205:35-40. [PMID: 27993597 DOI: 10.1016/j.cbpa.2016.12.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/09/2016] [Accepted: 12/12/2016] [Indexed: 01/01/2023]
Abstract
The ability of marine mammals to hunt prey at depth is known to rely on enhanced oxygen stores and on selective distribution of blood flow, but the molecular mechanisms regulating blood flow and oxygen transport remain unresolved. To investigate the molecular mechanisms that may be important in regulating blood flow, we measured concentration of nitrite and S-nitrosothiols (SNO), two metabolites of the vasodilator nitric oxide (NO), in the blood of 5 species of marine mammals differing in their dive duration: bottlenose dolphin, South American sea lion, harbor seal, walrus and beluga whale. We also examined oxygen affinity, sensitivity to 2,3-diphosphoglycerate (DPG) and nitrite reductase activity of the hemoglobin (Hb) to search for possible adaptive variations in these functional properties. We found levels of plasma and red blood cells nitrite similar to those reported for terrestrial mammals, but unusually high concentrations of red blood cell SNO in bottlenose dolphin, walrus and beluga whale, suggesting enhanced SNO-dependent signaling in these species. Purified Hbs showed similar functional properties in terms of oxygen affinity and sensitivity to DPG, indicating that reported large variations in blood oxygen affinity among diving mammals likely derive from phenotypic variations in red blood cell DPG levels. The nitrite reductase activities of the Hbs were overall slightly higher than that of human Hb, with the Hb of beluga whale, capable of longest dives, having the highest activity. Taken together, these results underscore adaptive variations in circulatory NO metabolism in diving mammals but not in the oxygenation properties of the Hb.
Collapse
Affiliation(s)
- Angela Fago
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark.
| | | | - Elin E Petersen
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark.
| | - Niels Kristensen
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark.
| | - Lea Giouri
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark.
| | - Frank B Jensen
- Department of Biology, University of Southern Denmark, 5230 Odense M, Denmark.
| |
Collapse
|
46
|
Geiseler SJ, Larson J, Folkow LP. Synaptic transmission despite severe hypoxia in hippocampal slices of the deep-diving hooded seal. Neuroscience 2016; 334:39-46. [DOI: 10.1016/j.neuroscience.2016.07.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 07/19/2016] [Accepted: 07/20/2016] [Indexed: 01/13/2023]
|
47
|
Oxidative stress in northern elephant seals: Integration of omics approaches with ecological and experimental studies. Comp Biochem Physiol A Mol Integr Physiol 2016; 200:94-103. [DOI: 10.1016/j.cbpa.2016.02.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/16/2016] [Accepted: 02/18/2016] [Indexed: 01/28/2023]
|
48
|
Zamuruyev KO, Aksenov AA, Baird M, Pasamontes A, Parry C, Foutouhi S, Venn-Watson S, Weimer BC, Delplanque JP, Davis CE. Enhanced non-invasive respiratory sampling from bottlenose dolphins for breath metabolomics measurements. J Breath Res 2016; 10:046005. [PMID: 27689905 DOI: 10.1088/1752-7155/10/4/046005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Chemical analysis of exhaled breath metabolites is an emerging alternative to traditional clinical testing for many physiological conditions. The main advantage of breath analysis is its inherent non-invasive nature and ease of sample collection. Therefore, there exists a great interest in further development of this method for both humans and animals. The physiology of cetaceans is exceptionally well suited for breath analysis due to their explosive breathing behavior and respiratory tract morphology. At the present time, breath analysis in cetaceans has very limited practical applications, in large part due to lack of widely adopted sampling device(s) and methodologies that are well-standardized. Here, we present an optimized design and the operating principles of a portable apparatus for reproducible collection of exhaled breath condensate from small cetaceans, such as bottlenose dolphins (Tursiops truncatus). The device design is optimized to meet two criteria: standardized collection and preservation of information-rich metabolomic content of the biological sample, and animal comfort and ease of breath sample collection. The intent is to furnish a fully-benchmarked technology that can be widely adopted by researchers and conservationists to spur further developments of breath analysis applications for marine mammal health assessments.
Collapse
Affiliation(s)
- Konstantin O Zamuruyev
- Department of Mechanical and Aerospace Engineering, One Shields Avenue, University of California, Davis, Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Noren SR, Suydam R. Navigating under sea ice promotes rapid maturation of diving physiology and performance in beluga whales. J Exp Biol 2016; 219:2828-2836. [DOI: 10.1242/jeb.143644] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 06/30/2016] [Indexed: 01/30/2023]
Abstract
ABSTRACT
Little is known about the postnatal development of the physiological characteristics that support breath-hold in cetaceans, despite their need to swim and dive at birth. Arctic species have the additional demand of avoiding entrapment while navigating under sea ice, where breathing holes are patchily distributed and ephemeral. This is the first investigation of the ontogeny of the biochemistry of the locomotor muscle in a year-round Arctic-dwelling cetacean (beluga whale, Delphinapterus leucas). Compared with what we know about other cetaceans, belugas are born with high myoglobin content (1.56±0.02 g 100 g−1 wet muscle mass, N=2) that matures rapidly. Myoglobin increased by 452% during the first year after birth and achieved adult levels (6.91±0.35 g 100 g−1 wet muscle mass, N=9) by 14 months postpartum. Buffering capacity was 48.88±0.69 slykes (N=2) at birth; adult levels (84.31±1.38 slykes, N=9) were also achieved by 14 months postpartum. As the oxygen stores matured, calculated aerobic dive limit more than doubled over the first year of life, undoubtedly facilitating the movements of calves under sea ice. Nonetheless, small body size theoretically continues to constrain the diving ability of newly weaned 2 year olds, as they only had 74% and 69% of the aerobic breath-hold capacity of larger adult female and male counterparts. These assessments enhance our knowledge of the biology of cetaceans and provide insight into age-specific flexibility to alter underwater behaviors, as may be required with the ongoing alterations in the Arctic marine ecosystem associated with climate change and increased anthropogenic activities.
Collapse
Affiliation(s)
- Shawn R. Noren
- Institute of Marine Science, University of California, Santa Cruz, Center for Ocean Health, 100 Shaffer Road, Santa Cruz, CA 95060, USA
| | - Robert Suydam
- North Slope Borough, Department of Wildlife Management, Barrow, AK 99723, USA
| |
Collapse
|
50
|
Miller P, Narazaki T, Isojunno S, Aoki K, Smout S, Sato K. Body density and diving gas volume of the northern bottlenose whale (Hyperoodon ampullatus). J Exp Biol 2016; 219:2458-68. [PMID: 27296044 PMCID: PMC5004977 DOI: 10.1242/jeb.137349] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 05/31/2016] [Indexed: 11/27/2022]
Abstract
Diving lung volume and tissue density, reflecting lipid store volume, are important physiological parameters that have only been estimated for a few breath-hold diving species. We fitted 12 northern bottlenose whales with data loggers that recorded depth, 3-axis acceleration and speed either with a fly-wheel or from change of depth corrected by pitch angle. We fitted measured values of the change in speed during 5 s descent and ascent glides to a hydrodynamic model of drag and buoyancy forces using a Bayesian estimation framework. The resulting estimate of diving gas volume was 27.4±4.2 (95% credible interval, CI) ml kg(-1), closely matching the measured lung capacity of the species. Dive-by-dive variation in gas volume did not correlate with dive depth or duration. Estimated body densities of individuals ranged from 1028.4 to 1033.9 kg m(-3) at the sea surface, indicating overall negative tissue buoyancy of this species in seawater. Body density estimates were highly precise with ±95% CI ranging from 0.1 to 0.4 kg m(-3), which would equate to a precision of <0.5% of lipid content based upon extrapolation from the elephant seal. Six whales tagged near Jan Mayen (Norway, 71°N) had lower body density and were closer to neutral buoyancy than six whales tagged in the Gully (Nova Scotia, Canada, 44°N), a difference that was consistent with the amount of gliding observed during ascent versus descent phases in these animals. Implementation of this approach using longer-duration tags could be used to track longitudinal changes in body density and lipid store body condition of free-ranging cetaceans.
Collapse
Affiliation(s)
- Patrick Miller
- Sea Mammal Research Unit, University of St Andrews, St Andrews, Fife KY16 9QQ, UK Atmosphere and Ocean Research Institute, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan
| | - Tomoko Narazaki
- Sea Mammal Research Unit, University of St Andrews, St Andrews, Fife KY16 9QQ, UK Atmosphere and Ocean Research Institute, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan
| | - Saana Isojunno
- Sea Mammal Research Unit, University of St Andrews, St Andrews, Fife KY16 9QQ, UK
| | - Kagari Aoki
- Sea Mammal Research Unit, University of St Andrews, St Andrews, Fife KY16 9QQ, UK Atmosphere and Ocean Research Institute, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan
| | - Sophie Smout
- Sea Mammal Research Unit, University of St Andrews, St Andrews, Fife KY16 9QQ, UK
| | - Katsufumi Sato
- Atmosphere and Ocean Research Institute, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan
| |
Collapse
|