1
|
Xiang Z, Mei H, Wang H, Yao X, Rao J, Zhang W, Xu A, Lu L. Cuproptosis and its potential role in musculoskeletal disease. Front Cell Dev Biol 2025; 13:1570131. [PMID: 40292330 PMCID: PMC12022686 DOI: 10.3389/fcell.2025.1570131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 03/19/2025] [Indexed: 04/30/2025] Open
Abstract
Cuproptosis, a recently identified form of copper-dependent cell death, arises from intracellular copper dyshomeostasis. As an essential trace element, copper plays a critical role in bioenergetic metabolism, redox regulation, and synaptic transmission. However, excessive copper exerts cytotoxic effects through multiple pathways, including increased reactive oxygen species (ROS) production, apoptotic cascade activation, necrotic membrane rupture, inflammatory responses, and mitochondrial dysfunction. Distinct from other cell death mechanisms, cuproptosis is characterized by copper ion binding to acetylated mitochondrial respiratory chain proteins, leading to pathogenic protein aggregation, iron-sulfur cluster depletion, and cellular collapse. Emerging evidence underscores aberrant copper accumulation and resultant proteotoxic stress as pivotal contributors to the pathogenesis of multiple musculoskeletal pathologies, including osteoporosis, osteoarthritis, sarcopenia, osteosarcoma, intervertebral disc degeneration, spinal cord injury, and biofilm-associated orthopedic infections. Understanding the spatiotemporal regulation of cuproptosis may provide novel opportunities for advancing diagnostic and therapeutic approaches in orthopedic medicine. This review synthesizes current insights into the molecular mechanisms of cuproptosis, its pathogenic role in musculoskeletal diseases, and the potential for biomarker-driven therapeutic interventions.
Collapse
Affiliation(s)
- Ziyang Xiang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Huiling Mei
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Honglin Wang
- Department of Orthopaedics Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyue Yao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ji Rao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wentao Zhang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Aoshuang Xu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Lu
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Liu S, Chen X, Qi X, Bai J, Tong B, Zhang D, Yin X, Yu P. The role of metal ion metabolism in the pathogenesis of diabetes and associated complications. Front Endocrinol (Lausanne) 2025; 16:1541809. [PMID: 40248148 PMCID: PMC12003104 DOI: 10.3389/fendo.2025.1541809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 03/14/2025] [Indexed: 04/19/2025] Open
Abstract
Diabetes is a growing health concern, accompanied by significant complications like cardiovascular disease, kidney disease, and retinopathy. Metal ions, including iron, zinc, and copper, play a crucial role in maintaining human health through their balance within the body. Disruptions in metal ion balance can intensify diabetic conditions. For instance, iron overload induces oxidative stress, which harms islet β cells and impacts vascular complications of diabetes. Abnormal copper levels heighten insulin resistance, and zinc deficiency has a strong connection with type 1 diabetes. Future in - depth exploration of the association between metal metabolism and diabetes holds the potential to uncover novel treatment avenues, enhancing both the quality of life and health prognosis for patients.
Collapse
Affiliation(s)
- Siyuan Liu
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China; Department of Endocrinology and Metabolism, the Second Affiliated Hospital, Jiangxi Medical College. Nanchang University, Nanchang, Jiangxi, China; The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Xuzhuo Chen
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China; Department of Endocrinology and Metabolism, the Second Affiliated Hospital, Jiangxi Medical College. Nanchang University, Nanchang, Jiangxi, China; The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Xinrui Qi
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China; Department of Endocrinology and Metabolism, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jiahao Bai
- Laboratory of Pharmacy and Chemistry, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, China
| | - Bin Tong
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China; Department of Endocrinology and Metabolism, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Deju Zhang
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China; Department of Endocrinology and Metabolism, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong
Kong, Hong Kong, Hong Kong SAR, China
| | - Xiaoping Yin
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, China; Center for Clinical Precision Medicine, Jiujiang University, Jiujiang, China
| | - Peng Yu
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China; Department of Endocrinology and Metabolism, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
3
|
Rolić T, Yazdani M, Mandić S, Distante S. Iron Metabolism, Calcium, Magnesium and Trace Elements: A Review. Biol Trace Elem Res 2025; 203:2216-2225. [PMID: 38969940 PMCID: PMC11920315 DOI: 10.1007/s12011-024-04289-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/22/2024] [Indexed: 07/07/2024]
Abstract
Iron (Fe) is fundamental to life on earth. In the human body, it is both essential and harmful if above threshold. A similar balance applies to other elements: calcium (Ca), magnesium (Mg), and trace elements including copper (Cu), zinc (Zn), lead (Pb), cadmium (Cd), mercury (Hg), and nickel (Ni). These elements share some proteins involved in the absorption and transport of Fe. Cu and Cd can inhibit Fe absorption, while excess of Fe may antagonize Cu metabolism and reduce ceruloplasmin (Cp). Excessive Fe can hinder Zn absorption and transferrin (Trf) can bind to both Zn and Ni. Ca is able to inhibit the divalent metal transporter 1 (DMT1) in a dose-dependent manner to reduce Fe absorption and low Mg concentrations can exacerbate Fe deficiency. Pb competitively inhibits Fe distribution and elevated Cd absorption reduces Fe uptake. Exposure to Hg is associated with higher ferritin concentrations and Ni alters intracellular Fe metabolism. Fe removal by phlebotomy in hemochromatosis patients has shown to increase the levels of Cd and Pb and alter the concentrations of trace elements in some types of anemia. Yet, the effects of chronic exposure of most trace elements remain poorly understood.
Collapse
Affiliation(s)
- Tara Rolić
- Faculty of Medicine, University of Osijek, Osijek, Croatia
- Osijek University Hospital Centre (Klinički bolnički centar Osijek), Osijek, Croatia
| | | | - Sanja Mandić
- Faculty of Medicine, University of Osijek, Osijek, Croatia
| | | |
Collapse
|
4
|
Kouroumalis E, Tsomidis I, Voumvouraki A. HFE-Related Hemochromatosis May Be a Primary Kupffer Cell Disease. Biomedicines 2025; 13:683. [PMID: 40149659 PMCID: PMC11940282 DOI: 10.3390/biomedicines13030683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/28/2025] [Accepted: 03/08/2025] [Indexed: 03/29/2025] Open
Abstract
Iron overload can lead to increased deposition of iron and cause organ damage in the liver, the pancreas, the heart and the synovium. Iron overload disorders are due to either genetic or acquired abnormalities such as excess transfusions or chronic liver diseases. The most common genetic disease of iron deposition is classic hemochromatosis (HH) type 1, which is caused by mutations of HFE. Other rare forms of HH include type 2A with mutations at the gene hemojuvelin or type 2B with mutations in HAMP that encodes hepcidin. HH type 3, is caused by mutations of the gene that encodes transferrin receptor 2. Mutations of SLC40A1 which encodes ferroportin cause either HH type 4A or HH type 4B. In the present review, an overview of iron metabolism including absorption by enterocytes and regulation of iron by macrophages, liver sinusoidal endothelial cells (LSECs) and hepatocyte production of hepcidin is presented. Hereditary Hemochromatosis and the current pathogenetic model are analyzed. Finally, a new hypothesis based on published data was suggested. The Kupffer cell is the primary defect in HFE hemochromatosis (and possibly in types 2 and 3), while the hepcidin-relative deficiency, which is the common underlying abnormality in the three types of HH, is a secondary consequence.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Department of Gastroenterology, PAGNI University Hospital, University of Crete Medical School, 71500 Heraklion, Greece
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Greece;
| | - Ioannis Tsomidis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Greece;
| | - Argyro Voumvouraki
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Greece;
| |
Collapse
|
5
|
Zheng T, Lu F, Wu P, Chen Y, Zhang R, Li X. Ferroptosis and cuproptosis in periodontitis: recent biological insights and therapeutic advances. Front Immunol 2025; 16:1526961. [PMID: 40066457 PMCID: PMC11891063 DOI: 10.3389/fimmu.2025.1526961] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/05/2025] [Indexed: 05/13/2025] Open
Abstract
Periodontitis is a significant global public health issue associated with the onset and progression of various systemic diseases, thereby requiring additional research and clinical attention. Although ferroptosis and cuproptosis have emerged as significant areas of research in the medical field, their precise roles in the pathogenesis of periodontitis remain unclear. We aim to systematically summarize the current research on ferroptosis and cuproptosis in periodontal disease and investigate the roles of glutathione pathway and autophagy pathway in connecting ferroptosis and cuproptosis during periodontitis. Further, we propose that a homeostatic imbalance of copper and iron, driven by periodontal pathogens, may contribute to elevated periodontal oxidative stress, representing a potential unifying link between ferroptosis and cuproptosis involved in periodontitis. This article presents a comprehensive overview of the molecular mechanisms underlying ferroptosis and cuproptosis in periodontitis, offering novel theoretical insights into its pathogenesis and potential therapeutic targets.
Collapse
Affiliation(s)
- Tengyi Zheng
- Department of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Fumiao Lu
- Department of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Peihang Wu
- Department of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yangan Chen
- Department of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Rongxin Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xin Li
- Department of Endodontics, Southern Medical University Stomatological Hospital, Guangzhou, China
| |
Collapse
|
6
|
Hadrian K, Szczerbowska-Boruchowska M, Surówka A, Ciepiela O, Litwin T, Przybyłkowski A. Effect of primary copper metabolism disturbance on elemental, protein, and lipid composition of the organs in Jackson toxic milk mouse. Biometals 2025; 38:103-121. [PMID: 39365499 PMCID: PMC11754380 DOI: 10.1007/s10534-024-00640-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/19/2024] [Indexed: 10/05/2024]
Abstract
Toxic milk (txJ) is an autosomal recessive mutation in the Atp7b gene in the C3H/HeJ strain, observed at The Jackson Laboratory in Maine, USA. TxJ mice exhibit symptoms similar to those of human Wilson's disease (WD). The study aimed to verify organ involvement in a mouse model of WD. TxJ mice and control animals were sacrificed at 2, 4, 8, and 14 months of age. Total X-ray Fluorescence Spectroscopy (TXRF) was used to determine the elemental concentration in organs. Tissue chemical composition was measured by Fourier Transform Infrared Spectroscopy (FTIR). Additionally, hybrid mapping of FTIR and microXRF was performed. Elevated concentrations of Cu were observed in the liver, striatum, eye, heart, and duodenum of txJ mice across age groups. In the striatum of the oldest txJ mice, there was lower lipid content and a higher fraction of saturated fats. The secondary structure of striatum proteins was disturbed in txJ mice. In the livers of txJ mice, higher concentrations of saturated fats and disturbances in the secondary structure of proteins were observed. The concentration of neurofilaments was significantly higher in txJ serum. The distribution of Cu deposits in brains was uniform with no prevalence in any anatomic structure in either group, but significant protein structure changes were observed exclusively in the striatum of txJ. In this txJ animal model of WD, pathologic copper accumulation occurs in the duodenum, heart, and eye tissues. Increased copper concentration in the liver and brain results in increased saturated fat content and disturbances in secondary protein structure, leading to hepatic injury and neurodegeneration.
Collapse
Affiliation(s)
- Krzysztof Hadrian
- Department of Gastroenterology and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | | | - Artur Surówka
- Department of Medical Physics and Biophysics, AGH University of Science and Technology, Cracow, Poland
| | - Olga Ciepiela
- Department of Laboratory Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz Litwin
- Second Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Adam Przybyłkowski
- Department of Gastroenterology and Internal Medicine, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
7
|
Zhang S, Peng S. Copper-Based biomaterials for anti-tumor therapy: Recent advances and perspectives. Acta Biomater 2025; 193:107-127. [PMID: 39800096 DOI: 10.1016/j.actbio.2025.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/03/2025] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
Copper, an essential trace element, is integral to numerous metabolic pathways across biological systems. In recent years, copper-based biomaterials have garnered significant interest due to their superior biocompatibility and multifaceted functionalities, particularly in the treatment of malignancies such as sarcomas and cancers. On the one hand, these copper-based materials serve as efficient carriers for a range of therapeutic agents, including chemotherapeutic drugs, small molecule inhibitors, and antibodies, allowing them for precise delivery and controlled release triggered by specific modifications and stimuli. On the other hand, they can induce cell death through mechanisms such as ferroptosis, cuproptosis, apoptosis, and pyroptosis, or inhibit the proliferation and invasion of cancer cells via their outstanding properties. Furthermore, advanced design approaches enable these materials to support tumor imaging and immune activation. Despite this progress, the full scope of their functional capabilities remains to be fully elucidated. This review provides an overview of the anti-tumor functions, underlying mechanisms, and design strategies of copper-based biomaterials, along with their advantages and limitations. The aim is to provide insights into the design, study, and development of novel multifunctional biomaterials, with the ultimate goal of accelerating the clinical application of copper-based nanomaterials in cancer therapy. STATEMENT OF SIGNIFICANCE: This study explores the groundbreaking potential of copper-based biomaterials in cancer therapy, uniquely combining biocompatibility with diverse therapeutic mechanisms such as targeted drug delivery and inhibition of cancer cells through specific cell death pathways. By enhancing tumor imaging and immune activation, copper-based nanomaterials have opened new avenues for cancer treatment. This review examines these multifunctional biomaterials, highlighting their advantages and current limitations while addressing gaps in existing research. The findings aim to accelerate clinical applications of these materials in the field of oncology, providing valuable insights for the design of next-generation copper-based therapies. Therefore, this work is highly relevant to researchers and practitioners focused on innovative cancer treatments.
Collapse
Affiliation(s)
- Shufang Zhang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education of Xiangya Hospital and School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China; Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Shuping Peng
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education of Xiangya Hospital and School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China; Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
8
|
Długosz A, Wróblewski M, Błaszak B, Szulc J. The Role of Nutrition, Oxidative Stress, and Trace Elements in the Pathophysiology of Autism Spectrum Disorders. Int J Mol Sci 2025; 26:808. [PMID: 39859522 PMCID: PMC11765825 DOI: 10.3390/ijms26020808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/14/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by deficits in social communication and interaction, alongside repetitive behaviors, and atypical sensory-motor patterns. The growing prevalence of ASD has driven substantial advancements in research aimed at understanding its etiology, preventing its onset, and mitigating its impact. This ongoing effort necessitates continuous updates to the body of knowledge and the identification of previously unexplored factors. The present study addresses this need by examining the roles of nutrition, oxidative stress, and trace elements in the pathophysiology of ASD. In this review, an overview is provided of the key dietary recommendations for individuals with ASD, including gluten-free and casein-free (GFCF) diets, ketogenic diets (KDs), and other nutritional interventions. Furthermore, it explores the involvement of oxidative stress in ASD and highlights the significance of trace elements in maintaining neuropsychiatric health. The impact of these factors on molecular and cellular mechanisms was discussed, alongside therapeutic strategies and their efficacy in managing ASD.
Collapse
Affiliation(s)
- Anna Długosz
- Department of Food Industry Technology and Engineering, Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, 3 Seminaryjna St., 85-326 Bydgoszcz, Poland; (B.B.); (J.S.)
| | - Marcin Wróblewski
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland;
| | - Błażej Błaszak
- Department of Food Industry Technology and Engineering, Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, 3 Seminaryjna St., 85-326 Bydgoszcz, Poland; (B.B.); (J.S.)
| | - Joanna Szulc
- Department of Food Industry Technology and Engineering, Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, 3 Seminaryjna St., 85-326 Bydgoszcz, Poland; (B.B.); (J.S.)
| |
Collapse
|
9
|
Feng Q, Sun Y, Yang Z, Wang Z, Chen Z, Liu F, Liu L. Copper in the colorectal cancer microenvironment: pioneering a new era of cuproptosis-based therapy. Front Oncol 2025; 14:1522919. [PMID: 39850821 PMCID: PMC11754209 DOI: 10.3389/fonc.2024.1522919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/17/2024] [Indexed: 01/25/2025] Open
Abstract
Copper, an essential trace element and biochemical cofactor in humans plays a critical role in maintaining health. Recent studies have identified a significant association between copper levels and the progression and metastasis of cancer. Copper is primarily absorbed in the intestinal tract, often leading to an imbalance of copper ions in the body. Colorectal cancer (CRC), the most common cancer originating in the intestines, thrives in an environment with elevated copper concentrations. Current research is focused on uncovering the relationship between copper and CRC which has introduced new concepts such as cuproplasia and cuproptosis, significantly deepening our understanding of copper's influence on cell proliferation and death. Cuproplasia is a kind of cell proliferation mediated by the co-regulatory activities of enzymes and non-enzymatic factors, while cuproptosis refers to cell death induced by excessive copper, which results in abnormal oligomerization of lipacylated proteins and the reduction of iron-sulfur cluster proteins. Exploring cuproplasia and cuproptosis opens new avenues for treating CRC. This review aims to summarize the critical role of copper in promoting colorectal cancer, the dual effects of copper in the tumor microenvironment (TME), and strategies for leveraging this unique microenvironment to induce cuproptosis in colorectal cancer. Understanding the relationship between copper and CRC holds promise for establishing a theoretical foundation for innovative therapeutic strategies in CRC.
Collapse
Affiliation(s)
- Qixuan Feng
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yue Sun
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhe Yang
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhiyu Wang
- The Second School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhangyi Chen
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fang Liu
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lingxiang Liu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
10
|
Lutsenko S, Roy S, Tsvetkov P. Mammalian copper homeostasis: physiological roles and molecular mechanisms. Physiol Rev 2025; 105:441-491. [PMID: 39172219 PMCID: PMC11918410 DOI: 10.1152/physrev.00011.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/15/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024] Open
Abstract
In the past decade, evidence for the numerous roles of copper (Cu) in mammalian physiology has grown exponentially. The discoveries of Cu involvement in cell signaling, autophagy, cell motility, differentiation, and regulated cell death (cuproptosis) have markedly extended the list of already known functions of Cu, such as a cofactor of essential metabolic enzymes, a protein structural component, and a regulator of protein trafficking. Novel and unexpected functions of Cu transporting proteins and enzymes have been identified, and new disorders of Cu homeostasis have been described. Significant progress has been made in the mechanistic studies of two classic disorders of Cu metabolism, Menkes disease and Wilson's disease, which paved the way for novel approaches to their treatment. The discovery of cuproptosis and the role of Cu in cell metastatic growth have markedly increased interest in targeting Cu homeostatic pathways to treat cancer. In this review, we summarize the established concepts in the field of mammalian Cu physiology and discuss how new discoveries of the past decade expand and modify these concepts. The roles of Cu in brain metabolism and in cell functional speciation and a recently discovered regulated cell death have attracted significant attention and are highlighted in this review.
Collapse
Affiliation(s)
- Svetlana Lutsenko
- Department of Physiology, Johns Hopkins Medical Institutes, Baltimore, Maryland, United States
| | - Shubhrajit Roy
- Department of Physiology, Johns Hopkins Medical Institutes, Baltimore, Maryland, United States
| | - Peter Tsvetkov
- Department of Pathology, Cancer Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States
| |
Collapse
|
11
|
Dai Y, Zhang Q, Gu R, Chen J, Ye P, Zhu H, Tang M, Nie X. Metal ion formulations for diabetic wound healing: Mechanisms and therapeutic potential. Int J Pharm 2024; 667:124889. [PMID: 39481815 DOI: 10.1016/j.ijpharm.2024.124889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/09/2024] [Accepted: 10/28/2024] [Indexed: 11/03/2024]
Abstract
Metals are vital in human physiology, which not only act as enzyme catalysts in the processes of superoxide dismutase and glucose phosphorylation, but also affect the redox process, osmotic adjustment, metabolism and neural signals. However, metal imbalances can lead to diseases such as diabetes, which is marked by chronic hyperglycemia and affects wound healing. The hyperglycemic milieu of diabetes impairs wound healing, posing significant challenges to patient quality of life. Wound healing encompasses a complex cascade of hemostasis, inflammation, proliferation, and remodeling phases, which are susceptible to disruption in hyperglycemic conditions. In recent decades, metals have emerged as critical facilitators of wound repair by enhancing antimicrobial properties (e.g., iron and silver), providing angiogenic stimulation (copper), promoting antioxidant activity and growth factor synthesis (zinc), and supporting wound closure (calcium and magnesium). Consequently, research has pivoted towards the development of metal ion-based therapeutics, including innovative formulations such as nano-hydrogels, nano-microneedle dressings, and microneedle patches. Prepared by combining macromolecular materials such as chitosan, hyaluronic acid and sodium alginate with metals, aiming at improving the management of diabetic wounds. This review delineates the roles of key metals in human physiology and evaluates the application of metal ions in diabetic wound management strategies.
Collapse
Affiliation(s)
- Yuhe Dai
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Qianbo Zhang
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Rifang Gu
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; School Medical Office, Zunyi Medical University, Zunyi 563006, China.
| | - Jitao Chen
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Penghui Ye
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Huan Zhu
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Ming Tang
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Xuqiang Nie
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| |
Collapse
|
12
|
Cui Y, Du X, Li Y, Wang D, Lv Z, Yuan H, Chen Y, Liu J, Sun Y, Wang W. Imbalanced and Unchecked: The Role of Metal Dyshomeostasis in Driving COPD Progression. COPD 2024; 21:2322605. [PMID: 38591165 DOI: 10.1080/15412555.2024.2322605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/19/2024] [Indexed: 04/10/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic respiratory condition characterized by persistent inflammation and oxidative stress, which ultimately leads to progressive restriction of airflow. Extensive research findings have cogently suggested that the dysregulation of essential transition metal ions, notably iron, copper, and zinc, stands as a critical nexus in the perpetuation of inflammatory processes and oxidative damage within the lungs of COPD patients. Unraveling the intricate interplay between metal homeostasis, oxidative stress, and inflammatory signaling is of paramount importance in unraveling the intricacies of COPD pathogenesis. This comprehensive review aims to examine the current literature on the sources, regulation, and mechanisms by which metal dyshomeostasis contributes to COPD progression. We specifically focus on iron, copper, and zinc, given their well-characterized roles in orchestrating cytokine production, immune cell function, antioxidant depletion, and matrix remodeling. Despite the limited number of clinical trials investigating metal modulation in COPD, the advent of emerging methodologies tailored to monitor metal fluxes and gauge responses to chelation and supplementation hold great promise in unlocking the potential of metal-based interventions. We conclude that targeted restoration of metal homeostasis represents a promising frontier for ameliorating pathological processes driving COPD progression.
Collapse
Affiliation(s)
- Ye Cui
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Xinqian Du
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Yunqi Li
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Dan Wang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Zhe Lv
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Huihui Yuan
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Yan Chen
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Jie Liu
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Ying Sun
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Wei Wang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
13
|
Yuan HY, Liu WY, Feng G, Chen SD, Jin XZ, Chen LL, Song ZJ, Li K, Byrne CD, Targher G, Tian N, Li G, Zhang XL, George J, Zhou M, Wang F, Zheng MH. Associations between cuprotosis-related genes and the spectrum of metabolic dysfunction-associated fatty liver disease: An exploratory study. Diabetes Obes Metab 2024; 26:5757-5775. [PMID: 39285685 DOI: 10.1111/dom.15946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/22/2024] [Accepted: 08/30/2024] [Indexed: 11/05/2024]
Abstract
AIMS To explore the associations between cuprotosis-related genes (CRGs) across different stages of liver disease in metabolic dysfunction-associated fatty liver disease (MAFLD), including hepatocellular carcinoma (HCC). MATERIALS AND METHODS We analysed several bulk RNA sequencing datasets from patients with MAFLD (n = 331) and MAFLD-related HCC (n = 271) and two MAFLD single-cell RNA sequencing datasets. To investigate the associations between CRGs and MAFLD, we performed differential correlation, logistic regression and functional enrichment analyses. We also validated the findings in an independent Wenzhou PERSONS cohort of MAFLD patients (n = 656) used for a genome-wide association study (GWAS). RESULTS GLS, GCSH and ATP7B genes showed significant differences across the MAFLD spectrum and were significantly associated with liver fibrosis stages. GLS was closely associated with fibrosis stages in patients with MAFLD and those with MAFLD-related HCC. GLS is predominantly expressed in monocytes and T cells in MAFLD. During the progression of metabolic dysfunction-associated fatty liver to metabolic-associated steatohepatitis, GLS expression in T cells decreased. GWAS revealed that multiple single nucleotide polymorphisms in GLS were associated with clinical indicators of MAFLD. CONCLUSIONS GLS may contribute to liver inflammation and fibrosis in MAFLD mainly through cuprotosis and T-cell activation, promoting the progression of MAFLD to HCC. These findings suggest that cuprotosis may play a role in MAFLD progression, potentially providing new insights into MAFLD pathogenesis.
Collapse
Affiliation(s)
- Hai-Yang Yuan
- MAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wen-Yue Liu
- Department of Endocrinology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Gong Feng
- Xi'an Medical University, Xi'an, China
| | - Sui-Dan Chen
- Department of Pathology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xin-Zhe Jin
- Department of Laboratory Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Li-Li Chen
- MAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zi-Jun Song
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Ke Li
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Christopher D Byrne
- Southampton National Institute for Health and Care Research Biomedical Research Centre, University Hospital Southampton and University of Southampton, Southampton General Hospital, Southampton, UK
| | - Giovanni Targher
- Metabolic Diseases Research Unit, IRCCS Sacro Cuore-Don Calabria Hospital, Negrar di Valpolicella, Italy
| | - Na Tian
- MAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Gang Li
- Department of Infectious, Jining No.1 People's Hospital, Jining, China
| | - Xin-Lei Zhang
- MAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jacob George
- Storr Liver Centre, Westmead Hospital and University of Sydney, Westmead, Australia
| | - Meng Zhou
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Fudi Wang
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Hepatology, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment for The Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| |
Collapse
|
14
|
Dwivedi M, Jindal D, Jose S, Hasan S, Nayak P. Elements in trace amount with a significant role in human physiology: a tumor pathophysiological and diagnostic aspects. J Drug Target 2024; 32:270-286. [PMID: 38251986 DOI: 10.1080/1061186x.2024.2309572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
Cancer has a devastating impact globally regardless of gender, age, and community, which continues its severity to the population due to the lack of efficient strategy for the cancer diagnosis and treatment. According to the World Health Organisation report, one out of six people dies due to this deadly cancer and we need effective strategies to regulate it. In this context, trace element has a very hidden and unexplored role and require more attention from investigators. The variation in concentration of trace elements was observed during comparative studies on a cancer patient and a healthy person making them an effective target for cancer regulation. The percentage of trace elements present in the human body depends on environmental exposure, food habits, and habitats and could be instrumental in the early diagnosis of cancer. In this review, we have conducted inclusive analytics on trace elements associated with the various types of cancers and explored the several methods involved in their analysis. Further, intricacies in the correlation of trace elements with prominent cancers like prostate cancer, breast cancer, and leukaemia are represented in this review. This comprehensive information on trace elements proposes their role during cancer and as biomarkers in cancer diagnosis.
Collapse
Affiliation(s)
- Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
- Research Cell, Amity University Uttar Pradesh, Lucknow, India
| | - Divya Jindal
- Department of Biotechnology, Center for Emerging Diseases, Jaypee Institute of Information Technology, Noida, India
| | - Sandra Jose
- MET's School of Engineering, Thrissur, India
| | - Saba Hasan
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
| | - Pradeep Nayak
- Department of Physics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
15
|
Wielsøe M, Long M, Søndergaard J, Bonefeld-Jørgensen EC. Metal exposure in the Greenlandic ACCEPT cohort: follow-up and comparison with other Arctic populations. Int J Circumpolar Health 2024; 83:2381308. [PMID: 39078885 PMCID: PMC11290292 DOI: 10.1080/22423982.2024.2381308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/09/2024] [Accepted: 07/13/2024] [Indexed: 08/02/2024] Open
Abstract
Humans are exposed to metals through diet and lifestyle e.g. smoking. Some metals are essential for physiologically body functions, while others are non-essential and can be toxic to humans. This study follows up on metal concentrations in the Greenlandic ACCEPT birth-cohort (mothers and fathers) and compares with other Arctic populations. The data from 2019 to 2020 include blood metal concentrations, lifestyle and food frequency questionnaires from 101 mothers and 76 fathers, 24-55 years, living in Nuuk, Sisimiut, and Ilulissat. A high percentage (25-45%) exceeded international guidance values for Hg. For the mothers, the metal concentrations changed significantly from inclusion at pregnancy to this follow-up 3-5 years after birth; some increased and others decreased. Most metals differed significantly between mothers and fathers, while few also differed between residential towns. Several metals correlated significantly with marine food intake and socio-economic factors, but the direction of the correlations varied. Traditional marine food intake was associated positively with Se, As and Hg. To the best of our knowledge, this study provides the most recent data on metal exposure of both men and women in Greenland, elucidating metal exposure sources among Arctic populations, and documents the need for continuing biomonitoring to follow the exceeding of guidance values for Hg. [Figure: see text].
Collapse
Affiliation(s)
- Maria Wielsøe
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Manhai Long
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark
| | | | - Eva Cecilie Bonefeld-Jørgensen
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark
- Greenland Centre for Health Research, University of Greenland, Nuussuaq, Greenland
| |
Collapse
|
16
|
Reggi S, Frazzini S, Torresani MC, Guagliano M, Cristiani C, Pilu SR, Ghidoli M, Rossi L. Metabolomic Profiling and Functional Characterization of Biochar from Vine Pruning Residues for Applications in Animal Feed. Animals (Basel) 2024; 14:3440. [PMID: 39682405 DOI: 10.3390/ani14233440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/19/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Biochar has gained interest as a feed ingredient in livestock nutrition due to its functional properties, circularity, potential to reduce environmental impact, and alignment with sustainable agro-zootechnical practices. The in vivo effects of biochar are closely tied to its physical characteristics, which vary depending on the biomass used as feedstock and the production process. This variability can result in heterogeneity among biochar types used in animal nutrition, leading to inconsistent outcomes. The aim of this study was to characterize the metabolomic and functional properties of an aqueous biochar extract from vine pruning waste, in order to predict its potential in vivo effects as a functional feed ingredient. A metabolomic analysis of the biochar extracts was conducted using quadrupole time-f-light (QQTOF) high-performance liquid chromatography tandem mass spectrometry (HPLC MS/MS). Antimicrobial activity against E. coli F18+ and E. coli F4+ was assessed using standard growth inhibition assays, while quorum sensing in E. coli exposed to biochar extracts was evaluated using real-time PCR. Prebiotic activity was assessed by exposing selected Lactobacillus strains to the biochar extract, monitoring growth patterns to determine species-specific responses. The metabolomic profile revealed several distinct molecular classes, including multiple peaks for phenolic compounds. The extract significantly inhibited the growth of both E. coli pathotypes, reducing growth by 29% and 16% for the F4+ and F18+, respectively (p < 0.001). The relative expression of the genes involved in quorum sensing (MotA, FliA for biofilm formation, and FtsE, HflX for cell division) indicated that the observed inhibitory effects likely resulted from interference with flagellar synthesis, motility, and reduced cell division. The biochar extract also showed species-specific prebiotic potential. In conclusion, biochar derived from vine pruning waste represents a valuable feed ingredient with functional properties that may help to reduce antibiotic use in livestock production.
Collapse
Affiliation(s)
- Serena Reggi
- Department of Veterinary Medicine and Animal Sciences-DIVAS, University of Milano, 26900 Lodi, Italy
| | - Sara Frazzini
- Department of Veterinary Medicine and Animal Sciences-DIVAS, University of Milano, 26900 Lodi, Italy
| | | | - Marianna Guagliano
- Department of Chemistry, Materials and Chemical Engineering-Giulio Natta, Politecnico of Milan, 20133 Milano, Italy
| | - Cinzia Cristiani
- Department of Chemistry, Materials and Chemical Engineering-Giulio Natta, Politecnico of Milan, 20133 Milano, Italy
| | - Salvatore Roberto Pilu
- Department of Agricultural and Environmental Sciences-Production Landscape and Agroenergy, University of Milano, 20133 Milano, Italy
| | - Martina Ghidoli
- Department of Agricultural and Environmental Sciences-Production Landscape and Agroenergy, University of Milano, 20133 Milano, Italy
| | - Luciana Rossi
- Department of Veterinary Medicine and Animal Sciences-DIVAS, University of Milano, 26900 Lodi, Italy
| |
Collapse
|
17
|
La Rosa A, Covone AE, Coviello D, Arrigo S, Ferro J, Gandullia P, Madeo A. Early Onset of Wilson's Disease and Possible Role of Disease-Modifying Genes: A Case Report and Literature Review. Case Reports Hepatol 2024; 2024:3815089. [PMID: 39628766 PMCID: PMC11614511 DOI: 10.1155/crhe/3815089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/01/2024] [Indexed: 12/06/2024] Open
Abstract
Wilson's disease (WD) is a rare autosomal recessive disorder caused by mutations in the ATP7B gene, resulting in copper accumulation. Symptoms rarely appear before the age of 5, almost never before 3. The phenotypic variability of WD suggests the presence of modifying factors, making early diagnosis challenging. We present a case of symptomatic WD in a toddler, emphasizing the importance of considering WD in differential diagnoses and exploring genetic modifiers influencing disease onset. Clinical and laboratory assessments, including liver biopsy, were performed on a 4.2-year-old boy presenting with hypertransaminasemia and mild hepatomegaly. Histological evaluation revealed chronic hepatitis with fibrosis and severe steatosis, indicating long-standing active disease. Genetic analysis identified a missense variant and a 15-nucleotide deletion in the 5' UTR promoter region of the ATP7B gene, confirming the WD diagnosis. Additionally, homozygosity for the HFE H63D variant was detected, with transferrin saturations at the upper limit of normal. The patient's clinical management included a trial of D-penicillamine, discontinued due to side effects, followed by successful zinc acetate therapy. This case underscores the consideration of WD in the differential diagnosis of toddlers. The Ferenci-Leipzig score remains a valid diagnostic tool for WD even in the presence of a single ATP7B variant, although extended genetic analysis should still be considered. Normal ceruloplasmin levels do not rule out WD. Environmental, epigenetic, and genetic factors appear to influence the WD phenotype; HFE variants may act as modifiers given the link between iron and copper homeostasis, possibly explaining the early symptomatic onset in our patient.
Collapse
Affiliation(s)
- Alessandro La Rosa
- Paediatric Gastroenterology and Digestive Endoscopy Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Domenico Coviello
- Laboratory of Human Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Serena Arrigo
- Paediatric Gastroenterology and Digestive Endoscopy Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Jacopo Ferro
- Department of Laboratory Medicine, Division of Anatomic Pathology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Paolo Gandullia
- Paediatric Gastroenterology and Digestive Endoscopy Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Annalisa Madeo
- Paediatric Gastroenterology and Digestive Endoscopy Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
18
|
Binesh A, Venkatachalam K. Copper in Human Health and Disease: A Comprehensive Review. J Biochem Mol Toxicol 2024; 38:e70052. [PMID: 39503199 DOI: 10.1002/jbt.70052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/08/2024]
Abstract
This comprehensive review discusses the crucial role of copper in human health and disease as an essential trace mineral. It emphasizes the significance of copper while addressing potential risks from imbalances in copper levels, be it excessive or inadequate. The review outlines various challenges in copper research, including toxicity concerns, data limitations, metabolic complexities, genetic influences, nutrient interactions, and resource constraints. Despite these challenges, the review identifies specific research areas needing exploration, such as copper homeostasis regulation, transport mechanisms, gut microbiome interactions, immune function, neurodegenerative diseases, cardiovascular health, cancer, fertility, and reproductive health. The purpose of this review is to explore the important role of copper in human health and disease, which highlights the delicate balance required to avoid deficiency or toxicity. For the researchers and scientists, it provides the gaps in the research, so it aims to provide insights that could advance diagnostic and therapeutic strategies across various medical disciplines.
Collapse
Affiliation(s)
- Ambika Binesh
- Department of Basic Sciences, Institute of Fisheries Post Graduate Studies, OMR Campus, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, Chennai, Tamil Nadu, India
| | - Kaliyamurthi Venkatachalam
- Department of Basic Sciences, Institute of Fisheries Post Graduate Studies, OMR Campus, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, Chennai, Tamil Nadu, India
| |
Collapse
|
19
|
Ru Q, Li Y, Chen L, Wu Y, Min J, Wang F. Iron homeostasis and ferroptosis in human diseases: mechanisms and therapeutic prospects. Signal Transduct Target Ther 2024; 9:271. [PMID: 39396974 PMCID: PMC11486532 DOI: 10.1038/s41392-024-01969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/08/2024] [Accepted: 09/02/2024] [Indexed: 10/15/2024] Open
Abstract
Iron, an essential mineral in the body, is involved in numerous physiological processes, making the maintenance of iron homeostasis crucial for overall health. Both iron overload and deficiency can cause various disorders and human diseases. Ferroptosis, a form of cell death dependent on iron, is characterized by the extensive peroxidation of lipids. Unlike other kinds of classical unprogrammed cell death, ferroptosis is primarily linked to disruptions in iron metabolism, lipid peroxidation, and antioxidant system imbalance. Ferroptosis is regulated through transcription, translation, and post-translational modifications, which affect cellular sensitivity to ferroptosis. Over the past decade or so, numerous diseases have been linked to ferroptosis as part of their etiology, including cancers, metabolic disorders, autoimmune diseases, central nervous system diseases, cardiovascular diseases, and musculoskeletal diseases. Ferroptosis-related proteins have become attractive targets for many major human diseases that are currently incurable, and some ferroptosis regulators have shown therapeutic effects in clinical trials although further validation of their clinical potential is needed. Therefore, in-depth analysis of ferroptosis and its potential molecular mechanisms in human diseases may offer additional strategies for clinical prevention and treatment. In this review, we discuss the physiological significance of iron homeostasis in the body, the potential contribution of ferroptosis to the etiology and development of human diseases, along with the evidence supporting targeting ferroptosis as a therapeutic approach. Importantly, we evaluate recent potential therapeutic targets and promising interventions, providing guidance for future targeted treatment therapies against human diseases.
Collapse
Affiliation(s)
- Qin Ru
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Chen
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yuxiang Wu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China.
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
20
|
Fitisemanu FM, Padilla-Benavides T. Emerging perspectives of copper-mediated transcriptional regulation in mammalian cell development. Metallomics 2024; 16:mfae046. [PMID: 39375833 PMCID: PMC11503025 DOI: 10.1093/mtomcs/mfae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Copper (Cu) is a vital micronutrient necessary for proper development and function of mammalian cells and tissues. Cu mediates the function of redox active enzymes that facilitate metabolic processes and signaling pathways. Cu levels are tightly regulated by a network of Cu-binding transporters, chaperones, and small molecule ligands. Extensive research has focused on the mammalian Cu homeostasis (cuprostasis) network and pathologies, which result from mutations and perturbations. There are roles for Cu-binding proteins as transcription factors (Cu-TFs) and regulators that mediate metal homeostasis through the activation or repression of genes associated with Cu handling. Emerging evidence suggests that Cu and some Cu-TFs may be involved in the regulation of targets related to development-expanding the biological roles of Cu-binding proteins. Cu and Cu-TFs are implicated in embryonic and tissue-specific development alongside the mediation of the cellular response to oxidative stress and hypoxia. Cu-TFs are also involved in the regulation of targets implicated in neurological disorders, providing new biomarkers and therapeutic targets for diseases such as Parkinson's disease, prion disease, and Friedreich's ataxia. This review provides a critical analysis of the current understanding of the role of Cu and cuproproteins in transcriptional regulation.
Collapse
|
21
|
Caverzan MD, Ibarra LE. Advancing glioblastoma treatment through iron metabolism: A focus on TfR1 and Ferroptosis innovations. Int J Biol Macromol 2024; 278:134777. [PMID: 39153669 DOI: 10.1016/j.ijbiomac.2024.134777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Glioblastoma (GBM) represents a formidable challenge in oncology, characterized by aggressive proliferation and poor prognosis. Iron metabolism plays a critical player in GBM progression, with dysregulated iron uptake and utilization contributing to tumor growth and therapeutic resistance. Iron's pivotal role in DNA synthesis, oxidative stress, and angiogenesis underscores its significance in GBM pathogenesis. Elevated expression of iron transporters, such as transferrin receptor 1 (TfR1), highlights the tumor's reliance on iron for survival. Innovative treatment strategies targeting iron dysregulation hold promise for overcoming therapeutic challenges in GBM management. Approaches such as iron chelation therapies, induction of ferroptosis to nanoparticle-based drug delivery systems exploit iron-dependent vulnerabilities, offering avenues for enhance treatment efficacy and improve patient outcomes. As research advances, understanding the complexities of iron-mediated carcinogenesis provides a foundation for developing precision medicine approaches tailored to combat GBM effectively. This review explores the intricate relationship between iron metabolism and GBM, elucidating its multifaceted implications and therapeutic opportunities. By consolidating the latest insights into iron metabolism in GBM, this review underscores its potential as a therapeutic target for improving patient care in combination with the standard of care approach.
Collapse
Affiliation(s)
- Matías D Caverzan
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Rio Cuarto (UNRC) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Cuarto X5800BIA, Argentina; Departamento de Patología Animal, Facultad de Agronomía y Veterinaria, Universidad Nacional de Rio Cuarto, Rio Cuarto X5800BIA, Argentina
| | - Luis E Ibarra
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, Universidad Nacional de Rio Cuarto, Rio Cuarto X5800BIA, Argentina; Instituto de Biotecnología Ambiental y Salud (INBIAS), Universidad Nacional de Rio Cuarto (UNRC) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rio Cuarto X5800BIA, Argentina.
| |
Collapse
|
22
|
Duggal S, Meza-Rodriguez S, Shahid S, Zuckerman M, Borges JC. Unusual Confluence: Exploring the Association of Biliary Atresia, Wilson Disease, and Iron Overload. ACG Case Rep J 2024; 11:e01500. [PMID: 39440108 PMCID: PMC11495795 DOI: 10.14309/crj.0000000000001500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/09/2024] [Indexed: 10/25/2024] Open
Abstract
The case involves a 33-year-old man with biliary atresia, Wilson disease (WD), and iron overload. Biliary atresia, a cholangiodestructive disease, leads to cirrhosis if untreated. WD, caused by ATP7B gene mutations, results in copper accumulation affecting the liver and brain. Iron overload can be seen in cases of WD and with hereditary hemochromatosis gene mutations. The patient's concurrent presentation of these conditions poses a unique clinical challenge. Elevated iron levels may worsen WD outcomes. A detailed history and physical examination, genetic testing, and close follow-up are crucial. The case highlights the need for increased awareness and vigilant monitoring of patients with overlapping liver diseases.
Collapse
Affiliation(s)
- Shivangini Duggal
- Department of Internal Medicine, Texas Tech University Health Sciences Center, El Paso, TX
| | | | - Saqib Shahid
- Texas Tech University Health Sciences Center, El Paso, Paul L. Foster School of Medicine, El Paso, TX
| | - Marc Zuckerman
- Division of Gastroenterology, Texas Tech University Health Sciences Center, El Paso, TX
| | - Jorge Chiquie Borges
- Division of Cardiology, Texas Tech University Health Sciences Center, El Paso, TX
| |
Collapse
|
23
|
Yang Y, Wu J, Wang L, Ji G, Dang Y. Copper homeostasis and cuproptosis in health and disease. MedComm (Beijing) 2024; 5:e724. [PMID: 39290254 PMCID: PMC11406047 DOI: 10.1002/mco2.724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Copper is a vital trace element in human physiology, essential for the synthesis of numerous crucial metabolic enzymes and facilitation of various biological processes. Regulation of copper levels within a narrow range is imperative for maintaining metabolic homeostasis. Numerous studies have demonstrated the significant roles of copper homeostasis and cuproptosis in health and disease pathogenesis. However, a comprehensive and up-to-date systematic review in this domain remains absent. This review aims to consolidate recent advancements in understanding the roles of cuproptosis and copper homeostasis in health and disease, focusing on the underlying mechanisms and potential therapeutic interventions. Dysregulation of copper homeostasis, manifesting as either copper excess or deficiency, is implicated in the etiology of various diseases. Cuproptosis, a recently identified form of cell death, is characterized by intracellular copper overload. This phenomenon mediates a diverse array of evolutionary processes in organisms, spanning from health to disease, and is implicated in genetic disorders, liver diseases, neurodegenerative disorders, and various cancers. This review provides a comprehensive summary of the pathogenic mechanisms underlying cuproptosis and copper homeostasis, along with associated targeted therapeutic agents. Furthermore, it explores future research directions with the potential to yield significant advancements in disease treatment, health management, and disease prevention.
Collapse
Affiliation(s)
- Yunuo Yang
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive DiseasesLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Jiaxuan Wu
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive DiseasesLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Lisheng Wang
- Department of Biochemistry, Microbiology and Immunology, Faculty of MedicineUniversity of OttawaOttawaOntarioCanada
- China‐Canada Centre of Research for Digestive DiseasesUniversity of OttawaOttawaOntarioCanada
| | - Guang Ji
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive DiseasesLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Yanqi Dang
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive DiseasesLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| |
Collapse
|
24
|
Yu Q, Xiao Y, Guan M, Zhang X, Yu J, Han M, Li Z. Copper metabolism in osteoarthritis and its relation to oxidative stress and ferroptosis in chondrocytes. Front Mol Biosci 2024; 11:1472492. [PMID: 39329090 PMCID: PMC11425083 DOI: 10.3389/fmolb.2024.1472492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024] Open
Abstract
Ferroptosis, an iron-ion-dependent process of lipid peroxidation, damages the plasma membrane, leading to non-programmed cell death. Osteoarthritis (OA), a prevalent chronic degenerative joint disease among middle-aged and older adults, is characterized by chondrocyte damage or loss. Emerging evidence indicates that chondrocyte ferroptosis plays a role in OA development. However, most research has concentrated on ferroptosis regulation involving typical iron ions, potentially neglecting the significance of elevated copper ions in both serum and joint fluid of patients with OA. This review aims to fill this gap by systematically examining the interplay between copper metabolism, oxidative stress, ferroptosis, and copper-associated cell death in OA. It will provide a comprehensive overview of copper ions' role in regulating ferroptosis and their dual role in OA. This approach seeks to offer new insights for further research, prevention, and treatment of OA.
Collapse
Affiliation(s)
- Qingyuan Yu
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Yanan Xiao
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Mengqi Guan
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Xianshuai Zhang
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Jianan Yu
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Mingze Han
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Zhenhua Li
- Orthopedic Center, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
| |
Collapse
|
25
|
D’Elia JA, Weinrauch LA. Role of Divalent Cations in Infections in Host-Pathogen Interaction. Int J Mol Sci 2024; 25:9775. [PMID: 39337264 PMCID: PMC11432163 DOI: 10.3390/ijms25189775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
With increasing numbers of patients worldwide diagnosed with diabetes mellitus, renal disease, and iatrogenic immune deficiencies, an increased understanding of the role of electrolyte interactions in mitigating pathogen virulence is necessary. The levels of divalent cations affect host susceptibility and pathogen survival in persons with relative immune insufficiency. For instance, when host cellular levels of calcium are high compared to magnesium, this relationship contributes to insulin resistance and triples the risk of clinical tuberculosis. The movement of divalent cations within intracellular spaces contributes to the host defense, causing apoptosis or autophagy of the pathogen. The control of divalent cation flow is dependent in part upon the mammalian natural resistance-associated macrophage protein (NRAMP) in the host. Survival of pathogens such as M tuberculosis within the bronchoalveolar macrophage is also dependent upon NRAMP. Pathogens evolve mutations to control the movement of calcium through external and internal channels. The host NRAMP as a metal transporter competes for divalent cations with the pathogen NRAMP in M tuberculosis (whether in latent, dormant, or active phase). This review paper summarizes mechanisms of pathogen offense and patient defense using inflow and efflux through divalent cation channels under the influence of parathyroid hormone vitamin D and calcitonin.
Collapse
Affiliation(s)
| | - Larry A. Weinrauch
- Kidney and Hypertension Section, E P Joslin Research Laboratory, Joslin Diabetes Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
26
|
Lamačová LJ, Trnka J. Chelating mitochondrial iron and copper: Recipes, pitfalls and promise. Mitochondrion 2024; 78:101903. [PMID: 38777220 DOI: 10.1016/j.mito.2024.101903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Iron and copper chelation therapy plays a crucial role in treating conditions associated with metal overload, such as hemochromatosis or Wilson's disease. However, conventional chelators face challenges in reaching the core of iron and copper metabolism - the mitochondria. Mitochondria-targeted chelators can specifically target and remove metal ions from mitochondria, showing promise in treating diseases linked to mitochondrial dysfunction, including neurodegenerative diseases and cancer. Additionally, they serve as specific mitochondrial metal sensors. However, designing these new molecules presents its own set of challenges. Depending on the chelator's intended use to prevent or to promote redox cycling of the metals, the chelating moiety must possess different donor atoms and an optimal value of the electrode potential of the chelator-metal complex. Various targeting moieties can be employed for selective delivery into the mitochondria. This review also provides an overview of the current progress in the design of mitochondria-targeted chelators and their biological activity investigation.
Collapse
Affiliation(s)
- Lucie J Lamačová
- Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Ruská 87, 100 00 Praha, Czech Republic
| | - Jan Trnka
- Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Ruská 87, 100 00 Praha, Czech Republic.
| |
Collapse
|
27
|
Lee J, Jang H, Doo M, Kim BH, Ha JH. High Iron Consumption Modifies the Hepatic Transcriptome Related to Cholesterol Metabolism. J Med Food 2024; 27:895-900. [PMID: 38905120 DOI: 10.1089/jmf.2024.k.0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024] Open
Abstract
Iron supplementation is a common method for alleviating symptoms of iron deficiency, but excessive iron intake may lead to systemic copper deficiencies and hypercholesterolemia. In our study, we explored the intricate relationship between dietary iron and copper levels and their impact on cholesterol metabolism. Using a rat model, we conducted dietary interventions with varying iron and copper concentrations and analyzed hepatic transcriptomes. High iron intake coupled with low copper intake induced hypercholesterolemia and altered the expression of genes associated with cholesterol and lipid metabolism, thereby, exacerbating cardiovascular disease risks. Conversely, copper supplementation mitigated these hepatic gene expression alterations, suggesting that dietary copper plays a role in cholesterol regulation. Transcriptomic analysis revealed significant upregulation of genes involved in cholesterol synthesis and antioxidative pathways in response to high iron intake, while genes involved in cholesterol elimination were downregulated. Furthermore, high iron consumption was associated with cellular apoptosis and the activation of cholesterol synthesis. Our findings underscore the importance of balanced iron and copper intake in cholesterol homeostasis and highlight the potential of copper supplementation for mitigating iron-induced hypercholesterolemia.
Collapse
Affiliation(s)
- Jisu Lee
- Department of Food Science and Nutrition, Dankook University, Cheonan, Korea
| | - Hyunsoo Jang
- Department of Food Science and Nutrition, Dankook University, Cheonan, Korea
| | - Miae Doo
- Department of Food and Nutrition, Kunsan National University, Gunsan, Korea
| | | | - Jung-Heun Ha
- Department of Food Science and Nutrition, Dankook University, Cheonan, Korea
- Research Center for Industrialization of Natural Neutralization, Dankook University, Yongin, Korea
| |
Collapse
|
28
|
Pan C, Ji Z, Wang Q, Zhang Z, Wang Z, Li C, Lu S, Ge P. Cuproptosis: Mechanisms, biological significance, and advances in disease treatment-A systematic review. CNS Neurosci Ther 2024; 30:e70039. [PMID: 39267265 PMCID: PMC11392831 DOI: 10.1111/cns.70039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND Copper is an essential trace element for biological systems, as it plays a critical role in the activity of various enzymes and metabolic processes. However, the dysregulation of copper homeostasis is closely associated with the onset and progression of numerous diseases. In recent years, copper-induced cell death, a novel form of cellular demise, has garnered significant attention. This process is characterized by the abnormal accumulation of intracellular copper ions, leading to cellular dysfunction and eventual cell death. Copper toxicity occurs through the interaction of copper with acylated enzymes in the tricarboxylic acid (TCA) cycle. This interaction results in subsequent protein aggregation, causing proteotoxic stress and ultimately resulting in cell death. Despite the promise of these findings, the detailed mechanisms and broader implications of cuproptosis remain underexplored. Therefore, our study aimed to investigate the role of copper in cell death and autophagy, focusing on the molecular mechanisms of cuproptosis. We also aimed to discuss recent advancements in copper-related research across various diseases and tumors, providing insights for future studies and potential therapeutic applications. MAIN BODY This review delves into the biological significance of copper metabolism and the molecular mechanisms underlying copper-induced cell death. Furthermore, we discuss the role of copper toxicity in the pathogenesis of various diseases, emphasizing recent advancements in the field of oncology. Additionally, we explore the therapeutic potential of targeting copper toxicity. CONCLUSION The study highlights the need for further research to explore alternative pathways of copper-induced cell death, detailed mechanisms of cuproptosis, and biomarkers for copper poisoning. Future research should focus on exploring the molecular mechanisms of cuproptosis, developing new therapeutic strategies, and verifying their safety and efficacy in clinical trials.
Collapse
Affiliation(s)
- Chengliang Pan
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, P.R. China
| | - Zhilin Ji
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, P.R. China
| | - Qingxuan Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, P.R. China
| | - Zhao Zhang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, P.R. China
| | - Zhenchuan Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, P.R. China
| | - Chen Li
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, P.R. China
| | - Shan Lu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, P.R. China
| | - Pengfei Ge
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, P.R. China
| |
Collapse
|
29
|
Lai Y, Gao FF, Ge RT, Liu R, Ma S, Liu X. Metal ions overloading and cell death. Cell Biol Toxicol 2024; 40:72. [PMID: 39162885 PMCID: PMC11335907 DOI: 10.1007/s10565-024-09910-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/06/2024] [Indexed: 08/21/2024]
Abstract
Cell death maintains cell morphology and homeostasis during development by removing damaged or obsolete cells. The concentration of metal ions whithin cells is regulated by various intracellular transporters and repositories to maintain dynamic balance. External or internal stimuli might increase the concentration of metal ions, which results in ions overloading. Abnormal accumulation of large amounts of metal ions can lead to disruption of various signaling in the cell, which in turn can produce toxic effects and lead to the occurrence of different types of cell deaths. In order to further study the occurrence and development of metal ions overloading induced cell death, this paper reviewed the regulation of Ca2+, Fe3+, Cu2+ and Zn2+ metal ions, and the internal mechanism of cell death induced by overloading. Furthermore, we found that different metal ions possess a synergistic and competitive relationship in the regulation of cell death. And the enhanced level of oxidative stress was present in all the processes of cell death due to metal ions overloading, which possibly due to the combination of factors. Therefore, this review offers a theoretical foundation for the investigation of the toxic effects of metal ions, and presents innovative insights for targeted regulation and therapeutic intervention. HIGHLIGHTS: • Metal ions overloading disrupts homeostasis, which in turn affects the regulation of cell death. • Metal ions overloading can cause cell death via reactive oxygen species (ROS). • Different metal ions have synergistic and competitive relationships for regulating cell death.
Collapse
Affiliation(s)
- Yun Lai
- School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Fen Fen Gao
- School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Ruo Ting Ge
- School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Rui Liu
- School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Shumei Ma
- School of Public Health, Wenzhou Medical University, Wenzhou, China.
| | - Xiaodong Liu
- School of Public Health, Wenzhou Medical University, Wenzhou, China.
- South Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou Medical University, Wenzhou, China.
- Key Laboratory of Watershed Science and Health of Zhejiang Province, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
30
|
Zhang C, Huang T, Li L. Targeting cuproptosis for cancer therapy: mechanistic insights and clinical perspectives. J Hematol Oncol 2024; 17:68. [PMID: 39152464 PMCID: PMC11328505 DOI: 10.1186/s13045-024-01589-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024] Open
Abstract
Cuproptosis is a newly identified form of cell death induced by excessive copper (Cu) accumulation within cells. Mechanistically, cuproptosis results from Cu-induced aggregation of dihydrolipoamide S-acetyltransferase, correlated with the mitochondrial tricarboxylic acid cycle and the loss of iron-sulfur cluster proteins, ultimately resulting in proteotoxic stress and triggering cell death. Recently, cuproptosis has garnered significant interest in tumor research due to its potential as a crucial therapeutic strategy against cancer. In this review, we summarized the cellular and molecular mechanisms of cuproptosis and its relationship with other types of cell death. Additionally, we reviewed the current drugs or strategies available to induce cuproptosis in tumor cells, including Cu ionophores, small compounds, and nanomedicine. Furthermore, we targeted cell metabolism and specific regulatory genes in cancer therapy to enhance tumor sensitivity to cuproptosis. Finally, we discussed the feasibility of targeting cuproptosis to overcome tumor chemotherapy and immunotherapy resistance and suggested future research directions. This study suggested that targeting cuproptosis could open new avenues for developing tumor therapy.
Collapse
Affiliation(s)
- Chenliang Zhang
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Tingting Huang
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Liping Li
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
31
|
Chen M, Jia L, Gao R. Association between dietary copper, iron, zinc, selenium intake and osteopenia or osteoporosis in elderly hypertensive patients: a retrospective cohort study. Front Nutr 2024; 11:1419379. [PMID: 39206314 PMCID: PMC11351564 DOI: 10.3389/fnut.2024.1419379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024] Open
Abstract
Aim The study aimed to investigate the link between dietary copper, iron, zinc, selenium intake with osteopenia and osteoporosis in elderly hypertensive patients. Methods The data of hypertensive patients were extracted from the National Health and Nutrition Examination Survey 2005-2010, 2013-2014, and 2017-2018. Data of dietary iron, zinc, copper and selenium intakes were obtained according to 24-h diet recall interviews. Osteopenia and osteoporosis were determined based on the bone mineral density. Weighted liner regression and weighted logistic regression were employed to assess the association between iron, zinc, copper, and selenium intakes with osteopenia and osteoporosis. All results were presented as β, odds ratios (ORs), and 95% confidence intervals (CIs). Results In total, 5,286 elderly hypertensive patients were included. Among them, 2,961 (56.02%) patients have osteopenia, and 566 (10.71%) have osteoporosis. After adjusting all covariates, dietary copper intake ≥the recommended daily allowance was positively correlated with bone mineral density on total femur (β = 0.086, 95% CI: 0.021-0.152) and femoral neck (β = 0.097, 95% CI: 0.016-0.178). Dietary zinc intake ≥the recommended daily allowance was also positively correlated with bone mineral density on total femur (β = 0.092, 95% CI: 0.030-0.153) and femoral neck (β = 0.122, 95% CI: 0.050-0.193). Dietary copper (O = 0.581, 95% CI: 0.394-0.858) and zinc (OR = 0.595, 95% CI: 0.429-0.827) intake ≥the recommended daily allowance levels were related to increased odds of osteoporosis in elderly with hypertension. Conclusion Higher dietary copper and zinc intake was associated with lower odds of osteoporosis in the elderly hypertensive patients. Higher dietary intake included copper and zinc may be beneficial for the bone health in the elderly hypertensive patients.
Collapse
Affiliation(s)
- Mingji Chen
- Department of Orthopaedics, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | | | | |
Collapse
|
32
|
Pan X, Köberle M, Ghashghaeinia M. Vitamin C-Dependent Uptake of Non-Heme Iron by Enterocytes, Its Impact on Erythropoiesis and Redox Capacity of Human Erythrocytes. Antioxidants (Basel) 2024; 13:968. [PMID: 39199214 PMCID: PMC11352176 DOI: 10.3390/antiox13080968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
In the small intestine, nutrients from ingested food are absorbed and broken down by enterocytes, which constitute over 95% of the intestinal epithelium. Enterocytes demonstrate diet- and segment-dependent metabolic flexibility, enabling them to take up large amounts of glutamine and glucose to meet their energy needs and transfer these nutrients into the bloodstream. During glycolysis, ATP, lactate, and H+ ions are produced within the enterocytes. Based on extensive but incomplete glutamine oxidation large amounts of alanine or lactate are produced. Lactate, in turn, promotes hypoxia-inducible factor-1α (Hif-1α) activation and Hif-1α-dependent transcription of various proton channels and exchangers, which extrude cytoplasmic H+-ions into the intestinal lumen. In parallel, the vitamin C-dependent and duodenal cytochrome b-mediated conversion of ferric iron into ferrous iron progresses. Finally, the generated electrochemical gradient is utilized by the divalent metal transporter 1 for H+-coupled uptake of non-heme Fe2+-ions. Iron efflux from enterocytes, subsequent binding to the plasma protein transferrin, and systemic distribution supply a wide range of cells with iron, including erythroid precursors essential for erythropoiesis. In this review, we discuss the impact of vitamin C on the redox capacity of human erythrocytes and connect enterocyte function with iron metabolism, highlighting its effects on erythropoiesis.
Collapse
Affiliation(s)
- Xia Pan
- Physiological Institute, Department of Vegetative and Clinical Physiology, Eberhard Karls University of Tübingen, 72074 Tübingen, Germany
| | - Martin Köberle
- Department of Dermatology and Allergology, School of Medicine and Health, Technical University of Munich, Biedersteinerstr. 29, 80802 München, Germany
| | - Mehrdad Ghashghaeinia
- Physiological Institute, Department of Vegetative and Clinical Physiology, Eberhard Karls University of Tübingen, 72074 Tübingen, Germany
| |
Collapse
|
33
|
Zhang Z, Shao S, Luo H, Sun W, Wang J, Yin H. The functions of cuproptosis in gastric cancer: therapy, diagnosis, prognosis. Biomed Pharmacother 2024; 177:117100. [PMID: 39013221 DOI: 10.1016/j.biopha.2024.117100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/27/2024] [Accepted: 07/07/2024] [Indexed: 07/18/2024] Open
Abstract
Gastric cancer (GC) is the fifth most prevalent type of cancer in the whole world. Cuproptosis is discovered as a programmed cell death pathway and connected to cells' growth and death, as well as tumorigenesis. The relationship between cuproptosis and GC is still elusive. Two aspects of this study will elaborate the relationship between cuproptosis and immunotherapy as well as biomarkers in GC. Notably, the herein review is intended to highlight what has been accomplished regarding the cuproptosis for the diagnosis, immunotherapy, and prognosis in GC. The aim of this study is to offer a potential directions and the strategies for future research regarding cuproptosis inside the GC.
Collapse
Affiliation(s)
- Zhiqin Zhang
- Department of BioBank, Kunshan Hospital Affiliated to Jiangsu University, Suzhou 215300, PR China
| | - Shenhua Shao
- Department of Clinical Laboratory, Jinxi People's Hospital of Kunshan, Suzhou, Jiangsu 215300, PR China
| | - Hao Luo
- Department of Clinical Laboratory, the Second People's Hospital of Kunshan, Suzhou 215300, PR China
| | - Wangwei Sun
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Jiangsu 215300, PR China
| | - Jianjun Wang
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Jiangsu 215300, PR China.
| | - Hongqin Yin
- Department of Ultrasound, Kunshan Hospital Affiliated to Jiangsu University, Jiangsu 215300, PR China.
| |
Collapse
|
34
|
Liu Y, Hu S, Shi B, Yu B, Luo W, Peng S, Du X. The Role of Iron Metabolism in Sepsis-associated Encephalopathy: a Potential Target. Mol Neurobiol 2024; 61:4677-4690. [PMID: 38110647 DOI: 10.1007/s12035-023-03870-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/30/2023] [Indexed: 12/20/2023]
Abstract
Sepsis-associated encephalopathy (SAE) is an acute cerebral dysfunction secondary to infection, and the severity can range from mild delirium to deep coma. Disorders of iron metabolism have been proven to play an important role in a variety of neurodegenerative diseases by inducing cell damage through iron accumulation in glial cells and neurons. Recent studies have found that iron accumulation is also a potential mechanism of SAE. Systemic inflammation can induce changes in the expression of transporters and receptors on cells, especially high expression of divalent metal transporter1 (DMT1) and low expression of ferroportin (Fpn) 1, which leads to iron accumulation in cells. Excessive free Fe2+ can participate in the Fenton reaction to produce reactive oxygen species (ROS) to directly damage cells or induce ferroptosis. As a result, it may be of great help to improve SAE by treatment of targeting disorders of iron metabolism. Therefore, it is important to review the current research progress on the mechanism of SAE based on iron metabolism disorders. In addition, we also briefly describe the current status of SAE and iron metabolism disorders and emphasize the therapeutic prospect of targeting iron accumulation as a treatment for SAE, especially iron chelator. Moreover, drug delivery and side effects can be improved with the development of nanotechnology. This work suggests that treating SAE based on disorders of iron metabolism will be a thriving field.
Collapse
Affiliation(s)
- Yinuo Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- The Clinical Medical College of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Shengnan Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- The Clinical Medical College of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Bowen Shi
- The Clinical Medical College of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Bodong Yu
- The Clinical Medical College of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Wei Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Shengliang Peng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| | - Xiaohong Du
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
35
|
Zhang Z, Tang H, Du T, Yang D. The impact of copper on bone metabolism. J Orthop Translat 2024; 47:125-131. [PMID: 39021399 PMCID: PMC466973 DOI: 10.1016/j.jot.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/08/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024] Open
Abstract
Copper is an essential trace element for the human body. Abnormalities in copper metabolism can lead to bone defects, mainly by directly affecting the viability of osteoblasts and osteoclasts and their bone remodeling function, or indirectly regulating bone metabolism by influencing enzyme activities as cofactors. Copper ions released from biological materials can affect osteoblasts and osteoclasts, either directly or indirectly by modulating the inflammatory response, oxidative stress, and rapamycin signaling. This review presents an overview of recent progress in the impact of copper on bone metabolism. Translational potential of this article: The impact of copper on bone metabolism can provide insights into clinical application of copper-containing supplements and biomaterials.
Collapse
Affiliation(s)
- Zihan Zhang
- Liaoning Provincial Key Laboratory of Oral Disease, Department of Endodontics, School and Hospital of Stomatology, China Medical University, Shenyang, 110002, China
| | - Huixue Tang
- Liaoning Provincial Key Laboratory of Oral Disease, Department of Endodontics, School and Hospital of Stomatology, China Medical University, Shenyang, 110002, China
| | - Tingting Du
- Liaoning Provincial Key Laboratory of Oral Disease, Department of Endodontics, School and Hospital of Stomatology, China Medical University, Shenyang, 110002, China
| | - Di Yang
- Liaoning Provincial Key Laboratory of Oral Disease, Department of Endodontics, School and Hospital of Stomatology, China Medical University, Shenyang, 110002, China
| |
Collapse
|
36
|
Huang Z, Cao L, Yan D. Inflammatory immunity and bacteriological perspectives: A new direction for copper treatment of sepsis. J Trace Elem Med Biol 2024; 84:127456. [PMID: 38692229 DOI: 10.1016/j.jtemb.2024.127456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 05/03/2024]
Abstract
Copper is an essential trace element for all aerobic organisms because of its unique biological functions. In recent years, researchers have discovered that copper can induce cell death through various regulatory mechanisms, thereby inducing inflammation. Efforts have also been made to alter the chemical structure of copper to achieve either anticancer or anti-inflammatory effects. The copper ion can exhibit bactericidal effects by interfering with the integrity of the cell membrane and promoting oxidative stress. Sepsis is a systemic inflammatory response caused by infection. Some studies have revealed that copper is involved in the pathophysiological process of sepsis and is closely related to its prognosis. During the infection of sepsis, the body may enhance the antimicrobial effect by increasing the release of copper. However, to avoid copper poisoning, all organisms have evolved copper resistance genes. Therefore, further analysis of the complex relationship between copper and bacteria may provide new ideas and research directions for the treatment of sepsis.
Collapse
Affiliation(s)
- Zhenzhen Huang
- Department of Emergency Medicine,Zhoukou Central Hospital, No.26 Renmin Road, Chuanhui District, Zhoukou, Henan Province 466000, China
| | - Lunfei Cao
- Department of Emergency Medicine,Zhoukou Central Hospital, No.26 Renmin Road, Chuanhui District, Zhoukou, Henan Province 466000, China
| | - Dengfeng Yan
- Department of Emergency Medicine,Zhoukou Central Hospital, No.26 Renmin Road, Chuanhui District, Zhoukou, Henan Province 466000, China..
| |
Collapse
|
37
|
Einhorn V, Haase H, Maares M. Interaction and competition for intestinal absorption by zinc, iron, copper, and manganese at the intestinal mucus layer. J Trace Elem Med Biol 2024; 84:127459. [PMID: 38640745 DOI: 10.1016/j.jtemb.2024.127459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Trace elements such as zinc, manganese, copper, or iron are essential for a wide range of physiological functions. It is therefore crucial to ensure an adequate supply of these elements to the body. Many previous investigations have dealt with the role of transport proteins, in particular their selectivity for, and competition between, different ions. Another so far less well investigated major factor influencing the absorption of trace elements seems to be the intestinal mucus layer. This gel-like substance covers the entire gastrointestinal tract and its physiochemical properties can be mainly assigned to the glycoproteins it contains, so-called mucins. Interaction with mucins has already been demonstrated for some metals. However, knowledge about the impact on the respective bioavailability and competition between those metals is still sketchy. This review therefore aims to summarize the findings and knowledge gaps about potential effects regarding the interaction between gastrointestinal mucins and the trace elements iron, zinc, manganese, and copper. Mucins play an indispensable role in the absorption of these trace elements in the neutral to slightly alkaline environment of the intestine, by keeping them in a soluble form that can be absorbed by enterocytes. Furthermore, the studies so far indicate that the competition between these trace elements for uptake already starts at the intestinal mucus layer, yet further research is required to completely understand this interaction.
Collapse
Affiliation(s)
- Vincent Einhorn
- Technische Universität Berlin, Department of Food Chemistry and Toxicology, Straße des 17. Juni 135, Berlin 10623, Germany; Trace Age-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Jena-Wuppertal, Berlin, Germany
| | - Hajo Haase
- Technische Universität Berlin, Department of Food Chemistry and Toxicology, Straße des 17. Juni 135, Berlin 10623, Germany; Trace Age-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Jena-Wuppertal, Berlin, Germany
| | - Maria Maares
- Technische Universität Berlin, Department of Food Chemistry and Toxicology, Straße des 17. Juni 135, Berlin 10623, Germany; Trace Age-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Jena-Wuppertal, Berlin, Germany; Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, Nuthetal 14558, Germany.
| |
Collapse
|
38
|
Xu M, Li M, Benz F, Merchant M, McClain CJ, Song M. Ileum Proteomics Identifies Distinct Pathways Associated with Different Dietary Doses of Copper-Fructose Interactions: Implications for the Gut-Liver Axis and MASLD. Nutrients 2024; 16:2083. [PMID: 38999831 PMCID: PMC11242941 DOI: 10.3390/nu16132083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/23/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
The interactions of different dietary doses of copper with fructose contribute to the development of metabolic dysfunction-associated steatotic liver disease (MASLD) via the gut-liver axis. The underlying mechanisms remain elusive. The aim of this study was to identify the specific pathways leading to gut barrier dysfunction in the ileum using a proteomics approach in a rat model. Male weanling Sprague Dawley rats were fed diets with adequate copper (CuA), marginal copper (CuM), or supplemented copper (CuS) in the absence or presence of fructose supplementation (CuAF, CuMF, and CuSF) for 4 weeks. Ileum protein was extracted and analyzed with an LC-MS. A total of 2847 differentially expressed proteins (DEPs) were identified and submitted to functional enrichment analysis. As a result, the ileum proteome and signaling pathways that were differentially altered were revealed. Of note, the CuAF is characterized by the enrichment of oxidative phosphorylation and ribosome as analyzed with the KEGG; the CuMF is characterized by an enriched arachidonic acid metabolism pathway; and focal adhesion, the regulation of the actin cytoskeleton, and tight junction were significantly enriched by the CuSF. In conclusion, our proteomics analysis identified the specific pathways in the ileum related to the different dietary doses of copper-fructose interactions, suggesting that distinct mechanisms in the gut are involved in the development of MASLD.
Collapse
Affiliation(s)
- Manman Xu
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, USA; (M.X.); (C.J.M.)
| | - Ming Li
- Department of Medicine, Division of Nephrology and Hypertension, University of Louisville School of Medicine, Louisville, KY 40202, USA; (M.L.); (M.M.)
- Hepatobiology & Toxicology Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Frederick Benz
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA;
| | - Michael Merchant
- Department of Medicine, Division of Nephrology and Hypertension, University of Louisville School of Medicine, Louisville, KY 40202, USA; (M.L.); (M.M.)
- Hepatobiology & Toxicology Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
- University of Louisville Alcohol Research Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Craig J. McClain
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, USA; (M.X.); (C.J.M.)
- Hepatobiology & Toxicology Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA;
- University of Louisville Alcohol Research Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Robley Rex Louisville VAMC, Louisville, KY 40206, USA
| | - Ming Song
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, USA; (M.X.); (C.J.M.)
- Hepatobiology & Toxicology Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
39
|
Kim JA, Lee JK, Lee SY. Serum trace elements during treatment in pancreatic cancer patients and their associations with cancer prognosis. Clin Nutr 2024; 43:1459-1472. [PMID: 38714150 DOI: 10.1016/j.clnu.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/27/2024] [Accepted: 04/09/2024] [Indexed: 05/09/2024]
Abstract
BACKGROUND & AIMS In this study, we assessed serum trace element concentrations in patients with pancreatic cancer and compared the results to those of healthy controls and patients with chronic pancreatitis. We evaluated the association between trace element concentrations during cancer treatment and the risk of cancer progression and mortality in pancreatic cancer patients. METHODS A retrospective cohort study was conducted at a tertiary center in Korea. Serum trace element concentrations of cobalt (Co), copper (Cu), selenium (Se), and zinc (Zn) were measured at diagnosis using an inductively coupled plasma-mass spectrometry in 124 patients with pancreatic cancer, 50 patients with chronic pancreatitis, and 120 healthy controls. Trace elements were measured after a median of 282.5 (95% confidence interval [CI], 224.0-326.5) days from treatment initiation to assess changes in trace element concentrations during treatment. RESULTS Serum Co concentrations were significantly higher in patients with chronic pancreatitis and pancreatic cancer compared to healthy controls, while serum Se concentrations were significantly lower. During treatment, serum concentrations of Cu, Se, and Zn significantly decreased in patients with pancreatic cancer. During the follow-up (median 152.5; 95% CI, 142.8-160.0 months), 85.5% of patients experienced progression or relapse, and 84.7% of patients died. Patients with decreased Se and Zn concentrations during treatment had a higher mortality (hazard ratio [HR], 2.10; 95% CI, 1.31-3.38; P = 0.0020 for Se; HR, 1.72; 95% CI, 1.06-2.79; P = 0.0269 for Zn) compared to those with unchanged or increased trace element concentrations during treatment. Patients with a greater reduction in Zn concentrations during treatment had a higher mortality than those with a smaller reduction (HR, 1.59; 95% CI, 1.01-2.52; P = 0.0483). Patients whose Zn status changed from normal to deficient during treatment had an increased mortality (HR, 1.76; 95% CI, 1.16-2.67, P = 0.0084). Patients with multiple (≥2) trace element deficiencies after treatment had poorer outcomes than those with no or single trace element deficiency. CONCLUSIONS This study revealed that decreases in Se and Zn concentrations during cancer treatment were associated with adverse outcomes in terms of cancer progression and mortality in patients with pancreatic cancer. Further prospective investigations are recommended.
Collapse
Affiliation(s)
- Jee Ah Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, South Korea; Department of Laboratory Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, 29 Saemunan-ro, Jongno-gu, Seoul 03181, South Korea
| | - Jong Kyun Lee
- Division of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, South Korea.
| | - Soo-Youn Lee
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, South Korea.
| |
Collapse
|
40
|
Li Y, Qi P, Song SY, Wang Y, Wang H, Cao P, Liu Y, Wang Y. Elucidating cuproptosis in metabolic dysfunction-associated steatotic liver disease. Biomed Pharmacother 2024; 174:116585. [PMID: 38615611 DOI: 10.1016/j.biopha.2024.116585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024] Open
Abstract
Emerging research into metabolic dysfunction-associated steatotic liver disease (MASLD) up until January 2024 has highlighted the critical role of cuproptosis, a unique cell death mechanism triggered by copper overload, in the disease's development. This connection offers new insights into MASLD's complex pathogenesis, pointing to copper accumulation as a key factor that disrupts lipid metabolism and insulin sensitivity. The identification of cuproptosis as a significant contributor to MASLD underscores the potential for targeting copper-mediated pathways for novel therapeutic approaches. This promising avenue suggests that managing copper levels could mitigate MASLD progression, offering a fresh perspective on treatment strategies. Further investigations into how cuproptosis influences MASLD are essential for unraveling the detailed mechanisms at play and for identifying effective interventions. The focus on copper's role in liver health opens up the possibility of developing targeted therapies that address the underlying causes of MASLD, moving beyond symptomatic treatment to tackle the root of the problem. The exploration of cuproptosis in the context of MASLD exemplifies the importance of understanding metal homeostasis in metabolic diseases and represents a significant step forward in the quest for more effective treatments. This research direction lights path for innovative MASLD management and reversal.
Collapse
Affiliation(s)
- Yamei Li
- Department of Rehabilitation, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ping Qi
- Department of Pediatrics, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | | | - Yiping Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Hailian Wang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, China
| | - Peng Cao
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Yu'e Liu
- Tongji University Cancer Center, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, China.
| |
Collapse
|
41
|
Jiayi H, Ziyuan T, Tianhua X, Mingyu Z, Yutong M, Jingyu W, Hongli Z, Li S. Copper homeostasis in chronic kidney disease and its crosstalk with ferroptosis. Pharmacol Res 2024; 202:107139. [PMID: 38484857 DOI: 10.1016/j.phrs.2024.107139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 03/27/2024]
Abstract
Chronic kidney disease (CKD) has become a global public health problem with high morbidity and mortality. Renal fibrosis can lead to end-stage renal disease (ESRD). However, there is still no effective treatment to prevent or delay the progression of CKD into ESRD. Therefore, exploring the pathogenesis of CKD is essential for preventing and treating CKD. There are a variety of trace elements in the human body that interact with each other within a complex regulatory network. Iron and copper are both vital trace elements in the body. They are critical for maintaining bodily functions, and the dysregulation of their metabolism can cause many diseases, including kidney disease. Ferroptosis is a new form of cell death characterized by iron accumulation and lipid peroxidation. Studies have shown that ferroptosis is closely related to kidney disease. However, the role of abnormal copper metabolism in kidney disease and its relationship with ferroptosis remains unclear. Here, our current knowledge regarding copper metabolism, its regulatory mechanism, and the role of abnormal copper metabolism in kidney diseases is summarized. In addition, we discuss the relationship between abnormal copper metabolism and ferroptosis to explore the possible pathogenesis and provide a potential therapeutic target for CKD.
Collapse
Affiliation(s)
- Huang Jiayi
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Tong Ziyuan
- China Medical University, Shenyang 110122, People's Republic of China
| | - Xu Tianhua
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Zhang Mingyu
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Ma Yutong
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Wang Jingyu
- Renal Division, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Zhou Hongli
- Department of Nephrology, The First Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province 110004, People's Republic of China
| | - Sun Li
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China.
| |
Collapse
|
42
|
van Baal J, Kruijt L, Binnendijk GP, Durosoy S, Romeo A, Bikker P. Influence of copper source and dietary inclusion level on growth performance of weaned pigs and expression of trace element related genes in the small intestine. Animal 2024; 18:101113. [PMID: 38492538 DOI: 10.1016/j.animal.2024.101113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 03/18/2024] Open
Abstract
Copper is routinely supplemented to weanling pig diets at concentrations above nutritional requirements to enhance growth performance. We hypothesised that this effect depends on the source of Cu and its dietary concentration. We tested this in weaned pigs (26 d of age) over a 35-d period using a 2 × 3 factorial arrangement with two Cu-sources (CuSO4 and Cu2O, monovalent copper oxide, CoRouge®) and three supplementary dietary Cu-levels (15, 80 and 160 mg Cu/kg) as respective factors. Increasing Cu level linearly increased (P < 0.001) final BW and daily gain. These effects tended (P = 0.09) to be greater with Cu2O than CuSO4. Feed conversion ratio decreased linearly (P < 0.001) with increasing dietary Cu content, independent of Cu source. Plasma Cu, Zn and Fe levels were unaffected, whereas liver Cu content increased quadratically (P < 0.001) with increasing dietary Cu content, with a larger increase (P < 0.001) with CuSO4 than Cu2O. Bile Cu content increased quadratically (P = 0.025) with increasing Cu content, irrespective of Cu source. RT-qPCR analysis revealed that increasing Cu content quadratically (P = 0.009) increased duodenal but not ileal metallothionein 1A (MT1A) mRNA, with greater effect (P = 0.010) of CuSO4. Regardless of the Cu source, increasing Cu dose linearly increased (P = 0.006) duodenal DMT1/SLC11A2 mRNA but decreased ZIP4/SLC39A4 mRNA in duodenum (P < 0.001) and ileum (P < 0.005). ZnT10/SLC30A10 mRNA was significantly (P = 0.021) and numerically (P = 0.061) greater with Cu2O compared to CuSO4, in duodenum and ileum, respectively. Copper content quadratically modulated duodenal but not ileal transferrin receptor (P = 0.029) and ferric reductase CYBRD1 mRNA (P = 0.022). In hypothalamus, high Cu dose (P = 0.024) and Cu2O as source (P = 0.028) reduced corticotropin-releasing hormone (CRH) mRNA. Low versus high CuSO4 increased corticotropin-releasing hormone receptor (CRHR2) mRNA, while low Cu2O had the opposite effect (P = 0.009). In conclusion, incremental Cu intake enhanced growth performance, with a tendency for a greater effect of Cu2O. The lower increase in duodenal MT1A mRNA and liver Cu content indicates that less Cu from Cu2O was absorbed by gut and sequestered in liver. Thus, high Cu absorption is not essential for its growth-promoting effect and dietary Cu may affect intestinal Fe and Zn absorption via the active, transcellular route. The effects on hypothalamic CRH and CRHR2 expression indicate a role for the hypothalamus in mediating the effects of Cu on growth performance.
Collapse
Affiliation(s)
- J van Baal
- Wageningen University & Research, Animal Nutrition Group, Wageningen, the Netherlands
| | - L Kruijt
- Wageningen University & Research, Wageningen Livestock Research, Wageningen, the Netherlands
| | - G P Binnendijk
- Wageningen University & Research, Wageningen Livestock Research, Wageningen, the Netherlands
| | - S Durosoy
- R&D Department, Animine, Annecy, France
| | - A Romeo
- R&D Department, Animine, Annecy, France
| | - P Bikker
- Wageningen University & Research, Wageningen Livestock Research, Wageningen, the Netherlands.
| |
Collapse
|
43
|
Tek PPY, Ng CC. Accumulation of potentially toxic elements in fourfinger threadfin (Eleutheronema tetradactylum) and black pomfret (Parastromateus niger) from Selangor, Malaysia. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:382. [PMID: 38502262 DOI: 10.1007/s10661-024-12508-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/24/2024] [Indexed: 03/21/2024]
Abstract
The accumulation of potentially toxic elements (PTEs) has raised public awareness due to harmful contamination to both human and marine creatures. This study was designed to determine the concentration of copper (Cu), zinc (Zn), cadmium (Cd), and nickel (Ni) in the intestine, kidney, muscle, gill, and liver tissues of local commercial edible fish, fourfinger threadfin (Eleutheronema tetradactylum), and black pomfret (Parastromateus niger) collected from Morib (M) and Kuala Selangor (KS). Among the studied PTEs, Cu and Zn were essential elements to regulate body metabolism with certain dosages required while Cd and Ni were considered as non-essential elements that posed chronic and carcinogenic risk. The concentration of PTEs in fish tissue samples was analyzed using flame atomic absorption spectrometry (F-AAS). By comparing the concentration of PTEs in fish tissues as a bioindicator, the environmental risk of Morib was more serious than Kuala Selangor because both fish species collected from Morib resulted in a higher PTEs concentration. For an average 62 kg adult with a fish ingestion rate (FIR) of 0.16 kg/person/day in Malaysia, the estimated weekly intake (EWI) of Cd from the consumption of E. tetradactylum (M: 0.0135 mg/kg; KS: 0.0134 mg/kg) and P. niger (M: 0.0140 mg/kg; KS: 0.0132 mg/kg) had exceeded the provisional tolerable weekly intake (Cd: 0.007 mg/kg) established by the Joint FAO/WHO Expert Committee on Food Additives (JECFA) and oral reference dose (ORD) values of Cd (0.001 mg/kg/day) as provided by the United States Environmental Protection Agency (USEPA) regional screening level, thus it posed chronic risks for daily basis consumption. Besides, the value of the carcinogenic risk of Cd (0.7-3 to 0.8-3) and Ni (0.5-3 to 0.6-3) were in between the acceptable range (10-6 to 10-4) of the health index that indicates a relatively low possibility cancer occurrence to the consumers in both Morib and Kuala Selangor. This study recommended FIR to be 0.80 kg/person/day to reduce the possibility of posing chronic and carcinogenic risks while at the same time obtaining the essential nutrients from the fish.
Collapse
Affiliation(s)
- Peggy Pei Yee Tek
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, 43900, Bandar Sunsuria, Selangor Darul Ehsan, Malaysia
| | - Chuck Chuan Ng
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, 43900, Bandar Sunsuria, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
44
|
Figueredo KC, Guex CG, Graiczik J, Reginato FZ, Engelmann AM, Andrade CMD, Timmers LFSM, Bauermann LDF. Caffeic acid and ferulic acid can improve toxicological damage caused by iron overload mediated by carbonic anhydrase inhibition. Drug Chem Toxicol 2024; 47:147-155. [PMID: 36444844 DOI: 10.1080/01480545.2022.2152043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 11/30/2022]
Abstract
The iron ion is an essential element for most forms of life, however, it can damage biological systems when found in free form. Chelation therapy is very important, but it is precarious. Caffeic and ferulic acid are antioxidant compounds with many properties described in research such as anti-inflammatory, antiobesogenic, antithrombotic, vasodilator, and anti-tumor. The aim of the study was to evaluate presenting an in silico approach on the toxicity and bioavailability of caffeic and ferulic acid, subsequently, evaluating them in an iron overload model in vivo and providing a pharmacophoric model through molecular docking. The predictive in silico test did not show relevant toxicity of the compounds, therefore, the in vivo test was performed. The rats received dextran iron and the test groups received caffeic and ferulic acid orally for six weeks. Biochemical, hematological parameters, and tissue oxidative stress marker were analyzed. The experimental model showed increased serum iron levels and changes in several serum parameters such as glucose (215.8 ± 20.3 mg/dL), ALT (512.2 ± 128.7 U/L), creatine kinase (186.8 ± 30.1 U/L), and creatine kinase isoform MB (373.3 ± 69.7 U/L). Caffeic acid and, to a lessed degree, ferullic acid, attenuated the effects of iron overload on the rat serum biochemical parameters. Docking showed a pharmacophoric model where carbonic anhydrase interacted with the test molecules and caffeic acid showed less energy expenditure in this interaction. The results illustrate a new therapeutic action of phenolic compounds on iron overload. The possible interference of carbonic anhydrase in iron metabolism needs to be elucidated.
Collapse
Affiliation(s)
| | - Camille Gaube Guex
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| | - James Graiczik
- Graduate Program in Pharmacy, University of Federal University of Santa Maria, Santa Maria, Brazil
| | | | | | | | | | - Liliane De Freitas Bauermann
- Graduate Program in Pharmaceutical Sciences, Federal University of Santa Maria, Santa Maria, Brazil
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| |
Collapse
|
45
|
Ebea PO, Vidyasagar S, Connor JR, Frazer DM, Knutson MD, Collins JF. Oral iron therapy: Current concepts and future prospects for improving efficacy and outcomes. Br J Haematol 2024; 204:759-773. [PMID: 38253961 PMCID: PMC10939879 DOI: 10.1111/bjh.19268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 01/24/2024]
Abstract
Iron deficiency (ID) and iron-deficiency anaemia (IDA) are global public health concerns, most commonly afflicting children, pregnant women and women of childbearing age. Pathological outcomes of ID include delayed cognitive development in children, adverse pregnancy outcomes and decreased work capacity in adults. IDA is usually treated by oral iron supplementation, typically using iron salts (e.g. FeSO4 ); however, dosing at several-fold above the RDA may be required due to less efficient absorption. Excess enteral iron causes adverse gastrointestinal side effects, thus reducing compliance, and negatively impacts the gut microbiome. Recent research has sought to identify new iron formulations with better absorption so that lower effective dosing can be utilized. This article outlines emerging research on oral iron supplementation and focuses on molecular mechanisms by which different supplemental forms of iron are transported across the intestinal epithelium and whether these transport pathways are subject to regulation by the iron-regulatory hormone hepcidin.
Collapse
Affiliation(s)
- Pearl O. Ebea
- Food Science & Human Nutrition Department, University of Florida, Gainesville, FL, USA
| | | | - James R. Connor
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
| | - David M. Frazer
- Molecular Nutrition Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Mitchell D. Knutson
- Food Science & Human Nutrition Department, University of Florida, Gainesville, FL, USA
| | - James F. Collins
- Food Science & Human Nutrition Department, University of Florida, Gainesville, FL, USA
| |
Collapse
|
46
|
Zhang HQ, Liu SH, Li R, Yu JW, Ye DX, Yuan SS, Lin H, Huang CB, Tang H. MIBPred: Ensemble Learning-Based Metal Ion-Binding Protein Classifier. ACS OMEGA 2024; 9:8439-8447. [PMID: 38405489 PMCID: PMC10882704 DOI: 10.1021/acsomega.3c09587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/27/2024]
Abstract
In biological organisms, metal ion-binding proteins participate in numerous metabolic activities and are closely associated with various diseases. To accurately predict whether a protein binds to metal ions and the type of metal ion-binding protein, this study proposed a classifier named MIBPred. The classifier incorporated advanced Word2Vec technology from the field of natural language processing to extract semantic features of the protein sequence language and combined them with position-specific score matrix (PSSM) features. Furthermore, an ensemble learning model was employed for the metal ion-binding protein classification task. In the model, we independently trained XGBoost, LightGBM, and CatBoost algorithms and integrated the output results through an SVM voting mechanism. This innovative combination has led to a significant breakthrough in the predictive performance of our model. As a result, we achieved accuracies of 95.13% and 85.19%, respectively, in predicting metal ion-binding proteins and their types. Our research not only confirms the effectiveness of Word2Vec technology in extracting semantic information from protein sequences but also highlights the outstanding performance of the MIBPred classifier in the problem of metal ion-binding protein types. This study provides a reliable tool and method for the in-depth exploration of the structure and function of metal ion-binding proteins.
Collapse
Affiliation(s)
- Hong-Qi Zhang
- School
of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of
China, Chengdu 610054, China
| | - Shang-Hua Liu
- School
of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of
China, Chengdu 610054, China
| | - Rui Li
- School
of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of
China, Chengdu 610054, China
| | - Jun-Wen Yu
- School
of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of
China, Chengdu 610054, China
| | - Dong-Xin Ye
- School
of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of
China, Chengdu 610054, China
| | - Shi-Shi Yuan
- School
of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of
China, Chengdu 610054, China
| | - Hao Lin
- School
of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of
China, Chengdu 610054, China
| | - Cheng-Bing Huang
- School
of Computer Science and Technology, Aba Teachers University, Aba 623002, China
| | - Hua Tang
- School
of Basic Medical Sciences, Southwest Medical
University, Luzhou 646000, China
- Central
Nervous System Drug Key Laboratory of Sichuan Province, Luzhou 646000, China
| |
Collapse
|
47
|
Guan L, Wang Y, Lin L, Zou Y, Qiu L. Variations in Blood Copper and Possible Mechanisms During Pregnancy. Biol Trace Elem Res 2024; 202:429-441. [PMID: 37777692 DOI: 10.1007/s12011-023-03716-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 05/24/2023] [Indexed: 10/02/2023]
Abstract
Copper (Cu), an essential trace element, is crucial for both the mother and fetus. Currently, an increasing number of studies have focused on blood copper levels during pregnancy. Studies have found that blood copper levels in pregnant women are higher than those in reproductive-age women, but the trend, mainly in the 2nd and 3rd trimester, is still controversial. Most studies showed that blood copper levels gradually increased during pregnancy, while some studies found that blood copper levels remained stable or even decreased in the 3rd trimester. The possible mechanisms of variations in blood copper during pregnancy include the influence of estrogen (hepatic uptake and excretion, ceruloplasmin synthesis, maternal-fetal transport, etc.), the interaction of other trace elements (Fe, Zn, etc.) and other factors. Among them, maternal-fetal copper transport caused by elevated estrogen may be the main reason for the inconsistencies observed in the 2nd and 3rd trimester during pregnancy. However, there are some mechanisms require further investigation. In the future, the trend and mechanisms of blood copper during pregnancy should be explored more deeply to help doctors better monitor copper status and detect copper abnormalities in time.
Collapse
Affiliation(s)
- Lihua Guan
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, 100730, People's Republic of China
| | - Yifei Wang
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, 100730, People's Republic of China
| | - Liling Lin
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, 100730, People's Republic of China
| | - Yutong Zou
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, 100730, People's Republic of China
| | - Ling Qiu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, 100730, People's Republic of China.
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, 100730, People's Republic of China.
| |
Collapse
|
48
|
Oladeji OM, Kopaopa BG, Mugivhisa LL, Olowoyo JO. Investigation of Heavy Metal Analysis on Medicinal Plants Used for the Treatment of Skin Cancer by Traditional Practitioners in Pretoria. Biol Trace Elem Res 2024; 202:778-786. [PMID: 37347404 PMCID: PMC10764444 DOI: 10.1007/s12011-023-03701-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/05/2023] [Indexed: 06/23/2023]
Abstract
The use of medicinal plants for the treatment of diseases, including cancer, is acknowledged and accepted in many African nations. Heavy metal contamination of plant materials poses a potential health risk, particularly for populations that are already vulnerable. This study determines the levels of heavy metals in medicinal plant samples used for treatment of skin cancer and evaluate the health risk caused by heavy metals to the adult population in Pretoria, South Africa using inductively coupled plasma mass spectrometry (ICP-MS). The concentrations of metals were as follows; As (<0.2 - 1.04±0.026), Cd (0.02 ±0.00026 - 0.167±0.006), Pb (0.38 ±0.01 - 2.27±0.05), Cr (5.31±0.21- 26.9 ±3.96) mg/kg, and Hg which were lesser than 0.02 mg/kg. The mean concentrations of all analyzed heavy metals are above permissible limit except for Hg which are lower than the permissible limit. The Hazard Quotient (THQ) was less than 1 for all the heavy metals, suggesting that there are no obvious non-carcinogenic health risks associated with the consumption of these medicinal plants for now even though the prolonged use may result in health risks. The ingestion route was identified as the primary contributor to the overall risk by the health index (HI) values in the present study, which were more than 1, indicating that the combined effects of the heavy metal contaminants present in a particular herbal preparation pose health risk in the long term. Our findings support the need for close monitoring of potential heavy metal concentrations in medicinal plants given to patients from herbal shops.
Collapse
Affiliation(s)
- Oluwaseun Mary Oladeji
- Department of Biology and Environmental Science, School of Science and Technology, Sefako Makgatho Health Sciences University, Ga-Rankuwa, South Africa.
| | - Boikanyo Genneyrolter Kopaopa
- Department of Biology and Environmental Science, School of Science and Technology, Sefako Makgatho Health Sciences University, Ga-Rankuwa, South Africa
| | - Liziwe Lizbeth Mugivhisa
- Department of Biology and Environmental Science, School of Science and Technology, Sefako Makgatho Health Sciences University, Ga-Rankuwa, South Africa
| | - Joshua Oluwole Olowoyo
- Department of Health Science and The Water School, Florida Gulf Coast University, Fort Myers, USA
| |
Collapse
|
49
|
Zhang C, Wang Y, Zhang X, Zhang K, Chen F, Fan J, Wang X, Yang X. Maintaining the Mitochondrial Quality Control System Was a Key Event of Tanshinone IIA against Deoxynivalenol-Induced Intestinal Toxicity. Antioxidants (Basel) 2024; 13:121. [PMID: 38247545 PMCID: PMC10812604 DOI: 10.3390/antiox13010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
Deoxynivalenol (DON) is the one of the most common mycotoxins, widely detected in various original foods and processed foods. Tanshinone IIA (Tan IIA) is a fat-soluble diterpene quinone extracted from Salvia miltiorrhiza Bunge, which has multi-biological functions and pharmacological effects. However, whether Tan IIA has a protective effect against DON-induced intestinal toxicity is unknown. In this study, the results showed Tan IIA treatment could attenuate DON-induced IPEC-J2 cell death. DON increased oxidation product accumulation, decreased antioxidant ability and disrupted barrier function, while Tan IIA reversed DON-induced barrier function impairment and oxidative stress. Furthermore, Tan IIA dramatically improved mitochondrial function via mitochondrial quality control. Tan IIA could upregulate mitochondrial biogenesis and mitochondrial fusion as well as downregulate mitochondrial fission and mitochondrial unfolded protein response. In addition, Tan IIA significantly attenuated mitophagy caused by DON. Collectively, Tan IIA presented a potential protective effect against DON toxicity and the underlying mechanisms were involved in mitochondrial quality control-mediated mitophagy.
Collapse
Affiliation(s)
- Cong Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; (C.Z.); (Y.W.); (X.Z.); (K.Z.); (F.C.); (J.F.); (X.W.)
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China
| | - Youshuang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; (C.Z.); (Y.W.); (X.Z.); (K.Z.); (F.C.); (J.F.); (X.W.)
| | - Xinyu Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; (C.Z.); (Y.W.); (X.Z.); (K.Z.); (F.C.); (J.F.); (X.W.)
| | - Kefei Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; (C.Z.); (Y.W.); (X.Z.); (K.Z.); (F.C.); (J.F.); (X.W.)
| | - Fengjuan Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; (C.Z.); (Y.W.); (X.Z.); (K.Z.); (F.C.); (J.F.); (X.W.)
| | - Jiayan Fan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; (C.Z.); (Y.W.); (X.Z.); (K.Z.); (F.C.); (J.F.); (X.W.)
| | - Xuebing Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; (C.Z.); (Y.W.); (X.Z.); (K.Z.); (F.C.); (J.F.); (X.W.)
| | - Xu Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; (C.Z.); (Y.W.); (X.Z.); (K.Z.); (F.C.); (J.F.); (X.W.)
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China
| |
Collapse
|
50
|
Wojnicka J, Grywalska E, Hymos A, Mertowska P, Mertowski S, Charytanowicz M, Klatka M, Klatka J, Dolliver WR, Błażewicz A. The Relationship between Cancer Stage, Selected Immunological Parameters, Epstein-Barr Virus Infection, and Total Serum Content of Iron, Zinc, and Copper in Patients with Laryngeal Cancer. J Clin Med 2024; 13:511. [PMID: 38256645 PMCID: PMC10816330 DOI: 10.3390/jcm13020511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/31/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
(1) Background: the purpose of the study was to assess the relationship between cancer stage, selected immunological parameters, Epstein-Barr virus (EBV) infection, and total serum content of iron, zinc, and copper in patients with laryngeal cancer (LC). (2) Methods: serum Fe, Zn, and Cu were measured in 40 LC patients and 20 controls. Immunophenotyping of peripheral blood lymphocytes was performed by flow cytometry using fluorescent antibodies against CD3, CD4, CD8, CD19, CD25, CD69, and PD-1. Tumor and lymph node lymphocytes were analyzed by flow cytometry. EBV DNA was quantified by real-time PCR, targeting the EBNA-1 gene. Associations between serum elements, immune markers, and cancer grade/stage were evaluated using ANOVA and appropriate nonparametric tests. (3) Results: levels of Fe, Cu, and Zn were lower, while Cu/Zn was statistically higher, in patients with LC than in the control group. Correlation analysis showed a statistically significant association between the levels of these elements and parameters of the TNM (Tumor, Node, Metastasis) staging system, immunophenotype, and the amount of EBV genetic material in patients with LC who survived for more than 5 years. (4) Conclusion: the results suggest that the total serum levels of the determined micronutrients may significantly affect the immunopathogenesis and progression of LC.
Collapse
Affiliation(s)
- Julia Wojnicka
- Department of Pathobiochemistry and Interdisciplinary Applications of Ion Chromatography, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland;
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodźki Street, 20-093 Lublin, Poland; (E.G.); (A.H.); (P.M.); (S.M.)
| | - Anna Hymos
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodźki Street, 20-093 Lublin, Poland; (E.G.); (A.H.); (P.M.); (S.M.)
| | - Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodźki Street, 20-093 Lublin, Poland; (E.G.); (A.H.); (P.M.); (S.M.)
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodźki Street, 20-093 Lublin, Poland; (E.G.); (A.H.); (P.M.); (S.M.)
| | - Małgorzata Charytanowicz
- Department of Computer Science, Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, Nadbystrzycka 38D, 20-618 Lublin, Poland;
- Systems Research Institute, Polish Academy of Sciences, Newelska 6, 01-447 Warsaw, Poland
| | - Maria Klatka
- Department of Pediatric Endocrinology and Diabetology, Medical University, Gębali 1 St., 20-093 Lublin, Poland;
| | - Janusz Klatka
- Department of Otolaryngology and Laryngological Oncology, Medical University of Lublin, Jaczewskiego 8 St., 20-954 Lublin, Poland;
| | | | - Anna Błażewicz
- Department of Pathobiochemistry and Interdisciplinary Applications of Ion Chromatography, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland;
| |
Collapse
|