1
|
Kolařík V, Hromádková A, Knirsch A, Prucková Z, Janovský P, Rouchal M, Ward JS, Rissanen K, Vícha R. Metal cations switch geometry of β-cyclodextrin complexes. Chem Commun (Camb) 2025; 61:7077-7080. [PMID: 40237151 DOI: 10.1039/d5cc00868a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Cationic guests with an adamantylphenyl moiety can form two distinct arrangements with the conical β-cyclodextrin macrocycle. Different metal cations were found to promote the formation of one of the two possible forms, depending on their van der Waals radii. Bulkier ions prefer the wider secondary rim of β-cyclodextrin, pushing the cationic part of the guest towards the narrower primary rim, and vice versa.
Collapse
Affiliation(s)
- Václav Kolařík
- Department of Chemistry, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova, 5569, 760 01 Zlín, Czech Republic.
| | - Aneta Hromádková
- Department of Chemistry, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova, 5569, 760 01 Zlín, Czech Republic.
| | - Adam Knirsch
- Department of Chemistry, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova, 5569, 760 01 Zlín, Czech Republic.
| | - Zdeňka Prucková
- Department of Chemistry, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova, 5569, 760 01 Zlín, Czech Republic.
| | - Petr Janovský
- Department of Chemistry, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova, 5569, 760 01 Zlín, Czech Republic.
| | - Michal Rouchal
- Department of Chemistry, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova, 5569, 760 01 Zlín, Czech Republic.
| | - Jas S Ward
- Department of Chemistry, University of Jyvaskyla, 40014 Jyvaskyla, Finland
| | - Kari Rissanen
- Department of Chemistry, University of Jyvaskyla, 40014 Jyvaskyla, Finland
| | - Robert Vícha
- Department of Chemistry, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova, 5569, 760 01 Zlín, Czech Republic.
| |
Collapse
|
2
|
Mandal S, Sarkar P, Ghosh P. A macrocycle-based new organometallic nano-vessel towards sustainable C2-selective arylation of free indole in water. Org Biomol Chem 2024; 22:7438-7447. [PMID: 39188153 DOI: 10.1039/d4ob00886c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
C2-selectivity of unsubstituted indole over facile C3-substitution is attempted by utilizing the π-cavity of a nano-vessel made up of a palladium complex of an amino-ether heteroditopic macrocycle. Functional group tolerance (cyano, nitro, halo, ester, etc.), a broad substrate scope and outstanding selectivities with excellent yields (80-93%) of the desired products have been achieved in 12 h by maintaining all sustainable conditions like aqueous medium, recyclable catalyst, one-pot reaction, no external additives, mild temperature, etc. Interestingly, we observed that electron-deficient indole derivatives underwent the present transformation with marginally superior reactivity in comparison with electron-rich indole derivatives. This approach establishes a green pathway for selective C-C coupling employing a π-cavitand as a nano-reactor.
Collapse
Affiliation(s)
- Subham Mandal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S.C. Mullick Road, Kolkata 700032, India.
| | - Piyali Sarkar
- Institute of Health Sciences, Presidency University, Second Campus, Plot No. DG/02/02, Premises No. 14-0358, Action Area-ID, New Town, Kolkata 700156, West Bengal, India
| | - Pradyut Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S.C. Mullick Road, Kolkata 700032, India.
| |
Collapse
|
3
|
Malik A, Antil K, Singh N, Sharma PR, Sharma RK. Scalable organocatalytic one pot asymmetric Strecker reaction via camphor sulfonyl functionalized crown-ether-tethered calix[4]arene. Chem Commun (Camb) 2024; 60:8561-8564. [PMID: 39041355 DOI: 10.1039/d4cc02674h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
In this communication, we designed a highly selective camphor sulfonyl functionalized crown-ether-tethered calix[4]arene-derived organocatalyst for asymmetric Strecker reaction to provide the desired cyano adducts in high yields (∼99.9% yield) and enantioselectivities (up to 99.3% ee). Furthermore, 2 step facile syntheses of the antiplatelet drug (S)-clopidogrel exemplify the potential of this method for the preparation of commercial compounds.
Collapse
Affiliation(s)
- Apoorva Malik
- Sustainable Materials and Catalysis Research Laboratory (SMCRL), Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur-342037, India.
| | - Kirti Antil
- Sustainable Materials and Catalysis Research Laboratory (SMCRL), Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur-342037, India.
| | - Nikhil Singh
- Sustainable Materials and Catalysis Research Laboratory (SMCRL), Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur-342037, India.
| | - Pragati R Sharma
- Sustainable Materials and Catalysis Research Laboratory (SMCRL), Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur-342037, India.
| | - Rakesh K Sharma
- Sustainable Materials and Catalysis Research Laboratory (SMCRL), Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur-342037, India.
| |
Collapse
|
4
|
Krivoshchapov NV, Medvedev MG. Accurate and Efficient Conformer Sampling of Cyclic Drug-Like Molecules with Inverse Kinematics. J Chem Inf Model 2024; 64:4542-4552. [PMID: 38776465 DOI: 10.1021/acs.jcim.3c02040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Identification of all of the influential conformers of biomolecules is a crucial step in many tasks of computational biochemistry. Specifically, molecular docking, a key component of in silico drug development, requires a comprehensive set of conformations for potential candidates in order to generate the optimal ligand-receptor poses and, ultimately, find the best drug candidates. However, the presence of flexible cycles in a molecule complicates the initial search for conformers since exhaustive sampling algorithms via torsional random and systematic searches become very inefficient. The devised inverse-kinematics-based Monte Carlo with refinement (MCR) algorithm identifies independently rotatable dihedral angles in (poly)cyclic molecules and uses them to perform global conformational sampling, outperforming popular alternatives (MacroModel, CREST, and RDKit) in terms of speed and diversity of the resulting conformer ensembles. Moreover, MCR quickly and accurately recovers naturally occurring macrocycle conformations for most of the considered molecules.
Collapse
Affiliation(s)
- Nikolai V Krivoshchapov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russian Federation
| | - Michael G Medvedev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russian Federation
| |
Collapse
|
5
|
Islamov II, Dzhemileva LU, Gaisin IV, Dzhemilev UM, D′yakonov VA. New Polyether Macrocycles as Promising Antitumor Agents-Targeted Synthesis and Induction of Mitochondrial Apoptosis. ACS OMEGA 2024; 9:19923-19931. [PMID: 38737069 PMCID: PMC11079895 DOI: 10.1021/acsomega.3c09566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 05/14/2024]
Abstract
A series of previously unknown aromatic polyether macrodiolides containing a cis,cis-1,5-diene moiety in the molecule were synthesized in 47-74% yields. Macrocycle compounds were first obtained by intermolecular esterification of aromatic polyether diols with α,ω-alka-nZ,(n+4)Z-dienedioic acids mediated by N-(3-(dimethylamino)propyl)-N'-ethylcarbodiimide hydrochloride (EDC·HCl) and 4-(dimethylamino)pyridine (DMAP). For the synthesized compounds, studies of cytotoxicity on tumor (Jurkat, K562, U937), conditionally normal (HEK293) cell lines, and normal fibroblasts were carried out. CC50 was determined, and the therapeutic selectivity index of cytotoxic action (SI) in comparison with normal fibroblasts was evaluated. With the involvement of modern methods of flow cytometry for the most promising macrocycles, their effect on mitochondria and the cell cycle was investigated. It was found that a new macrocycle exhibits pronounced apoptosis-inducing activity toward Jurkat cells and can retard cell division by blocking at the G1/S checkpoint. Also, it was shown that the synthesized macrodiolides influence mitochondria due to their high ability to penetrate the mitochondrial membrane.
Collapse
Affiliation(s)
- Ilgiz I. Islamov
- Institute
of Petrochemistry and Catalysis, Russian Academy of Sciences, 141 Prospekt Oktyabrya, Ufa 450075, Russian Federation
| | - Lilya U. Dzhemileva
- N.
D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt, 47, Moscow 119991, Russian Federation
- State
Scientific Center of the Russian Federation Federal State Budgetary
Institution, “National Medical Research
Center of Endocrinology” of the Ministry of Health
of the Russian Federation, st. Dmitry Ulyanov, 11, Moscow 117292, Russian Federation
| | - Ilgam V. Gaisin
- Institute
of Petrochemistry and Catalysis, Russian Academy of Sciences, 141 Prospekt Oktyabrya, Ufa 450075, Russian Federation
| | - Usein M. Dzhemilev
- N.
D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt, 47, Moscow 119991, Russian Federation
| | - Vladimir A. D′yakonov
- N.
D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt, 47, Moscow 119991, Russian Federation
| |
Collapse
|
6
|
Chao Y, Subramaniam M, Namitharan K, Zhu Y, Koolma V, Hao Z, Li S, Wang Y, Hudoynazarov I, Miloserdov FM, Zuilhof H. Synthesis of Large Macrocycles with Chiral Sulfur Centers via Enantiospecific SuFEx and SuPhenEx Click Reactions. J Org Chem 2023; 88:15658-15665. [PMID: 37903243 PMCID: PMC10660663 DOI: 10.1021/acs.joc.3c01656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 11/01/2023]
Abstract
Here we report the first asymmetric synthesis of large chiral macrocycles with chiral sulfur atoms. Building on stereospecific SuFEx and SuPhenEx click chemistries, this approach utilizes disulfonimidoyl fluorides and disulfonimidoyl p-nitrophenolates─which are efficient building blocks with two chiral sulfur centers, and diphenols to efficiently form novel S-O bonds. Characteristic results include the enantiospecific one-step synthesis of rings consisting of 21-58 members and characterization of both enantiomers (R,R and S,S) by e.g. X-ray crystallography.
Collapse
Affiliation(s)
- Yang Chao
- School
of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Muthusamy Subramaniam
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Kayambu Namitharan
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Yumei Zhu
- School
of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Victor Koolma
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Zitong Hao
- School
of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Shikang Li
- School
of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Yaxin Wang
- School
of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Ilyos Hudoynazarov
- Division
of Organic Synthesis and Applied Chemistry, National University of Uzbekistan, Tashkent 100174, Uzbekistan
| | - Fedor M. Miloserdov
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Han Zuilhof
- School
of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, China
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands
| |
Collapse
|
7
|
Mourer M, Regnouf-de-Vains JB, Duval RE. Functionalized Calixarenes as Promising Antibacterial Drugs to Face Antimicrobial Resistance. Molecules 2023; 28:6954. [PMID: 37836797 PMCID: PMC10574364 DOI: 10.3390/molecules28196954] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Since the discovery of polyphenolic resins 150 years ago, the study of polymeric compounds named calix[n]arene has continued to progress, and those skilled in the art perfectly know now how to modulate this phenolic ring. Consequently, calix[n]arenes are now used in a large range of applications and notably in therapeutic fields. In particular, the calix[4]arene exhibits multiple possibilities for regioselective polyfunctionalization on both of its rims and offers researchers the possibility of precisely tuning the geometry of their structures. Thus, in the crucial research of new antibacterial active ingredients, the design of calixarenes finds its place perfectly. This review provides an overview of the work carried out in this aim towards the development of intrinsically active prodrogues or metallic calixarene complexes. Out of all the work of the community, there are some excellent activities emerging that could potentially place these original structures in a very good position for the development of new active ingredients.
Collapse
Affiliation(s)
- Maxime Mourer
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France;
| | | | - Raphaël E. Duval
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France;
- ABC Platform®, F-54505 Vandœuvre-lès-Nancy, France
| |
Collapse
|
8
|
Nakamura T, Watanabe S. Site-Selective Ligand Bridging among Multiple Internal Coordination Sites of a Metallomacrocycle and Its Conformational Regulation. Inorg Chem 2023; 62:12886-12894. [PMID: 37530452 DOI: 10.1021/acs.inorgchem.3c01571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Metallomacrocycles with internal coordination sites have a high potential to precisely control the positions of the guest ligands and the overall shape of the assemblies by utilizing the directionality and reversibility of the coordination bonds. However, when such coordinative hosts possess multiple coordination sites, it was difficult to control to which coordination sites the incoming guest ligands bind, because such systems often result in a random, uncontrolled mixture. The metallomacrocycle that we now report, a hexanuclear palladium complex of hexapap possessing six internal coordination sites, can take two different conformations depending on the guests. One is an Alternate conformation, in which six coordination sites of pap alternatively point to Up-Down-Up-Down-Up-Down. The other is a Twisted conformation, in which the coordination sites direct Up-Middle-Down-Up-Middle-Down. Interestingly, linear ditopic α,ω-diamines are captured in three distinct cross-linking modes, and regulations between the two macrocyclic conformations have been realized by the lengths of the diamines. Furthermore, the heteroleptic site-selective bridging of two kinds of diamines has been achieved. It has been demonstrated that a slight difference in the diamine lengths leads to a significant change in the structure and selection of the produced host-guest macrocyclic complexes.
Collapse
Affiliation(s)
- Takashi Nakamura
- Institute of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8571, Ibaraki, Japan
| | - Satoru Watanabe
- Degree Programs in Pure and Applied Sciences, Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8571, Ibaraki, Japan
| |
Collapse
|
9
|
Cortón P, Fernández-Labandeira N, Díaz-Abellás M, Peinador C, Pazos E, Blanco-Gómez A, García MD. Aqueous Three-Component Self-Assembly of a Pseudo[1]rotaxane Using Hydrazone Bonds. J Org Chem 2023; 88:6784-6790. [PMID: 37114355 PMCID: PMC10731646 DOI: 10.1021/acs.joc.3c00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Indexed: 04/29/2023]
Abstract
We present herein the synthesis of a new polycationic pseudo[1]rotaxane, self-assembled in excellent yield through hydrazone bonds in aqueous media of three different aldehyde and hydrazine building blocks. A thermodynamically controlled process has been studied sequentially by analyzing the [1 + 1] reaction of a bisaldehyde and a trishydrazine leading to the macrocyclic part of the system, the ability of this species to act as a molecular receptor, the conversion of a hydrazine-pending cyclophane into the pseudo[1]rotaxane and, lastly, the one-pot [1 + 1 + 1] condensation process. The latter was found to smoothly produce the target molecule through an integrative social self-sorting process, a species that was found to behave in water as a discrete self-inclusion complex below 2.5 mM concentration and to form supramolecular aggregates in the 2.5-70 mM range. Furthermore, we demonstrate how the abnormal kinetic stability of the hydrazone bonds on the macrocycle annulus can be advantageously used for the conversion of the obtained pseudo[1]rotaxane into other exo-functionalized macrocyclic species.
Collapse
Affiliation(s)
- Pablo Cortón
- CICA − Centro Interdisciplinar
de Química e Bioloxía and Departamento de Química,
Facultad de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Natalia Fernández-Labandeira
- CICA − Centro Interdisciplinar
de Química e Bioloxía and Departamento de Química,
Facultad de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Mauro Díaz-Abellás
- CICA − Centro Interdisciplinar
de Química e Bioloxía and Departamento de Química,
Facultad de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Carlos Peinador
- CICA − Centro Interdisciplinar
de Química e Bioloxía and Departamento de Química,
Facultad de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Elena Pazos
- CICA − Centro Interdisciplinar
de Química e Bioloxía and Departamento de Química,
Facultad de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Arturo Blanco-Gómez
- CICA − Centro Interdisciplinar
de Química e Bioloxía and Departamento de Química,
Facultad de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Marcos D. García
- CICA − Centro Interdisciplinar
de Química e Bioloxía and Departamento de Química,
Facultad de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| |
Collapse
|
10
|
Synthesis, structure, and host-guest chemistry of a pair of isomeric selenanthrene-bridged molecular cages. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
11
|
New macrocycles based on pyrazole-tetrazole subunit: synthesis, characterization and their complexing properties toward heavy metal cations. J INCL PHENOM MACRO 2023. [DOI: 10.1007/s10847-023-01177-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
12
|
Turley AT, Hanson-Heine MWD, Argent SP, Hu Y, Jones TA, Fay M, Woodward S. Catalysis enabled synthesis, structures, and reactivities of fluorinated S 8-corona[ n]arenes ( n = 8-12). Chem Sci 2022; 14:70-77. [PMID: 36605745 PMCID: PMC9769089 DOI: 10.1039/d2sc05348a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
Abstract
Previously inaccessible large S8-corona[n]arene macrocycles (n = 8-12) with alternating aryl and 1,4-C6F4 subunits are easily prepared on up to gram scales, without the need for chromatography (up to 45% yield, 10 different examples) through new high acceleration SNAr substitution protocols (catalytic NR4F in pyridine, R = H, Me, Bu). Macrocycle size and functionality are tunable by precursor and catalyst selection. Equivalent simple NR4F catalysis allows facile late-stage SNAr difunctionalisation of the ring C6F4 units with thiols (8 derivatives, typically 95+% yields) providing two-step access to highly functionalised fluoromacrocycle libraries. Macrocycle host binding supports fluoroaryl catalytic activation through contact ion pair binding of NR4F and solvent inclusion. In the solid-state, solvent inclusion also intimately controls macrocycle conformation and fluorine-fluorine interactions leading to spontaneous self-assembly into infinite columns with honeycomb-like lattices.
Collapse
Affiliation(s)
- Andrew T Turley
- GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus Nottingham NG7 2TU UK
| | | | - Stephen P Argent
- School of Chemistry, University of Nottingham, University Park Campus Nottingham NG7 2RD UK
| | - Yaoyang Hu
- GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus Nottingham NG7 2TU UK
| | - Thomas A Jones
- GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus Nottingham NG7 2TU UK
| | - Michael Fay
- Nanoscale and Microscale Research Centre, University of Nottingham, University Park Campus Cripps South Building Nottingham NG7 2RD UK
| | - Simon Woodward
- GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus Nottingham NG7 2TU UK
| |
Collapse
|
13
|
Sachdeva G, Vaya D, Srivastava CM, Kumar A, Rawat V, Singh M, Verma M, Rawat P, Rao GK. Calix[n]arenes and its derivatives as organocatalysts. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Hayduk M, Schaller T, Niemeyer FC, Rudolph K, Clever GH, Rizzo F, Voskuhl J. Phosphorescence Induction by Host‐Guest Complexation with Cyclodextrins – The Role of Regioisomerism and Affinity. Chemistry 2022; 28:e202201081. [DOI: 10.1002/chem.202201081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Matthias Hayduk
- Faculty of Chemistry (Organic Chemistry), ZMB and CENIDE University of Duisburg-Essen Universitätsstraße 7 Essen 45141 Germany
| | - Torsten Schaller
- Faculty of Chemistry (Organic Chemistry), ZMB and CENIDE University of Duisburg-Essen Universitätsstraße 7 Essen 45141 Germany
| | - Felix C. Niemeyer
- Faculty of Chemistry (Organic Chemistry), ZMB and CENIDE University of Duisburg-Essen Universitätsstraße 7 Essen 45141 Germany
| | - Kevin Rudolph
- Faculty of Chemistry (Organic Chemistry), ZMB and CENIDE University of Duisburg-Essen Universitätsstraße 7 Essen 45141 Germany
| | - Guido H. Clever
- Technische Universität Dortmund Fakultät für Chemie und Chemische Biologie Otto-Hahn-Straße 6 44227 Dortmund Germany
| | - Fabio Rizzo
- Institute of Chemical Science and Technologies “G. Natta” (SCITEC) National Research Council (CNR) via G. Fantoli 16/15 20138 Milano Italy
- Center for Soft Nanoscience (SoN) Westfälische Wilhelms-Universität Münster Busso-Peus-Str. 10 48149 Münster Germany
| | - Jens Voskuhl
- Faculty of Chemistry (Organic Chemistry), ZMB and CENIDE University of Duisburg-Essen Universitätsstraße 7 Essen 45141 Germany
| |
Collapse
|
15
|
Sharma PR, Malik A, Bandaru S, Vashisth K, Rana NK, Sharma RK. Experimental and computational studies on the Cinchona anchored calixarene catalysed asymmetric Michael addition reaction. Chem Commun (Camb) 2022; 58:7249-7252. [PMID: 35670109 DOI: 10.1039/d2cc02422e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lower-rim Cinchona anchored calix[4]arene cationic catalysts were developed for asymmetric Michael addition of acetylacetone to β-nitrostyrenes. The desired Michael adducts were formed with high yields and enantioselectivities. Density functional theory investigations throw light on the catalyst-substrate interaction and the reaction mechanism.
Collapse
Affiliation(s)
- Pragati R Sharma
- Sustainable Materials and Catalysis Research Laboratory (SMCRL), Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur-342037, India.
| | - Apoorva Malik
- Sustainable Materials and Catalysis Research Laboratory (SMCRL), Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur-342037, India.
| | - Sateesh Bandaru
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou-310018, China
| | - Kanika Vashisth
- Sustainable Materials and Catalysis Research Laboratory (SMCRL), Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur-342037, India. .,The Department of Chemistry & Biochemistry, Baylor University, Baylor Science Building, Baylor Sciences Bldg. D.208, One Bear Place #97348, Waco, TX 76798
| | - Nirmal K Rana
- Sustainable Materials and Catalysis Research Laboratory (SMCRL), Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur-342037, India.
| | - Rakesh K Sharma
- Sustainable Materials and Catalysis Research Laboratory (SMCRL), Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur-342037, India.
| |
Collapse
|
16
|
Krajnc M, Niemeyer J. BINOL as a chiral element in mechanically interlocked molecules. Beilstein J Org Chem 2022; 18:508-523. [PMID: 35601990 PMCID: PMC9086503 DOI: 10.3762/bjoc.18.53] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/22/2022] [Indexed: 12/17/2022] Open
Abstract
In this minireview we present the use of the axially chiral 1,1'-binaphthyl-2,2'-diol (BINOL) unit as a stereogenic element in mechanically interlocked molecules (MIMs). We describe the synthesis and properties of such BINOL-based chiral MIMs, together with their use in further diastereoselective modifications, their application in asymmetric catalysis, and their use in stereoselective chemosensing. Given the growing importance of mechanically interlocked molecules and the key advantages of the privileged chiral BINOL backbone, we believe that this research area will continue to grow and deliver many useful applications in the future.
Collapse
Affiliation(s)
- Matthias Krajnc
- Faculty of Chemistry (Organic Chemistry) and Centre of Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstr. 7, 45141 Essen, Germany
| | - Jochen Niemeyer
- Faculty of Chemistry (Organic Chemistry) and Centre of Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstr. 7, 45141 Essen, Germany
| |
Collapse
|
17
|
Guo H, Ao YF, Wang DX, Wang QQ. Bioinspired tetraamino-bisthiourea chiral macrocycles in catalyzing decarboxylative Mannich reactions. Beilstein J Org Chem 2022; 18:486-496. [PMID: 35601988 PMCID: PMC9086498 DOI: 10.3762/bjoc.18.51] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/26/2022] [Indexed: 12/24/2022] Open
Abstract
A series of tetraamino-bisthiourea chiral macrocycles containing two diarylthiourea and two chiral diamine units were synthesized by a fragment-coupling approach in high yields. Different chiral diamine units, including cyclohexanediamines and diphenylethanediamines were readily incorporated by both homo and hetero [1 + 1] macrocyclic condensation of bisamine and bisisothiocyanate fragments. With the easy synthesis, gram-scale of macrocycle products can be readily obtained. These chiral macrocycles were applied in catalyzing bioinspired decarboxylative Mannich reactions. Only 5 mol % of the optimal macrocycle catalyst efficiently catalyzed the decarboxylative addition of a broad scope of malonic acid half thioesters to isatin-derived ketimines with excellent yields and good enantioselectivity. The rigid macrocyclic framework and the cooperation between the thiourea and tertiary amine sites were found to be crucial for achieving efficient activation and stereocontrol. As shown in control experiments, catalysis with the acyclic analogues having the same structural motifs were non-selective.
Collapse
Affiliation(s)
- Hao Guo
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Fei Ao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - De-Xian Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi-Qiang Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
18
|
Debiais M, Gimenez Molina A, Müller S, Vasseur JJ, Barvik I, Baraguey C, Smietana M. Design and NMR characterization of reversible head-to-tail boronate-linked macrocyclic nucleic acids. Org Biomol Chem 2022; 20:2889-2895. [PMID: 35319560 DOI: 10.1039/d2ob00232a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inspired by the ability of boronic acids to bind with compounds containing diol moieties, we envisioned the formation in solution of boronate ester-based macrocycles by the head-to-tail assembly of a nucleosidic precursor that contains both a boronic acid and the natural 2',3'-diol of ribose. DOSY NMR spectroscopy experiments in water and anhydrous DMF revealed the dynamic assembly of this precursor into dimeric and trimeric macrocycles in a concentration-dependent fashion as well as the reversibility of the self-assembly process. NMR experimental values and quantum mechanics calculations provided further insight into the sugar pucker conformation profile of these macrocycles.
Collapse
Affiliation(s)
- Mégane Debiais
- Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, 1919 route de Mende, 34095 Montpellier, France.
| | - Alejandro Gimenez Molina
- Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, 1919 route de Mende, 34095 Montpellier, France.
| | - Sabine Müller
- University Greifswald, Institute for Biochemistry, Greifswald, Germany
| | - Jean-Jacques Vasseur
- Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, 1919 route de Mende, 34095 Montpellier, France.
| | - Ivan Barvik
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, Prague 2, 121 16, Czech Republic
| | - Carine Baraguey
- Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, 1919 route de Mende, 34095 Montpellier, France.
| | - Michael Smietana
- Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, 1919 route de Mende, 34095 Montpellier, France.
| |
Collapse
|
19
|
Heard AW, Suárez JM, Goldup SM. Controlling catalyst activity, chemoselectivity and stereoselectivity with the mechanical bond. Nat Rev Chem 2022; 6:182-196. [PMID: 37117433 DOI: 10.1038/s41570-021-00348-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2021] [Indexed: 12/16/2022]
Abstract
Mechanically interlocked molecules, such as rotaxanes and catenanes, are receiving increased attention as scaffolds for the development of new catalysts, driven by both their increasing accessibility and high-profile examples of the mechanical bond delivering desirable behaviours and properties. In this Review, we survey recent advances in the catalytic applications of mechanically interlocked molecules organized by the effect of the mechanical bond on key catalytic properties, namely, activity, chemoselectivity and stereoselectivity, and focus on how the mechanically bonded structure leads to the observed behaviour. Our aim is to inspire future investigations of mechanically interlocked catalysts, including those outside of the supramolecular community.
Collapse
|
20
|
Lutz F, Lorenzo-Parodi N, Schmidt TC, Niemeyer J. Heteroternary cucurbit[8]uril complexes as supramolecular scaffolds for self-assembled bifunctional photoredoxcatalysts. Chem Commun (Camb) 2021; 57:2887-2890. [PMID: 33606856 DOI: 10.1039/d0cc08025j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The self-assembly of bifunctional photoredoxcatalysts is reported. A series of photosensitizers and water-reducing catalysts were functionalized with viologen- and naphthol-units, respectively. Subsequent formation of the heteroternary cucurbit[8]uril-viologen-naphthol complexes was used for the constitution of bifunctional photoredoxcatalysts for hydrogen generation.
Collapse
Affiliation(s)
- Fabian Lutz
- Faculty of Chemistry, Organic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse. 7, Essen 45141, Germany.
| | | | | | | |
Collapse
|
21
|
Dai X, Jin XY, Ge Q, Zhao J, Liu M, Cong H, Tao Z, Jiang N. Supramolecular electrocatalysis of a highly efficient oxygen evolution reaction with cucurbit[6]uril. NEW J CHEM 2021. [DOI: 10.1039/d1nj04920h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A supramolecular ternary electrocatalyst, fabricated via the stepwise-coating of polypyrrole, rGO and cucurbit[6]uril, was developed for highly efficient oxygen evolution reaction with full electrochemical performance.
Collapse
Affiliation(s)
- Xin Dai
- Enterprise Technology Center of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Xian-Yi Jin
- Enterprise Technology Center of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Qingmei Ge
- Enterprise Technology Center of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Jie Zhao
- Enterprise Technology Center of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Mao Liu
- Enterprise Technology Center of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Hang Cong
- Enterprise Technology Center of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Nan Jiang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| |
Collapse
|
22
|
Niedbała P, Jurczak J. A new class of “pincer” receptors – macrocyclic systems containing an incorporated amide group. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1867313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Patryk Niedbała
- Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Janusz Jurczak
- Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|