1
|
Bolon B, Kornegay JN. A Fandango of Form and Function: The Interplay Between Clinical Neurology and Neuropathology Evaluation. Toxicol Pathol 2025:1926233251332210. [PMID: 40357635 DOI: 10.1177/01926233251332210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
The central (CNS) and peripheral (PNS) nervous systems of vertebrates represent divisions of a continuous, body-wide communication grid based on conserved principles of structural organization. Discrete neuroanatomic regions within this grid are associated with specific neural functions, so distinct patterns of neurological dysfunction ("problems") can provide guidance regarding neural regions to evaluate beyond those in published sampling schemes or institutional standard operating procedures. Each neurological problem or syndrome (i.e., a group of in-life signs indicating that a given neuroanatomic region is damaged) is associated with a particular list of differential diagnoses and causes. Vulnerability of neural cells and tissues is influenced by intrinsic tissue properties (e.g., high metabolic rates of neurons, presence of blood:tissue barriers, degree of collateral vascular supply) and extrinsic factors (bone protuberances and connective tissue partitions impinging on neural surfaces, fluid flow patterns in the cerebroventricular system and meninges, etc.). In the toxicologic pathology setting, expansion (when warranted) of routine neural sampling protocols to collect additional anatomic regions correlated to a specific neurological problem improves the likelihood that a neuropathological evaluation will identify lesions and causes responsible for neurological conditions as well as detect findings related to potential test item-related neurotoxicity.
Collapse
Affiliation(s)
| | - Joe N Kornegay
- Texas A&M University (retired), College Station, Texas, USA
| |
Collapse
|
2
|
Cho SH, Kim YW, Doo M, Ha JH. Functional Observation Battery Test for Single Intravenous Caffeine Exposure in Male ICR Mice. J Med Food 2025. [PMID: 40178934 DOI: 10.1089/jmf.2024.k.0289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025] Open
Abstract
This study investigated the behavioral responses of male Institute for Cancer Research (ICR) mice to intravenous caffeine exposure via a functional observation battery (FOB) test. Thirty-two experimental mice were randomly assigned to four groups (n = 8 per group) and received intravenous caffeine at a dose of 0, 5, 10, or 20 mg/kg. Functional behaviors were observed at 0, 0.25, 1.5, 6, and 24 h after intravenous caffeine administration. Among the hand-held observations, the ease of removal from the cage and the ease of handling were significantly altered in all caffeine-exposed mice in both a dose-dependent and a time-dependent manner. In terms of physiological responses, both stimulus responses and locomotor activities were significantly affected by intravenous caffeine exposure. Specifically, the tail pinch response was significantly impaired in half of the mice in the 10 mg/kg and 20 mg/kg groups. Moreover, the rearing count decreased in the 10 mg/kg group at 1.5 to 6 h and in the 20 mg/kg group at 1.5 h after intravenous caffeine exposure. Furthermore, locomotor activity was markedly increased 0.25 h after intravenous caffeine administration in the 20 mg/kg group. These findings clearly indicate that intravenous caffeine exposure significantly impacts functional behaviors, as assessed by an FOB test, which is consistent with widely accepted safety pharmacology testing guidelines.
Collapse
Affiliation(s)
- Sung-Hyun Cho
- College of Veterinary Medicine, Chonnam National University, Gwangju, Korea
- Safety Evaluation Team, CentralBio Co., Ltd., Incheon, Korea
| | - Yeon-Woo Kim
- Department of Food Science and Nutrition, Dankook University, Cheonan, Korea
| | - Miae Doo
- Department of Food and Nutrition, Kunsan National University, Gunsan, Korea
| | - Jung-Heun Ha
- Department of Food Science and Nutrition, Dankook University, Cheonan, Korea
- Research Center for Industrialization of Natural Neutralization, Dankook University, Yongin, Korea
| |
Collapse
|
3
|
Tietjen I, Kwan DC, Petrich A, Zell R, Antoniadou IT, Gavriilidou A, Tzitzoglaki C, Rallis M, Fedida D, Sureda FX, Mestdagh C, Naesens L, Chiantia S, Johnson FB, Kolocouris A. Antiviral mechanisms and preclinical evaluation of amantadine analogs that continue to inhibit influenza A viruses with M2 S31N-based drug resistance. Antiviral Res 2025; 236:106104. [PMID: 39947434 DOI: 10.1016/j.antiviral.2025.106104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/08/2025] [Accepted: 02/10/2025] [Indexed: 02/20/2025]
Abstract
To better manage seasonal and pandemic influenza infections, new drugs are needed with enhanced activity against amantadine- and rimantadine-resistant influenza A virus (IAV) strains containing the S31N variant of the viral M2 ion channel (M2S31N). Here we tested 36 amantadine analogs against a panel of viruses containing either M2S31N or the parental, M2 S31 wild-type variant (M2WT). We found that several analogs, primarily those with sizeable lipophilic adducts, inhibited up to three M2S31N-containing viruses with activities at least 5-fold lower than rimantadine, without inhibiting M2S31N proton currents or modulating endosomal pH. While M2WT viruses in passaging studies rapidly gained resistance to these analogs through the established M2 mutations V27A and/or A30T, resistance development was markedly slower for M2S31N viruses and did not associate with additional M2 mutations. Instead, a subset of analogs, exemplified by 2-propyl-2-adamantanamine (38), but not 2-(1-adamantyl)piperidine (26), spiro[adamantane-2,2'-pyrrolidine] (49), or spiro[adamantane-2,2'-piperidine] (60), inhibited cellular entry of infectious IAV following pre-treatment and/or H1N1 pseudovirus entry. Conversely, an overlapping subset of the most lipophilic analogs including compounds 26, 49, 60, and others, disrupted viral M2-M1 protein colocalization required for intracellular viral assembly and budding. Finally, a pilot toxicity study in mice demonstrated that 38 and 49 were tolerated at 30 mg/kg. Together, these results indicate that amantadine analogs act on multiple, complementary mechanisms to inhibit replication of M2S31N viruses.
Collapse
Affiliation(s)
- Ian Tietjen
- The Wistar Institute, Philadelphia, PA, 19104, USA; Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.
| | - Daniel C Kwan
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Annett Petrich
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany; Department of Infectious Diseases, Section of Virology, Heidelberg University, Im Neuenheimer Feld 344, 69120, Heidelberg, Germany
| | - Roland Zell
- Jena University Hospital, Institute for Medical Microbiology, Section Experimental Virology, Hans Knoell Str. 2, D-07745, Jena, Germany
| | - Ivi Theodosia Antoniadou
- Laboratory of Pharmaceutical Technology, Section of Pharmaceutical Technology, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771, Athens, Greece; Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou Str., 115 27 Athens, Greece
| | - Agni Gavriilidou
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771, Athens, Greece
| | - Christina Tzitzoglaki
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771, Athens, Greece
| | - Michail Rallis
- Laboratory of Pharmaceutical Technology, Section of Pharmaceutical Technology, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771, Athens, Greece
| | - David Fedida
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Francesc X Sureda
- Department of Basic Medical Sciences, Faculty of Medicine and Life Sciences, Universitat Rovira i Virgili, 43201, Reus, Spain
| | - Cato Mestdagh
- Rega Institute, KU Leuven, Department of Microbiology, Immunology and Transplantation, B-3000, Leuven, Belgium
| | - Lieve Naesens
- Rega Institute, KU Leuven, Department of Microbiology, Immunology and Transplantation, B-3000, Leuven, Belgium
| | - Salvatore Chiantia
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - F Brent Johnson
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Antonios Kolocouris
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771, Athens, Greece.
| |
Collapse
|
4
|
Glasenapp A, Bankstahl JP, Bähre H, Kozlov A, Glage S, Bankstahl M. Favorable pharmacokinetic and tolerability profiles make carprofen an attractive analgesic for subcutaneous injection and oral self-administration in rats. Sci Rep 2025; 15:8932. [PMID: 40087482 PMCID: PMC11909198 DOI: 10.1038/s41598-025-93336-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/06/2025] [Indexed: 03/17/2025] Open
Abstract
As basis for evidence-based analgesia refinement, species-specific pharmacokinetic and tolerability profiles of carprofen were determined in rats for least aversive administration routes and prolonged treatment. Further, potential influence on behavioral pain indicators was evaluated. LC-MS/MS determined plasma concentrations in Sprague-Dawley rats (n = 21/sex) after subcutaneous (s.c.) injection (5 mg/kg) and during a 5-day treatment via the drinking water (d.w., 10 mg/kg/24 h). Irwin test parameters, clinical scoring, body weight, body temperature, fluid and food intake, grimace scale, burrowing, nesting, hematology, and histopathology were investigated. Plasma concentrations early after injection were higher in females, reached a maximum (Cmax) of 39.16 ± 7.38 µg/ml at 3 h after injection and remained above an estimated in-vitro-derived therapeutic threshold (24.3 µg/ml) for at least 6 h with a T1/2 of 7.06 h. Carprofen-medicated d.w. was readily consumed, with constant target dose intake over the 5-day treatment period reaching a Cmax of 38.68 ± 8.67 µg/ml at 24 h. Tolerability and behavioral parameters revealed only minor changes, such as transient sedation (s.c.) and decreased body temperature (females). Gastrointestinal adverse effects were not detected. Carprofen's pharmacokinetic profile allows for a practicable s.c. injection interval. Acceptance and tolerability during prolonged oral treatment with the assessed dose of 10 mg/kg/24 h makes its non-invasive administration promising for analgesia refinement in rats.
Collapse
Affiliation(s)
- Aylina Glasenapp
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - Jens P Bankstahl
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Heike Bähre
- Research Core Unit Metabolomics, Hannover Medical School, Hannover, Germany
| | - Andrey Kozlov
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA. Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Silke Glage
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - Marion Bankstahl
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany.
- Department of Biological Sciences and Pathobiology, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria.
| |
Collapse
|
5
|
Maru S, Belemkar S. Acute and Subacute Oral Toxicity Study of a Herbal Formulation Containing Asparagus racemosus, Tinospora cordifolia, and Trigonella foenum-graceum in Mice. J Toxicol 2025; 2025:8221552. [PMID: 39974656 PMCID: PMC11839261 DOI: 10.1155/jt/8221552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 11/14/2024] [Accepted: 12/02/2024] [Indexed: 02/21/2025] Open
Abstract
Background: The synergistic activity of compounds in herbal drugs has been well established by multiple scientific studies. The compounds present in plants may have increased toxicity and increased efficacy. Owing to the notion that traditional medicines do not have any adverse effects, these are used heftily. Aim: The present study was designed to assess the toxicity of an herbal drug consisting of Asparagus racemosus roots, Tinospora cordifolia stems, and Trigonella foenum-graecum seeds extract blend (ATTEB), which is widely employed as an antimicrobial, anti-inflammatory, immunomodulator, adaptogen, female tonic, galactagogue, etc. Methodology: The current study evaluated its safety by acute (OECD 423) and subacute (OECD 407) repeated-dose toxicity studies. A phytochemical investigation was carried out and revealed the presence of principal bioactive constituents. A genotoxicity study was performed by micronucleus assay. Gross necroscopy of the animals was performed, and behavioral, hematological, biochemical, and histopathological studies were performed. Results: In the acute toxicity study, there was no mortality and no significant changes in behavior, organ structure, or organ weight, as observed by gross necroscopy of the animals, at a single dose of 2000 mg/kg BW. In a 28-day repeated-dose toxicity study, up to a daily dose of 1000 mg/kg BW, there was no evidence of toxicity. No significant genotoxicity was observed in the mice. Conclusion: The LD50 found to be greater than 2000 mg/kg BW with NOAEL at 1000 mg/kg BW in mice. It was found to be free from any genotoxicity. The herbal drug was found to be safe to level of category 4 and can be used further for clinical studies.
Collapse
Affiliation(s)
- Saurabh Maru
- Department of Pharmacology, School of Pharmacy and Technology Management, SVKM's NMIMS, Shirpur 425405, Maharashtra, India
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai 400056, India
| | - Sateesh Belemkar
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai 400056, India
| |
Collapse
|
6
|
Reiber M, Stirling H, Ahuis TP, Arias W, Aulehner K, Dreßler U, Kas MJH, Kela J, Kerker K, Kuosmanen T, Lorenz H, Pennington AT, von Rüden EL, Schauerte H, Seiffert I, Talbot SR, Torturo C, Virtanen S, Waldron AM, Ramboz S, Potschka H. A systematic assessment of robustness in CNS safety pharmacology. Br J Pharmacol 2025; 182:530-545. [PMID: 39389585 DOI: 10.1111/bph.17358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/04/2024] [Accepted: 08/26/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND AND PURPOSE Irwin tests are key preclinical study elements for characterising drug-induced neurological side effects. This multicentre study aimed to assess the robustness of Irwin tests across multinational sites during three stages of protocol harmonisation. The projects were part of the Enhanced Quality in Preclinical Data framework, aiming to increase success rates in transition from preclinical testing to clinical application. EXPERIMENTAL APPROACH Female and male NMRI mice were assigned to one of three groups (vehicle, MK-801 0.1 and 0.3 mg kg-1). Irwin scores were assessed at baseline and multiple times following intraperitoneal injection of MK-801 using local protocols (Stage 1), shared protocols with harmonised environmental design (Stage 2) and fully harmonised Irwin scoring protocols (Stage 3). KEY RESULTS The analysis based on the four functional domains (motor, autonomic, sedation and excitation) revealed substantial data variability in Stages 1 and 2. Although there was still marked overall heterogeneity between sites in Stage 3 after complete harmonisation of the Irwin scoring scheme, heterogeneity was only moderate within functional domains. When comparing treatment groups versus vehicle, we found large effect sizes in the motor domain and subtle to moderate effects in the excitation-related and autonomic domains. CONCLUSION AND IMPLICATIONS The pronounced interlaboratory variability in Irwin datasets for the CNS-active compound MK-801 needs to be carefully considered when making decisions during drug development. While environmental and general study design had a minor impact, the study suggests that harmonisation of parameters and their scoring can limit variability and increase robustness.
Collapse
Affiliation(s)
- Maria Reiber
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Helen Stirling
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Tim P Ahuis
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | | | - Katharina Aulehner
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ute Dreßler
- AbbVie Deutschland GmbH & Co. KG, Ludwigshafen, Germany
| | - Martien J H Kas
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | | | | | | | - Helga Lorenz
- AbbVie Deutschland GmbH & Co. KG, Ludwigshafen, Germany
| | | | - Eva-Lotta von Rüden
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Heike Schauerte
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Isabel Seiffert
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Steven R Talbot
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | | | | | - Ann-Marie Waldron
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
7
|
Chen LC, Lee TW, Chang CH. Neurobehavioral assessment of BMEDA by modified Irwin test in Sprague-Dawley rats. Regul Toxicol Pharmacol 2024; 153:105703. [PMID: 39299678 DOI: 10.1016/j.yrtph.2024.105703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/05/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
The neurobehavioral assessment of N,N-bis(2-mercapatoethly)-N',N'-diethylenediamine (BMEDA), which can form a chelate with rhenium-188 (188Re) to produce the 188Re-BMEDA-liposome, was evaluated. The purpose of this study was to evaluate the potential neurobehavioral changes by using the functional observational battery observation procedures when intravenous injection of BMEDA to Sprague-Dawley rats. Rats were administered BMEDA at dose levels of 1, 2, and 5 mg/kg. No mortalities were observed. There are some observations related to BMEDA treatment found in the 5 mg/kg dose group at 10 min post-dose. Tremor was observed in one male rat and seven female rats. The increased respiration, vocalization, not easy to handle and/or loss of tone in the limb were observed in both males and females, and increased body temperature was observed in male animals. Based on the results, a single intravenous dose of BMEDA administered to rats resulted in increased respiration, vocalization, not easy to handle and/or loss of tone in the limb increasing at the dose level of 5 mg/kg. No neurobehavioral effects were noted after BMEDA administration up to the dose level of 2 mg/kg. The information of this study will provides a point of reference to design appropriately therapeutic studies for future human use.
Collapse
Affiliation(s)
- Liang-Cheng Chen
- Department of Isotope Application Research, National Atomic Research Institute, 1000 Wenhua Road, Jiaan Village, Longtan District, Taoyuan, 325, Taiwan, ROC
| | - Te-Wei Lee
- Department of Isotope Application Research, National Atomic Research Institute, 1000 Wenhua Road, Jiaan Village, Longtan District, Taoyuan, 325, Taiwan, ROC
| | - Chih-Hsien Chang
- Department of Isotope Application Research, National Atomic Research Institute, 1000 Wenhua Road, Jiaan Village, Longtan District, Taoyuan, 325, Taiwan, ROC.
| |
Collapse
|
8
|
Williams M. Commentary: Fifty years exploring pharmacology with Sam Enna. Biochem Pharmacol 2024; 228:116067. [PMID: 38382820 DOI: 10.1016/j.bcp.2024.116067] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/27/2024] [Accepted: 02/17/2024] [Indexed: 02/23/2024]
Abstract
The passing of Sam Enna in June of 2023 is major loss to the world of pharmacology. While best known for his extensive research activities in the area of γ-aminobutyric acid (GABA) pharmacology, Sam devoted much of his professional time to teaching and as an Editor in Chief for the legacy journals - the Journal of Pharmacology and Experimental Therapeutics (JPET - 1998-2003); Pharmacology & Therapeutics (P & T - 2003-2023) and Biochemical Pharmacology (BCP -2003-2023) - increasing the volume of submissions for all three journals and their Impact Factors while decreasing the time for peer review and publication. Sam was a well-respected consultant in the CNS area for the biopharmaceutical industry and served as Secretary General and President of the International Union of Basic and Clinical Pharmacology where his efforts were focused on sustaining research integrity, particularly in the areas of data reproducibility and fraud. This Commentary provides a personal overview of Sam's 50-year career in pharmacology and briefly updates topics that were of keen interest to Sam including: developments on the continuing reproducibility crisis where systematic fraud continues to proliferate now reaching industrial scale proportions, aided and abetted by paper mills, AI and the erosion of meritocratic norms; and the fall and rise of CNS drug discovery.
Collapse
Affiliation(s)
- Michael Williams
- Department of Biological Chemistry and Pharmacology, College of Medicine, Ohio State University, Columbus, OH, USA.
| |
Collapse
|
9
|
Glasenapp A, Bankstahl JP, Bähre H, Glage S, Bankstahl M. Subcutaneous and orally self-administered high-dose carprofen shows favorable pharmacokinetic and tolerability profiles in male and female C57BL/6J mice. Front Vet Sci 2024; 11:1430726. [PMID: 39376917 PMCID: PMC11457584 DOI: 10.3389/fvets.2024.1430726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/26/2024] [Indexed: 10/09/2024] Open
Abstract
Introduction Surgical interventions in mice require appropriate pain relief to ensure animal welfare and to avoid influence of pain on research findings. Carprofen is a non-steroidal anti-inflammatory drug commonly used as an analgesic for interventions inducing mild to moderate pain in laboratory rodents. Despite its frequent use, species-specific data on pharmacokinetics (PK), side effects, and potential impact on behavioral pain indicators are limited. Methods We determined PK and tolerability profiles of carprofen in healthy male and female C57BL/6J mice (n = 42), administered at highest recommended doses via single subcutaneous (s.c.) injection (20 mg/kg) and oral self-administration (25 mg/kg/24 h) per drinking water (d.w.) for 5 days. Plasma concentrations were measured at various time points after the start of the treatment (n = 6 per time point), and side effects were evaluated using a modified Irwin test battery, hematology, and histopathology. Additionally, potential interference with cage-side behaviors commonly used for pain assessment, such as the mouse grimace scale, wheel running, burrowing, nesting, and grooming activity, was investigated. Results Maximum plasma concentrations of 133.4 ± 11.3 μg/ml were reached 1 h after single s.c. injection with an elimination half-life of 8.52 h. Intake from d.w. resulted in a steady state within 24 h after the start of the treatment with plasma levels of around 60 μg/ml over 5 days in both sexes. The medicated water was well-accepted, and increased d.w. intake was observed in the first 24 h after exposure (p < 0.0001). The Irwin test revealed only minor influence on tested behavior and physiological functions. However, during treatment via d.w., an increase in body temperature (p < 0.0001) was observed, as well as a reduction in voluntary wheel running activity by 49-70% in male mice. Moreover, grooming behavior was slightly affected. Hematology and histopathology were without pathological findings that could be attributed to carprofen treatment. High-dose carprofen can be considered safe and of favorable PK for both administration routes assessed in healthy C57BL/6J mice of both sexes. Further efficacy evaluation of carprofen as monoanalgesic or component of multimodal post-surgical regimens is clearly encouraged; however, the impact on behavioral markers used for pain assessment should be considered in this context.
Collapse
Affiliation(s)
- Aylina Glasenapp
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - Jens P. Bankstahl
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Heike Bähre
- Department of Pharmacology, Research Core Unit Metabolomics, Hannover Medical School, Hannover, Germany
| | - Silke Glage
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - Marion Bankstahl
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
- Department of Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
10
|
Krüger DN, Bosman M, Van Assche CXL, Wesley CD, Cillero-Pastor B, Delrue L, Heggermont W, Bartunek J, De Meyer GRY, Van Craenenbroeck EM, Guns PJ, Franssen C. Characterization of systolic and diastolic function, alongside proteomic profiling, in doxorubicin-induced cardiovascular toxicity in mice. CARDIO-ONCOLOGY (LONDON, ENGLAND) 2024; 10:40. [PMID: 38909263 PMCID: PMC11193203 DOI: 10.1186/s40959-024-00241-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/10/2024] [Indexed: 06/24/2024]
Abstract
BACKGROUND The anthracycline doxorubicin (DOX) is a highly effective anticancer agent, especially in breast cancer and lymphoma. However, DOX can cause cancer therapy-related cardiovascular toxicity (CTR-CVT) in patients during treatment and in survivors. Current diagnostic criteria for CTR-CVT focus mainly on left ventricular systolic dysfunction, but a certain level of damage is required before it can be detected. As diastolic dysfunction often precedes systolic dysfunction, the current study aimed to identify functional and molecular markers of DOX-induced CTR-CVT with a focus on diastolic dysfunction. METHODS Male C57BL/6J mice were treated with saline or DOX (4 mg/kg, weekly i.p. injection) for 2 and 6 weeks (respectively cumulative dose of 8 and 24 mg/kg) (n = 8 per group at each time point). Cardiovascular function was longitudinally investigated using echocardiography and invasive left ventricular pressure measurements. Subsequently, at both timepoints, myocardial tissue was obtained for proteomics (liquid-chromatography with mass-spectrometry). A cohort of patients with CTR-CVT was used to complement the pre-clinical findings. RESULTS DOX-induced a reduction in left ventricular ejection fraction from 72 ± 2% to 55 ± 1% after 2 weeks (cumulative 8 mg/kg DOX). Diastolic dysfunction was demonstrated as prolonged relaxation (increased tau) and heart failure was evident from pulmonary edema after 6 weeks (cumulative 24 mg/kg DOX). Myocardial proteomic analysis revealed an increased expression of 12 proteins at week 6, with notable upregulation of SERPINA3N in the DOX-treated animals. The human ortholog SERPINA3 has previously been suggested as a marker in CTR-CVT. Upregulation of SERPINA3N was confirmed by western blot, immunohistochemistry, and qPCR in murine hearts. Thereby, SERPINA3N was most abundant in the endothelial cells. In patients, circulating SERPINA3 was increased in plasma of CTR-CVT patients but not in cardiac biopsies. CONCLUSION We showed that mice develop heart failure with impaired systolic and diastolic function as result of DOX treatment. Additionally, we could identify increased SERPINA3 levels in the mice as well as patients with DOX-induced CVT and demonstrated expression of SERPINA3 in the heart itself, suggesting that SERPINA3 could serve as a novel biomarker.
Collapse
Affiliation(s)
- Dustin N Krüger
- Laboratory of Psychopharmacology, Faculty of Medicine and Health Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, Antwerp, B-2610, Belgium.
| | - Matthias Bosman
- Laboratory of Psychopharmacology, Faculty of Medicine and Health Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, Antwerp, B-2610, Belgium
| | - Charles X L Van Assche
- Division M4I - Imaging Mass Spectrometry (IMS), Faculty of Health, Medicine and Life Sciences, Maastricht MultiModal Molecular Imaging Institute, Maastricht University, Universiteitssingel 50, Maastricht, 6229 ER, The Netherlands
| | - Callan D Wesley
- Laboratory of Psychopharmacology, Faculty of Medicine and Health Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, Antwerp, B-2610, Belgium
| | - Berta Cillero-Pastor
- Division M4I - Imaging Mass Spectrometry (IMS), Faculty of Health, Medicine and Life Sciences, Maastricht MultiModal Molecular Imaging Institute, Maastricht University, Universiteitssingel 50, Maastricht, 6229 ER, The Netherlands
- Department of Cell Biology-Inspired Tissue Engineering, Institute for Technology-Inspired Regenerative Medicine, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| | - Leen Delrue
- Cardiovascular Centre, OLV Hospital, Moorselbaan 164, Aalst, B-9300, Belgium
| | - Ward Heggermont
- Cardiovascular Centre, OLV Hospital, Moorselbaan 164, Aalst, B-9300, Belgium
| | - Jozef Bartunek
- Cardiovascular Centre, OLV Hospital, Moorselbaan 164, Aalst, B-9300, Belgium
| | - Guido R Y De Meyer
- Laboratory of Psychopharmacology, Faculty of Medicine and Health Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, Antwerp, B-2610, Belgium
| | - Emeline M Van Craenenbroeck
- Research Group Cardiovascular Diseases, University of Antwerp, Wilrijkstraat 10, Edegem, B-2650, Belgium
- Department of Cardiology, Antwerp University Hospital (UZA), Drie Eikenstraat 655, Edegem, B-2650, Belgium
| | - Pieter-Jan Guns
- Laboratory of Psychopharmacology, Faculty of Medicine and Health Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, Antwerp, B-2610, Belgium
| | - Constantijn Franssen
- Research Group Cardiovascular Diseases, University of Antwerp, Wilrijkstraat 10, Edegem, B-2650, Belgium
- Department of Cardiology, Antwerp University Hospital (UZA), Drie Eikenstraat 655, Edegem, B-2650, Belgium
| |
Collapse
|
11
|
Daniyan MO, Omisore NO, Adeyemi OI, Olusa AS, Olaniran SF, Oyemitan IA, Akanmu MA, Olayiwola G. An improved method for toxicological profiling of chemical substances. Toxicol Mech Methods 2024; 34:545-562. [PMID: 38267361 DOI: 10.1080/15376516.2024.2310012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
Toxicity profiling is an integral part of the drug discovery pipeline. The 3Rs principle-Replacement, Reduction, and Refinement, is considered a golden rule in determining the most appropriate approach for toxicity studies. The acute toxicity study with proper estimate of median lethal dose (LD50) is usually an initial procedure for the determination of most suitable test doses for preclinical toxicological and pharmacological profiling. Several methods, which have been devised to determine the LD50, are faced with the challenge of using a large number of animals and time constraints. Despite the inherent advantage of the newer OECD Test Guidelines, the increasing concerns among toxicologists, the regulatory authorities and the general public, on the need to adhere to 3Rs principle, necessitated the need for an improved approach. Such an approach should not only minimize the time and number of animals required, but also take into cognizance animal welfare, and give accurate, comparable, and reproducible results across laboratories. While taking advantage of the inherent merits of the existing methods, here is presented the mathematical basis and evaluation of an improved method for toxicity profiling of test substances and estimation of LD50. The method makes use of the generated Table of values for the selection of appropriate test doses. Our proposed method has capacities to optimize the time and number of animal use, ensure more reliable and reproducible results across laboratories, allow for easy selection of doses for subsequent toxicity profiling, and be adaptable to other biological screening beyond toxicity studies.
Collapse
Affiliation(s)
- Michael Oluwatoyin Daniyan
- Department of Pharmacology, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| | - Nusrat Omotayo Omisore
- Department of Pharmacology, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| | - Oluwole Isaac Adeyemi
- Department of Pharmacology, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| | - Ayokunmi Stephen Olusa
- Department of Pharmacology, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| | - Samuel Folarin Olaniran
- Department of Pharmacology, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| | - Idris Ajayi Oyemitan
- Department of Pharmacology, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| | - Moses Atanda Akanmu
- Department of Pharmacology, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| | - Gbola Olayiwola
- Department of Clinical Pharmacy and Pharmacy Administration, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| |
Collapse
|
12
|
Ukkinadka J, Badanthadka M. Safety evaluation of a proprietary ayruveda-based polyherbal preparation (arthralgex) used for arthritis. BRAZ J BIOL 2024; 84:e275707. [PMID: 38451629 DOI: 10.1590/1519-6984.275707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/29/2023] [Indexed: 03/08/2024] Open
Abstract
Arthralgex is a proprietary polyherbal preparation used in clinics to treat rheumatoid arthritis for decades. Its safety evaluation has not been reported. The study is aimed at evaluating the safety of arthralgex using Wistar rats, as per OECD guidelines. According to OECD 407, rats of either gender were separated into six groups (n= 6 each). The dose of arthralgex was decided based on an acute toxicity study. Under the treatment group, separate set of rats received arthralgex in three dose levels like - low, medium, and high (200, 400 & 800 mg/kg/day; p.o for 28 days). Satellite groups received high dose (800 mg/kg/day, p.o for 28 days), and control group received equal volume of vehicle. On day 28, blood samples were collected to estimate hematology and biochemistry parameters. Subsequently, rats were euthanized to collect organs for weighing and histopathology. Satellite groups were maintained for an additional 14 days post-treatment to assess toxicity reversibility and euthanized on day 43. Arthralgex did not show any signs of toxicity or major change in body weight in the acute toxicity study. Arthralgex has no significant adverse effect on general health status as confirmed by body weight, feed intake, hematology, biochemistry, urine analysis, internal organs, relative organ weight, and histopathological evaluation after 28 day treatment. Arthralgex could be considered safe for short-term treatment. Present findings may help researchers in dose fixing for sub-chronic and chronic toxicity studies, which is essential for safety evaluation for long-term use.
Collapse
Affiliation(s)
- J Ukkinadka
- Sahasraksha Vaidya Shala, Kasaragod district, Kerala, India
| | - M Badanthadka
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences - NGSMIPS, Department of Nitte University Centre for Animal Research and Experimentation - NUCARE, Paneer campus, Deralakatte, Mangaluru, India
| |
Collapse
|
13
|
Dombrecht D, Van Daele U, Van Asbroeck B, Schieffelers DR, Guns PJ, van Breda E. Skeletal muscle wasting after burn is regulated by a decrease in anabolic signaling in the early flow phase. Burns 2023; 49:1574-1584. [PMID: 37833149 DOI: 10.1016/j.burns.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/14/2023] [Accepted: 08/10/2023] [Indexed: 10/15/2023]
Abstract
Following burns a sustained catabolic stress response is activated, resulting in skeletal muscle wasting. A better understanding of the underlying mechanisms of postburn skeletal muscle wasting is essential for the development of preventive and/or therapeutic strategies. Six weeks old female rats underwent a sham, 10% or 40% total body surface area scald burn. Ten days post-injury, severely burned animals gained significantly less weight compared to sham treated and minor burned animals, reflected in a significantly lower ratio of muscle to total body weight for Soleus (SOL) and Extensor Digitorum Longus (EDL) in the severely burned group. Postburn, total fiber number was significantly lower in EDL, while in SOL the amount of type1 fibers significantly increased and type2 fibers significantly decreased. No signs of mitochondrial dysfunction (COX/SDH) or apoptosis (caspase-3) were found. In SOL and EDL, eEF2 and pAKT expression was significantly lower after severe burn. MURF1,2,3 and Atrogin-1 was significantly higher in SOL, whilst in EDL MURF1,2,3 was significantly lower postburn. In both muscles, FOXO3A was significantly lower postburn. This study identified postburn changes in muscle anthropomorphology and proteins involved in pathways regulating protein synthesis and breakdown, with more pronounced catabolic effects in SOL.
Collapse
Affiliation(s)
- Dorien Dombrecht
- Department of Rehabilitation Sciences & Physiotherapy, Research Group MOVANT, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - Ulrike Van Daele
- Department of Rehabilitation Sciences & Physiotherapy, Research Group MOVANT, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium; Oscare, Organisation for Burns, Scar After-Care and Research, 2170 Antwerp, Belgium.
| | - Birgit Van Asbroeck
- Department of Rehabilitation Sciences & Physiotherapy, Research Group MOVANT, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - David R Schieffelers
- Department of Rehabilitation Sciences & Physiotherapy, Research Group MOVANT, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - Pieter-Jan Guns
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - Eric van Breda
- Department of Rehabilitation Sciences & Physiotherapy, Research Group MOVANT, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium.
| |
Collapse
|
14
|
Castro-Martínez G, Herrera-Ruiz M, González-Cortázar M, Porras-Dávila SL, Almanza Pérez JC, Jimenez-Ferrer E. Effects of Five Coumarins and Standardized Extracts from Tagetes lucida Cav. on Motor Impairment and Neuroinflammation Induced with Cuprizone. Pharmaceuticals (Basel) 2023; 16:1391. [PMID: 37895861 PMCID: PMC10610053 DOI: 10.3390/ph16101391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) with no curative treatment, and the available therapies aim to modify the course of the disease. It has been demonstrated that extracts of Tagetes lucida have immunomodulatory and neuroprotective effects. This work induced motor damage and neuroinflammation in male BALB/c mice by oral administration of cuprizone (CPZ) (40 mg/kg) for five weeks. In addition, the extracts and coumarins of Tagetes lucida (25 mg/kg) were used to control these damage variables; during the experiment, animals were subject to behavioral tests, and at the end of 5 weeks, mice from each group were used to measure the integrity of biological barriers (brain, kidneys, and spleen) through the extravasation test with blue Evans dye. In another group of animals, the ELISA method measured the brain concentrations of IL-1β, IL-4, IL-10, and TNF-α. The results presented here allow us to conclude that the extracts and coumarins IC, HN, PE, DF, and SC of Tagetes lucida exert a neuroprotective effect by controlling the motor damage and neuroinflammation by increasing the expression of IL-4 and IL-10 and decreasing IL-1β and TNF-α; notably, these treatments also protect organs from vascular permeability increase, mainly the BBB, in mice with CPZ-induced experimental encephalomyelitis (VEH * p < 0.05). However, more studies must be carried out to elucidate the molecular mechanisms of the pharmacological effects of this Mexican medicinal plant.
Collapse
Affiliation(s)
- Gabriela Castro-Martínez
- Doctorate in Biological and Health Sciences, Metropolitan Autonomous University, Mexico City 14387, Mexico;
- Southern Biomedical Research Center, Mexican Social Security Institute, Guadalajara 44340, Mexico; (M.H.-R.); (M.G.-C.); (S.L.P.-D.)
| | - Maribel Herrera-Ruiz
- Southern Biomedical Research Center, Mexican Social Security Institute, Guadalajara 44340, Mexico; (M.H.-R.); (M.G.-C.); (S.L.P.-D.)
| | - Manases González-Cortázar
- Southern Biomedical Research Center, Mexican Social Security Institute, Guadalajara 44340, Mexico; (M.H.-R.); (M.G.-C.); (S.L.P.-D.)
| | - Sandra Liliana Porras-Dávila
- Southern Biomedical Research Center, Mexican Social Security Institute, Guadalajara 44340, Mexico; (M.H.-R.); (M.G.-C.); (S.L.P.-D.)
| | - Julio Cesar Almanza Pérez
- Department of Health Sciences, Division of Biological and Health Sciences, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico
| | - Enrique Jimenez-Ferrer
- Southern Biomedical Research Center, Mexican Social Security Institute, Guadalajara 44340, Mexico; (M.H.-R.); (M.G.-C.); (S.L.P.-D.)
| |
Collapse
|
15
|
Berman-Booty LD, Klein SK, Mazur C, Schroeder J, Korte S, Ludwig FT, Romeike A, Bolon B, Grieves JL. Toxicologic Pathology Forum: Opinion on Interpretive Challenges for Procedure-Related Effects Associated With Direct Central Nervous System Delivery of Oligonucleotides to Rodents, Dogs, and Nonhuman Primates. Toxicol Pathol 2023; 51:375-389. [PMID: 38179962 DOI: 10.1177/01926233231218953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Direct delivery of therapeutics to the central nervous system (CNS) greatly expands opportunities to treat neurological diseases but is technically challenging. This opinion outlines principal technical aspects of direct CNS delivery via intracerebroventricular (ICV) or intrathecal (IT) injection to common nonclinical test species (rodents, dogs, and nonhuman primates) and describes procedure-related clinical and histopathological effects that confound interpretation of test article-related effects. Direct dosing is by ICV injection in mice due to their small body size, while other species are dosed IT in the lumbar cistern. The most frequent procedure-related functional effects are transient absence of lower spinal reflexes after IT injection or death soon after ICV dosing. Common procedure-related microscopic findings in all species include leukocyte infiltrates in CNS meninges or perivascular (Virchow-Robin) spaces; nerve fiber degeneration in the spinal cord white matter (especially dorsal and lateral tracts compressed by dosing needles or indwelling catheters), spinal nerve roots, and sciatic nerve; meningeal fibrosis at or near IT injection sites; hemorrhage; and gliosis. Findings typically are minimal to occasionally mild. Findings tend to be more severe and/or have a higher incidence in the spinal cord segments and spinal nerve roots at or close to the site of administration.
Collapse
Affiliation(s)
| | | | - Curt Mazur
- Ionis Pharmaceuticals, Carlsbad, California, USA
- Creyon Bio, Carlsbad, California, USA
| | | | - Sven Korte
- Labcorp Early Development Services GmbH, Münster, Germany
- Virscio, Inc., New Haven, Connecticut, USA
| | | | | | | | | |
Collapse
|
16
|
Pandey KP, Divović B, Rashid F, Golani LK, Cerne R, Zahn NM, Meyer MJ, Arnold LA, Sharmin D, Mian MY, Smith JL, Ping X, Jin X, Lippa A, Tiruveedhula VVNPB, Cook JM, Savić MM, Witkin JM. Structural Analogs of the GABAkine KRM-II-81 Are Orally Bioavailable Anticonvulsants without Sedation. J Pharmacol Exp Ther 2023; 385:50-61. [PMID: 36746611 PMCID: PMC10029819 DOI: 10.1124/jpet.122.001362] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/22/2022] [Accepted: 01/19/2023] [Indexed: 02/08/2023] Open
Abstract
To provide back-up compounds to support the development of the GABAA receptor (GABAAR) potentiator KRM-II-81, three novel analogs were designed: replacing the pyridinyl with 2'-Cl-phenyl (FR-II-60), changing the positions of the N and O atoms in the oxazole ring with addition of an ethyl group (KPP-III-34 and KPP-III-51), or substituting a Br atom for the ethynyl of KRM-II-81 (KPP-III-34). The compounds bound to brain GABAARs. Intraperitoneal administration of FR-II-60 and KPP-III-34 produced anticonvulsant activity in mice [maximal electroshock (MES)-induced seizures or 6 Hz-induced seizures], whereas KPP-III-51 did not. Although all compounds were orally bioavailable, structural changes reduced the plasma and brain (FR-II-60 and KPP-III-51) exposures relative to KRM-II-81. Oral administration of each compound produced dose-dependent increases in the latency for both clonic and tonic seizures and the lethality induced by pentylenetetrazol (PTZ) in mice. Since KPP-III-34 produced the highest brain area under the curve (AUC) exposures, it was selected for further profiling. Oral administration of KPP-III-34 suppressed seizures in corneal-kindled mice, hippocampal paroxysmal discharges in mesial temporal lobe epileptic mice, and PTZ-induced convulsions in rats. Only transient sensorimotor impairment was observed in mice, and doses of KPP-III-34 up to 500 mg/kg did not produce impairment in rats. Molecular docking studies demonstrated that all compounds displayed a reduced propensity for binding to α1His102 compared with the sedating compound alprazolam; the bromine-substituted KPP-III-34 achieved the least interaction. Overall, these findings document the oral bioavailability and anticonvulsant efficacy of three novel analogs of KRM-II-81 with reduced sedative effects. SIGNIFICANCE STATEMENT: A new non-sedating compound, KRM-II-81, with reduced propensity for tolerance is moving into clinical development. Three new analogs were orally bioavailable, produced anticonvulsant effects in rodents, and displayed low sensorimotor impairment. KPP-III-34 demonstrated efficacy in models of pharmacoresistant epilepsy. Docking studies demonstrated a low propensity for compound binding to the α1His102 residue implicated in sedation. Thus, three additional structures have been added to the list of non-sedating imidazodiazepine anticonvulsants that could serve as backups in the clinical development of KRM-II-81.
Collapse
Affiliation(s)
- Kamal P Pandey
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (K.P.P., F.R., L.K.G., N.M.Z., M.J.M., L.A.A., D.S., M.Y.M., V.V.N.P.B.T., J.M.C., J.M.W.);
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia (B.D., M.M.S.);
- Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (R.C., J.L.S., J.M.W.);
- Department of Anatomy and Cell BiologyIndiana University/Purdue University, Indianapolis, Indiana (R.C., X.P., X.J.);
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia (R.C.); and RespireRx Pharmaceuticals Inc., Glen Rock, New Jersey (A.L., J.M.C., J.M.W.)
| | - Branka Divović
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (K.P.P., F.R., L.K.G., N.M.Z., M.J.M., L.A.A., D.S., M.Y.M., V.V.N.P.B.T., J.M.C., J.M.W.)
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia (B.D., M.M.S.)
- Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (R.C., J.L.S., J.M.W.)
- Department of Anatomy and Cell BiologyIndiana University/Purdue University, Indianapolis, Indiana (R.C., X.P., X.J.)
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia (R.C.); and RespireRx Pharmaceuticals Inc., Glen Rock, New Jersey (A.L., J.M.C., J.M.W.)
| | - Farjana Rashid
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (K.P.P., F.R., L.K.G., N.M.Z., M.J.M., L.A.A., D.S., M.Y.M., V.V.N.P.B.T., J.M.C., J.M.W.)
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia (B.D., M.M.S.)
- Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (R.C., J.L.S., J.M.W.)
- Department of Anatomy and Cell BiologyIndiana University/Purdue University, Indianapolis, Indiana (R.C., X.P., X.J.)
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia (R.C.); and RespireRx Pharmaceuticals Inc., Glen Rock, New Jersey (A.L., J.M.C., J.M.W.)
| | - Lalit K Golani
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (K.P.P., F.R., L.K.G., N.M.Z., M.J.M., L.A.A., D.S., M.Y.M., V.V.N.P.B.T., J.M.C., J.M.W.)
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia (B.D., M.M.S.)
- Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (R.C., J.L.S., J.M.W.)
- Department of Anatomy and Cell BiologyIndiana University/Purdue University, Indianapolis, Indiana (R.C., X.P., X.J.)
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia (R.C.); and RespireRx Pharmaceuticals Inc., Glen Rock, New Jersey (A.L., J.M.C., J.M.W.)
| | - Rok Cerne
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (K.P.P., F.R., L.K.G., N.M.Z., M.J.M., L.A.A., D.S., M.Y.M., V.V.N.P.B.T., J.M.C., J.M.W.)
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia (B.D., M.M.S.)
- Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (R.C., J.L.S., J.M.W.)
- Department of Anatomy and Cell BiologyIndiana University/Purdue University, Indianapolis, Indiana (R.C., X.P., X.J.)
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia (R.C.); and RespireRx Pharmaceuticals Inc., Glen Rock, New Jersey (A.L., J.M.C., J.M.W.)
| | - Nicolas M Zahn
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (K.P.P., F.R., L.K.G., N.M.Z., M.J.M., L.A.A., D.S., M.Y.M., V.V.N.P.B.T., J.M.C., J.M.W.)
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia (B.D., M.M.S.)
- Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (R.C., J.L.S., J.M.W.)
- Department of Anatomy and Cell BiologyIndiana University/Purdue University, Indianapolis, Indiana (R.C., X.P., X.J.)
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia (R.C.); and RespireRx Pharmaceuticals Inc., Glen Rock, New Jersey (A.L., J.M.C., J.M.W.)
| | - Michelle Jean Meyer
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (K.P.P., F.R., L.K.G., N.M.Z., M.J.M., L.A.A., D.S., M.Y.M., V.V.N.P.B.T., J.M.C., J.M.W.)
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia (B.D., M.M.S.)
- Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (R.C., J.L.S., J.M.W.)
- Department of Anatomy and Cell BiologyIndiana University/Purdue University, Indianapolis, Indiana (R.C., X.P., X.J.)
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia (R.C.); and RespireRx Pharmaceuticals Inc., Glen Rock, New Jersey (A.L., J.M.C., J.M.W.)
| | - Leggy A Arnold
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (K.P.P., F.R., L.K.G., N.M.Z., M.J.M., L.A.A., D.S., M.Y.M., V.V.N.P.B.T., J.M.C., J.M.W.)
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia (B.D., M.M.S.)
- Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (R.C., J.L.S., J.M.W.)
- Department of Anatomy and Cell BiologyIndiana University/Purdue University, Indianapolis, Indiana (R.C., X.P., X.J.)
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia (R.C.); and RespireRx Pharmaceuticals Inc., Glen Rock, New Jersey (A.L., J.M.C., J.M.W.)
| | - Dishary Sharmin
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (K.P.P., F.R., L.K.G., N.M.Z., M.J.M., L.A.A., D.S., M.Y.M., V.V.N.P.B.T., J.M.C., J.M.W.)
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia (B.D., M.M.S.)
- Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (R.C., J.L.S., J.M.W.)
- Department of Anatomy and Cell BiologyIndiana University/Purdue University, Indianapolis, Indiana (R.C., X.P., X.J.)
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia (R.C.); and RespireRx Pharmaceuticals Inc., Glen Rock, New Jersey (A.L., J.M.C., J.M.W.)
| | - Md Yeunus Mian
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (K.P.P., F.R., L.K.G., N.M.Z., M.J.M., L.A.A., D.S., M.Y.M., V.V.N.P.B.T., J.M.C., J.M.W.)
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia (B.D., M.M.S.)
- Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (R.C., J.L.S., J.M.W.)
- Department of Anatomy and Cell BiologyIndiana University/Purdue University, Indianapolis, Indiana (R.C., X.P., X.J.)
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia (R.C.); and RespireRx Pharmaceuticals Inc., Glen Rock, New Jersey (A.L., J.M.C., J.M.W.)
| | - Jodi L Smith
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (K.P.P., F.R., L.K.G., N.M.Z., M.J.M., L.A.A., D.S., M.Y.M., V.V.N.P.B.T., J.M.C., J.M.W.)
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia (B.D., M.M.S.)
- Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (R.C., J.L.S., J.M.W.)
- Department of Anatomy and Cell BiologyIndiana University/Purdue University, Indianapolis, Indiana (R.C., X.P., X.J.)
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia (R.C.); and RespireRx Pharmaceuticals Inc., Glen Rock, New Jersey (A.L., J.M.C., J.M.W.)
| | - Xingjie Ping
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (K.P.P., F.R., L.K.G., N.M.Z., M.J.M., L.A.A., D.S., M.Y.M., V.V.N.P.B.T., J.M.C., J.M.W.)
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia (B.D., M.M.S.)
- Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (R.C., J.L.S., J.M.W.)
- Department of Anatomy and Cell BiologyIndiana University/Purdue University, Indianapolis, Indiana (R.C., X.P., X.J.)
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia (R.C.); and RespireRx Pharmaceuticals Inc., Glen Rock, New Jersey (A.L., J.M.C., J.M.W.)
| | - Xiaoming Jin
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (K.P.P., F.R., L.K.G., N.M.Z., M.J.M., L.A.A., D.S., M.Y.M., V.V.N.P.B.T., J.M.C., J.M.W.)
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia (B.D., M.M.S.)
- Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (R.C., J.L.S., J.M.W.)
- Department of Anatomy and Cell BiologyIndiana University/Purdue University, Indianapolis, Indiana (R.C., X.P., X.J.)
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia (R.C.); and RespireRx Pharmaceuticals Inc., Glen Rock, New Jersey (A.L., J.M.C., J.M.W.)
| | - Arnold Lippa
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (K.P.P., F.R., L.K.G., N.M.Z., M.J.M., L.A.A., D.S., M.Y.M., V.V.N.P.B.T., J.M.C., J.M.W.)
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia (B.D., M.M.S.)
- Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (R.C., J.L.S., J.M.W.)
- Department of Anatomy and Cell BiologyIndiana University/Purdue University, Indianapolis, Indiana (R.C., X.P., X.J.)
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia (R.C.); and RespireRx Pharmaceuticals Inc., Glen Rock, New Jersey (A.L., J.M.C., J.M.W.)
| | - V V N Phani Babu Tiruveedhula
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (K.P.P., F.R., L.K.G., N.M.Z., M.J.M., L.A.A., D.S., M.Y.M., V.V.N.P.B.T., J.M.C., J.M.W.)
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia (B.D., M.M.S.)
- Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (R.C., J.L.S., J.M.W.)
- Department of Anatomy and Cell BiologyIndiana University/Purdue University, Indianapolis, Indiana (R.C., X.P., X.J.)
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia (R.C.); and RespireRx Pharmaceuticals Inc., Glen Rock, New Jersey (A.L., J.M.C., J.M.W.)
| | - James M Cook
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (K.P.P., F.R., L.K.G., N.M.Z., M.J.M., L.A.A., D.S., M.Y.M., V.V.N.P.B.T., J.M.C., J.M.W.)
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia (B.D., M.M.S.)
- Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (R.C., J.L.S., J.M.W.)
- Department of Anatomy and Cell BiologyIndiana University/Purdue University, Indianapolis, Indiana (R.C., X.P., X.J.)
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia (R.C.); and RespireRx Pharmaceuticals Inc., Glen Rock, New Jersey (A.L., J.M.C., J.M.W.)
| | - Miroslav M Savić
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (K.P.P., F.R., L.K.G., N.M.Z., M.J.M., L.A.A., D.S., M.Y.M., V.V.N.P.B.T., J.M.C., J.M.W.)
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia (B.D., M.M.S.)
- Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (R.C., J.L.S., J.M.W.)
- Department of Anatomy and Cell BiologyIndiana University/Purdue University, Indianapolis, Indiana (R.C., X.P., X.J.)
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia (R.C.); and RespireRx Pharmaceuticals Inc., Glen Rock, New Jersey (A.L., J.M.C., J.M.W.)
| | - Jeffrey M Witkin
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (K.P.P., F.R., L.K.G., N.M.Z., M.J.M., L.A.A., D.S., M.Y.M., V.V.N.P.B.T., J.M.C., J.M.W.);
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia (B.D., M.M.S.);
- Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (R.C., J.L.S., J.M.W.);
- Department of Anatomy and Cell BiologyIndiana University/Purdue University, Indianapolis, Indiana (R.C., X.P., X.J.);
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia (R.C.); and RespireRx Pharmaceuticals Inc., Glen Rock, New Jersey (A.L., J.M.C., J.M.W.)
| |
Collapse
|
17
|
Coles L, Forcelli PA, Leclercq K, Katsarou AM, Klein BD, Potschka H, Koehling R, Harte-Hargrove L, Galanopoulou AS, Metcalf CS. Preclinical common data elements for general pharmacological studies (pharmacokinetic sample collection, tolerability, and drug administration). A report of the TASK3-WG1A General Pharmacology Working Group of the ILAE/AES Joint Translational Task Force. Epilepsia Open 2023. [PMID: 36896626 DOI: 10.1002/epi4.12721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Growing concerns over rigor and reproducibility of preclinical studies, including consistency across laboratories and translation to clinical populations, have triggered efforts to harmonize methodologies. This includes the first set of preclinical common data elements (CDEs) for epilepsy research studies, as well as Case Report Forms (CRFs) for widespread use in epilepsy research. The General Pharmacology Working Group of the ILAE/AES Task Force (TASK3-WG1A) has continued in this effort by adapting and refining CDEs/CRFs to address specific study design areas as they relate to preclinical drug screening: general pharmacology, pharmacokinetics (PK) and pharmacodynamics (PD), and tolerability. This work has expanded general pharmacology studies to include dose records, PK/PD, tolerability, and elements of rigor and reproducibility. Tolerability testing CRFs included rotarod and Irwin/Functional Observation Battery (FOB) assays. The material provided in the form of CRFs can be delivered for widespread use within the epilepsy research community.
Collapse
Affiliation(s)
- Lisa Coles
- Department of Experimental and Clinical Pharmacology, The University of Minnesota, College of Pharmacy, Minneapolis, Minnesota, USA
| | - Patrick A Forcelli
- Department of Pharmacology & Physiology, Georgetown University, Washington, District of Columbia, USA
- Department of Neuroscience, Georgetown University, Washington, District of Columbia, USA
| | - Karine Leclercq
- Early Solutions Department, UCB Pharma, Braine-l'Alleud, Belgium
| | - Anna-Maria Katsarou
- Laboratory of Developmental Epilepsy, Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Brian D Klein
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Rudiger Koehling
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Rostock, Germany
| | | | - Aristea S Galanopoulou
- Isabelle Rapin Division of Child Neurology, Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, USA
- Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Cameron S Metcalf
- Department of Pharmacology and Toxicology, The University of Utah, College of Pharmacy, Salt Lake City, Utah, USA
| |
Collapse
|
18
|
Aldana-Mejía JA, de Miranda AM, Ccana-Ccapatinta GV, de Araújo LS, Ribeiro VP, Arruda C, Nascimento S, Squarisi I, Esperandim T, de Freitas KS, Ozelin SD, Tavares DC, Ramalho FS, Bastos JK. Genotoxicity and toxicological evaluations of Brazilian red propolis oral ingestion in a preclinical rodent model. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:115920. [PMID: 36372194 DOI: 10.1016/j.jep.2022.115920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/29/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Brazilian red propolis is a natural product known due to its medicinal properties. The efficacy of this natural resin has been proved; however, few studies report the safety of its oral use. Some toxic effects of natural products may not be expressed in traditional use, and preclinical studies are necessary to guarantee their safety. Health regulatory agency currently requires these non-clinical studies to develop drugs and herbal medicines, including genotoxic and oral toxicity tests. AIM OF THE STUDY Accomplish the preclinical toxicity studies of Brazilian red propolis extract (BRP) in rodents, including genotoxicity, acute and sub-chronic toxicities. MATERIAL AND METHODS Genotoxicity assays followed the erythrocyte micronucleus test protocol in a range of 500-2000 mg/kg BRP oral treatment on male Swiss mice. After an up-and-down procedure, acute oral toxicity (single dose) was performed on female Wistar Hannover rats, reaching a 2000 mg/kg BRP oral gavage concentration. Animals were monitored periodically until 14 days and euthanized for a macroscopic necropsy analysis. The sub-chronic oral toxicity test (90 days) was achieved with 1000 mg/kg of BRP on Wistar Hannover rats (males/females). Animals were monitored to evaluated behavioral and biometrical changes, then were euthanized to perfomed hematological, biochemical, and histopathological analyses. RESULTS No genotoxic effect of the BRP was detected. The acute toxicity indicated no toxicity of a single oral dose of 2000 mg/kg of BRP. The long-term oral toxicity performed with 1000 mg/kg of BRP altered water and food intake and the biometrics, hematological and biochemical parameters. Biochemical alterations in hepatic and renal parameters were detected only in the males. Despite the detection of biochemical alterations, no histopathological changes were detected in the organs of any group. CONCLUSIONS BRP, at a higher dose, showed no signs of immediate toxicity. However, the obtained results suggest that the chemical composition and the intake of higher doses deserve special attention regarding possible toxicity.
Collapse
Affiliation(s)
- Jennyfer Andrea Aldana-Mejía
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/nº, Ribeirão Preto, São Paulo, Brazil.
| | - Aline Mayrink de Miranda
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/nº, Ribeirão Preto, São Paulo, Brazil.
| | - Gari Vidal Ccana-Ccapatinta
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/nº, Ribeirão Preto, São Paulo, Brazil.
| | - Luciana Silva de Araújo
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/nº, Ribeirão Preto, São Paulo, Brazil.
| | - Victor Pena Ribeiro
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/nº, Ribeirão Preto, São Paulo, Brazil.
| | - Caroline Arruda
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/nº, Ribeirão Preto, São Paulo, Brazil.
| | - Samuel Nascimento
- Nucleus of Research in Sciences and Technology, Laboratory of Mutagenesis, University of Franca, Av. Dr. Armando de Sáles Oliveira, 201 - Parque Universitario, Franca, São Paulo, Brazil.
| | - Iara Squarisi
- Nucleus of Research in Sciences and Technology, Laboratory of Mutagenesis, University of Franca, Av. Dr. Armando de Sáles Oliveira, 201 - Parque Universitario, Franca, São Paulo, Brazil.
| | - Tábata Esperandim
- Nucleus of Research in Sciences and Technology, Laboratory of Mutagenesis, University of Franca, Av. Dr. Armando de Sáles Oliveira, 201 - Parque Universitario, Franca, São Paulo, Brazil.
| | - Karoline S de Freitas
- Nucleus of Research in Sciences and Technology, Laboratory of Mutagenesis, University of Franca, Av. Dr. Armando de Sáles Oliveira, 201 - Parque Universitario, Franca, São Paulo, Brazil.
| | - Saulo D Ozelin
- Nucleus of Research in Sciences and Technology, Laboratory of Mutagenesis, University of Franca, Av. Dr. Armando de Sáles Oliveira, 201 - Parque Universitario, Franca, São Paulo, Brazil.
| | - Denise Crispim Tavares
- Nucleus of Research in Sciences and Technology, Laboratory of Mutagenesis, University of Franca, Av. Dr. Armando de Sáles Oliveira, 201 - Parque Universitario, Franca, São Paulo, Brazil.
| | - Fernando Silva Ramalho
- Department of Pathology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, Brazil.
| | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/nº, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
19
|
Neuropharmacological Effects in Animal Models and HPLC-Phytochemical Profiling of Byrsonima crassifolia (L.) Kunth Bark Extracts. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020764. [PMID: 36677821 PMCID: PMC9867209 DOI: 10.3390/molecules28020764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/05/2023] [Accepted: 01/08/2023] [Indexed: 01/15/2023]
Abstract
B. crassifolia is a species that grows in various areas of Latin America. It was known to be useful for the treatment of different human ailments. The present work evaluated the neuropharmacological and analgesic effects of hydroalcoholic and dichloromethane extracts of B. crassifolia. The effect on the central nervous system (CNS) of both extracts obtained from bark, administered by the intraperitoneal route in mice, was evaluated by different tests: spontaneous motor activity, hole-board, motor coordination, pentobarbital induced hypnosis, and rectal temperature. Analgesic activity was evaluated using a hot plate test. Phytochemical analysis was performed by high-performance liquid chromatography (HPLC) using reversed-phase and gradient of elution. The hydroalcoholic extract (dose 0.5 g dry plant/kg weigh) administration caused an important reduction of the head-dipping response in the hole board test. A decrease in spontaneous motor activity test and a disturbance of motor coordination in the rotarod test was observed. The hydroalcoholic extract produced a significant prolongation of pentobarbital induced sleeping time. This extract prevented hot plate test induced nociception. The phytochemical analysis revealed the presence of catechin, epicatechin, and procyanidin B12. Therefore, this study revealed that the hydroalcoholic extract of B. crassifolia possesses analgesic and sedative CNS activity.
Collapse
|
20
|
Huang M, Yu L, Wang X, Wang M, Li W, Tang J, Ling G, Wei X, Wang Y, Wang W, Wu Y, Lu L. Evaluation of the transverse aortic constriction model in ICR and C57BL/6J mice. Front Physiol 2022; 13:1026884. [PMID: 36523549 PMCID: PMC9745147 DOI: 10.3389/fphys.2022.1026884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/14/2022] [Indexed: 08/30/2024] Open
Abstract
Transverse aortic constriction (TAC) is a frequently used model to investigate pressure overload-induced progressive heart failure (HF); however, there is considerable phenotypic variation among different mouse strains and even sub-strains. Moreover, less is known about the TAC model in ICR mice. Therefore, to determine the suitability of the ICR strain for TAC-induced HF research, we compared the effects of TAC on ICR and C57BL/6J mice at one, two and four weeks post-TAC via echocardiography, organ index, morphology, and histology. At the end of the study, behavior and gene expression patterns were assessed, and overall survival was monitored. Compared to the sham-operated mice, ICR and C57BL/6J mice displayed hypertrophic phenotypes with a significant increase in ventricle wall thickness, heart weight and ratio, and cross-sectional area of cardiomyocytes after a 2-week TAC exposure. In addition, ICR mice developed reduced systolic function and severe lung congestion 4 weeks post-TAC, whereas C57BL/6J did not. Besides, ICR mice demonstrated comparable survival, similar gene expression alteration but severer fibrotic remodeling and poor behavioral performance compared to the C57BL/6J mice. Our data demonstrated that ICR was quite sensitive to TAC-induced heart failure and can be an ideal research tool to investigate mechanisms and drug intervention for pressure overload-induced HF.
Collapse
Affiliation(s)
- Mengying Huang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Lishuang Yu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoping Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Mingmin Wang
- Endocrinology Department, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Weili Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jiayang Tang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Guanjing Ling
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoqi Wei
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yong Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Beijing Key Laboratory of TCM Syndrome and Formula, Beijing, China
- Key Laboratory of Beijing University of Chinese Medicine, Ministry of Education, Beijing, China
| | - Wei Wang
- Beijing Key Laboratory of TCM Syndrome and Formula, Beijing, China
- Key Laboratory of Beijing University of Chinese Medicine, Ministry of Education, Beijing, China
| | - Yan Wu
- Beijing Key Laboratory of TCM Syndrome and Formula, Beijing, China
- Key Laboratory of Beijing University of Chinese Medicine, Ministry of Education, Beijing, China
- Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Linghui Lu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Beijing Key Laboratory of TCM Syndrome and Formula, Beijing, China
- Key Laboratory of Beijing University of Chinese Medicine, Ministry of Education, Beijing, China
| |
Collapse
|
21
|
Ibarrola DA, Arrua W, Gonzalez JE, Soverina Escobar MS, Centurión J, Campuzano Benitez AM, Ovando Soria FM, Rodas González EI, Arrúa KG, Acevedo Barrios MB, Heinichen OY, Montalbetti Y, Campuzano-Bublitz MA, Kennedy ML, Figueredo Thiel SJ, Alvarenga NL, Hellión-Ibarrola MC. The antihypertensive and diuretic effect of crude root extract and saponins from Solanum sisymbriifolium Lam., in L-NAME-induced hypertension in rats. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115605. [PMID: 35973627 DOI: 10.1016/j.jep.2022.115605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/24/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Solanum sisymbriifolium Lam., is used in Paraguayan folk medicine claiming antihypertensive and diuretic properties. AIM OF THE STUDY This study aimed to determine the influence of chronic oral administration of the crude root extract and saponins obtained from S. sisymbriifolium Lam., on the blood pressure of male and female rats with hypertension induced by L-NAME, and its consequences on diuresis, the body weight, blood glucose, and level of serum parameters of liver and kidney functionality. MATERIALS AND METHODS Wistar rats were randomly divided into seven male, and seven female groups (8 animals each), which received as 6-week pretreatment, 0.9% saline solution (two groups; 0.1mL/10 g of b.w.), L-arginine (100.0 mg/kg/day), enalapril (15.0 mg/kg/day), crude extract (CESs 100.0 mg/kg/day), and saponin purified fraction (1.0, and 10.0 mg/kg/day), and treated with L-NAME (20 mg/kg/day/i.p.) twice, 1, and 6 h after pre-treatment. The animals' body weight, glycemia, and blood pressure were recorded weekly, while serum, hepatic, renal, and histological parameters were analyzed at the end of 6-week of treatment. RESULTS A protective effect of CESs (100.0 mg/kg/day), and saponins (1.0, and 10.0 mg/kg/day) against hypertension induced by L-NAME was verified in the systolic, diastolic, and mean blood pressure values, which were significantly lower than the positive L-NAME-hypertensive control group (male and female) at the end of the 6-week treatment. Also, pretreatment with enalapril (15.0 mg/kg/day) induced an efficient protective activity, which validates the method used. Likewise, the volume of urine, creatinine, uric acid, urea, and electrolyte excretion was enhanced at the end of 6-week of treatment in concordance with the reduction in serum level of the same parameters, compatible with the improvement of the diuretic activity. The glycemia, body weight, heart rate, and functional hepato-renal parameters were not modified after a 6-week of treatment, in comparison to the control group, indicating relatively acceptable harmless properties of CESs and saponins. Interestingly, the HDL level in females was increased in contrast to male rats by chronic saponins treatment when compared with the negative control group. CONCLUSIONS It can be concluded that either the increment in blood pressure (systolic, diastolic, and median) or cardiorenal remodeling effects in male and female rats submitted to L-NAME-induced hypertensive condition, were prevented and well-preserved without a significant variation during a period of 6-week of pretreatment with CESs and saponins pretreatments. Likewise, an important diuretic effect was revealed after this period of treatment.
Collapse
Affiliation(s)
- D A Ibarrola
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, Campus UNA, 2169, San Lorenzo, Paraguay.
| | - W Arrua
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, Campus UNA, 2169, San Lorenzo, Paraguay
| | - J E Gonzalez
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, Campus UNA, 2169, San Lorenzo, Paraguay
| | - M S Soverina Escobar
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, Campus UNA, 2169, San Lorenzo, Paraguay
| | - J Centurión
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, Campus UNA, 2169, San Lorenzo, Paraguay
| | - A M Campuzano Benitez
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, Campus UNA, 2169, San Lorenzo, Paraguay
| | - F M Ovando Soria
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, Campus UNA, 2169, San Lorenzo, Paraguay
| | - E I Rodas González
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, Campus UNA, 2169, San Lorenzo, Paraguay
| | - K G Arrúa
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, Campus UNA, 2169, San Lorenzo, Paraguay
| | - M B Acevedo Barrios
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, Campus UNA, 2169, San Lorenzo, Paraguay
| | - O Y Heinichen
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, Campus UNA, 2169, San Lorenzo, Paraguay
| | - Y Montalbetti
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, Campus UNA, 2169, San Lorenzo, Paraguay
| | - M A Campuzano-Bublitz
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, Campus UNA, 2169, San Lorenzo, Paraguay
| | - M L Kennedy
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, Campus UNA, 2169, San Lorenzo, Paraguay
| | - S J Figueredo Thiel
- Departamento de Patología, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, Campus UNA, 2169, San Lorenzo, Paraguay
| | - N L Alvarenga
- Departamento de Fitoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, Campus UNA, 2169, San Lorenzo, Paraguay
| | - M C Hellión-Ibarrola
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, Campus UNA, 2169, San Lorenzo, Paraguay
| |
Collapse
|
22
|
Safety evaluations of a synthetic antimicrobial peptide administered intravenously in rats and dogs. Sci Rep 2022; 12:19294. [PMID: 36369523 PMCID: PMC9652379 DOI: 10.1038/s41598-022-23841-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
Abstract
The antimicrobial peptide SET-M33 is under study for the development of a new antibiotic against major Gram-negative pathogens. Here we report the toxicological evaluation of SET-M33 administered intravenously to rats and dogs. Dose range finding experiments determined the doses to use in toxicokinetic evaluation, clinical biochemistry analysis, necroscopy and in neurological and respiratory measurements. Clinical laboratory investigations in dogs and rats showed a dose-related increase in creatinine and urea levels, indicating that the kidneys are the target organ. This was also confirmed by necroscopy studies of animal tissues, where signs of degeneration and regeneration were found in kidney when SET-M33 was administered at the highest doses in the two animal species. Neurological toxicity measurements by the Irwin method and respiratory function evaluation in rats did not reveal any toxic effect even at the highest dose. Finally, repeated administration of SET-M33 by short infusion in dogs revealed a no-observed-adverse-effect-level of 0.5 mg/kg/day.
Collapse
|
23
|
Preclinical Safety Evaluation of Intraperitoneally Administered Cu-Conjugated Anti-EGFR Antibody NCAB001 for the Early Diagnosis of Pancreatic Cancer Using PET. Pharmaceutics 2022; 14:pharmaceutics14091928. [PMID: 36145676 PMCID: PMC9504034 DOI: 10.3390/pharmaceutics14091928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Detecting tumor lesions <1 cm in size using current imaging methods remains a clinical challenge, especially in pancreatic cancer. Previously, we developed a method to identify pancreatic tumor lesions ≥3 mm using positron emission tomography (PET) with an intraperitoneally administered 64Cu-labeled anti-epidermal growth factor receptor (EGFR) antibody (64Cu-NCAB001 ipPET). Here, we conducted an extended single-dose toxicity study of 64Cu-NCAB001 ipPET in mice based on approach 1 of the current ICH M3 [R2] guideline, as our new drug formulation contains 45 μg of the antibody. We used NCAB001 labeled with stable copper isotope instead of 64Cu. The total content of size variants was approximately 6.0% throughout the study. The relative binding potency of Cu-NCAB001 to recombinant human EGFR was comparable to that of cetuximab. The general and neurological toxicities of Cu-NCAB001 ipPET at 62.5 or 625 μg/kg were assessed in mice. The no-observed-adverse-effect level of Cu-NCAB001 was 625 μg/kg, a dose approximately 1000-fold higher at the μg/kg level than the dose of 64Cu-NCAB001 in our formulation (45 µg). The size variants did not affect the safety of the formulation. Therefore, clinical studies on the efficacy of 64Cu-NCAB001 ipPET for early detection of pancreatic cancer using PET imaging can be safely conducted.
Collapse
|
24
|
Lapuente JP, Gómez G, Marco-Brualla J, Fernández P, Desportes P, Sanz J, García-Gil M, Bermejo F, San Martín JV, Algaba A, De Gregorio JC, Lapuente D, De Gregorio A, Lapuente B, Gómez S, Andrés MDLV, Anel A. Evaluation in a Cytokine Storm Model in Vivo of the Safety and Efficacy of Intravenous Administration of PRS CK STORM (Standardized Conditioned Medium Obtained by Coculture of Monocytes and Mesenchymal Stromal Cells). Biomedicines 2022; 10:biomedicines10051094. [PMID: 35625831 PMCID: PMC9138962 DOI: 10.3390/biomedicines10051094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022] Open
Abstract
Our research group has been developing a series of biological drugs produced by coculture techniques with M2-polarized macrophages with different primary tissue cells and/or mesenchymal stromal cells (MSC), generally from fat, to produce anti-inflammatory and anti-fibrotic effects, avoiding the overexpression of pro-inflammatory cytokines by the innate immune system at a given time. One of these products is the drug PRS CK STORM, a medium conditioned by allogenic M2-polarized macrophages, from coculture, with those macrophages M2 with MSC from fat, whose composition, in vitro safety, and efficacy we studied. In the present work, we publish the results obtained in terms of safety (pharmacodynamics and pharmacokinetics) and efficacy of the intravenous application of this biological drug in a murine model of cytokine storm associated with severe infectious processes, including those associated with COVID-19. The results demonstrate the safety and high efficacy of PRS CK STORM as an intravenous drug to prevent and treat the cytokine storm associated with infectious processes, including COVID-19.
Collapse
Affiliation(s)
- Juan Pedro Lapuente
- R4T Molecular and Cell Biology Research Laboratories, Fuenlabrada Hospital, 28942 Madrid, Spain; (G.G.); (P.F.); (J.C.D.G.); (D.L.); (A.D.G.); (B.L.); (S.G.); (M.d.l.V.A.)
- Correspondence: (J.P.L.); (A.A.)
| | - Gonzalo Gómez
- R4T Molecular and Cell Biology Research Laboratories, Fuenlabrada Hospital, 28942 Madrid, Spain; (G.G.); (P.F.); (J.C.D.G.); (D.L.); (A.D.G.); (B.L.); (S.G.); (M.d.l.V.A.)
| | - Joaquín Marco-Brualla
- Group Immunity, Cancer and Stem Cells, Faculty of Sciences, University of Zaragoza, 50009 Zaragoza, Spain;
| | - Pablo Fernández
- R4T Molecular and Cell Biology Research Laboratories, Fuenlabrada Hospital, 28942 Madrid, Spain; (G.G.); (P.F.); (J.C.D.G.); (D.L.); (A.D.G.); (B.L.); (S.G.); (M.d.l.V.A.)
| | - Paula Desportes
- GMP Facility, Peaches Biotech, 28050 Madrid, Spain; (P.D.); (J.S.)
| | - Jara Sanz
- GMP Facility, Peaches Biotech, 28050 Madrid, Spain; (P.D.); (J.S.)
| | | | - Fernando Bermejo
- Digestive Department, Fuenlabrada Hospital, 28942 Madrid, Spain;
- Medicine Department, University Rey Juan Carlos, 28942 Madrid, Spain
| | | | - Alicia Algaba
- Clinical Assay Department, Fuelabrada Hospital, 28942 Madrid, Spain;
| | - Juan Carlos De Gregorio
- R4T Molecular and Cell Biology Research Laboratories, Fuenlabrada Hospital, 28942 Madrid, Spain; (G.G.); (P.F.); (J.C.D.G.); (D.L.); (A.D.G.); (B.L.); (S.G.); (M.d.l.V.A.)
| | - Daniel Lapuente
- R4T Molecular and Cell Biology Research Laboratories, Fuenlabrada Hospital, 28942 Madrid, Spain; (G.G.); (P.F.); (J.C.D.G.); (D.L.); (A.D.G.); (B.L.); (S.G.); (M.d.l.V.A.)
| | - Almudena De Gregorio
- R4T Molecular and Cell Biology Research Laboratories, Fuenlabrada Hospital, 28942 Madrid, Spain; (G.G.); (P.F.); (J.C.D.G.); (D.L.); (A.D.G.); (B.L.); (S.G.); (M.d.l.V.A.)
| | - Belén Lapuente
- R4T Molecular and Cell Biology Research Laboratories, Fuenlabrada Hospital, 28942 Madrid, Spain; (G.G.); (P.F.); (J.C.D.G.); (D.L.); (A.D.G.); (B.L.); (S.G.); (M.d.l.V.A.)
| | - Sergio Gómez
- R4T Molecular and Cell Biology Research Laboratories, Fuenlabrada Hospital, 28942 Madrid, Spain; (G.G.); (P.F.); (J.C.D.G.); (D.L.); (A.D.G.); (B.L.); (S.G.); (M.d.l.V.A.)
| | - María de las Viñas Andrés
- R4T Molecular and Cell Biology Research Laboratories, Fuenlabrada Hospital, 28942 Madrid, Spain; (G.G.); (P.F.); (J.C.D.G.); (D.L.); (A.D.G.); (B.L.); (S.G.); (M.d.l.V.A.)
| | - Alberto Anel
- Group Immunity, Cancer and Stem Cells, Faculty of Sciences, University of Zaragoza, 50009 Zaragoza, Spain;
- Correspondence: (J.P.L.); (A.A.)
| |
Collapse
|
25
|
Abdul Majid FA, Fadhlina A, Ismail HF, Zainol SN, Mamillapalli AK, Venkatesan V, Eswarappa R, Pillai R. Mutagenicity and safety pharmacology of a standardized antidiabetic polyherbal formulation. Sci Rep 2022; 12:7127. [PMID: 35505003 PMCID: PMC9065066 DOI: 10.1038/s41598-022-11243-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/12/2022] [Indexed: 11/30/2022] Open
Abstract
Synacinn is a standardized polyherbal extract formulated for the treatment of diabetes mellitus and its complications. This study aims to assess the mutagenicity potential of Synacinn by Ames assay and in vivo bone marrow micronucleus (MN) test on Sprague Dawley rat. Human ether-a-go-go-related gene (hERG) assay and Functional Observation Battery (FOB) were done for the safety pharmacology tests. In the Ames assay, Dose Range Finding (DRF) study and mutagenicity assays (+/- S9) were carried out. For the MN test, a preliminary and definitive study were conducted. In-life observations and number of immature and mature erythrocytes in the bone marrow cells were recorded. The hERG assay was conducted to determine the inhibitory effect on hERG potassium channel current expressed in human embryonic kidney cells (HEK293). FOB tests were performed orally (250, 750, and 2000 mg/kg) on Sprague Dawley rats. Synacinn is non-mutagenic against all tested strains of Salmonella typhimurium and did not induce any clastogenicity in the rat bone marrow. Synacinn also did not produce any significant inhibition (p ≤ 0.05) on hERG potassium current. Synacinn did not cause any neurobehavioural changes in rats up to 2000 mg/kg. Thus, no mutagenicity, cardiotoxicity and neurotoxicity effects of Synacinn were observed in this study.
Collapse
Affiliation(s)
- Fadzilah Adibah Abdul Majid
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
| | - Anis Fadhlina
- Institute of Food Security and Sustainable Agriculture, Universiti Malaysia Kelantan, Jeli campus, 17600, Jeli, Kelantan, Malaysia
| | - Hassan Fahmi Ismail
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Siti Nurazwa Zainol
- Proliv Life Sciences Sdn Bhd, D-1-15, Residensi Bistaria, Jln Ulu Kelang, Taman Ukay Bistari, 68000, Ampang, Selangor, Malaysia
| | - Archan Kumar Mamillapalli
- Aurigene Pharmaceutical Services Limited, Bollaram Road, Miyapur, Hyderabad, Telangana, 500 049, India
| | - Vijayabalaji Venkatesan
- Aurigene Pharmaceutical Services Limited, Bollaram Road, Miyapur, Hyderabad, Telangana, 500 049, India
| | - Rajesh Eswarappa
- Aurigene Pharmaceutical Services Limited, Bollaram Road, Miyapur, Hyderabad, Telangana, 500 049, India
| | - Renuka Pillai
- Aurigene Pharmaceutical Services Limited, Bollaram Road, Miyapur, Hyderabad, Telangana, 500 049, India
| |
Collapse
|
26
|
Ratner MH, Farb DH. Probing the Neural Circuitry Targets of Neurotoxicants In Vivo Through High Density Silicon Probe Brain Implants. FRONTIERS IN TOXICOLOGY 2022; 4:836427. [PMID: 35548683 PMCID: PMC9081674 DOI: 10.3389/ftox.2022.836427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/22/2022] [Indexed: 12/24/2022] Open
Abstract
Adverse effects of drugs on the human nervous system are rarely possible to anticipate based on preclinical neurotoxicity data, thus propagating the centuries long single most important obstacle to drug discovery and development for disorders of the nervous system. An emerging body of evidence indicates that in vivo electrophysiology using chronically implanted high-density electrodes (ciHDE) in freely moving animals is a rigorous method with enhanced potential for use in translational research. In particular, the structure and function of the hippocampal trisynaptic circuit (HTC) is conserved from rodents to primates, including Homo sapiens, suggesting that the effects of therapeutic agents and other potential neurologically active agents, whether beneficial or adverse, are likely to translate across species when interrogated using a conserved neural circuitry platform. This review explores science advances in the rapidly moving field of in vivo ciHDE in animal models of learning and memory. For this reason we focus on the HTC, where substantial research has investigated neural circuitry level responses and specific behaviors that reflect memory permitting a test of the ground truth validity of the findings. Examples of changes in neural network activity induced by endogenous neurotoxicants associated with neurodegenerative diseases, as well as exogenous therapeutics, drugs, and neurotoxicants are presented. Several illustrative examples of relevant findings that involve longer range neural circuitry outside of the HTC are discussed. Lastly, the limitations of in vivo ciHDE as applied to preclinical neurotoxicology are discussed with a view toward leveraging circuitry level actions to enhance our ability to project the specificity of in vitro target engagement with the desired psychopharmacological or neurological outcome. At the same time, the goal of reducing or eliminating significant neurotoxic adverse events in human is the desired endpoint. We believe that this approach will lead to enhanced discovery of high value neuroactive therapeutics that target neural circuitry domains as their primary mechanism of action, thus enhancing their ultimate contribution toward discovery of precision therapeutics.
Collapse
Affiliation(s)
- Marcia H. Ratner
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- *Correspondence: Marcia H. Ratner,
| | - David H. Farb
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
| |
Collapse
|
27
|
Li M, Konteatis Z, Nagaraja N, Chen Y, Zhou S, Ma G, Gross S, Marjon K, Hyer ML, Mandley E, Lein M, Padyana AK, Jin L, Tong S, Peters R, Murtie J, Travins J, Medeiros M, Liu P, Frank V, Judd ET, Biller SA, Marks KM, Sui Z, Reznik SK. Leveraging Structure-Based Drug Design to Identify Next-Generation MAT2A Inhibitors, Including Brain-Penetrant and Peripherally Efficacious Leads. J Med Chem 2022; 65:4600-4615. [PMID: 35293760 DOI: 10.1021/acs.jmedchem.1c01595] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inhibition of the S-adenosyl methionine (SAM)-producing metabolic enzyme, methionine adenosyltransferase 2A (MAT2A), has received significant interest in the field of medicinal chemistry due to its implication as a synthetic lethal target in cancers with the deletion of the methylthioadenosine phosphorylase (MTAP) gene. Here, we report the identification of novel MAT2A inhibitors with distinct in vivo properties that may enhance their utility in treating patients. Following a high-throughput screening, we successfully applied the structure-based design lessons from our first-in-class MAT2A inhibitor, AG-270, to rapidly redesign and optimize our initial hit into two new lead compounds: a brain-penetrant compound, AGI-41998, and a potent, but limited brain-penetrant compound, AGI-43192. We hope that the identification and first disclosure of brain-penetrant MAT2A inhibitors will create new opportunities to explore the potential therapeutic effects of SAM modulation in the central nervous system (CNS).
Collapse
Affiliation(s)
- Mingzong Li
- Agios Pharmaceuticals, Inc., 88 Sidney Street, Cambridge, Massachusetts 02139, United States
| | - Zenon Konteatis
- Agios Pharmaceuticals, Inc., 88 Sidney Street, Cambridge, Massachusetts 02139, United States
| | - Nelamangala Nagaraja
- Agios Pharmaceuticals, Inc., 88 Sidney Street, Cambridge, Massachusetts 02139, United States
| | - Yue Chen
- Agios Pharmaceuticals, Inc., 88 Sidney Street, Cambridge, Massachusetts 02139, United States
| | - Shubao Zhou
- PharmaResources Co., Ltd., 509 Renqing Road, Pudong New Area, Shanghai 201201, China
| | - Guangning Ma
- PharmaResources Co., Ltd., 509 Renqing Road, Pudong New Area, Shanghai 201201, China
| | - Stefan Gross
- Agios Pharmaceuticals, Inc., 88 Sidney Street, Cambridge, Massachusetts 02139, United States
| | - Katya Marjon
- Agios Pharmaceuticals, Inc., 88 Sidney Street, Cambridge, Massachusetts 02139, United States
| | - Marc L Hyer
- Agios Pharmaceuticals, Inc., 88 Sidney Street, Cambridge, Massachusetts 02139, United States
| | - Everton Mandley
- Agios Pharmaceuticals, Inc., 88 Sidney Street, Cambridge, Massachusetts 02139, United States
| | - Max Lein
- Agios Pharmaceuticals, Inc., 88 Sidney Street, Cambridge, Massachusetts 02139, United States
| | - Anil K Padyana
- Agios Pharmaceuticals, Inc., 88 Sidney Street, Cambridge, Massachusetts 02139, United States
| | - Lei Jin
- Agios Pharmaceuticals, Inc., 88 Sidney Street, Cambridge, Massachusetts 02139, United States
| | - Shuilong Tong
- Viva Biotech, Ltd., 334 Aidisheng Road, Zhangjiang High-Tech Park, Shanghai 201203, China
| | - Rachel Peters
- Agios Pharmaceuticals, Inc., 88 Sidney Street, Cambridge, Massachusetts 02139, United States
| | - Joshua Murtie
- Agios Pharmaceuticals, Inc., 88 Sidney Street, Cambridge, Massachusetts 02139, United States
| | - Jeremy Travins
- Agios Pharmaceuticals, Inc., 88 Sidney Street, Cambridge, Massachusetts 02139, United States
| | - Matthew Medeiros
- Agios Pharmaceuticals, Inc., 88 Sidney Street, Cambridge, Massachusetts 02139, United States
| | - Peng Liu
- Agios Pharmaceuticals, Inc., 88 Sidney Street, Cambridge, Massachusetts 02139, United States
| | - Victoria Frank
- Agios Pharmaceuticals, Inc., 88 Sidney Street, Cambridge, Massachusetts 02139, United States
| | - Evan T Judd
- Agios Pharmaceuticals, Inc., 88 Sidney Street, Cambridge, Massachusetts 02139, United States
| | - Scott A Biller
- Agios Pharmaceuticals, Inc., 88 Sidney Street, Cambridge, Massachusetts 02139, United States
| | - Kevin M Marks
- Agios Pharmaceuticals, Inc., 88 Sidney Street, Cambridge, Massachusetts 02139, United States
| | - Zhihua Sui
- Agios Pharmaceuticals, Inc., 88 Sidney Street, Cambridge, Massachusetts 02139, United States
| | - Samuel K Reznik
- Agios Pharmaceuticals, Inc., 88 Sidney Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
28
|
Dai X, Zhao W, Tong X, Liu W, Zeng X, Duan X, Wu H, Wang L, Huang Z, Tang X, Yang Y. Non-clinical immunogenicity, biodistribution and toxicology evaluation of a chimpanzee adenovirus-based COVID-19 vaccine in rat and rhesus macaque. Arch Toxicol 2022; 96:1437-1453. [PMID: 35226134 PMCID: PMC8883008 DOI: 10.1007/s00204-021-03221-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/23/2021] [Indexed: 01/05/2023]
Abstract
Coronavirus Disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in 2019 has rapidly expanded into a serious global pandemic. Due to the high morbidity and mortality of COVID-19, there is an urgent need to develop safe and effective vaccines. AdC68-19S is an investigational chimpanzee adenovirus serotype 68 (AdC68) vector-based vaccine which encodes the full-length spike protein of SARS-CoV-2. Here, we evaluated the immunogenicity, biodistribution and safety profiles of the candidate vaccine AdC68-19S in Sprague Dawley (SD) rat and rhesus macaque under GLP conditions. To characterize the biodistribution profile of AdC68-19S, SD rats were given a single intramuscular injection of AdC68-19S 2 × 1011 VP/dose. Designated organs were collected on day 1, day 2, day 4, day 8 and day 15. Genomic DNA was extracted from all samples and was further quantified by real-time quantitative polymerase chain reaction (qPCR). To characterize the toxicology and immunogenicity profiles of AdC68-19S, the rats and rhesus macaques were injected intramuscularly with AdC68-19S up to 2 × 1011vp/dose or 4 × 1011vp/dose (2 and fourfold the proposed clinical dose of 1 × 1011vp/dose) on two or three occasions with a 14-day interval period, respectively. In addition to the conventional toxicological evaluation indexes, the antigen-specific cellular and humoral responses were evaluated. We proved that multiple intramuscular injections could elicit effective and long-lasting neutralizing antibody responses and Th1 T cell responses. AdC68-19S was mainly distributed in injection sites and no AdC68-19S related toxicological reaction was observed. In conclusion, these results have shown that AdC68-19S could induce an effective immune response with a good safety profile, and is a promising candidate vaccine against COVID-19.
Collapse
Affiliation(s)
- Xuedong Dai
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, 211198, People's Republic of China
| | - Weijun Zhao
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, 211198, People's Republic of China
| | - Xin Tong
- Yunnan Walvax Biotech, Co. LTD, Kunming, People's Republic of China
| | - Wei Liu
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, 211198, People's Republic of China
| | - Xianhuan Zeng
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, 211198, People's Republic of China
| | - Xiaohui Duan
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, 211198, People's Republic of China
| | - Hua Wu
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, 211198, People's Republic of China
| | - Lili Wang
- Yunnan Walvax Biotech, Co. LTD, Kunming, People's Republic of China
| | - Zhen Huang
- Yunnan Walvax Biotech, Co. LTD, Kunming, People's Republic of China.
| | - Xinying Tang
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, 211198, People's Republic of China.
| | - Yong Yang
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, 211198, People's Republic of China.
| |
Collapse
|
29
|
Affiliation(s)
| | - Jennifer D Cohen
- Jennifer D. Cohen, Drug Safety Research & Evaluation, Takeda Development Center Americas, Inc., 9625 Towne Centre Drive, San Diego, CA 92121-1964, USA. E-mail:
| | | | - Lauren Lewis
- Drug Safety Research & Evaluation, Takeda Development Center Americas, Inc., Cambridge, Massachusetts 02139, USA
| | - Lei Shen
- Data Science Institute, Takeda Development Center Americas, Inc., Cambridge, Massachusetts 02139, USA
| |
Collapse
|
30
|
Any behavioral change may have physiological significance: Benign neglect in tier I neurotoxicity testing. CURRENT OPINION IN TOXICOLOGY 2021. [DOI: 10.1016/j.cotox.2021.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Daniyan MO, Adeyipo TF, Oyemitan IA, Okwuese PB, Ekundina VO, Akanmu MA. In vivo and in silico studies of Dennettia tripetala essential oil reveal the potential harmful effects of habitual consumption of the plant seed. Toxicol Rep 2021; 8:1488-1497. [PMID: 34401359 PMCID: PMC8353414 DOI: 10.1016/j.toxrep.2021.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/20/2021] [Accepted: 07/30/2021] [Indexed: 11/09/2022] Open
Abstract
Dennettia tripetala G. Baker (Annonaceae), is a plant with nutritional, social economy, and medicinal values. Its rising medicinal profile makes this plant a prospect in drug discovery. However, the reported strong addictive potential among habitual consumers makes the need to establish its safety imperative. In this report, we evaluated the safety profile of the essential oil of the seed of D. tripetala (EODS) in nulliparous female Wistar rats using in vivo single and repeated dose toxicity profiling, as well as in silico toxicity profiling of its known seed oil derived phytoconstituents. Our results showed consistent significant dose-dependent alterations in relative body weights, organ-body and organ-brain weight ratios, haematological and biochemical indices, as well as liver and kidney histoarchitectures, following single and repeated oral administrations. Significant alterations in liver and kidney histoarchitectures were consistent with the observed significant increase in AST/ALT ratio, suggesting deleterious effects of EODS on the kidney and liver. However, the lack of alterations in the histoarchitectures of the hippocampus and hypothalamus suggests that the brain may not have been adversely affected. Also, the in silico analysis suggests that hepatotoxic effects of EODS may be linked to Benzylnitrile, Humulene, Linalool, (Z)-ß-Ocimene. In addition, the failure of ß-Phenylnitroethane, the most abundant phytoconstituent of EODS, to pass phases I and II in silico toxicity screening, and the presence of Caryophyllene oxide, a known toxic compound, coupled with the predicted binding of both to DNA and protein, low LD50 and high percent mortality at 250 mg/kg of repeated doses, further confirmed the potentially toxic nature of EODS. We concluded that based on our in vivo and in silico observations, there is an urgent need for public education to regulate the excessive consumption of the seeds of D. tripetala.
Collapse
Key Words
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- Biochemical
- Dennettia tripetala
- FOB, functional observatory batteries
- HCT, hematocrit
- Haematology
- Hb, hemoglobin concentration
- Histopathology
- In silico
- MCH, mean corpuscular hemoglobin
- MCHC, mean corpuscular hemoglobin concentration
- MCV, mean corpuscular volume
- MPV, mean platelet volume
- OECD, Organization for Economic Co-operation and Development
- PCT, plateletcrit
- PDW, platelet distribution width
- PLT, platelets
- RBC, red blood count
- RDW-CV and RDW-SD, red blood cell distribution width variation coefficient and standard deviation respectively
- TG, test guidelines
- Toxicity
- WBC, white blood count
Collapse
Affiliation(s)
| | - Temilade Feyi Adeyipo
- Department of Pharmacology, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Idris Ajayi Oyemitan
- Department of Pharmacology, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | | | - Victor Olukayode Ekundina
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Moses Atanda Akanmu
- Department of Pharmacology, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| |
Collapse
|
32
|
Kalafateli AL, Vestlund J, Raun K, Egecioglu E, Jerlhag E. Effects of a selective long-acting amylin receptor agonist on alcohol consumption, food intake and body weight in male and female rats. Addict Biol 2021; 26:e12910. [PMID: 32383257 DOI: 10.1111/adb.12910] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 04/02/2020] [Accepted: 04/08/2020] [Indexed: 12/15/2022]
Abstract
Alcohol use disorder is a complex neuropsychiatric disorder affecting both males and females worldwide; however, the efficacy of current pharmacotherapies varies. Recent advances show that gut-brain peptides, like amylin, regulate alcohol behavioural responses by acting on brain areas involved in alcohol reward processes. Thus, the activation of amylin receptors (AMYRs) by salmon calcitonin (sCT) decreases alcohol behaviours in male rodents. Given that sCT also activates the sole calcitonin receptor (CTR), studies of more selective AMYR agonists in both male and female rodents are needed to explore amylinergic modulation of alcohol behaviours. Therefore, we investigated the effects of repeated administration of a selective long-acting AMYR agonist, NNC0174-1213 (AM1213), on alcohol, water and food intake, as well as body weight in male and female rats chronically exposed to alcohol. We confirm our previous studies with sCT in male rats, as repeated AM1213 administration for 2 weeks initially decreased alcohol intake in both male and female rats. However, this reduction ceases in both sexes on later sessions, accompanied by an increase in males. AM1213 reduced food intake and body weight in both male and female rats, with sustained body weight loss in males after discontinuation of the treatment. Moreover, AM1213 administration for 3 or 7 days, differentially altered dopamine, serotonin and their metabolites in the reward-related areas in males and females, providing tentative, but different, downstream mechanism through which selective activation of AMYR may alter alcohol intake. Our data provide clarified insight into the importance of AMYRs for alcohol intake regulation in both sexes.
Collapse
Affiliation(s)
- Aimilia Lydia Kalafateli
- Department of Pharmacology, Institute of Neuroscience and Physiology The Sahlgrenska Academy at the University of Gothenburg Gothenburg Sweden
| | - Jesper Vestlund
- Department of Pharmacology, Institute of Neuroscience and Physiology The Sahlgrenska Academy at the University of Gothenburg Gothenburg Sweden
| | | | | | - Elisabet Jerlhag
- Department of Pharmacology, Institute of Neuroscience and Physiology The Sahlgrenska Academy at the University of Gothenburg Gothenburg Sweden
| |
Collapse
|
33
|
Chaccour C, Abizanda G, Irigoyen-Barrio Á, Casellas A, Aldaz A, Martínez-Galán F, Hammann F, Gil AG. Nebulized ivermectin for COVID-19 and other respiratory diseases, a proof of concept, dose-ranging study in rats. Sci Rep 2020; 10:17073. [PMID: 33051517 PMCID: PMC7555481 DOI: 10.1038/s41598-020-74084-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022] Open
Abstract
Ivermectin is a widely used antiparasitic drug with known efficacy against several single-strain RNA viruses. Recent data shows significant reduction of SARS-CoV-2 replication in vitro by ivermectin concentrations not achievable with safe doses orally. Inhaled therapy has been used with success for other antiparasitics. An ethanol-based ivermectin formulation was administered once to 14 rats using a nebulizer capable of delivering particles with alveolar deposition. Rats were randomly assigned into three target dosing groups, lower dose (80-90 mg/kg), higher dose (110-140 mg/kg) or ethanol vehicle only. A toxicology profile including behavioral and weight monitoring, full blood count, biochemistry, necropsy and histological examination of the lungs was conducted. The pharmacokinetic profile of ivermectin in plasma and lungs was determined in all animals. There were no relevant changes in behavior or body weight. There was a delayed elevation in muscle enzymes compatible with rhabdomyolysis, that was also seen in the control group and has been attributed to the ethanol dose which was up to 11 g/kg in some animals. There were no histological anomalies in the lungs of any rat. Male animals received a higher ivermectin dose adjusted by adipose weight and reached higher plasma concentrations than females in the same dosing group (mean Cmax 86.2 ng/ml vs. 26.2 ng/ml in the lower dose group and 152 ng/ml vs. 51.8 ng/ml in the higher dose group). All subjects had detectable ivermectin concentrations in the lungs at seven days post intervention, up to 524.3 ng/g for high-dose male and 27.3 ng/g for low-dose females. nebulized ivermectin can reach pharmacodynamic concentrations in the lung tissue of rats, additional experiments are required to assess the safety of this formulation in larger animals.
Collapse
Affiliation(s)
- Carlos Chaccour
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Rosello 132, 5ª 2ª, 08036, Barcelona, Spain.
- Ifakara Health Institute, 67501, Ifakara, United Republic of Tanzania.
- Facultad de Medicina, Universidad de Navarra, 31008, Pamplona, Spain.
| | - Gloria Abizanda
- Centro de Investigación Médica Aplicada, 31008, Pamplona, Spain
- Clínica Universidad de Navarra, 31008, Pamplona, Spain
| | - Ángel Irigoyen-Barrio
- Facultad de Farmacia y Nutrición, Universidad de Navarra, 31008, Pamplona, Spain
- Drug Development Unit Universidad de Navarra, 31008, Pamplona, Spain
| | - Aina Casellas
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Rosello 132, 5ª 2ª, 08036, Barcelona, Spain
- Departament de Fonaments Clínics, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Azucena Aldaz
- Clínica Universidad de Navarra, 31008, Pamplona, Spain
- Facultad de Farmacia y Nutrición, Universidad de Navarra, 31008, Pamplona, Spain
| | | | - Felix Hammann
- Department of General Internal Medicine, Clinical Pharmacology and Toxicology, Inselspital, Bern, University Hospital, 3010, Bern, Switzerland
| | - Ana Gloria Gil
- Facultad de Farmacia y Nutrición, Universidad de Navarra, 31008, Pamplona, Spain
- Drug Development Unit Universidad de Navarra, 31008, Pamplona, Spain
| |
Collapse
|
34
|
Aslamkhan AG, Xu Q, Loughlin A, Vu H, Pacchione S, Bhatt B, Garfinkel I, Styring TG, LaFranco-Scheuch L, Pearson K, Reynolds S, Li N, Zhou H, Miller JR, Solban N, Bass A, Glaab WE. Characterization of indoleamine-2,3-dioxygenase 1, tryptophan-2,3-dioxygenase, and Ido1/Tdo2 knockout mice. Toxicol Appl Pharmacol 2020; 406:115216. [PMID: 32871117 DOI: 10.1016/j.taap.2020.115216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/27/2020] [Accepted: 08/26/2020] [Indexed: 12/22/2022]
Abstract
Indoleamine-2,3-dioxygenase 1 (IDO1) and tryptophan-2,3-dioxygenase 2 (TDO2) degrade tryptophan (Trp) to kynurenine (Kyn), and these enzymes have promise as therapeutic targets. A comprehensive characterization of potential safety liabilities of IDO1 and TDO2 inhibitors using knockout (KO) mice has not been assessed, nor has the dual Ido1/Tdo2 KO been reported. Here we characterized male and female mice with KOs for Ido1, Tdo2, and Ido1/Tdo2 and compared findings to the wild type (WT) mouse strain, evaluated for 14 days, using metabolomics, transcriptional profiling, behavioral analysis, spleen immunophenotyping, comprehensive histopathological analysis, and serum clinical chemistry. Multiple metabolomic changes were seen in KO mice. For catabolism of Trp to Kyn and anthranilic acid, both substrates were decreased in liver of Tdo2 and dual KO mice. Metabolism of Trp to serotonin and its metabolites resulted in an increase in 5-Hydroxyindole-3-acetic acid in the Tdo2 and dual KO mice. Ido1 and dual KO mice displayed a Kyn reduction in plasma but not in liver. Nicotinamide synthesis and conversion of glucose to lactic acid were not impacted. A slight decrease in serum alkaline phosphatase was seen in all KOs, and small changes in liver gene expression of genes unrelated to tryptophan metabolism were observed. Regarding other parameters, no genotype-specific changes were observed. In summary, this work shows metabolomic pathway changes for metabolites downstream of tryptophan in these KO mice, and suggests that inhibition of the IDO1 and TDO2 enzymes would be well tolerated whether inhibited individually or in combination since no safety liabilities were uncovered.
Collapse
Affiliation(s)
- Amy G Aslamkhan
- Safety Assessment & Laboratory Animal Resources, Merck & Co, Inc., West Point, PA, USA; 770 Sumneytown Pike, WP45-313; West Point, PA 19486, USA.
| | - Qiuwei Xu
- Safety Assessment & Laboratory Animal Resources, Merck & Co, Inc., West Point, PA, USA
| | - Amy Loughlin
- Safety Assessment & Laboratory Animal Resources, Merck & Co, Inc., West Point, PA, USA
| | - Heather Vu
- Safety Assessment & Laboratory Animal Resources, Merck & Co, Inc., West Point, PA, USA
| | - Stephen Pacchione
- Safety Assessment & Laboratory Animal Resources, Merck & Co, Inc., West Point, PA, USA
| | - Bhavana Bhatt
- Safety Assessment & Laboratory Animal Resources, Merck & Co, Inc., West Point, PA, USA
| | - Ivy Garfinkel
- Safety Assessment & Laboratory Animal Resources, Merck & Co, Inc., West Point, PA, USA
| | - Tara Grady Styring
- Safety Assessment & Laboratory Animal Resources, Merck & Co, Inc., West Point, PA, USA
| | - Lisa LaFranco-Scheuch
- Safety Assessment & Laboratory Animal Resources, Merck & Co, Inc., West Point, PA, USA
| | - Kara Pearson
- Safety Assessment & Laboratory Animal Resources, Merck & Co, Inc., West Point, PA, USA
| | - Spencer Reynolds
- Safety Assessment & Laboratory Animal Resources, Merck & Co, Inc., West Point, PA, USA
| | - Nianyu Li
- Safety Assessment & Laboratory Animal Resources, Merck & Co, Inc., West Point, PA, USA
| | - Heather Zhou
- Genetics and Pharmacogenomics, Merck & Co, Inc., Kenilworth, NJ, USA
| | | | - Nicolas Solban
- Quantitative Biosciences, Merck & Co, Inc., Boston, MA, USA
| | - Alan Bass
- Safety Assessment & Laboratory Animal Resources, Merck & Co, Inc., West Point, PA, USA
| | - Warren E Glaab
- Safety Assessment & Laboratory Animal Resources, Merck & Co, Inc., West Point, PA, USA
| |
Collapse
|
35
|
Wang LG, Barth CW, Kitts CH, Mebrat MD, Montaño AR, House BJ, McCoy ME, Antaris AL, Galvis SN, McDowall I, Sorger JM, Gibbs SL. Near-infrared nerve-binding fluorophores for buried nerve tissue imaging. Sci Transl Med 2020; 12:12/542/eaay0712. [DOI: 10.1126/scitranslmed.aay0712] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 09/24/2019] [Accepted: 03/17/2020] [Indexed: 01/06/2023]
Abstract
Nerve-binding fluorophores with near-infrared (NIR; 650 to 900 nm) emission could reduce iatrogenic nerve injury rates by providing surgeons precise, real-time visualization of the peripheral nervous system. Unfortunately, current systemically administered nerve contrast agents predominantly emit at visible wavelengths and show nonspecific uptake in surrounding tissues such as adipose, muscle, and facia, thus limiting detection to surgically exposed surface-level nerves. Here, a focused NIR fluorophore library was synthesized and screened through multi-tiered optical and pharmacological assays to identify nerve-binding fluorophore candidates for clinical translation. NIR nerve probes enabled micrometer-scale nerve visualization at the greatest reported tissue depths (~2 to 3 mm), a feat unachievable with previous visibly emissive contrast agents. Laparoscopic fluorescent surgical navigation delineated deep lumbar and iliac nerves in swine, most of which were invisible in conventional white-light endoscopy. Critically, NIR oxazines generated contrast against all key surgical tissue classes (muscle, adipose, vasculature, and fascia) with nerve signal-to-background ratios ranging from ~2 (2- to 3-mm depth) to 25 (exposed nerve). Clinical translation of NIR nerve-specific agents will substantially reduce comorbidities associated with surgical nerve damage.
Collapse
Affiliation(s)
- Lei G. Wang
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201, USA
| | - Connor W. Barth
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201, USA
| | - Catherine H. Kitts
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201, USA
| | - Mubark D. Mebrat
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201, USA
| | - Antonio R. Montaño
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201, USA
| | - Broderick J. House
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201, USA
| | - Meaghan E. McCoy
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201, USA
| | | | | | | | | | - Summer L. Gibbs
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
- Center for Spatial Systems Biomedicine, Oregon Health & Science University, Portland, OR 97201, USA
| |
Collapse
|
36
|
Wilcox KS, West PJ, Metcalf CS. The current approach of the Epilepsy Therapy Screening Program contract site for identifying improved therapies for the treatment of pharmacoresistant seizures in epilepsy. Neuropharmacology 2020; 166:107811. [PMID: 31790717 PMCID: PMC7054975 DOI: 10.1016/j.neuropharm.2019.107811] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/05/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022]
Abstract
The Epilepsy Therapy Screening Program (ETSP), formerly known as the Anticonvulsant Screening Program (ASP), has played an important role in the preclinical evaluation of many of the antiseizure drugs (ASDs) that have been approved by the FDA and thus made available for the treatment of seizures. Recent changes to the animal models used at the contract site of the ETSP at the University of Utah have been implemented in an attempt to better model the unmet clinical needs of people with pharmacoresistant epilepsy and thus identify improved therapies. In this review, we describe the changes that have occurred over the last several years in the screening approach used at the contract site and, in particular, detail the pharmacology associated with several of the animal models and assays that are either new to the program or have been recently characterized in more depth. There is optimism that the refined approach used by the ETSP contract site, wherein etiologically relevant models that include those with spontaneous seizures are used, will identify novel, potentially disease modifying therapies for people with pharmacoresistant epilepsy and those at risk for developing epilepsy. This article is part of the special issue entitled 'New Epilepsy Therapies for the 21st Century - From Antiseizure Drugs to Prevention, Modification and Cure of Epilepsy'.
Collapse
Affiliation(s)
- Karen S Wilcox
- Anticonvulsant Drug Development (ADD) Program, Department of Pharmacology & Toxicology, University of Utah, USA.
| | - Peter J West
- Anticonvulsant Drug Development (ADD) Program, Department of Pharmacology & Toxicology, University of Utah, USA.
| | - Cameron S Metcalf
- Anticonvulsant Drug Development (ADD) Program, Department of Pharmacology & Toxicology, University of Utah, USA.
| |
Collapse
|
37
|
Lemberg KM, Zhao L, Wu Y, Veeravalli V, Alt J, Aguilar JMH, Dash RP, Lam J, Tenora L, Rodriguez C, Nedelcovych MT, Brayton C, Majer P, Blakeley JO, Rais R, Slusher BS. The Novel Glutamine Antagonist Prodrug JHU395 Has Antitumor Activity in Malignant Peripheral Nerve Sheath Tumor. Mol Cancer Ther 2020; 19:397-408. [PMID: 31594823 PMCID: PMC7007868 DOI: 10.1158/1535-7163.mct-19-0319] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/20/2019] [Accepted: 10/04/2019] [Indexed: 12/27/2022]
Abstract
The carbon and nitrogen components of glutamine are used for multiple biosynthetic processes by tumors. Glutamine metabolism and the therapeutic potential of glutamine antagonists (GA), however, are incompletely understood in malignant peripheral nerve sheath tumor (MPNST), an aggressive soft tissue sarcoma observed in patients with neurofibromatosis type I. We investigated glutamine dependence of MPNST using JHU395, a novel orally bioavailable GA prodrug designed to circulate inert in plasma, but permeate and release active GA within target tissues. Human MPNST cells, compared with Schwann cells derived from healthy peripheral nerve, were selectively susceptible to both glutamine deprivation and GA dose-dependent growth inhibition. In vivo, orally administered JHU395 delivered active GA to tumors with over 2-fold higher tumor-to-plasma exposure, and significantly inhibited tumor growth in a murine flank MPNST model without observed toxicity. Global metabolomics studies and stable isotope-labeled flux analyses in tumors identified multiple glutamine-dependent metabolites affected, including prominent effects on purine synthesis. These data demonstrate that glutamine antagonism is a potential antitumor strategy for MPNST.
Collapse
Affiliation(s)
- Kathryn M Lemberg
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Liang Zhao
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Ying Wu
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Vijayabhaskar Veeravalli
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Jesse Alt
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, Maryland
| | | | - Ranjeet P Dash
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Jenny Lam
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Lukáš Tenora
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Chabely Rodriguez
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Michael T Nedelcovych
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Cory Brayton
- Departments of Psychiatry, Neuroscience, Medicine and Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Pavel Majer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Jaishri O Blakeley
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Rana Rais
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Barbara S Slusher
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland.
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
38
|
Zaccarelli-Magalhães J, Fukushima AR, Moreira N, Manes M, de Abreu GR, Ricci EL, Waziry PAF, Spinosa HDS. Preclinical toxicological study of prolonged exposure to ketamine as an antidepressant. Pharmacol Rep 2019; 72:24-35. [PMID: 32016837 DOI: 10.1007/s43440-019-00014-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/07/2019] [Accepted: 09/26/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Depression is one of the most common mentally debilitating diseases in the world. Ketamine has been recently identified as a potential novel antidepressant. Further animal model evaluations of the use of ketamine as an antidepressant are necessary to determine safety parameters for clinical use. Therefore, the objective of this study was to perform toxicological tests of prolonged treatment using three different doses of ketamine in adult male rats. METHODS The animals were divided into four groups: three treated with 5, 10 or 20 mg/kg of ketamine and a control group treated with saline solution. Intraperitoneal route of treatment was administered daily for 3 weeks. Body weight, water and food intake were measured once a week, as well as evaluation of the functional observational battery, which includes methodic monitoring of motor activity, motor coordination, behavioral changes, and sensory/motor reflex responses. Upon completion of treatment period, all animals were euthanized by decapitation followed by immediate collection of samples, which included brain structures and blood for neurochemical, hematological and biochemical analyses. RESULTS Rats treated with the highest tested dosage (20 mg/kg) of ketamine had lower weight gain in the 1st and 2nd weeks of treatment and all experimental groups had measurable alterations in the serotoninergic system. CONCLUSIONS Our data indicate that the alterations observed are minor and due to a predicted mechanism of action, which implies that ketamine is a promising drug for repurposing as an antidepressant.
Collapse
Affiliation(s)
- Julia Zaccarelli-Magalhães
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, São Paulo, 05508-270, Brazil.
| | - André Rinaldi Fukushima
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, São Paulo, 05508-270, Brazil
| | - Natalia Moreira
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, São Paulo, 05508-270, Brazil
| | - Marianna Manes
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, São Paulo, 05508-270, Brazil
| | - Gabriel Ramos de Abreu
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, São Paulo, 05508-270, Brazil
| | - Esther Lopes Ricci
- Health Science Institute, Presbiterian Mackenzie University, Rua Da Consolação, 930, São Paulo, 01302-907, Brazil
- School of Health Science IGESP, Rua da Consolação, 1025, São Paulo, 01301-000, Brazil
| | - Paula A Faria Waziry
- Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, 3200 S. University Drive, Fort Lauderdale, FL, 33328, USA
| | - Helenice de Souza Spinosa
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, São Paulo, 05508-270, Brazil
| |
Collapse
|
39
|
Redfern WS, Dymond A, Strang I, Storey S, Grant C, Marks L, Barnard C, Heys C, Moyser K, Greenwood K, Cobey D, Moore N, Karp NA, Prior H. The functional observational battery and modified Irwin test as global neurobehavioral assessments in the rat: Pharmacological validation data and a comparison of methods. J Pharmacol Toxicol Methods 2019; 98:106591. [DOI: 10.1016/j.vascn.2019.106591] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/07/2019] [Accepted: 05/25/2019] [Indexed: 12/15/2022]
|
40
|
Olayode OA, Daniyan MO, Olayiwola G. Biochemical, hematological and histopathological evaluation of the toxicity potential of the leaf extract of Stachytarpheta cayennensis in rats. J Tradit Complement Med 2019; 10:544-554. [PMID: 33134130 PMCID: PMC7588336 DOI: 10.1016/j.jtcme.2019.05.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/18/2019] [Accepted: 05/13/2019] [Indexed: 12/21/2022] Open
Abstract
Background and Aim The many pharmacological potentials of Stachytarpheta cayennensis (L.C. Rich) Vahl, especially in managing central nervous system disorders, hypertension, diabetes and infections, have made it a subject of abuse, necessitating the need to ascertain its safety. This study therefore investigated the toxic effects of the leaf extract of S. cayennensis in rats following acute and 28-day repeated doses in male and female rats. Experimental procedure Acute and repeated dose studies were conducted in male and female groups of rats (135–150 g), using OECD 423 and 407 Tests guidelines respectively. Functional observational battery, and body weights were monitored. Blood samples were analysed for haematological and plasma biochemical indices. Organs (brain, kidneys and liver) specimen were collected and weighed. Kidney and liver specimen were subjected to histopathological analysis. Results and conclusion The LD50 of the extract was greater than 5000 mg/kg, p.o. (24 h) suggesting that the extract may be non-toxic. However, following single and repeated doses, the results revealed varying degree of significant (p < 0.05) changes in biochemical and heamatological indices, as well as in relative body weight and organ-body and organ-brain weight ratios. Also, histological assessment revealed evidence of liver and kidney toxicities and recovery was incomplete, as signs of toxicities were still evident after 21 days of recovery. Therefore, the extract is potentially harmful to vital organs with evidence of sex differential adverse effects and non-reversible forms of toxicity, especially with repeated usage, necessitating the need to avoid indiscriminate use. The leaf extract of Stachytarpheta cayennensis induced significant changes in rats weights. The extract caused varying significant changes in biochemical and hematological indices. Significant alteration in histoarchitecture of liver and kidney were observed. The observed toxic effects were persistent following period of recovery. The toxic effects are mostly sex dependent.
Collapse
Affiliation(s)
- Oladotun A Olayode
- Department of Pharmacology, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| | - Michael Oluwatoyin Daniyan
- Department of Pharmacology, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| | - Gbola Olayiwola
- Department of Clinical Pharmacy and Pharmacy Administration, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| |
Collapse
|
41
|
FOB vs modified Irwin: What are we doing? J Pharmacol Toxicol Methods 2019; 97:24-28. [DOI: 10.1016/j.vascn.2019.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/10/2019] [Accepted: 02/25/2019] [Indexed: 11/23/2022]
|