1
|
Prakash O, Lindh L, Gupta AK, Hoang Hai YT, Kaul N, Chábera P, Lindgren F, Ericsson T, Häggström L, Strand D, Yartsev A, Lomoth R, Persson P, Wärnmark K. Tailoring the Photophysical Properties of a Homoleptic Iron(II) Tetra N-Heterocyclic Carbene Complex by Attaching an Imidazolium Group to the (C ∧N ∧C) Pincer Ligand─A Comparative Study. Inorg Chem 2024; 63:2909-2918. [PMID: 38301278 PMCID: PMC10865346 DOI: 10.1021/acs.inorgchem.3c02890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 02/03/2024]
Abstract
We here report the synthesis of the homoleptic iron(II) N-heterocyclic carbene (NHC) complex [Fe(miHpbmi)2](PF6)4 (miHpbmi = 4-((3-methyl-1H-imidazolium-1-yl)pyridine-2,6-diyl)bis(3-methylimidazol-2-ylidene)) and its electrochemical and photophysical properties. The introduction of the π-electron-withdrawing 3-methyl-1H-imidazol-3-ium-1-yl group into the NHC ligand framework resulted in stabilization of the metal-to-ligand charge transfer (MLCT) state and destabilization of the metal-centered (MC) states. This resulted in an improved excited-state lifetime of 16 ps compared to the 9 ps for the unsubstituted parent compound [Fe(pbmi)2](PF6)2 (pbmi = (pyridine-2,6-diyl)bis(3-methylimidazol-2-ylidene)) as well as a stronger MLCT absorption band extending more toward the red spectral region. However, compared to the carboxylic acid derivative [Fe(cpbmi)2](PF6)2 (cpbmi = 1,1'-(4-carboxypyridine-2,6-diyl)bis(3-methylimidazol-2-ylidene)), the excited-state lifetime of [Fe(miHpbmi)2](PF6)4 is the same, but both the extinction and the red shift are more pronounced for the former. Hence, this makes [Fe(miHpbmi)2](PF6)4 a promising pH-insensitive analogue of [Fe(cpbmi)2](PF6)2. Finally, the excited-state dynamics of the title compound [Fe(miHpbmi)2](PF6)4 was investigated in solvents with different viscosities, however, showing very little dependency of the depopulation of the excited states on the properties of the solvent used.
Collapse
Affiliation(s)
- Om Prakash
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, Lund SE-22100, Sweden
| | - Linnea Lindh
- Chemical
Physics Division, Department of Chemistry, Lund University, Box 124, Lund SE-22100, Sweden
- Theoretical
Chemistry Division, Department of Chemistry, Lund University, Box 124, Lund SE-22100, Sweden
| | - Arvind Kumar Gupta
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, Lund SE-22100, Sweden
| | - Yen Tran Hoang Hai
- Theoretical
Chemistry Division, Department of Chemistry, Lund University, Box 124, Lund SE-22100, Sweden
| | - Nidhi Kaul
- Department
of Chemistry—Ångström Laboratory, Uppsala University, Box 523, Uppsala SE-751 20, Sweden
| | - Pavel Chábera
- Chemical
Physics Division, Department of Chemistry, Lund University, Box 124, Lund SE-22100, Sweden
| | - Fredrik Lindgren
- Department
of Chemistry—Ångström Laboratory, Uppsala University, Box 523, Uppsala SE-751 20, Sweden
| | - Tore Ericsson
- Department of Physics—Ångström
Laboratory, Uppsala University, Box 523, Uppsala SE-751
20, Sweden
| | - Lennart Häggström
- Department of Physics—Ångström
Laboratory, Uppsala University, Box 523, Uppsala SE-751
20, Sweden
| | - Daniel Strand
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, Lund SE-22100, Sweden
| | - Arkady Yartsev
- Chemical
Physics Division, Department of Chemistry, Lund University, Box 124, Lund SE-22100, Sweden
| | - Reiner Lomoth
- Department
of Chemistry—Ångström Laboratory, Uppsala University, Box 523, Uppsala SE-751 20, Sweden
| | - Petter Persson
- Theoretical
Chemistry Division, Department of Chemistry, Lund University, Box 124, Lund SE-22100, Sweden
| | - Kenneth Wärnmark
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, Lund SE-22100, Sweden
| |
Collapse
|
2
|
Lindh L, Pascher T, Persson S, Goriya Y, Wärnmark K, Uhlig J, Chábera P, Persson P, Yartsev A. Multifaceted Deactivation Dynamics of Fe(II) N-Heterocyclic Carbene Photosensitizers. J Phys Chem A 2023; 127:10210-10222. [PMID: 38000043 DOI: 10.1021/acs.jpca.3c06983] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023]
Abstract
Excited state dynamics of three iron(II) carbene complexes that serve as prototype Earth-abundant photosensitizers were investigated by ultrafast optical spectroscopy. Significant differences in the dynamics between the investigated complexes down to femtosecond time scales are used to characterize fundamental differences in the depopulation of triplet metal-to-ligand charge-transfer (3MLCT) excited states in the presence of energetically accessible triplet metal-centered (3MC) states. Novel insights into the full deactivation cascades of the investigated complexes include evidence of the need to revise the deactivation model for a prominent iron carbene prototype complex, a refined understanding of complex 3MC dynamics, and a quantitative discrimination between activated and barrierless deactivation steps along the 3MLCT → 3MC → 1GS path. Overall, the study provides an improved understanding of photophysical limitations and opportunities for the use of iron(II)-based photosensitizers in photochemical applications.
Collapse
Affiliation(s)
- Linnea Lindh
- Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
- Division of Computational Chemistry, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Torbjörn Pascher
- Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Samuel Persson
- Center for Analysis and Synthesis (CAS), Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Yogesh Goriya
- Center for Analysis and Synthesis (CAS), Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Kenneth Wärnmark
- Center for Analysis and Synthesis (CAS), Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Jens Uhlig
- Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Pavel Chábera
- Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Petter Persson
- Division of Computational Chemistry, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Arkady Yartsev
- Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| |
Collapse
|
3
|
Martin SM, Repa GM, Hamburger RC, Pointer CA, Ward K, Pham TN, Martin MI, Rosenthal J, Fredin LA, Young ER. Elucidation of complex triplet excited state dynamics in Pd(II) biladiene tetrapyrroles. Phys Chem Chem Phys 2023; 25:2179-2189. [PMID: 36594369 DOI: 10.1039/d2cp04572a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Pd(II) biladienes have been developed over the last five years as non-aromatic oligotetrapyrrole complexes that support a rich triplet photochemistry. In this work, we have undertaken the first detailed photophysical interrogation of three homologous Pd(II) biladienes bearing different combinations of methyl- and phenyl-substituents on the frameworks' sp3-hybridized meso-carbon (i.e., the 10-position of the biladiene framework). These experiments have revealed unexpected excited-state dynamics that are dependent on the wavelength of light used to excite the biladiene. More specifically, transient absorption spectroscopy revealed that higher-energy excitation (λexc ∼ 350-500 nm) led to an additional lifetime (i.e., an extra photophysical process) compared to experiments carried out following excitation into the lowest-energy excited states (λexc = 550 nm). Each Pd(II) biladiene complex displayed an intersystem crossing lifetime on the order of tens of ps and a triplet lifetime of ∼20 μs, regardless of the excitation wavelength. However, when higher-energy light is used to excite the complexes, a new lifetime on the order of hundreds of ps is observed. The origin of the 'extra' lifetime observed upon higher energy excitation was revealed using density functional theory (DFT) and time-dependent DFT (TDDFT). These efforts demonstrated that excitation into higher-energy metal-mixed-charge-transfer excited states with high spin-orbit coupling to higher energy metal-mixed-charge-transfer triplet states leads to the additional excitation deactivation pathway. The results of this work demonstrate that Pd(II) biladienes support a unique triplet photochemistry that may be exploited for development of new photochemical schemes and applications.
Collapse
Affiliation(s)
- Shea M Martin
- Department of Chemistry, Lehigh University, 6 E. Packer Ave., Bethlehem, PA 18015, USA.
| | - Gil M Repa
- Department of Chemistry, Lehigh University, 6 E. Packer Ave., Bethlehem, PA 18015, USA.
| | - Robert C Hamburger
- Department of Chemistry, Lehigh University, 6 E. Packer Ave., Bethlehem, PA 18015, USA.
| | - Craig A Pointer
- Department of Chemistry, Lehigh University, 6 E. Packer Ave., Bethlehem, PA 18015, USA.
| | - Kaytlin Ward
- Department of Chemistry and Biochemistry, Brown Laboratory, University of Delaware, Newark, DE 19716, USA.
| | - Trong-Nhan Pham
- Department of Chemistry and Biochemistry, Brown Laboratory, University of Delaware, Newark, DE 19716, USA.
| | - Maxwell I Martin
- Department of Chemistry and Biochemistry, Brown Laboratory, University of Delaware, Newark, DE 19716, USA.
| | - Joel Rosenthal
- Department of Chemistry and Biochemistry, Brown Laboratory, University of Delaware, Newark, DE 19716, USA.
| | - Lisa A Fredin
- Department of Chemistry, Lehigh University, 6 E. Packer Ave., Bethlehem, PA 18015, USA.
| | - Elizabeth R Young
- Department of Chemistry, Lehigh University, 6 E. Packer Ave., Bethlehem, PA 18015, USA.
| |
Collapse
|
4
|
|
5
|
Dierks P, Vukadinovic Y, Bauer M. Photoactive iron complexes: more sustainable, but still a challenge. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01112j] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
With the “Criticality Score” used as a benchmark for sustainability – potentials, strategies and challenges are discussed to replace noble metal compounds in photosensitizers by the sustainable alternative iron.
Collapse
Affiliation(s)
- Philipp Dierks
- Faculty of Science, Chemistry Department and Center for Sustainable Systems Design, Paderborn University, 33098 Paderborn, Germany
| | - Yannik Vukadinovic
- Faculty of Science, Chemistry Department and Center for Sustainable Systems Design, Paderborn University, 33098 Paderborn, Germany
| | - Matthias Bauer
- Faculty of Science, Chemistry Department and Center for Sustainable Systems Design, Paderborn University, 33098 Paderborn, Germany
| |
Collapse
|
6
|
Lindh L, Gordivska O, Persson S, Michaels H, Fan H, Chábera P, Rosemann NW, Gupta AK, Benesperi I, Uhlig J, Prakash O, Sheibani E, Kjaer KS, Boschloo G, Yartsev A, Freitag M, Lomoth R, Persson P, Wärnmark K. Dye-sensitized solar cells based on Fe N-heterocyclic carbene photosensitizers with improved rod-like push-pull functionality. Chem Sci 2021; 12:16035-16053. [PMID: 35024126 PMCID: PMC8672732 DOI: 10.1039/d1sc02963k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/11/2021] [Indexed: 11/21/2022] Open
Abstract
A new generation of octahedral iron(ii)–N-heterocyclic carbene (NHC) complexes, employing different tridentate C^N^C ligands, has been designed and synthesized as earth-abundant photosensitizers for dye sensitized solar cells (DSSCs) and related solar energy conversion applications. This work introduces a linearly aligned push–pull design principle that reaches from the ligand having nitrogen-based electron donors, over the Fe(ii) centre, to the ligand having an electron withdrawing carboxylic acid anchor group. A combination of spectroscopy, electrochemistry, and quantum chemical calculations demonstrate the improved molecular excited state properties in terms of a broader absorption spectrum compared to the reference complex, as well as directional charge-transfer displacement of the lowest excited state towards the semiconductor substrate in accordance with the push–pull design. Prototype DSSCs based on one of the new Fe NHC photosensitizers demonstrate a power conversion efficiency exceeding 1% already for a basic DSSC set-up using only the I−/I3− redox mediator and standard operating conditions, outcompeting the corresponding DSSC based on the homoleptic reference complex. Transient photovoltage measurements confirmed that adding the co-sensitizer chenodeoxycholic acid helped in improving the efficiency by increasing the electron lifetime in TiO2. Time-resolved spectroscopy revealed spectral signatures for successful ultrafast (<100 fs) interfacial electron injection from the heteroleptic dyes to TiO2. However, an ultrafast recombination process results in undesirable fast charge recombination from TiO2 back to the oxidized dye, leaving only 5–10% of the initially excited dyes available to contribute to a current in the DSSC. On slower timescales, time-resolved spectroscopy also found that the recombination dynamics (longer than 40 μs) were significantly slower than the regeneration of the oxidized dye by the redox mediator (6–8 μs). Therefore it is the ultrafast recombination down to fs-timescales, between the oxidized dye and the injected electron, that remains as one of the main bottlenecks to be targeted for achieving further improved solar energy conversion efficiencies in future work. Iron-based photosensitizers for dye-sensitized solar cells with a rod-like push–pull design. Solar cell performance was limited by ultrafast (sub-ps) recombination, but yielded better performance than the homoleptic parent photosensitizer.![]()
Collapse
Affiliation(s)
- Linnea Lindh
- Chemical Physics Division, Department of Chemistry, Lund University Box 124 SE-22100 Lund Sweden.,Theoretical Chemistry Division, Department of Chemistry, Lund University Box 124 SE-22100 Lund Sweden
| | - Olga Gordivska
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University Box 124 SE-22100 Lund Sweden
| | - Samuel Persson
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University Box 124 SE-22100 Lund Sweden
| | - Hannes Michaels
- Department of Chemistry - Angstrom Laboratory, Uppsala University Box 523 SE-75120 Uppsala Sweden .,School of Natural and Environmental Science, Newcastle University Bedson Building NE1 7RU Newcastle upon Tyne UK
| | - Hao Fan
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University Box 124 SE-22100 Lund Sweden
| | - Pavel Chábera
- Chemical Physics Division, Department of Chemistry, Lund University Box 124 SE-22100 Lund Sweden
| | - Nils W Rosemann
- Chemical Physics Division, Department of Chemistry, Lund University Box 124 SE-22100 Lund Sweden.,Centre for Analysis and Synthesis, Department of Chemistry, Lund University Box 124 SE-22100 Lund Sweden
| | - Arvind Kumar Gupta
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University Box 124 SE-22100 Lund Sweden
| | - Iacopo Benesperi
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University Box 124 SE-22100 Lund Sweden .,School of Natural and Environmental Science, Newcastle University Bedson Building NE1 7RU Newcastle upon Tyne UK
| | - Jens Uhlig
- Chemical Physics Division, Department of Chemistry, Lund University Box 124 SE-22100 Lund Sweden
| | - Om Prakash
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University Box 124 SE-22100 Lund Sweden
| | - Esmaeil Sheibani
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University Box 124 SE-22100 Lund Sweden
| | - Kasper S Kjaer
- Chemical Physics Division, Department of Chemistry, Lund University Box 124 SE-22100 Lund Sweden
| | - Gerrit Boschloo
- Department of Chemistry - Angstrom Laboratory, Uppsala University Box 523 SE-75120 Uppsala Sweden
| | - Arkady Yartsev
- Chemical Physics Division, Department of Chemistry, Lund University Box 124 SE-22100 Lund Sweden
| | - Marina Freitag
- Department of Chemistry - Angstrom Laboratory, Uppsala University Box 523 SE-75120 Uppsala Sweden .,School of Natural and Environmental Science, Newcastle University Bedson Building NE1 7RU Newcastle upon Tyne UK
| | - Reiner Lomoth
- Department of Chemistry - Angstrom Laboratory, Uppsala University Box 523 SE-75120 Uppsala Sweden
| | - Petter Persson
- Theoretical Chemistry Division, Department of Chemistry, Lund University Box 124 SE-22100 Lund Sweden
| | - Kenneth Wärnmark
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University Box 124 SE-22100 Lund Sweden
| |
Collapse
|
7
|
Barlow K, Johansson JO. Ultrafast photoinduced dynamics in Prussian blue analogues. Phys Chem Chem Phys 2021; 23:8118-8131. [DOI: 10.1039/d1cp00535a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A review on ultrafast photoinduced processes in molecule-based magnets with an emphasis on Prussian blue analogues.
Collapse
Affiliation(s)
- Kyle Barlow
- EaStCHEM School of Chemistry
- University of Edinburgh
- David Brewster Road
- Edinburgh
- UK
| | - J. Olof Johansson
- EaStCHEM School of Chemistry
- University of Edinburgh
- David Brewster Road
- Edinburgh
- UK
| |
Collapse
|
8
|
Photophysics and Photochemistry of Iron Carbene Complexes for Solar Energy Conversion and Photocatalysis. Catalysts 2020. [DOI: 10.3390/catal10030315] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Earth-abundant first row transition metal complexes are important for the development of large-scale photocatalytic and solar energy conversion applications. Coordination compounds based on iron are especially interesting, as iron is the most common transition metal element in the Earth’s crust. Unfortunately, iron-polypyridyl and related traditional iron-based complexes generally suffer from poor excited state properties, including short excited-state lifetimes, that make them unsuitable for most light-driven applications. Iron carbene complexes have emerged in the last decade as a new class of coordination compounds with significantly improved photophysical and photochemical properties, that make them attractive candidates for a range of light-driven applications. Specific aspects of the photophysics and photochemistry of these iron carbenes discussed here include long-lived excited state lifetimes of charge transfer excited states, capabilities to act as photosensitizers in solar energy conversion applications like dye-sensitized solar cells, as well as recent demonstrations of promising progress towards driving photoredox and photocatalytic processes. Complementary advances towards photofunctional systems with both Fe(II) complexes featuring metal-to-ligand charge transfer excited states, and Fe(III) complexes displaying ligand-to-metal charge transfer excited states are discussed. Finally, we outline emerging opportunities to utilize the improved photochemical properties of iron carbenes and related complexes for photovoltaic, photoelectrochemical and photocatalytic applications.
Collapse
|
9
|
Yang G, Sui G, Liang Y, Xue X, Feng Y, Zhang B. Effects of interfacial adsorption configurations on dye-sensitized solar cell performance at the stoichiometric and defective TiO 2 anatase (101) surfaces: a theoretical investigation. Phys Chem Chem Phys 2020; 22:4508-4515. [PMID: 32068228 DOI: 10.1039/c9cp06784a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Interfacial adsorption configuration plays a crucial role in influencing the photovoltaic performance of dye-sensitized solar cells (DSSCs), and thus, theoretical investigations are needed to further understand the impacts of different absorption configurations on stoichiometric and defective TiO2(101) surfaces on the short-circuit photocurrent density (JSC) and open-circuit voltage (VOC) of DSSCs. Herein, calculations of isolated dyes and dye/TiO2 systems were performed on the donor-π bridge-acceptor (D-π-A) type porphyrin sensitizers bearing different donor moieties and an α-cyanoacrylic acid anchoring group (T1-3), using DFT and TD-DFT methods. And, for the first time, comparative analysis of interfacial electron transfer (IET) and density of states (DOS) were carried out on dye/TiO2 systems with stoichiometric and defective surfaces to provide further insight into the electronic factors influencing the efficiency of DSSCs, which can well explain the experimental variation trends of JSC and VOC values. It turned out that attachment via the carboxyl and cynao groups in a tridentate binding mode can result in more efficient IET rates and an upshifted conduction band in comparison with those of the bidentate attachment. More interestingly, we found that the adsorption configuration on defective surfaces containing an O2c vacancy induced more upshifted CBM and relatively fast IET, especially for the bonding mode through two O atoms of the carboxyl group.
Collapse
Affiliation(s)
- Guang Yang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China.
| | - Guomin Sui
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China.
| | - Yuxia Liang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China.
| | - Xiaodong Xue
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China.
| | - Yaqing Feng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China. and Tianjin Co-Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, P. R. China.
| | - Bao Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China.
| |
Collapse
|
10
|
Abstract
The use of iron in photoactive metal complexes has been investigated for decades. In this respect, the charge transfer (CT) states are of particular interest, since they are usually responsible for the photofunctionality of such compounds. However, only recently breakthroughs have been made in extending CT excited state lifetimes that are notoriously short-lived in classical polypyridine iron coordination compounds. This success is in large parts owed to the use of strongly σ-donating N-heterocyclic carbene (NHC) ligands that help manipulating the photophysical and photochemical properties of iron complexes. In this review we aim to map out the basic design principles for the generation of photofunctional iron NHC complexes, summarize the progress made so far and recapitulate on the synthetic methods used. Further, we want to highlight the challenges still existing and give inspiration for future generations of photoactive iron complexes.
Collapse
|
11
|
Tsaturyan AA, Budnyk AP, Ramalingan C. DFT Study of the CNS Ligand Effect on the Geometry, Spin-State, and Absorption Spectrum in Ruthenium, Iron, and Cobalt Quaterpyridine Complexes. ACS OMEGA 2019; 4:10991-11003. [PMID: 31460197 PMCID: PMC6647971 DOI: 10.1021/acsomega.9b00921] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/12/2019] [Indexed: 06/10/2023]
Abstract
Geometry parameters, total energy of the system in different spin states, harmonic vibrational frequencies, and absorption spectra were computed for a range of mononuclear quaterpyridine Ru(II), Fe(III/II), and Co(III/II) complexes with two axial ambidentate CNS ligands by using density functional theory (DFT) and time-dependent DFT calculations. Both structural and electronic properties were found to be correlating with the type of the binding atom in the CNS ligand (isomerization differs by 4-13 kcal·mol-1). The N-bonding of CNS ligands is energetically favored. It was also found that the low spin (LS) state is the ground state for both Ru(II) and Co(III) complexes regardless of the CNS arrangement. The other complexes are the high-spin (HS) ground-state ones with the only exception of the S-bonded CNS isomer of the Fe(III) complex. The dependencies of energy differences between the HS and LS states versus C demonstrated stabilization of the HS state with an increasing amount of the exact exchange admixture (C) for iron and cobalt complexes. An opposite behavior was observed for ruthenium complexes. The best match in harmonic vibrational frequencies between the experimental and calculated values has been reached at C = 0.15 for all the complexes. The absorption profile of the Fe(II) complex with the alternatively bonded CNS ligands strongly depends on the angle between them. The light-harvesting efficiency of the Fe(II) complexes is very similar (∼0.4) and sufficiently close to that of the Ru(II) complexes. The iron-based coordination compounds are considered as a prospective dye for dye-sensitized solar cells. The results of calculations were completed with experimental reference data, thus providing a systematic compendium for practical use.
Collapse
Affiliation(s)
- Arshak A. Tsaturyan
- Institute
of Physical and Organic Chemistry, Southern
Federal University, Stachki
Av. 194/2, 344090 Rostov-on-Don, Russian Federation
| | - Andriy P. Budnyk
- Southern
Scientific Center, Russian Academy of Sciences, 41 Chehova str, 344006 Rostov-on-Don, Russian
Federation
| | - Chennan Ramalingan
- Department
of Chemistry, School of Advanced Sciences, Kalasalingam Academy of Research and Education (Deemed to be University), Krishnankoil 626 126 Tamil Nadu, India
| |
Collapse
|
12
|
Francés‐Monerris A, Gros PC, Assfeld X, Monari A, Pastore M. Toward Luminescent Iron Complexes: Unravelling the Photophysics by Computing Potential Energy Surfaces. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900100] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Antonio Francés‐Monerris
- Laboratoire de Physique et Chimie Théoriques (LPCT)Université de Lorraine, CNRS 54000 Nancy France
| | - Philippe C. Gros
- Laboratoire Lorrain de Chimie Moléculaire (L2CM)Université de Lorraine, CNRS 54000 Nancy France
| | - Xavier Assfeld
- Laboratoire de Physique et Chimie Théoriques (LPCT)Université de Lorraine, CNRS 54000 Nancy France
| | - Antonio Monari
- Laboratoire de Physique et Chimie Théoriques (LPCT)Université de Lorraine, CNRS 54000 Nancy France
| | - Mariachiara Pastore
- Laboratoire de Physique et Chimie Théoriques (LPCT)Université de Lorraine, CNRS 54000 Nancy France
| |
Collapse
|
13
|
Fredin LA, Persson P. Influence of Triplet Surface Properties on Excited-State Deactivation of Expanded Cage Bis(tridentate)Ruthenium(II) Complexes. J Phys Chem A 2019; 123:5293-5299. [DOI: 10.1021/acs.jpca.9b02927] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lisa A. Fredin
- Chemistry Department, Theoretical Chemistry Division, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Petter Persson
- Chemistry Department, Theoretical Chemistry Division, Lund University, Box 124, SE-22100 Lund, Sweden
| |
Collapse
|
14
|
Oprea CI, Gîrțu MA. Structure and Electronic Properties of TiO₂ Nanoclusters and Dye⁻Nanocluster Systems Appropriate to Model Hybrid Photovoltaic or Photocatalytic Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E357. [PMID: 30836631 PMCID: PMC6474027 DOI: 10.3390/nano9030357] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 01/30/2023]
Abstract
We report the results of a computational study of TiO₂ nanoclusters of various sizes as well as of complex systems with various molecules adsorbed onto the clusters to set the ground for the modeling of charge transfer processes in hybrid organic⁻inorganic photovoltaics or photocatalytic degradation of pollutants. Despite the large number of existing computational studies of TiO₂ clusters and in spite of the higher computing power of the typical available hardware, allowing for calculations of larger systems, there are still studies that use cluster sizes that are too small and not appropriate to address particular problems or certain complex systems relevant in photovoltaic or photocatalytic applications. By means of density functional theory (DFT) calculations, we attempt to find acceptable minimal sizes of the TinO2n+2H₄ (n = 14, 24, 34, 44, 54) nanoclusters in correlation with the size of the adsorbed molecule and the rigidity of the backbone of the molecule to model systems and interface processes that occur in hybrid photovoltaics and photocatalysis. We illustrate various adsorption cases with a small rigid molecule based on coumarin, a larger rigid oligomethine cyanine dye with indol groups, and the penicillin V antibiotic having a flexible backbone. We find that the use of the n = 14 cluster to describe adsorption leads to significant distortions of both the cluster and the molecule and to unusual tridentate binding configurations not seen for larger clusters. Moreover, the significantly weaker bonding as well as the differences in the density of states and in the optical spectra suggest that the n = 14 cluster is a poor choice for simulating the materials used in the practical applications envisaged here. As the n = 24 cluster has provided mixed results, we argue that cluster sizes larger than or equal to n = 34 are necessary to provide the reliability required by photovoltaic and photocatalytic applications. Furthermore, the tendency to saturate the key quantities of interest when moving from n = 44 to n = 54 suggests that the largest cluster may bring little improvement at a significantly higher computational cost.
Collapse
Affiliation(s)
- Corneliu I Oprea
- Department of Physics and Electronics, Ovidius University of Constanța, 900527 Constanța, Romania.
| | - Mihai A Gîrțu
- Department of Physics and Electronics, Ovidius University of Constanța, 900527 Constanța, Romania.
| |
Collapse
|
15
|
|
16
|
|
17
|
Brandl T, Hoffmann V, Pannwitz A, Häussinger D, Neuburger M, Fuhr O, Bernhard S, Wenger OS, Mayor M. Chiral macrocyclic terpyridine complexes. Chem Sci 2018; 9:3837-3843. [PMID: 29780516 PMCID: PMC5941204 DOI: 10.1039/c7sc05285e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/22/2018] [Indexed: 11/21/2022] Open
Abstract
Interlinking of two terpyridine ligands results in mononuclear chiral metal complexes (Fe and Ru) which were separated into their enantiomers.
The syntheses of novel chiral M(ii) bis(terpyridine) cage complexes Fe(L1)2-c and Ru(L1)2-c are described. The extraordinary design of the precursors Fe(L1)2 and Ru(L1)2 allows perfect preorganization for the final closing step. Due to the rigidity of the spacers between the two terpyridine moieties, the two isolated enantiomers barely racemize at room temperature in solution. The stable and axially chiral bis(terpyridine) Fe(ii) and Ru(ii) complexes were fully characterized by NMR-spectroscopy, UV-Vis spectroscopy, electrochemical measurements, high resolution mass spectrometry, circular dichroism measurements, and X-ray structural analysis.
Collapse
Affiliation(s)
- Thomas Brandl
- Department of Chemistry , University of Basel , St. Johanns-Ring 19 , 4056 Basel , Switzerland .
| | - Viktor Hoffmann
- Department of Chemistry , University of Basel , St. Johanns-Ring 19 , 4056 Basel , Switzerland .
| | - Andrea Pannwitz
- Department of Chemistry , University of Basel , St. Johanns-Ring 19 , 4056 Basel , Switzerland .
| | - Daniel Häussinger
- Department of Chemistry , University of Basel , St. Johanns-Ring 19 , 4056 Basel , Switzerland .
| | - Markus Neuburger
- Department of Chemistry , University of Basel , St. Johanns-Ring 19 , 4056 Basel , Switzerland .
| | - Olaf Fuhr
- Institute for Nanotechnology (INT) , Karlsruhe Institute of Technology (KIT) , P. O. Box 3640 , 76021 Karlsruhe , Germany
| | - Stefan Bernhard
- Department of Chemistry , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , USA
| | - Oliver S Wenger
- Department of Chemistry , University of Basel , St. Johanns-Ring 19 , 4056 Basel , Switzerland .
| | - Marcel Mayor
- Department of Chemistry , University of Basel , St. Johanns-Ring 19 , 4056 Basel , Switzerland . .,Institute for Nanotechnology (INT) , Karlsruhe Institute of Technology (KIT) , P. O. Box 3640 , 76021 Karlsruhe , Germany.,Lehn Institute of Functional Materials (LFM) , Sun Yat Sen University (SYSU) , XinGangXi Rd. 135 , 510275 Guangzhou , P. R. China
| |
Collapse
|
18
|
Mukherjee S, Liu C, Jakubikova E. Comparison of Interfacial Electron Transfer Efficiency in [Fe(ctpy)2]2+–TiO2 and [Fe(cCNC)2]2+–TiO2 Assemblies: Importance of Conformational Sampling. J Phys Chem A 2018; 122:1821-1830. [DOI: 10.1021/acs.jpca.7b10932] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sriparna Mukherjee
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Chang Liu
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Elena Jakubikova
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
19
|
Leshchev D, Harlang TCB, Fredin LA, Khakhulin D, Liu Y, Biasin E, Laursen MG, Newby GE, Haldrup K, Nielsen MM, Wärnmark K, Sundström V, Persson P, Kjær KS, Wulff M. Tracking the picosecond deactivation dynamics of a photoexcited iron carbene complex by time-resolved X-ray scattering. Chem Sci 2018; 9:405-414. [PMID: 29629111 PMCID: PMC5868308 DOI: 10.1039/c7sc02815f] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 10/30/2017] [Indexed: 12/14/2022] Open
Abstract
Recent years have seen the development of new iron-centered N-heterocyclic carbene (NHC) complexes for solar energy applications. Compared to typical ligand systems, the NHC ligands provide Fe complexes with longer-lived metal-to-ligand charge transfer (MLCT) states. This increased lifetime is ascribed to strong ligand field splitting provided by the NHC ligands that raises the energy levels of the metal centered (MC) states and therefore reduces the deactivation efficiency of MLCT states. Among currently known NHC systems, [Fe(btbip)2]2+ (btbip = 2,6-bis(3-tert-butyl-imidazol-1-ylidene)pyridine) is a unique complex as it exhibits a short-lived MC state with a lifetime on the scale of a few hundreds of picoseconds. Hence, this complex allows for a detailed investigation, using 100 ps X-ray pulses from a synchrotron, of strong ligand field effects on the intermediate MC state in an NHC complex. Here, we use time-resolved wide angle X-ray scattering (TRWAXS) aided by density functional theory (DFT) to investigate the molecular structure, energetics and lifetime of the high-energy MC state in the Fe-NHC complex [Fe(btbip)2]2+ after excitation to the MLCT manifold. We identify it as a 260 ps metal-centered quintet (5MC) state, and we refine the molecular structure of the excited-state complex verifying the DFT results. Using information about the hydrodynamic state of the solvent, we also determine, for the first time, the energy of the 5MC state as 0.75 ± 0.15 eV. Our results demonstrate that due to the increased ligand field strength caused by NHC ligands, upon transition from the ground state to the 5MC state, the metal to ligand bonds extend by unusually large values: by 0.29 Å in the axial and 0.21 Å in the equatorial direction. These results imply that the transition in the photochemical properties from typical Fe complexes to novel NHC compounds is manifested not only in the destabilization of the MC states, but also in structural distortion of these states.
Collapse
Affiliation(s)
- Denis Leshchev
- European Synchrotron Radiation Facility , 71 Avenue des Martyrs , 38000 Grenoble , France .
| | - Tobias C B Harlang
- Department of Chemical Physics , Lund University , P. O. Box 12 4 , 22100 Lund , Sweden
- Molecular Movies Group , Department of Physics , Technical University of Denmark , Lyngby , DK-2800 , Denmark
| | - Lisa A Fredin
- Theoretical Chemistry Division , Lund University , P. O. Box 124 , 22100 Lund , Sweden
| | | | - Yizhu Liu
- Centre for Analysis and Synthesis , Department of Chemistry , Lund University , P. O. Box 12 4 , Lund 22100 , Sweden
| | - Elisa Biasin
- Molecular Movies Group , Department of Physics , Technical University of Denmark , Lyngby , DK-2800 , Denmark
| | - Mads G Laursen
- Molecular Movies Group , Department of Physics , Technical University of Denmark , Lyngby , DK-2800 , Denmark
| | - Gemma E Newby
- European Synchrotron Radiation Facility , 71 Avenue des Martyrs , 38000 Grenoble , France .
| | - Kristoffer Haldrup
- Molecular Movies Group , Department of Physics , Technical University of Denmark , Lyngby , DK-2800 , Denmark
| | - Martin M Nielsen
- Molecular Movies Group , Department of Physics , Technical University of Denmark , Lyngby , DK-2800 , Denmark
| | - Kenneth Wärnmark
- Centre for Analysis and Synthesis , Department of Chemistry , Lund University , P. O. Box 12 4 , Lund 22100 , Sweden
| | - Villy Sundström
- Department of Chemical Physics , Lund University , P. O. Box 12 4 , 22100 Lund , Sweden
| | - Petter Persson
- Theoretical Chemistry Division , Lund University , P. O. Box 124 , 22100 Lund , Sweden
| | - Kasper S Kjær
- Department of Chemical Physics , Lund University , P. O. Box 12 4 , 22100 Lund , Sweden
- Molecular Movies Group , Department of Physics , Technical University of Denmark , Lyngby , DK-2800 , Denmark
| | - Michael Wulff
- European Synchrotron Radiation Facility , 71 Avenue des Martyrs , 38000 Grenoble , France .
| |
Collapse
|
20
|
Mukherjee S, Torres DE, Jakubikova E. HOMO inversion as a strategy for improving the light-absorption properties of Fe(ii) chromophores. Chem Sci 2017; 8:8115-8126. [PMID: 29568460 PMCID: PMC5855294 DOI: 10.1039/c7sc02926h] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/03/2017] [Indexed: 12/26/2022] Open
Abstract
Substitution of π-conjugated donor groups onto the polypyridine ligands in Fe(ii) complexes inverts the HOMO character and improves the light-absorption.
A computational study of a series of [Fe(tpy)2]2+ (tpy = 2,2′:6′,2′′-terpyridine) complexes is reported, where the tpy ligand is substituted at the 4, 4′, and 4′′ positions by electron donor (furan, thiophene, selenophene, NH2) and acceptor (carboxylic acid, NO2) groups. Using DFT and TD-DFT calculations, we show that the substitution of heterocyclic π donor groups onto the tpy ligand scaffold leads to marked improvement of the [Fe(tpy)2]2+ absorption properties, characterized by increased molar extinction coefficients, shift of absorption energies to longer wavelengths, and broadening of the absorption spectrum in the visible region. The observed changes in the light absorption properties are due to destabilization of ligand-centered occupied π orbital energies, thus increasing the interactions between the metal t2g (HOMO) and ligand π orbitals. Substitution of extended π-conjugated groups, such as thienothiophene and dithienothiophene, further destabilizes the ligand π orbital energies, resulting in a fully ligand-localized HOMO (i.e., HOMO inversion) and additional improvement of the light absorption properties. These results open up a new strategy to tuning the light absorption properties of Fe(ii)-polypyridines.
Collapse
Affiliation(s)
- Sriparna Mukherjee
- Department of Chemistry , North Carolina State University , Raleigh , NC 27695 , USA .
| | - David E Torres
- Wake STEM Early College High School , 715 Barbour Dr , Raleigh , NC 27603 , USA
| | - Elena Jakubikova
- Department of Chemistry , North Carolina State University , Raleigh , NC 27695 , USA .
| |
Collapse
|
21
|
Ericson F, Honarfar A, Prakash O, Tatsuno H, Fredin LA, Handrup K, Chabera P, Gordivska O, Kjær KS, Liu Y, Schnadt J, Wärnmark K, Sundström V, Persson P, Uhlig J. Electronic structure and excited state properties of iron carbene photosensitizers – A combined X-ray absorption and quantum chemical investigation. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.03.085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
22
|
Ponseca CS, Chábera P, Uhlig J, Persson P, Sundström V. Ultrafast Electron Dynamics in Solar Energy Conversion. Chem Rev 2017; 117:10940-11024. [DOI: 10.1021/acs.chemrev.6b00807] [Citation(s) in RCA: 211] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Carlito S. Ponseca
- Division
of Chemical Physics, Chemical Center, and ‡Theoretical Chemistry Division,
Chemical Center, Lund University, Box 124, Lund SE-221 00, Sweden
| | - Pavel Chábera
- Division
of Chemical Physics, Chemical Center, and ‡Theoretical Chemistry Division,
Chemical Center, Lund University, Box 124, Lund SE-221 00, Sweden
| | - Jens Uhlig
- Division
of Chemical Physics, Chemical Center, and ‡Theoretical Chemistry Division,
Chemical Center, Lund University, Box 124, Lund SE-221 00, Sweden
| | - Petter Persson
- Division
of Chemical Physics, Chemical Center, and ‡Theoretical Chemistry Division,
Chemical Center, Lund University, Box 124, Lund SE-221 00, Sweden
| | - Villy Sundström
- Division
of Chemical Physics, Chemical Center, and ‡Theoretical Chemistry Division,
Chemical Center, Lund University, Box 124, Lund SE-221 00, Sweden
| |
Collapse
|
23
|
Chábera P, Liu Y, Prakash O, Thyrhaug E, Nahhas AE, Honarfar A, Essén S, Fredin LA, Harlang TCB, Kjær KS, Handrup K, Ericson F, Tatsuno H, Morgan K, Schnadt J, Häggström L, Ericsson T, Sobkowiak A, Lidin S, Huang P, Styring S, Uhlig J, Bendix J, Lomoth R, Sundström V, Persson P, Wärnmark K. A low-spin Fe(iii) complex with 100-ps ligand-to-metal charge transfer photoluminescence. Nature 2017; 543:695-699. [PMID: 28358064 DOI: 10.1038/nature21430] [Citation(s) in RCA: 267] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 01/23/2017] [Indexed: 12/15/2022]
Abstract
Transition-metal complexes are used as photosensitizers, in light-emitting diodes, for biosensing and in photocatalysis. A key feature in these applications is excitation from the ground state to a charge-transfer state; the long charge-transfer-state lifetimes typical for complexes of ruthenium and other precious metals are often essential to ensure high performance. There is much interest in replacing these scarce elements with Earth-abundant metals, with iron and copper being particularly attractive owing to their low cost and non-toxicity. But despite the exploration of innovative molecular designs, it remains a formidable scientific challenge to access Earth-abundant transition-metal complexes with long-lived charge-transfer excited states. No known iron complexes are considered photoluminescent at room temperature, and their rapid excited-state deactivation precludes their use as photosensitizers. Here we present the iron complex [Fe(btz)3]3+ (where btz is 3,3'-dimethyl-1,1'-bis(p-tolyl)-4,4'-bis(1,2,3-triazol-5-ylidene)), and show that the superior σ-donor and π-acceptor electron properties of the ligand stabilize the excited state sufficiently to realize a long charge-transfer lifetime of 100 picoseconds (ps) and room-temperature photoluminescence. This species is a low-spin Fe(iii) d5 complex, and emission occurs from a long-lived doublet ligand-to-metal charge-transfer (2LMCT) state that is rarely seen for transition-metal complexes. The absence of intersystem crossing, which often gives rise to large excited-state energy losses in transition-metal complexes, enables the observation of spin-allowed emission directly to the ground state and could be exploited as an increased driving force in photochemical reactions on surfaces. These findings suggest that appropriate design strategies can deliver new iron-based materials for use as light emitters and photosensitizers.
Collapse
Affiliation(s)
- Pavel Chábera
- Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Yizhu Liu
- Center for Analysis and Synthesis (CAS), Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Om Prakash
- Center for Analysis and Synthesis (CAS), Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Erling Thyrhaug
- Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Amal El Nahhas
- Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Alireza Honarfar
- Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Sofia Essén
- Center for Analysis and Synthesis (CAS), Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Lisa A Fredin
- Division of Theoretical Chemistry, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Tobias C B Harlang
- Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden.,Department of Physics, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Kasper S Kjær
- Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden.,Department of Physics, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Karsten Handrup
- Division of Synchrotron Radiation Research, Department of Physics, Lund University, Box 118, SE-221 00 Lund, Sweden
| | - Fredric Ericson
- Division of Theoretical Chemistry, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Hideyuki Tatsuno
- Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Kelsey Morgan
- National Institute of Standards and Technology, Boulder, Colorado 80305, USA
| | - Joachim Schnadt
- Division of Synchrotron Radiation Research, Department of Physics, Lund University, Box 118, SE-221 00 Lund, Sweden
| | - Lennart Häggström
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 538, SE-751 21 Uppsala, Sweden
| | - Tore Ericsson
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 538, SE-751 21 Uppsala, Sweden
| | - Adam Sobkowiak
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 538, SE-751 21 Uppsala, Sweden
| | - Sven Lidin
- Center for Analysis and Synthesis (CAS), Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Ping Huang
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden
| | - Stenbjörn Styring
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden
| | - Jens Uhlig
- Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Jesper Bendix
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Reiner Lomoth
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden
| | - Villy Sundström
- Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Petter Persson
- Division of Theoretical Chemistry, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Kenneth Wärnmark
- Center for Analysis and Synthesis (CAS), Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| |
Collapse
|
24
|
Charra V, de Frémont P, Braunstein P. Multidentate N-heterocyclic carbene complexes of the 3d metals: Synthesis, structure, reactivity and catalysis. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.03.007] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Ashley DC, Jakubikova E. Ironing out the photochemical and spin-crossover behavior of Fe(II) coordination compounds with computational chemistry. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.02.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
26
|
Gałyńska M, Persson P. Quantum chemical calculations of the structural influence on electronic properties in TiO2 nanocrystals. Mol Phys 2017. [DOI: 10.1080/00268976.2017.1281456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Marta Gałyńska
- Theoretical Chemistry Division, Chemistry Department, Lund University, Lund, Sweden
| | - Petter Persson
- Theoretical Chemistry Division, Chemistry Department, Lund University, Lund, Sweden
| |
Collapse
|
27
|
Zhang W, Kjær KS, Alonso-Mori R, Bergmann U, Chollet M, Fredin LA, Hadt RG, Hartsock RW, Harlang T, Kroll T, Kubiček K, Lemke HT, Liang HW, Liu Y, Nielsen MM, Persson P, Robinson JS, Solomon EI, Sun Z, Sokaras D, van Driel TB, Weng TC, Zhu D, Wärnmark K, Sundström V, Gaffney KJ. Manipulating charge transfer excited state relaxation and spin crossover in iron coordination complexes with ligand substitution. Chem Sci 2016; 8:515-523. [PMID: 28451198 PMCID: PMC5341207 DOI: 10.1039/c6sc03070j] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 08/24/2016] [Indexed: 12/11/2022] Open
Abstract
Optical and X-ray free-electron laser measurements reveal ligand substitution in an Fe(ii)-centered complex extends its MLCT lifetime.
Developing light-harvesting and photocatalytic molecules made with iron could provide a cost effective, scalable, and environmentally benign path for solar energy conversion. To date these developments have been limited by the sub-picosecond metal-to-ligand charge transfer (MLCT) electronic excited state lifetime of iron based complexes due to spin crossover – the extremely fast intersystem crossing and internal conversion to high spin metal-centered excited states. We revitalize a 30 year old synthetic strategy for extending the MLCT excited state lifetimes of iron complexes by making mixed ligand iron complexes with four cyanide (CN–) ligands and one 2,2′-bipyridine (bpy) ligand. This enables MLCT excited state and metal-centered excited state energies to be manipulated with partial independence and provides a path to suppressing spin crossover. We have combined X-ray Free-Electron Laser (XFEL) Kβ hard X-ray fluorescence spectroscopy with femtosecond time-resolved UV-visible absorption spectroscopy to characterize the electronic excited state dynamics initiated by MLCT excitation of [Fe(CN)4(bpy)]2–. The two experimental techniques are highly complementary; the time-resolved UV-visible measurement probes allowed electronic transitions between valence states making it sensitive to ligand-centered electronic states such as MLCT states, whereas the Kβ fluorescence spectroscopy provides a sensitive measure of changes in the Fe spin state characteristic of metal-centered excited states. We conclude that the MLCT excited state of [Fe(CN)4(bpy)]2– decays with roughly a 20 ps lifetime without undergoing spin crossover, exceeding the MLCT excited state lifetime of [Fe(2,2′-bipyridine)3]2+ by more than two orders of magnitude.
Collapse
Affiliation(s)
- Wenkai Zhang
- PULSE Institute , SLAC National Accelerator Laboratory , Stanford University , Menlo Park , California 94025 , USA . ;
| | - Kasper S Kjær
- PULSE Institute , SLAC National Accelerator Laboratory , Stanford University , Menlo Park , California 94025 , USA . ; .,Department of Chemical Physics , Lund University , P.O. Box 12 4 , 22100 Lund , Sweden.,Centre for Molecular Movies , Department of Physics , Technical University of Denmark , DK-2800 , Lyngby , Denmark
| | - Roberto Alonso-Mori
- LCLS , SLAC National Accelerator Laboratory , Menlo Park , California 94025 , USA
| | - Uwe Bergmann
- PULSE Institute , SLAC National Accelerator Laboratory , Stanford University , Menlo Park , California 94025 , USA . ; .,LCLS , SLAC National Accelerator Laboratory , Menlo Park , California 94025 , USA
| | - Matthieu Chollet
- LCLS , SLAC National Accelerator Laboratory , Menlo Park , California 94025 , USA
| | - Lisa A Fredin
- Theoretical Chemistry Division , Lund University , P.O. Box 124 , 22100 Lund , Sweden
| | - Ryan G Hadt
- Department of Chemistry , Stanford University , Stanford , California 94305 , USA
| | - Robert W Hartsock
- PULSE Institute , SLAC National Accelerator Laboratory , Stanford University , Menlo Park , California 94025 , USA . ; .,Department of Chemistry , Stanford University , Stanford , California 94305 , USA
| | - Tobias Harlang
- Department of Chemical Physics , Lund University , P.O. Box 12 4 , 22100 Lund , Sweden
| | - Thomas Kroll
- LCLS , SLAC National Accelerator Laboratory , Menlo Park , California 94025 , USA.,Department of Chemistry , Stanford University , Stanford , California 94305 , USA
| | - Katharina Kubiček
- Max Planck Institute for Biophysical Chemistry , 37077 , Göttingen , Germany
| | - Henrik T Lemke
- LCLS , SLAC National Accelerator Laboratory , Menlo Park , California 94025 , USA
| | - Huiyang W Liang
- PULSE Institute , SLAC National Accelerator Laboratory , Stanford University , Menlo Park , California 94025 , USA . ; .,LCLS , SLAC National Accelerator Laboratory , Menlo Park , California 94025 , USA
| | - Yizhu Liu
- Department of Chemical Physics , Lund University , P.O. Box 12 4 , 22100 Lund , Sweden
| | - Martin M Nielsen
- Centre for Molecular Movies , Department of Physics , Technical University of Denmark , DK-2800 , Lyngby , Denmark
| | - Petter Persson
- Theoretical Chemistry Division , Lund University , P.O. Box 124 , 22100 Lund , Sweden
| | - Joseph S Robinson
- LCLS , SLAC National Accelerator Laboratory , Menlo Park , California 94025 , USA
| | - Edward I Solomon
- LCLS , SLAC National Accelerator Laboratory , Menlo Park , California 94025 , USA.,Department of Chemistry , Stanford University , Stanford , California 94305 , USA
| | - Zheng Sun
- PULSE Institute , SLAC National Accelerator Laboratory , Stanford University , Menlo Park , California 94025 , USA . ;
| | - Dimosthenis Sokaras
- SSRL , SLAC National Accelerator Laboratory , Menlo Park , California 94025 , USA
| | - Tim B van Driel
- Centre for Molecular Movies , Department of Physics , Technical University of Denmark , DK-2800 , Lyngby , Denmark
| | - Tsu-Chien Weng
- SSRL , SLAC National Accelerator Laboratory , Menlo Park , California 94025 , USA
| | - Diling Zhu
- LCLS , SLAC National Accelerator Laboratory , Menlo Park , California 94025 , USA
| | - Kenneth Wärnmark
- Centre for Analysis and Synthesis , Department of Chemistry , Lund University , P.O. Box 124 , 22100 Lund , Sweden
| | - Villy Sundström
- Department of Chemical Physics , Lund University , P.O. Box 12 4 , 22100 Lund , Sweden
| | - Kelly J Gaffney
- PULSE Institute , SLAC National Accelerator Laboratory , Stanford University , Menlo Park , California 94025 , USA . ;
| |
Collapse
|
28
|
Liu Y, Persson P, Sundström V, Wärnmark K. Fe N-Heterocyclic Carbene Complexes as Promising Photosensitizers. Acc Chem Res 2016; 49:1477-85. [PMID: 27455191 DOI: 10.1021/acs.accounts.6b00186] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The photophysics and photochemistry of transition metal complexes (TMCs) has long been a hot field of interdisciplinary research. Rich metal-based redox processes, together with a high variety in electronic configurations and excited-state dynamics, have rendered TMCs excellent candidates for interconversion between light, chemical, and electrical energies in intramolecular, supramolecular, and interfacial arrangements. In specific applications such as photocatalytic organic synthesis, photoelectrochemical cells, and light-driven supramolecular motors, light absorption by a TMC-based photosensitizer and subsequent excited-state energy or electron transfer constitute essential steps. In this context, TMCs based on rare and expensive metals, such as ruthenium and iridium, are frequently employed as photosensitizers, which is obviously not ideal for large-scale implementation. In the search for abundant and environmentally benign solutions, six-coordinate Fe(II) complexes (Fe(II)L6) have been widely considered as highly desirable alternatives. However, not much success has been achieved due to the extremely short-lived triplet metal-to-ligand charge transfer ((3)MLCT) excited state that is deactivated by low-lying metal-centered (MC) states on a 100 fs time scale. A fundamental strategy to design useful Fe-based photosensitizers is thus to destabilize the MC states relative to the (3)MLCT state by increasing the ligand field strength, with special focus on making eg σ* orbitals on the Fe center energetically less accessible. Previous efforts to directly transplant successful strategies from Ru(II)L6 complexes unfortunately met with limited success in this regard, despite their close chemical kinship. In this Account, we summarize recent promising results from our and other groups in utilizing strongly σ-donating N-heterocyclic carbene (NHC) ligands to make strong-field Fe(II)L6 complexes with significantly extended (3)MLCT lifetimes. Already some of the first homoleptic bis(tridentate) complexes incorporating (CNHC^Npyridine^CNHC)-type ligands gratifyingly resulted in extension of the (3)MLCT lifetime by more than 2 orders of magnitude compared to the parental [Fe(tpy)2](2+) (tpy = 2,2':6',2″-terpyridine) complex. Quantum chemical (QC) studies also revealed that the (3)MC instead of the (5)MC state likely dictates the deactivation of the (3)MLCT state, a behavior distinct from traditional Fe(II)L6 complexes but rather resembling Ru analogues. A heteroleptic Fe(II) NHC complex featuring mesoionic bis(1,2,3-triazol-5-ylidene) (btz) ligands also delivered a 100-fold elongation of the (3)MLCT lifetime relative to its parental [Fe(bpy)3](2+) (bpy = 2,2'-bipyridine) complex. Again, a Ru-like deactivation mechanism of the (3)MLCT state was indicated by QC studies. With a COOH-functionalized homoleptic complex, a record (3)MLCT lifetime of 37 ps was recently observed on an Al2O3 nanofilm. As a proof of concept, it was further demonstrated that the significant improvement in the (3)MLCT lifetime indeed benefits efficient light harvesting with Fe(II) NHC complexes. For the first time, close-to-unity electron injection from the lowest-energy (3)MLCT state to a TiO2 nanofilm was achieved by a stable Fe(II) complex. This is in complete contrast to conventional Fe(II)L6-derived photosensitizers that could only make use of high-energy photons. These exciting results significantly broaden the understanding of the fundamental photophysics and photochemistry of d(6) Fe(II) complexes. They also open up new possibilities to develop solar energy-converting materials based on this abundant, inexpensive, and intrinsically nontoxic element.
Collapse
Affiliation(s)
- Yizhu Liu
- Centre
for Analysis and Synthesis, Lund University, Box 124, 22100 Lund, Sweden
- Department
of Chemical Physics, Lund University, Box 124, 22100 Lund, Sweden
| | - Petter Persson
- Theoretical
Chemistry Division, Lund University, Box 124, 22100 Lund, Sweden
| | - Villy Sundström
- Department
of Chemical Physics, Lund University, Box 124, 22100 Lund, Sweden
| | - Kenneth Wärnmark
- Centre
for Analysis and Synthesis, Lund University, Box 124, 22100 Lund, Sweden
| |
Collapse
|
29
|
Dixon IM, Boissard G, Whyte H, Alary F, Heully JL. Computational Estimate of the Photophysical Capabilities of Four Series of Organometallic Iron(II) Complexes. Inorg Chem 2016; 55:5089-91. [DOI: 10.1021/acs.inorgchem.6b00223] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Isabelle M. Dixon
- Laboratoire
de Chimie et
Physique Quantiques, UMR 5626 CNRS, Université Toulouse III Paul Sabatier, Toulouse 31062, France
| | - Gauthier Boissard
- Laboratoire
de Chimie et
Physique Quantiques, UMR 5626 CNRS, Université Toulouse III Paul Sabatier, Toulouse 31062, France
| | - Hannah Whyte
- Laboratoire
de Chimie et
Physique Quantiques, UMR 5626 CNRS, Université Toulouse III Paul Sabatier, Toulouse 31062, France
| | - Fabienne Alary
- Laboratoire
de Chimie et
Physique Quantiques, UMR 5626 CNRS, Université Toulouse III Paul Sabatier, Toulouse 31062, France
| | - Jean-Louis Heully
- Laboratoire
de Chimie et
Physique Quantiques, UMR 5626 CNRS, Université Toulouse III Paul Sabatier, Toulouse 31062, France
| |
Collapse
|