1
|
Wang X, Wei L, Wu J, Zhu A, Zhang Q, Liu Q. Supported core-shell catalysts for enhancing ethanol electrooxidation by C1 pathway. J Colloid Interface Sci 2025; 694:137719. [PMID: 40319719 DOI: 10.1016/j.jcis.2025.137719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/18/2025] [Accepted: 04/26/2025] [Indexed: 05/07/2025]
Abstract
The direct ethanol fuel cell (DEFC) are considered a promising clean energy conversion technology due to their high energy density and low emissions. However, the anodic ethanol oxidation reaction (EOR) follows a dual-pathway mechanism (C1 pathway and C2 pathway) with low efficiency, which limits the performance and industrial application of DEFC. A multi-strategy approach to balance activity, stability, and C1 pathway selectivity in this work was adopted in order to design high-performance core-shell supported palladium (Pd) based catalysts. Au1@Pdx/TiO2-GO and Au1@Pd1.5Sn0.05/TiO2-NGO of core-shell supported catalyst were successfully prepared using the sol-gel method, which show high performance in the EOR. The peak mass current density of the Au1@Pd1.5/TiO2-GO and Au1@Pd1.5Sn0.05/TiO2-NGO catalyst is 4914.8 mA mgPd-1 and 5038.1 mA mgPd-1, which was 6.0 and 6.2 times of the Pd/C(JM) catalyst (816.4 mA mgPd-1), respectively. At the same time, their residual current density after 5000 s of stability testing is 1757.9 mA mgPd-1 and 2160.5 mA mgPd-1, which was 27.3 and 33.5 times of the Pd/C(JM) catalyst (64.5 mA mgPd-1), respectively. The synergistic effect between the core-shell structure and the composite support effectively enhanced the C1 pathway selectivity, regenerative ability, and resistance to CO poisoning of the catalyst in the EOR.
Collapse
Affiliation(s)
- Xiaosen Wang
- Department of Chemical & Biochemical Engineering, College of Chemistry & Chemical Engineering, Xiamen University, Xiamen 361005, PR China.
| | - Longbo Wei
- Department of Chemical & Biochemical Engineering, College of Chemistry & Chemical Engineering, Xiamen University, Xiamen 361005, PR China.
| | - Jianyang Wu
- Department of Physics, Jiujiang Research Institute, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, PR China.
| | - Aimei Zhu
- Department of Chemical & Biochemical Engineering, College of Chemistry & Chemical Engineering, Xiamen University, Xiamen 361005, PR China.
| | - Qiugen Zhang
- Department of Chemical & Biochemical Engineering, College of Chemistry & Chemical Engineering, Xiamen University, Xiamen 361005, PR China.
| | - Qinglin Liu
- Department of Chemical & Biochemical Engineering, College of Chemistry & Chemical Engineering, Xiamen University, Xiamen 361005, PR China.
| |
Collapse
|
2
|
Zeng Q, Ma M, Liu H, Xu L, Tian S, Chen D, Wang J, Yang J. Gold-catalyzed construction of atomically rough surfaces towards high-efficiency ethanol electrooxidation. Sci Bull (Beijing) 2025:S2095-9273(25)00455-4. [PMID: 40348670 DOI: 10.1016/j.scib.2025.04.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/18/2025] [Accepted: 04/21/2025] [Indexed: 05/14/2025]
Abstract
Atomic surface engineering for nanostructures significantly contributes to the enhancement of electrocatalysis for a given chemical reaction. However, exploring a facile method to elaborately regulate surfaces at atomic scale remains a grand challenge. Herein, we report the construction of atomically rough surfaces (ARSs) on Au-based binary alloys through a novel and controllable gold (Au)-catalyzed strategy, which involves the first synthesis of Au-based bimetallic nanoalloys, i.e., AuPd and AuAg, and subsequent reduction of another metal ions (Pt, Pd, or Ag) initiated by Au sites on the alloy particle surfaces. By combining ARSs with low-coordinated atoms with ligand effect induced by vicinal Au atoms, the as-prepared ARSs exhibit good activity and durability toward ethanol oxidation reaction (EOR) in an alkaline medium. In particular, the Pd-Pt ARSs on the AuPd alloy particle surface (denoted as AuPd-Pt) exhibit the highest electrocatalytic EOR performance in terms of both specific activity (14.9 mA cm-2) and mass activity (28.5 A mg-1), surpassing those of their AuPd alloy counterparts, commercial Pd/C catalyst, and most Pd-based electrocatalysts reported recently. In situ Fourier transform infrared (FTIR) spectroscopy reveals that the EOR process on the Pd-Pt ARSs strongly prefers incomplete oxidation, which is further authenticated by the density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Qing Zeng
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengyuan Ma
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Liu
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Lin Xu
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Shaonan Tian
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Dong Chen
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Jing Wang
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China.
| | - Jun Yang
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Mei Y, Che F, Deskins NA. Modeling interfacial electric fields and the ethanol oxidation reaction at electrode surfaces. Phys Chem Chem Phys 2024; 26:27544-27560. [PMID: 39463334 DOI: 10.1039/d4cp02765e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The electrochemical environment present at surfaces can have a large effect on intended applications. Such environments may occur, for instance, at battery or electrocatalyst surfaces. Solvent, co-adsorbates, and electrical field effects may strongly influence surface chemistry. Understanding these phenomena is an on-going area of research, especially in the realm of electrocatalysis. Herein, we modeled key steps in the ethanol oxidation reaction (EOR) over a common EOR catalyst, Rh(111), using density functional theory. We assessed how the presence of electrical fields may influence important C-C and C-H bond scission and C-O bond formation reactions with and without co-adsorbed water. We found that electric fields combined with the presence of water can significantly affect surface chemistry, including adsorption and reaction energies. Our results show that C-C scission (necessary for the complete oxidation of ethanol) is most likely through CHxCO adsorbates. With no electric field or solvent present C-C scission of CHCO has the lowest reaction energy and dominates the oxidation of ethanol. But when applying strong negative fields (with or without solvent), the C-C scission of CH2CO and CHCO becomes competitive. The current work provides insights into how electric fields and water solvent affect EOR, especially when simulated using density functional theory.
Collapse
Affiliation(s)
- Yuhan Mei
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, USA.
| | - Fanglin Che
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts 01854, USA
| | - N Aaron Deskins
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, USA.
| |
Collapse
|
4
|
Du R, Zhong Q, Tan X, Liao L, Tang Z, Chen S, Yan D, Zhao X, Zeng F. Optimized Electrodeposition of Ni 2O 3 on Carbon Paper for Enhanced Electrocatalytic Oxidation of Ethanol. ACS OMEGA 2024; 9:30404-30414. [PMID: 39035965 PMCID: PMC11256107 DOI: 10.1021/acsomega.4c01658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/10/2024] [Accepted: 05/23/2024] [Indexed: 07/23/2024]
Abstract
The urgent need for sustainable and efficient energy conversion technologies has propelled research into novel electrocatalysts for fuel cell applications. This study investigates a carbon paper (CP)-supported Ni2O3 catalyst for the electrocatalytic oxidation of ethanol. We utilized electrodeposition to uniformly deposit/dop Ni2O3 onto the CP, creating an effective electrocatalyst. Our approach allows the tailoring of the doping degree by adjusting the electrodeposition potential. The optimal doping degree, achieved at a medium deposition potential, results in an electrode with high intrinsic activity and a substantial electrochemically active surface area (ECSA), thereby enhancing its electrocatalytic activity. This catalyst efficiently facilitates the oxidation of ethanol to formic acid while maintaining good stability. The enhanced performance is attributed to the effective interface and interaction between Ni2O3 and CP. This work not only provides insights into the design of efficient Ni-based catalysts for ethanol oxidation but also paves the way for developing advanced materials for renewable energy conversion.
Collapse
Affiliation(s)
- Ruixing Du
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Qitong Zhong
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Xing Tan
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Longfei Liao
- School
of Materials Science and Engineering, Harbin
Institute of Technology (Shenzhen), Shenzhen 518055, Guangdong, China
| | - Zhenchen Tang
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Shiming Chen
- School
of Intelligent Medicine, China Medical University, Shenyang 110122, Liaoning, China
| | - Dafeng Yan
- College
of Chemistry and Chemical Engineering, Hubei
University, Wuhan 430062, China
| | - Xuebin Zhao
- Technology
Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou 450000, China
| | - Feng Zeng
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| |
Collapse
|
5
|
Potbhare AK, Aziz SKT, Ayyub MM, Kahate A, Madankar R, Wankar S, Dutta A, Abdala A, Mohmood SH, Adhikari R, Chaudhary RG. Bioinspired graphene-based metal oxide nanocomposites for photocatalytic and electrochemical performances: an updated review. NANOSCALE ADVANCES 2024; 6:2539-2568. [PMID: 38752147 PMCID: PMC11093270 DOI: 10.1039/d3na01071f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/04/2024] [Indexed: 05/18/2024]
Abstract
Considering the rapidly increasing population, the development of new resources, skills, and devices that can provide safe potable water and clean energy remains one of the vital research topics for the scientific community. Owing to this, scientific community discovered such material for tackle this issue of environment benign, the new materials with graphene functionalized derivatives show significant advantages for application in multifunctional catalysis and energy storage systems. Herein, we highlight the recent methods reported for the preparation of graphene-based materials by focusing on the following aspects: (i) transformation of graphite/graphite oxide into graphene/graphene oxide via exfoliation and reduction; (ii) bioinspired fabrication or modification of graphene with various metal oxides and its applications in photocatalysis and storage systems. The kinetics of photocatalysis and the effects of different parameters (such as photocatalyst dose and charge-carrier scavengers) for the optimization of the degradation efficiency of organic dyes, phenol compounds, antibiotics, and pharmaceutical drugs are discussed. Further, we present a brief introduction on different graphene-based metal oxides and a systematic survey of the recently published research literature on electrode materials for lithium-ion batteries (LIBs), supercapacitors, and fuel cells. Subsequently, the power density, stability, pseudocapacitance charge/discharge process, capacity and electrochemical reaction mechanisms of intercalation, and conversion- and alloying-type anode materials are summarized in detail. Furthermore, we thoroughly distinguish the intrinsic differences among underpotential deposition, intercalation, and conventional pseudocapacitance of electrode materials. This review offers a meaningful reference for the construction and fabrication of graphene-based metal oxides as effective photocatalysts for photodegradation study and high-performance optimization of anode materials for LIBs, supercapacitors, and fuel cells.
Collapse
Affiliation(s)
- Ajay K Potbhare
- Post Graduate Department of Chemistry, Seth Kesarimal Porwal College of Arts and Science and Commerce Kamptee-441001 India
| | - S K Tarik Aziz
- Chemistry Department, Indian Institute of Technology, Bombay Powai 400076 India
| | - Mohd Monis Ayyub
- New Chemistry Unit, International Centre for Materials Science and Sheikh Saqr Laboratory, Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore India
| | - Aniket Kahate
- Post Graduate Department of Chemistry, Seth Kesarimal Porwal College of Arts and Science and Commerce Kamptee-441001 India
| | - Rohit Madankar
- Post Graduate Department of Chemistry, Seth Kesarimal Porwal College of Arts and Science and Commerce Kamptee-441001 India
| | - Sneha Wankar
- Post Graduate Teaching Department of Chemistry, Gondwana University Gadchiroli 442605 India
| | - Arnab Dutta
- Chemistry Department, Indian Institute of Technology, Bombay Powai 400076 India
| | - Ahmed Abdala
- Chemical Engineering Program, Texas A&M University at Qatar POB 23784 Doha Qatar
| | - Sami H Mohmood
- Department of Physics, The University of Jordan Amman 11942 Jordan
| | - Rameshwar Adhikari
- Central Department of Chemistry and Research Centre for Applied Science and Technology (RECAST), Tribhuvan University Kathmandu Nepal
| | - Ratiram G Chaudhary
- Post Graduate Department of Chemistry, Seth Kesarimal Porwal College of Arts and Science and Commerce Kamptee-441001 India
| |
Collapse
|
6
|
Liang C, Zhao R, Chen T, Luo Y, Hu J, Qi P, Ding W. Recent Approaches for Cleaving the C─C Bond During Ethanol Electro-Oxidation Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308958. [PMID: 38342625 PMCID: PMC11022732 DOI: 10.1002/advs.202308958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/10/2024] [Indexed: 02/13/2024]
Abstract
Direct ethanol fuel cells (DEFCs) play an indispensable role in the cyclic utilization of carbon resources due to its high volumetric energy density, high efficiency, and environmental benign character. However, owing to the chemically stable carbon-carbon (C─C) bond of ethanol, its incomplete electrooxidation at the anode severely inhibits the energy and power density output of DEFCs. The efficiency of C─C bond cleaving on the state-of-the-art Pt or Pd catalysts is reported as low as 7.5%. Recently, tremendous efforts are devoted to this field, and some effective strategies are put forward to facilitate the cleavage of the C─C bond. It is the right time to summarize the major breakthroughs in ethanol electrooxidation reaction. In this review, some optimization strategies including constructing core-shell nanostructure with alloying effect, doping other metal atoms in Pt and Pd catalysts, engineering composite catalyst with interface synergism, introducing cascade catalytic sites, and so on, are systematically summarized. In addition, the catalytic mechanism as well as the correlations between the catalyst structure and catalytic efficiency are further discussed. Finally, the prevailing limitations and feasible improvement directions for ethanol electrooxidation are proposed.
Collapse
Affiliation(s)
- Chenjia Liang
- School of Chemistry and Chemical EngineeringNanjing UniversityNanjingJiangsu210023China
| | - Ruiyao Zhao
- School of Chemistry and Chemical EngineeringNanjing UniversityNanjingJiangsu210023China
| | - Teng Chen
- School of Chemistry and Chemical EngineeringNanjing UniversityNanjingJiangsu210023China
- Department of Aviation Oil and MaterialAir Force Logistics AcademyXuzhouJiangsu221000China
| | - Yi Luo
- Department of Aviation Oil and MaterialAir Force Logistics AcademyXuzhouJiangsu221000China
| | - Jianqiang Hu
- Department of Aviation Oil and MaterialAir Force Logistics AcademyXuzhouJiangsu221000China
| | - Ping Qi
- Department of Aviation Oil and MaterialAir Force Logistics AcademyXuzhouJiangsu221000China
| | - Weiping Ding
- School of Chemistry and Chemical EngineeringNanjing UniversityNanjingJiangsu210023China
| |
Collapse
|
7
|
Ye Y, Xu J, Li X, Jian Y, Xie F, Chen J, Jin Y, Yu X, Lee MH, Wang N, Sun S, Meng H. Orbital Occupancy Modulation to Optimize Intermediate Absorption for Efficient Electrocatalysts in Water Electrolysis and Zinc-Ethanol-Air Battery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2312618. [PMID: 38439598 DOI: 10.1002/adma.202312618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/04/2024] [Indexed: 03/06/2024]
Abstract
Spin engineering is a promising way to modulate the interaction between the metal d-orbital and the intermediates and thus enhance the catalytic kinetics. Herein, an innovative strategy is reported to modulate the spin state of Co by regulating its coordinating environment. o-c-CoSe2 -Ni is prepared as pre-catalyst, then in situ electrochemical impedance spectroscopy (EIS) and in situ Raman spectroscopy are employed to prove phase transition, and CoOOH/Co3 O4 is formed on the surface as active sites. In hybrid water electrolysis, the voltage has a negative shift, and in zinc-ethanol-air battery, the charging voltage is lowered and the cycling stability is greatly increased. Coordinated atom substitution and crystalline symmetry change are combined to regulate the absorption ability of reaction intermediates with balanced optimal adsorption. Coordinated atom substitution weakens the adsorption while the crystalline symmetry change strengthens the adsorption. Importantly, the tetrahedral sites are introduced by Ni doping which enables the co-existence of four-coordinated sites and six-coordination sites in o-c-CoSe2 -Ni. The dz2 + dx2 -y2 orbital occupancy decreases after the atomic substitution, while increases after replacing the CoSe6 -Oh field with CoSe6 -Oh /CoSe4 -Td . This work explores a new direction for the preparation of efficient catalysts for water electrolysis and innovative zinc-ethanol-air battery.
Collapse
Affiliation(s)
- Yanting Ye
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Instrumental Analysis & Research Center, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Jinchang Xu
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Instrumental Analysis & Research Center, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Xiulan Li
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Instrumental Analysis & Research Center, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Yongqi Jian
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Instrumental Analysis & Research Center, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Fangyan Xie
- Instrumental Analysis & Research Center, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
| | - Jian Chen
- Instrumental Analysis & Research Center, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
| | - Yanshuo Jin
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Instrumental Analysis & Research Center, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Xiang Yu
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Instrumental Analysis & Research Center, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Ming-Hsien Lee
- Department of Physics, Tamkang University, New Taipei, 25137, Taiwan
| | - Nan Wang
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Instrumental Analysis & Research Center, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Shuhui Sun
- Institut National de la Recherche Scientifique (INRS), Center Énergie Matériaux Télécommunications, Varennes, Québec, J3X 1P7, Canada
| | - Hui Meng
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Instrumental Analysis & Research Center, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, China
| |
Collapse
|
8
|
Yu R, Shao R, Ning F, Yu Y, Zhang J, Ma XY, Zhu R, Li M, Lai J, Zhao Y, Zeng L, Zhang J, Xia Z. Electronic and Geometric Effects Endow PtRh Jagged Nanowires with Superior Ethanol Oxidation Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305817. [PMID: 37814379 DOI: 10.1002/smll.202305817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/04/2023] [Indexed: 10/11/2023]
Abstract
Complete ethanol oxidation reaction (EOR) in C1 pathway with 12 transferred electrons is highly desirable yet challenging in direct ethanol fuel cells. Herein, PtRh jagged nanowires synthesized via a simple wet-chemical approach exhibit exceptional EOR mass activity of 1.63 A mgPt-1 and specific activity of 4.07 mA cm-2 , 3.62-fold and 4.28-folds increments relative to Pt/C, respectively. High proportions of 69.33% and 73.42% of initial activity are also retained after chronoamperometric test (80 000 s) and 1500 consecutive potential cycles, respectively. More importantly, it is found that PtRh jagged nanowires possess superb anti-CO poisoning capability. Combining X-ray absorption spectroscopy, X-ray photoelectron spectroscopy as well as density functional theory calculations unveil that the remarkable catalytic activity and CO tolerance stem from both the Rh-induced electronic effect and geometric effect (manifested by shortened Pt─Pt bond length and shrinkage of lattice constants), which facilitates EOR catalysis in C1 pathway and improves reaction kinetics by reducing energy barriers of rate-determining steps (such as *CO → *COOH). The C1 pathway efficiency of PtRh jagged nanowires is further verified by the high intensity of CO2 relative to CH3 COOH/CH3 CHO in infrared reflection absorption spectroscopy.
Collapse
Affiliation(s)
- Renqin Yu
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Ruiwen Shao
- Beijing Advanced Innovation Center for Intelligent Robots and Systems and Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, 100081, China
| | - Fanghua Ning
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Yaodong Yu
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, China
| | - Jing Zhang
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Xian-Yin Ma
- Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Rongying Zhu
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Menggang Li
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Jianping Lai
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, China
| | - Yufeng Zhao
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Lingyou Zeng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Jiujun Zhang
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Zhonghong Xia
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
9
|
Yun Q, Ge Y, Shi Z, Liu J, Wang X, Zhang A, Huang B, Yao Y, Luo Q, Zhai L, Ge J, Peng Y, Gong C, Zhao M, Qin Y, Ma C, Wang G, Wa Q, Zhou X, Li Z, Li S, Zhai W, Yang H, Ren Y, Wang Y, Li L, Ruan X, Wu Y, Chen B, Lu Q, Lai Z, He Q, Huang X, Chen Y, Zhang H. Recent Progress on Phase Engineering of Nanomaterials. Chem Rev 2023. [PMID: 37962496 DOI: 10.1021/acs.chemrev.3c00459] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
As a key structural parameter, phase depicts the arrangement of atoms in materials. Normally, a nanomaterial exists in its thermodynamically stable crystal phase. With the development of nanotechnology, nanomaterials with unconventional crystal phases, which rarely exist in their bulk counterparts, or amorphous phase have been prepared using carefully controlled reaction conditions. Together these methods are beginning to enable phase engineering of nanomaterials (PEN), i.e., the synthesis of nanomaterials with unconventional phases and the transformation between different phases, to obtain desired properties and functions. This Review summarizes the research progress in the field of PEN. First, we present representative strategies for the direct synthesis of unconventional phases and modulation of phase transformation in diverse kinds of nanomaterials. We cover the synthesis of nanomaterials ranging from metal nanostructures such as Au, Ag, Cu, Pd, and Ru, and their alloys; metal oxides, borides, and carbides; to transition metal dichalcogenides (TMDs) and 2D layered materials. We review synthesis and growth methods ranging from wet-chemical reduction and seed-mediated epitaxial growth to chemical vapor deposition (CVD), high pressure phase transformation, and electron and ion-beam irradiation. After that, we summarize the significant influence of phase on the various properties of unconventional-phase nanomaterials. We also discuss the potential applications of the developed unconventional-phase nanomaterials in different areas including catalysis, electrochemical energy storage (batteries and supercapacitors), solar cells, optoelectronics, and sensing. Finally, we discuss existing challenges and future research directions in PEN.
Collapse
Affiliation(s)
- Qinbai Yun
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Department of Chemical and Biological Engineering & Energy Institute, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yiyao Ge
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Zhenyu Shi
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Jiawei Liu
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (A*STAR), Singapore, 627833, Singapore
| | - Xixi Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - An Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Biao Huang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Yao Yao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Qinxin Luo
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Li Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Jingjie Ge
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
| | - Yongwu Peng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chengtao Gong
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Meiting Zhao
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
| | - Yutian Qin
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
| | - Chen Ma
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Gang Wang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Qingbo Wa
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xichen Zhou
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Zijian Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Siyuan Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Wei Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Hua Yang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yi Ren
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yongji Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Lujing Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xinyang Ruan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yuxuan Wu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Bo Chen
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Qipeng Lu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhuangchai Lai
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Qiyuan He
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Xiao Huang
- Institute of Advanced Materials (IAM), School of Flexible Electronics (SoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Ye Chen
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
10
|
Yan W, Li G, Cui S, Park GS, Oh R, Chen W, Cheng X, Zhang JM, Li W, Ji LF, Akdim O, Huang X, Lin H, Yang J, Jiang YX, Sun SG. Ga-Modification Near-Surface Composition of Pt-Ga/C Catalyst Facilitates High-Efficiency Electrochemical Ethanol Oxidation through a C2 Intermediate. J Am Chem Soc 2023; 145:17220-17231. [PMID: 37492900 DOI: 10.1021/jacs.3c04320] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
In electrochemical ethanol oxidation reactions (EOR) catalyzed by Pt metal nanoparticles through a C2 route, the dissociation of the C-C bond in the ethanol molecule can be a limiting factor. Complete EOR processes producing CO2 were always exemplified by the oxidative dehydrogenation of C1 intermediates, a reaction route with less energy utilization efficiency. Here, we report a Pt3Ga/C electrocatalyst with a uniform distribution of Ga over the nanoparticle surface for EOR that produces CO2 at medium potentials (>0.3 V vs SCE) efficiently through direct and sustainable oxidation of C2 intermediate species, i.e., acetaldehyde. We demonstrate the excellent performance of the Pt3Ga-200/C catalyst by using electrochemical in situ Fourier transform infrared reflection spectroscopy (FTIR) and an isotopic labeling method. The atomic interval structure between Pt and Ga makes the surface of nanoparticles nonensembled, avoiding the formation of poisonous *CHx and *CO species via bridge-type adsorption of ethanol molecules. Meanwhile, the electron redistribution from Ga to Pt diminishes the *O/*OH adsorption and CO poisoning on Pt atoms, exposing more available sites for interaction with the C2 intermediates. Furthermore, the dissociation of H2O into *OH is facilitated by the high hydrophilicity of Ga, which is supported by DFT calculations, promoting the deep oxidation of C2 intermediates. Our work represents an extremely rare EOR process that produces CO2 without observing kinetic limitations under medium potential conditions.
Collapse
Affiliation(s)
- Wei Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Guang Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Shuangshuang Cui
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Gyeong-Su Park
- Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Rena Oh
- Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Weixin Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Xiaoyang Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Jun-Ming Zhang
- Shaanxi Normal University Key Laboratory of Magnetic Molecules & Magnetic Information Materials, Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030031, Xi'an, Shaanxi 710062, People's Republic of China
| | - Weize Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Li-Fei Ji
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Ouardia Akdim
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, Wales, U.K
| | - Xiaoyang Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, Wales, U.K
| | - Haixin Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Jian Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yan-Xia Jiang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Shi-Gang Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
11
|
Bera K, Chowdhury A, Bera SK, Das MR, Roy A, Das S, Bhattacharya SK. Pd Nanoparticle-Decorated Novel Ternary Bi 2O 2CO 3-Bi 2MoO 6-CuO Heterojunction for Enhanced Photo-electrocatalytic Ethanol Oxidation. ACS OMEGA 2023; 8:28419-28435. [PMID: 37576621 PMCID: PMC10413847 DOI: 10.1021/acsomega.3c02669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023]
Abstract
Recently, photo-electrooxidation of fuel using a noble metal-semiconductor junction has been one of the most promising approaches in fuel cell systems. Herein, we report the development of a Pd-supported Bi2MoO6-Bi2O2CO3-CuO novel ternary heterojunction for ethanol oxidation in alkali in the presence and absence of visible light. Various spectroscopic and microscopic characterization techniques confirm strong coupling between palladium nanoparticles and Bi2MoO6-Bi2O2CO3-CuO ternary heterojunction supports. The photo-electrocatalytic efficacy of the synthesized catalysts was inspected by cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS). The CV study reveals that the forward peak current density (in mA mg-1 of Pd) of the synthesized quaternary heterojunction was about 1482.5, which is 2.4, 4, and 4.6 times higher than that of Pd/CuO (608.3), Pd/Bi2MoO6-Bi2O2CO3 (368.3), and similarly synthesized Pd catalyst (321.5) under visible light radiation. The best heterojunction catalyst shows 2.21-fold higher peak current density in visible light compared to that in dark. CA study reveals that after operation for 6000 s, the current density of the quaternary electrode is 1.5 and 3.4 times greater than that of Pd/CuO and Pd/C catalysts, respectively. The greater photocurrent response, lower photoluminescence (PL) emission intensity, and smaller semicircle arc in the Nyquist plot of the quaternary catalyst demonstrate the efficient segregation and higher charge transfer conductance of photogenerated charges to facilitate the photo-electrooxidation process of ethanol. The stability test shows that the quaternary catalyst loses only 9.8 and 7.7% of its maximum current density after 500 cycles of CV operation in the dark and light, respectively, indicating that light energy is more beneficial in establishing high stability. The dramatic enhancement of the photo-electrocatalytic activity of the quaternary electrode is owing to the lower band gap, high ECSA, enhanced charge separation of photogenerated carriers (e--h+), and all cocatalytic support of Bi2MoO6, Bi2O2CO3, and CuO in Pd/ Bi2MoO6-Bi2O2CO3-CuO under visible light radiation. The morphology and structure of the used quaternary catalyst are tested using FESEM and PXRD. Finally, ex situ FTIR spectroscopy and HPLC techniques help understand the ethanol electrooxidation reaction mechanism.
Collapse
Affiliation(s)
- Kamal
Kanti Bera
- Physical
Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Anupam Chowdhury
- Physical
Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Shyamal Kanti Bera
- School
of Chemical Science, National Institute
of Science Education and Research (NISER), Bhubaneswar 752050, India
| | - Mahima Ranjan Das
- Department
of Physics, The University of Burdwan, Burdwan 713104, India
| | - Atanu Roy
- Department
of Instrumentation Science, Jadavpur University, Kolkata 700032, India
| | - Sachindranath Das
- Department
of Instrumentation Science, Jadavpur University, Kolkata 700032, India
| | | |
Collapse
|
12
|
Guo J, Liu W, Fu X, Jiao S. Wet-chemistry synthesis of two-dimensional Pt- and Pd-based intermetallic electrocatalysts for fuel cells. NANOSCALE 2023; 15:8508-8531. [PMID: 37114369 DOI: 10.1039/d3nr00955f] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Two-dimensional (2D) noble-metal-based nanomaterials have attracted tremendous attention and have widespread promising applications as a result of their unique physical, chemical, and electronic properties. Especially, 2D Pt- and Pd-based intermetallic nanoplates (IMNPs) and nanosheets (IMNSs) are widely studied for fuel cell (FC)-related reactions, including the cathodic oxygen reduction reaction (ORR) and anodic formic acid, methanol and ethanol oxidation reactions (FAOR, MOR and EOR). Wet-chemistry synthesis is a powerful strategy to prepare metallic nanocrystals with well-controlled dispersity, size, and composition. In this review, a fundamental understanding of the FC-related reactions is firstly elaborated. Subsequently, the current wet-chemistry synthesis pathways for 2D Pt- and Pd-based IMNPs and IMNSs are briefly summarized, as well as their electrocatalytic applications including in the ORR, FAOR, MOR, and EOR. Finally, we provide an overview of the opportunities and current challenges and give our perspectives on the development of high-performance 2D Pt- and Pd-based intermetallic electrocatalysts towards FCs. We hope this review offers timely information on the synthesis of 2D Pt- and Pd-based IMNPs and IMNSs and provides guidance for the efficient synthesis and application of them.
Collapse
Affiliation(s)
- Jingchun Guo
- Department of Experimental and Practical Teaching Management, West Anhui University, Lu'an 237012, China.
| | - Wei Liu
- Department of Experimental and Practical Teaching Management, West Anhui University, Lu'an 237012, China.
| | - Xucheng Fu
- Department of Experimental and Practical Teaching Management, West Anhui University, Lu'an 237012, China.
| | - Shilong Jiao
- School of Materials, Key Lab for Special Functional Materials of Ministry of Education, Henan University, Jinming Avenue, Kaifeng 475001, China.
| |
Collapse
|
13
|
Wang H, Guo Y, Mao Q, Yu H, Deng K, Wang Z, Li X, Xu Y, Wang L. Sulfur and phosphorus co-doping optimized electronic structure and modulated intermediate affinity on PdSP metallene for ethanol-assisted energy-saving H 2 production. NANOSCALE 2023; 15:7765-7771. [PMID: 37067453 DOI: 10.1039/d3nr01112g] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Coupling cathodic hydrogen evolution reaction (HER) and anodic electrochemical oxidation of organic small molecules in a co-electrolysis system could simultaneously realize high-value chemical generation and energy-saving hydrogen production, which, however, require high-performance electrocatalysts. In this work, we developed a one-step solvothermal method to synthesize S, P-co-doped Pd metallene (PdSP metallene) and employed it as a bifunctional electrocatalyst for both the HER and ethanol oxidation reaction (EOR). The co-doping of S and P atoms into Pd metallene could introduce multiple active sites and increase the electrochemically-active surface area. Moreover, the electronic interactions between Pd, S, and P atoms could regulate the electronic structure of the active sites and modulate the intermediate affinity on the resultant PdSP metallene, thus boosting the electrocatalytic HER and EOR performance. In the HER-EOR co-electrolysis system with bifunctional PdSP metallene electrocatalysts, only a 0.88 V of electrolysis voltage was required to fulfill 10 mA cm-2 current density, much lower than that of pure water electrolysis (1.41 V) using the same electrocatalysts.
Collapse
Affiliation(s)
- Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Yanan Guo
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Qiqi Mao
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Hongjie Yu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Kai Deng
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Ziqiang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Xiaonian Li
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - You Xu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|
14
|
Higareda A, Mares F, Bahena D, Esparza R. Structural Analysis of PtPd Core‐Shell Bimetallic Nanoparticles and their Enhanced Catalytic Performance for Ethanol Oxidation Reaction. ChemCatChem 2023. [DOI: 10.1002/cctc.202300030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Affiliation(s)
- América Higareda
- Unidad de Energía Renovable Centro de Investigación Científica de Yucatán A.C. Carretera Sierra Papacal – Chuburná Puerto, Km 5. Sierra Papacal 97302 Mérida Yucatán México
| | - Fabian Mares
- Centro de Física Aplicada y Tecnología Avanzada Universidad Nacional Autónoma de México Boulevard Juriquilla 3001 76230 Santiago de Querétaro Querétaro México
| | - Daniel Bahena
- Laboratorio Avanzado de Nanoscopía Electrónica Centro de Investigación y de Estudios Avanzados del I.P.N. Av. Instituto Politécnico Nacional 2508 07360 Ciudad de México México
| | - Rodrigo Esparza
- Centro de Física Aplicada y Tecnología Avanzada Universidad Nacional Autónoma de México Boulevard Juriquilla 3001 76230 Santiago de Querétaro Querétaro México
| |
Collapse
|
15
|
Zhang Q, Cui C, Wang Z, Deng F, Qiu S, Zhu Y, Jing B. Mott Schottky CoS x-MoO x@NF heterojunctions electrode for H 2 production and urea-rich wastewater purification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160170. [PMID: 36379335 DOI: 10.1016/j.scitotenv.2022.160170] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
The sluggish kinetics of oxygen evolution reaction (OER) is the bottleneck of alkaline water electrolysis. The urea oxidation reaction (UOR) with much faster kinetics was to replace OER. To further promote UOR, a heterojunction structure assembled of CoSx and MoOx was established, and then its superior catalytic activity was predicted by DFT calculation. After that, an ultra-thin CoSx-MoOx@nickel foam (CoSx-MoOx@NF) electrode with a Mott-Schottky structure was prepared via a facile hydrothermal method, followed by a low-temperature vulcanization. Results highlighted CoSx-MoOx@NF electrode presented a superior performance toward UOR, OER, and H2 evolution reaction (HER). Notably, it exhibited excellent electrocatalytic performance for OER (1.32 V vs. RHE, 10 mA cm-2), UOR (1.305 V vs. RHE, 10 mA cm-2), and urea-assisted overall water splitting with a low voltage (1.38 V, 10 mA cm-2) when CoSx-MoOx@NF electrode served as both anode and cathode. It is promising to use CoSx-MoOx@NF in an electrochemical system integrated with H2 generation and urea-rich wastewater purification.
Collapse
Affiliation(s)
- Qiwei Zhang
- School of Environment, State Key Laboratory of Urban Water Resources Centre, Harbin Institute of Technology, Harbin 150090, PR China
| | - Chongwei Cui
- School of Environment, State Key Laboratory of Urban Water Resources Centre, Harbin Institute of Technology, Harbin 150090, PR China
| | - Zhuowen Wang
- School of Environment, State Key Laboratory of Urban Water Resources Centre, Harbin Institute of Technology, Harbin 150090, PR China
| | - Fengxia Deng
- School of Environment, State Key Laboratory of Urban Water Resources Centre, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shan Qiu
- School of Environment, State Key Laboratory of Urban Water Resources Centre, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Yingshi Zhu
- School of Environment, State Key Laboratory of Urban Water Resources Centre, Harbin Institute of Technology, Harbin 150090, PR China
| | - Baojian Jing
- School of Environment, State Key Laboratory of Urban Water Resources Centre, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
16
|
Li Y, Xu Y, Li C, Zhu W, Chen W, Zhao Y, Liu R, Wang L. ZIF-67-Derived NiCo-Layered Double Hydroxide@Carbon Nanotube Architectures with Hollow Nanocage Structures as Enhanced Electrocatalysts for Ethanol Oxidation Reaction. Molecules 2023; 28:1173. [PMID: 36770843 PMCID: PMC9920546 DOI: 10.3390/molecules28031173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
The rational design of efficient Earth-abundant electrocatalysts for the ethanol oxidation reaction (EOR) is the key to developing direct ethanol fuel cells (DEFCs). Among these, the smart structure is highly demanded for highly efficient and stable non-precious electrocatalysts based on transition metals (such as Ni, Co, and Fe). In this work, high-performance NiCo-layered double hydroxide@carbon nanotube (NiCo-LDH@CNT) architectures with hollow nanocage structures as electrocatalysts for EOR were prepared via sacrificial ZIF-67 templates on CNTs. Comprehensive structural characterizations revealed that the as-synthesized NiCo-LDH@CNTs architecture displayed 3D hollow nanocages of NiCo-LDH and abundant interfacial structure between NiCo-LDH and CNTs, which could not only completely expose active sites by increasing the surface area but also facilitate the electron transfer during the electrocatalytic process, thus, improving EOR activity. Benefiting from the 3D hollow nanocages and interfacial structure fabricated by the sacrificial ZIF-67-templated method, the NiCo-LDH@CNTs-2.5% architecture exhibited enhanced electrocatalytic activity for ethanol oxidation compared to single-component NiCo-LDH, where the peak current density was 11.5 mA·cm-2, and the jf/jb value representing the resistance to catalyst poisoning was 1.72 in an alkaline environment. These results provide a new perspective on the fabrication of non-precious metal electrocatalysts for EOR in DEFCs.
Collapse
Affiliation(s)
- Yixuan Li
- College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Yanqi Xu
- College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
- Key Laboratory of New Technology for Processing Nonferrous Metals and Materials, Ministry of Education, Collaborative Innovation Center for Exploration of Nonferrous Metal Deposits and Efficient Utilization of Resources in Guangxi, Guilin University of Technology, Guilin 541004, China
| | - Cunjun Li
- College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
- Key Laboratory of New Technology for Processing Nonferrous Metals and Materials, Ministry of Education, Collaborative Innovation Center for Exploration of Nonferrous Metal Deposits and Efficient Utilization of Resources in Guangxi, Guilin University of Technology, Guilin 541004, China
| | - Wenfeng Zhu
- College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
- Key Laboratory of New Technology for Processing Nonferrous Metals and Materials, Ministry of Education, Collaborative Innovation Center for Exploration of Nonferrous Metal Deposits and Efficient Utilization of Resources in Guangxi, Guilin University of Technology, Guilin 541004, China
| | - Wei Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yufei Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ruping Liu
- Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Linjiang Wang
- College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
- Key Laboratory of New Technology for Processing Nonferrous Metals and Materials, Ministry of Education, Collaborative Innovation Center for Exploration of Nonferrous Metal Deposits and Efficient Utilization of Resources in Guangxi, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
17
|
Michaud SE, Barber MM, Rivera Cruz KE, McCrory CCL. Electrochemical Oxidation of Primary Alcohols Using a Co 2NiO 4 Catalyst: Effects of Alcohol Identity and Electrochemical Bias on Product Distribution. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Samuel E. Michaud
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan48109-1055, United States
| | - Michaela M. Barber
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan48109-1055, United States
| | - Kevin E. Rivera Cruz
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan48109-1055, United States
| | - Charles C. L. McCrory
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan48109-1055, United States
- Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan48109-1055, United States
| |
Collapse
|
18
|
Promoting the Electrocatalytic Ethanol Oxidation Activity of Pt by Alloying with Cu. Catalysts 2022. [DOI: 10.3390/catal12121562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
The development and commercialization of direct ethanol fuel cells requires active and durable electro-catalysts towards the ethanol oxidation reactions (EOR). Rational composition and morphology control of Pt-based alloy nanocrystals can not only enhance their EOR reactivity but also reduce the consumption of precious Pt. Herein, PtCu nanocubes (NCs)/CB enclosed by well-defined (100) facets were prepared by solution synthesis, exhibiting much higher mass activity (4.96 A mgPt−1) than PtCu nanoparticles (NPs)/CB with irregular shapes (3.26 A mgPt−1) and commercial Pt/C (1.67 A mgPt−1). CO stripping and in situ Fourier transform infrared spectroscopy (FTIR) experiments indicate that the alloying of Cu enhanced the adsorption of ethanol, accelerated the subsequent oxidation of intermediate species, and increased the resistance to CO poisoning of PtCu NCs/CB, as compared with commercial Pt/C. Therefore, alloying Pt with earth-abundant Cu under rational composition and surface control can optimize its surface and electronic structures and represents a promising strategy to promote the performance of electro-catalysts while reduce the use of precious metals.
Collapse
|
19
|
Xu B, Liu T, Liang X, Dou W, Geng H, Yu Z, Li Y, Zhang Y, Shao Q, Fan J, Huang X. Pd-Sb Rhombohedra with an Unconventional Rhombohedral Phase as a Trifunctional Electrocatalyst. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206528. [PMID: 36120846 DOI: 10.1002/adma.202206528] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Crystal phase engineering is an important strategy for designing noble-metal-based catalysts with optimized activity and stability. From the thermodynamic point of view, it remains a great challenge to synthesize unconventional phases of noble metals. Here, a new class of Pd-based nanostructure with unconventional rhombohedral Pd20 Sb7 phase is successfully synthesized. Benefiting from the high proportion of the unique exposed Pd20 Sb7 (003) surface, Pd20 Sb7 rhombohedra display much enhanced ethanol oxidation reaction (EOR) and oxygen reduction reaction performance compared with commercial Pd/C. Moreover, Pd20 Sb7 rhombohedra are also demonstrated as an effective air cathode in non-aqueous Li-air batteries with an overpotential of only 0.24 V. Density functional theory calculations reveal that the unique exposed facets of Pd20 Sb7 rhombohedra can not only reduce the excessive adsorption of CH3 CO* to CH3 COOH on Pd for promoting EOR process, but also weaken CO binding and CO poisoning. This work provides a new class of unconventional intermetallic nanomaterials with enhanced electrocatalytic activity.
Collapse
Affiliation(s)
- Bingyan Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Tianyang Liu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Xiaocong Liang
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Wenjie Dou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Hongbo Geng
- School of Materials Engineering, Changshu Institute of Technology, Changshu, 215500, China
| | - Zhiyang Yu
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Yafei Li
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Ying Zhang
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Qi Shao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu, 215123, China
| | - Jingmin Fan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
20
|
Zhao J, Shu J, Wang J, Yang H, Dong Z, Li S. Combining surface chemical functionalization with introducing reactive oxygen species boosts ethanol electrooxidation. NANOSCALE 2022; 14:17392-17400. [PMID: 36382672 DOI: 10.1039/d2nr04600h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The introduction of functional groups or oxygen vacancies into Pd-based electrocatalysts is a powerful strategy for enhancing the electrocatalytic performances for many electrocatalytic reactions. Herein, an amorphous ceria-modified Pd nanocomposite anchored on D-4-amino-phenylalanine (DAP)-functionalized graphene nanosheets (Pd-CeO2-x/FGS) was prepared by a facile and effective one-pot synthetic strategy and further used as an electrocatalyst for the ethanol oxidation reaction (EOR) in alkaline electrolytes. The obtained Pd-CeO2-x/FGS exhibits relatively high electrocatalytic activity, fast kinetics and excellent antipoisoning ability as well as robust durability for EOR, outperforming the comparable electrocatalysts as well as commercial Pd/C. The experimental results show that the enhanced EOR properties of Pd-CeO2-x/FGS can be attributed to the DAP-functionalization and CeO2-x-modification. Adequate functional groups (amino and carboxyl groups) and abundant oxygen vacancies were introduced in Pd-CeO2-x/FGS by DAP-functionalization and CeO2-x-modification. The functional groups facilitate the anchoring of small nanoparticles onto the substrate as well as modulate the electron density of Pd. The oxygen vacancies boost the adsorption ability of the reactive oxygen species (OHads) and accelerate the kinetics of the potential-limiting step for EOR. This study proposes a new strategy for the rational design of highly efficient catalysts for the electro-oxidation reaction.
Collapse
Affiliation(s)
- Jinjuan Zhao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Junhao Shu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Jiaxiao Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Honglei Yang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Zhengping Dong
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Shuwen Li
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| |
Collapse
|
21
|
Ma H, Cheng P, Chen C, Geng X, Yang K, Lv F, Ma J, Jiang Y, Liu Q, Su Y, Li J, Zhu N. Highly Selective Wearable Alcohol Homologue Sensors Derived from Pt-Coated Truncated Octahedron Au. ACS Sens 2022; 7:3067-3076. [PMID: 36173279 DOI: 10.1021/acssensors.2c01392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Unhealthy alcohol inhalation is among the top 10 causes of preventable death. However, the present alcohol sensors show poor selectivity among alcohol homologues. Herein, Pt-coated truncated octahedron Au (Ptm@Auto) as the electrocatalyst for a highly selective electrochemical sensor toward alcohol homologues has been designed. The alcohol sensor is realized by distinguishing the electro-oxidation behavior of methanol (MeOH), ethanol (EtOH), or isopropanol (2-propanol). Intermediates from alcohols are further oxidized to CO2 by Ptm@Auto, resulting in different oxidation peaks in cyclic voltammograms and successful distinction of alcohols. Ptm@Auto is then modified on wearable glove-based sensors for monitoring actual alcohol samples (MeOH fuel, vodka, and 2-propanol hand sanitizer), with good mechanical performance and repeatability. The exploration of the Ptm@Auto-based wearable alcohol sensor is expected to be suitable for environmental measurement with high selectivity for alcohol homologues or volatile organic compounds.
Collapse
Affiliation(s)
- Hongting Ma
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Peihao Cheng
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Chuanrui Chen
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Xiaodong Geng
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Kaizhou Yang
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Fengjuan Lv
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Junlin Ma
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Yue Jiang
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Quanli Liu
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Yan Su
- School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Jian Li
- Center for Reproductive Medicine, Dalian Women and Children's Medical Center (Group), Dalian 116037, China
| | - Nan Zhu
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| |
Collapse
|
22
|
Patra I, H. Mohammed F, Obaid Aldulaimi AK, Abbas khudhair D, Fakri Mustafa Y. A novel and efficient magnetically recoverable copper catalyst [MNPs-guanidine-bis(ethanol)-Cu] for Pd-free Sonogashira coupling reaction. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2116718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Indrajit Patra
- Department of Chemistry, West Bengal University, Kolkata, India
| | - Faris H. Mohammed
- Department of Chemistry, West Bengal University, Kolkata, India
- College of Science, University of Babylon, Babylon, Iraq
| | - Ahmed Kareem Obaid Aldulaimi
- Department of Chemistry, West Bengal University, Kolkata, India
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Dunia Abbas khudhair
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| |
Collapse
|
23
|
Guo J, Jiao S, Ya X, Zheng H, Wang R, Yu J, Wang H, Zhang Z, Liu W, He C, Fu X. Ultrathin Pd‐based Perforated Nanosheets for Fuel Cells Electrocatalysis. ChemElectroChem 2022. [DOI: 10.1002/celc.202200729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jingchun Guo
- West Anhui University Department of Experimental and Practical Teaching Management Yunlu Bridge 237012 Lu'an CHINA
| | - Shilong Jiao
- Henan University School of Materials, Key Lab for Special Functional Materials of Ministry of Education CHINA
| | - Xiuying Ya
- Wanxi College: West Anhui University Department of Experimental and Practical Teaching Management CHINA
| | - Huiling Zheng
- Wanxi College: West Anhui University Department of Experimental and Practical Teaching Management CHINA
| | - Ran Wang
- Wanxi College: West Anhui University Department of Experimental and Practical Teaching Management CHINA
| | - Jiao Yu
- Wanxi College: West Anhui University Department of Experimental and Practical Teaching Management CHINA
| | - Huanyu Wang
- Wanxi College: West Anhui University Department of Experimental and Practical Teaching Management CHINA
| | - Zhilin Zhang
- Wanxi College: West Anhui University Department of Experimental and Practical Teaching Management CHINA
| | - Wei Liu
- Wanxi College: West Anhui University Department of Experimental and Practical Teaching Management CHINA
| | - Congxiao He
- Wanxi College: West Anhui University Department of Experimental and Practical Teaching Management CHINA
| | - Xucheng Fu
- Wanxi College: West Anhui University Department of Experimental and Practical Teaching Management CHINA
| |
Collapse
|
24
|
Raya I, Kandeel M, Alsultany FH, Altimari US, Aravindhan S. Fabrication and Characterization of a Novel and Efficient Zinc Nanomagnetic Catalyst for Multicomponent Synthesis of Heterocycles. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2105908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Indah Raya
- Departement of Chemistry, Faculty of Mathematics and Natural Science, Hasanuddin University, Makassar, Indonesia
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelshikh University, Kafrelshikh, Egypt
| | - Forat H. Alsultany
- Medical Physics Department, Al-Mustaqbal University College, Hillah, Iraq
| | - Usama S. Altimari
- Departement of Chemistry, Al-Nisour University College, Baghdad, Iraq
| | - Surendar Aravindhan
- Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| |
Collapse
|
25
|
Ipadeola AK, Eid K, Lebechi AK, Abdullah AM, Ozoemena KI. Porous multi-metallic Pt-based nanostructures as efficient electrocatalysts for ethanol oxidation: A mini-review. Electrochem commun 2022. [DOI: 10.1016/j.elecom.2022.107330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
26
|
Cheng W, Sun L, He X, Tian L. Recent advances in fuel cell reaction electrocatalysis based on porous noble metal nanocatalysts. Dalton Trans 2022; 51:7763-7774. [PMID: 35508098 DOI: 10.1039/d2dt00841f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
As the center of fuel cells, electrocatalysts play a crucial role in determining the conversion efficiency from chemical energy to electrical energy. Therefore, the development of advanced electrocatalysts with both high activity and stability is significant but challenging. Active site, mass transport, and charge transfer are three central factors influencing the catalytic performance of electrocatalysts. Endowed with rich available surface active sites, facilitated electron transfer and mass diffusion channels, and highly active components, porous noble metal nanomaterials are widely considered as promising electrocatalysts toward fuel cell-related reactions. The past decade has witnessed great achievements in the design and fabrication of advanced porous noble metal nanocatalysts in the field of electrocatalytic fuel oxidation reaction (FOR) and oxygen reduction reaction (ORR). Herein, the recent research advances regarding porous noble metal nanocatalysts for fuel cell-related reactions are reviewed. In the discussions, the inherent structural features of porous noble metal nanostructures for electrocatalytic reactions, advanced synthetic strategies for the fabrication of porous noble metal nanostructures, and the structure-performance relationships are also provided.
Collapse
Affiliation(s)
- Wenjing Cheng
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining 835000, China. .,School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China
| | - Limei Sun
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China
| | - Xiaoyan He
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining 835000, China.
| | - Lin Tian
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining 835000, China. .,School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China
| |
Collapse
|
27
|
Wang M, Li D, Jia W, Zhao J, Ma J, Ma D, Tang T, Hu T, Jia J, Wu H. Amorphous NiCo2O4 decorated Pd/C as electrocatalysts for boosting ethanol oxidation reaction in alkaline media. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
28
|
Huang J, Ji L, Li X, Wu X, Qian N, Li J, Yan Y, Yang D, Zhang H. Facile synthesis of PdSn alloy octopods through the Stranski–Krastanov growth mechanism as electrocatalysts towards the ethanol oxidation reaction. CrystEngComm 2022. [DOI: 10.1039/d2ce00242f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pd72Sn28 octopods synthesized through the Stranski–Krastanov growth mode exhibited remarkably enhanced catalytic performance for the EOR relative to commercial Pd/C.
Collapse
Affiliation(s)
- Jingbo Huang
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| | - Liang Ji
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| | - Xiao Li
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| | - Xingqiao Wu
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| | - Ningkang Qian
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| | - Junjie Li
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| | - Yucong Yan
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
- BTR New Material Group CO., LTD., GuangMing District, Shenzhen 518106, People's Republic of China
| | - Deren Yang
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| | - Hui Zhang
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
- Institute of Advanced Semiconductors, Hangzhou Innovation Center, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| |
Collapse
|
29
|
Huang J, Liu Q, Yan Y, Qian N, Wu X, Ji L, Li X, Li J, Yang D, Zhang H. Strain effect in Pd@PdAg twinned nanocrystals towards ethanol oxidation electrocatalysis. NANOSCALE ADVANCES 2021; 4:111-116. [PMID: 36132945 PMCID: PMC9419203 DOI: 10.1039/d1na00681a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 10/16/2021] [Indexed: 05/26/2023]
Abstract
The strain effect is a critical knob to tune the catalytic performance and has received unprecedented research interest recently. However, it is difficult to distinguish the strain effect from the synergistic effect, especially in alloyed catalysts. Here we have synthesized Pd@PdAg icosahedra and {111} truncated bi-pyramids with only different surface strains between them as electrocatalysts for the ethanol oxidation reaction (EOR). Due to the same exposed facets and compositions of the two electrocatalysts, their EOR performances are mainly determined by the surface strains of PdAg alloys. These two electrocatalysts provide a perfect model to investigate the role of the strain effect in tuning the EOR performance. It is indicated that Pd@PdAg {111} truncated bi-pyramids with a surface strain of 0.3% show better catalytic activity and durability than Pd@PdAg icosahedra with a surface strain of 2.1% including commercial Pd/C. Density functional theory (DFT) calculations reveal that the lowered d-band center of 0.3% strained PdAg alloys relative to 2.1% strained ones reduced the adsorption energy of the acetate-evolution key intermediate *CH3CO, thereby promoting the enhancement in the catalytic performance of Pd@PdAg nanocrystals for the EOR. Electrochemical analysis further verifies this demonstration on the key role of the strain effect in PdAg alloys for tuning catalytic performance.
Collapse
Affiliation(s)
- Jingbo Huang
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University Hangzhou Zhejiang 310027 People's Republic of China
| | - Qixing Liu
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University Hangzhou Zhejiang 310027 People's Republic of China
| | - Yucong Yan
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University Hangzhou Zhejiang 310027 People's Republic of China
- BTR New Material Group CO., Ltd GuangMing District Shenzhen 518106 People's Republic of China
| | - Ningkang Qian
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University Hangzhou Zhejiang 310027 People's Republic of China
| | - Xingqiao Wu
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University Hangzhou Zhejiang 310027 People's Republic of China
| | - Liang Ji
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University Hangzhou Zhejiang 310027 People's Republic of China
| | - Xiao Li
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University Hangzhou Zhejiang 310027 People's Republic of China
| | - Junjie Li
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University Hangzhou Zhejiang 310027 People's Republic of China
| | - Deren Yang
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University Hangzhou Zhejiang 310027 People's Republic of China
| | - Hui Zhang
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University Hangzhou Zhejiang 310027 People's Republic of China
- Institute of Advanced Semiconductors, Hangzhou Innovation Center, Zhejiang University Hangzhou Zhejiang 310027 People's Republic of China
| |
Collapse
|
30
|
Mxene coupled over nitrogen-doped graphene anchoring palladium nanocrystals as an advanced electrocatalyst for the ethanol electrooxidation. J Colloid Interface Sci 2021; 610:944-952. [PMID: 34863544 DOI: 10.1016/j.jcis.2021.11.142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 11/23/2022]
Abstract
Development of good support materials is widely adopted as a valid strategy to fabricate high performance electrocatalysts for the ethanol oxidation reaction (EOR). In this study, the small diameter Ti3C2Tx MXene thin nanosheets inserted into three-dimensional nitrogen-doped grapheme (NG) was constructed via a facile hydrothermal method and employed as support materials for anchoring Pd nanocrystals (Pd/Ti3C2Tx@NG). The obtained-Pd/Ti3C2Tx@NG as EOR electrocatalyst in alkaline media outperforms the commercial Pd/C with better electrocatalytic activity, enhanced long-term stability and high CO tolerance. The Ti3C2Tx inserted into NG probably plays a key role for enhancing the properties of the synthesized-catalyst. Inserting Ti3C2Tx into NG allows the electrocatalysts to have high porosity, surface hydrophilicity, sufficient number of anchor sites for Pd nanocrystals and modifies its electronic properties, which can promote the electrocatalytic activity and durability. The enhanced EOR performance endows Pd/Ti3C2Tx@NG with great application potential in fuel cells as an anode catalyst. Furthermore, the prepared Ti3C2Tx@NG is also suitable in various desired applications, especially other oxidation reactions.
Collapse
|
31
|
Sharma RK, Yadav S, Dutta S, Kale HB, Warkad IR, Zbořil R, Varma RS, Gawande MB. Silver nanomaterials: synthesis and (electro/photo) catalytic applications. Chem Soc Rev 2021; 50:11293-11380. [PMID: 34661205 PMCID: PMC8942099 DOI: 10.1039/d0cs00912a] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In view of their unique characteristics and properties, silver nanomaterials (Ag NMs) have been used not only in the field of nanomedicine but also for diverse advanced catalytic technologies. In this comprehensive review, light is shed on general synthetic approaches encompassing chemical reduction, sonochemical, microwave, and thermal treatment among the preparative methods for the syntheses of Ag-based NMs and their catalytic applications. Additionally, some of the latest innovative approaches such as continuous flow integrated with MW and other benign approaches have been emphasized that ultimately pave the way for sustainability. Moreover, the potential applications of emerging Ag NMs, including sub nanomaterials and single atoms, in the field of liquid-phase catalysis, photocatalysis, and electrocatalysis as well as a positive role of Ag NMs in catalytic reactions are meticulously summarized. The scientific interest in the synthesis and applications of Ag NMs lies in the integrated benefits of their catalytic activity, selectivity, stability, and recovery. Therefore, the rise and journey of Ag NM-based catalysts will inspire a new generation of chemists to tailor and design robust catalysts that can effectively tackle major environmental challenges and help to replace noble metals in advanced catalytic applications. This overview concludes by providing future perspectives on the research into Ag NMs in the arena of electrocatalysis and photocatalysis.
Collapse
Affiliation(s)
- Rakesh Kumar Sharma
- Green Chemistry Network Centre, University of Delhi, New Delhi-110007, India.
| | - Sneha Yadav
- Green Chemistry Network Centre, University of Delhi, New Delhi-110007, India.
| | - Sriparna Dutta
- Green Chemistry Network Centre, University of Delhi, New Delhi-110007, India.
| | - Hanumant B Kale
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Mumbai-Marathwada Campus, Jalna-431213, Maharashtra, India.
| | - Indrajeet R Warkad
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Mumbai-Marathwada Campus, Jalna-431213, Maharashtra, India.
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
- Nanotechnology Centre, CEET, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
- U. S. Environmental Protection Agency, ORD, Center for Environmental Solutions and Emergency Response Water Infrastructure Division/Chemical Methods and Treatment Branch, 26 West Martin Luther King Drive, MS 483 Cincinnati, Ohio 45268, USA.
| | - Manoj B Gawande
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Mumbai-Marathwada Campus, Jalna-431213, Maharashtra, India.
| |
Collapse
|
32
|
Trincado M, Bösken J, Grützmacher H. Homogeneously catalyzed acceptorless dehydrogenation of alcohols: A progress report. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213967] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
33
|
Wolff N, Rivada‐Wheelaghan O, Tocqueville D. Molecular Electrocatalytic Hydrogenation of Carbonyls and Dehydrogenation of Alcohols. ChemElectroChem 2021. [DOI: 10.1002/celc.202100617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Niklas Wolff
- Laboratoire d'Électrochimie Moléculaire Université de Paris, CNRS F-75006 Paris France
| | | | - Damien Tocqueville
- Laboratoire d'Électrochimie Moléculaire Université de Paris, CNRS F-75006 Paris France
| |
Collapse
|
34
|
Wang Z, Wang L, Zhu W, Zeng T, Wu W, Lei Z, Tan Y, Lv H, Cheng N. Pt 3Sn nanoparticles enriched with SnO 2/Pt 3Sn interfaces for highly efficient alcohol electrooxidation. NANOSCALE ADVANCES 2021; 3:5062-5067. [PMID: 36132342 PMCID: PMC9419862 DOI: 10.1039/d1na00314c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/02/2021] [Indexed: 06/15/2023]
Abstract
Pt3Sn nanoparticles (NPs) enriched with Pt3Sn/ultra-small SnO2 interfaces (Pt3Sn@u-SnO2/NG) were synthesized through a thermal treatment of Pt2Sn/NG in a H2 atmosphere, followed by annealing under H2 and air conditions. The unique structure of Pt3Sn NPs enriched with Pt3Sn/SnO2 interfaces was observed on the Pt3Sn@u-SnO2/NG catalyst based on HRTEM. The optimized Pt3Sn@u-SnO2/NG catalyst achieves high catalytic activity with an ethanol oxidation reaction (EOR) activity of 366 mA mgPt -1 and a methanol oxidation reaction (MOR) activity of 503 mA mgPt -1 at the potential of 0.7 V, which are eight-fold and five-fold higher than those for the commercial Pt/C catalyst (44 and 99 mA mgPt -1, respectively). The Pt3Sn@u-SnO2/NG catalyst is found to be 3 times more stable and have higher CO tolerance than Pt/C. The outstanding performance of the Pt3Sn@u-SnO2/NG catalyst should be ascribed to the synergetic effect induced by the unique structure of Pt3Sn NPs enriched with Pt3Sn/SnO2 interfaces. The synergetic effect between Pt3Sn NPs and ultra-small SnO2 increases the performance for alcohol oxidation because the Sn in both Pt3Sn and SnO2 favors the removal of COads on the nearby Pt by providing OHads species at low potentials. The present work suggests that the Pt3Sn@u-SnO2 is indeed a unique kind of efficient electrocatalyst for alcohol electrooxidation.
Collapse
Affiliation(s)
- Zichen Wang
- College of Materials Science and Engineering, Fuzhou University Fuzhou 350108 Fujian China
| | - Liang Wang
- College of Materials Science and Engineering, Fuzhou University Fuzhou 350108 Fujian China
| | - Wangbin Zhu
- College of Materials Science and Engineering, Fuzhou University Fuzhou 350108 Fujian China
| | - Tang Zeng
- College of Materials Science and Engineering, Fuzhou University Fuzhou 350108 Fujian China
| | - Wei Wu
- College of Materials Science and Engineering, Fuzhou University Fuzhou 350108 Fujian China
| | - Zhao Lei
- College of Materials Science and Engineering, Fuzhou University Fuzhou 350108 Fujian China
| | - Yangyang Tan
- College of Materials Science and Engineering, Fuzhou University Fuzhou 350108 Fujian China
| | - Haifeng Lv
- PEM Fuel Cell Catalyst Research and Development Center Shenzhen Guangdong 518057 China
- Materials Science Division, Argonne National Laboratory Argonne IL 60439 USA
| | - Niancai Cheng
- College of Materials Science and Engineering, Fuzhou University Fuzhou 350108 Fujian China
| |
Collapse
|
35
|
Mei Y, Deskins NA. An evaluation of solvent effects and ethanol oxidation. Phys Chem Chem Phys 2021; 23:16180-16192. [PMID: 34297022 DOI: 10.1039/d1cp00630d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Understanding liquid-metal interfaces in catalysis is important, as the liquid can speed up surface reactions, increase the selectivity of products, and open up new favorable reaction pathways. In this work we modeled using density functional theory various steps in ethanol oxidation/decomposition over Rh(111). We considered implicit (continuum), explicit, and hybrid (implicit combined with explicit) solvation approaches, as well as two solvents, water and ethanol. We focused on modeling adsorption steps, as well as C-C/C-H bond scission and C-O bond formation reactions. Implicit solvation had very little effect on adsorption and reaction free energies. However, using the explicit and hybrid models, some free energies changed significantly. Furthermore, ethanol solvent had a more considerable impact than water solvent. We observed that preferred reaction pathways for C-C scission changed depending on the solvation model and solvent choice (ethanol or water). We also applied the bond-additivity solvation method to calculate heats of adsorption. Heats of adsorption and reaction using the bond-additivity model followed the same trends as the other solvation models, but were ∼1.1 eV more endothermic. Our work highlights how different solvation approaches can influence analysis of the oxidation/decomposition of organic surface species.
Collapse
Affiliation(s)
- Yuhan Mei
- Department of Chemical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts 01609, USA.
| | | |
Collapse
|
36
|
Zhang G, Shi Y, Fang Y, Cao D, Guo S, Wang Q, Chen Y, Cui P, Cheng S. Ordered PdCu-Based Core-Shell Concave Nanocubes Enclosed by High-Index Facets for Ethanol Electrooxidation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33147-33156. [PMID: 34251167 DOI: 10.1021/acsami.1c08691] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Crystal phase engineering is a powerful strategy for regulating the performance of electrocatalysts toward many electrocatalytic reactions. Herein we demonstrate that Au@Pd1Cu concave nanocubes (CNCs) with an ordered body-centered cubic (bcc) PdCu alloy shell enclosed by many high active high-index facets can be adopted as highly active yet stable electrocatalysts for the ethanol oxidation reaction (EOR). These CNCs are more efficient than other nanocrystals with a disordered face-centered cubic (fcc) PdCu alloy surface and display high mass and specific activities of 10.59 A mgpd-1 and 33.24 mA cm-2, which are 11.7 times and 4.1 times higher than those of commercial Pd black, respectively. Our core-shell CNCs also exhibit robust durability with the weakest decay in activity after 250 potential-scanning cycles, as well as outstanding antipoisoning ability. Alloying with Cu and the ordered bcc phase surface can provide abundant OHads species to oxidize carbonaceous poison to avoid catalyst poisoning, and the exposed high-index facets on the surface can act as highly catalytic sites.
Collapse
Affiliation(s)
- Genlei Zhang
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Hefei University of Technology, Hefei, 230009, P.R. China
| | - Yan Shi
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Hefei University of Technology, Hefei, 230009, P.R. China
| | - Yan Fang
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Hefei University of Technology, Hefei, 230009, P.R. China
| | - Dongjie Cao
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Hefei University of Technology, Hefei, 230009, P.R. China
| | - Shiyu Guo
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Hefei University of Technology, Hefei, 230009, P.R. China
| | - Qi Wang
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Hefei University of Technology, Hefei, 230009, P.R. China
| | - Yazhong Chen
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Hefei University of Technology, Hefei, 230009, P.R. China
| | - Peng Cui
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Hefei University of Technology, Hefei, 230009, P.R. China
| | - Sheng Cheng
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P.R. China
| |
Collapse
|
37
|
Funo S, Sato F, Cai Z, Chang G, He Y, Oyama M. Codeposition of Platinum and Gold on Nickel Wire Electrodes via Galvanic Replacement Reactions for Electrocatalytic Oxidation of Alcohols. ACS OMEGA 2021; 6:18395-18403. [PMID: 34308070 PMCID: PMC8296713 DOI: 10.1021/acsomega.1c02393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Codeposition of Pt and Au on Ni wire was performed using a simple treatment of immersing Ni wire in aqueous solutions containing both K2PtCl4 and HAuCl4. For evaluating the electrochemical properties of the thus-prepared electrodes, cyclic voltammograms (CVs) of 1.0 M ethanol in 1.0 M NaOH aqueous solutions were recorded. Compared with Pt- or Au-deposited Ni wire electrodes prepared by treating Ni wire in aqueous solutions of a single component, e.g., 1.0 mM K2PtCl4 or 1.0 mM HAuCl4, a noteworthy increase in the electrocatalytic current was observed for the oxidation of ethanol with a PtAu-codeposited Ni (PtAu/Ni) wire electrode even when it was prepared in an aqueous solution containing both 0.10 mM K2PtCl4 and 0.10 mM HAuCl4. In addition, the shape and the peak potentials of CVs recorded using PtAu/Ni wire electrodes were found to be different from those recorded with the Pt- or Au-deposited Ni wire electrodes. Because the CV responses typical of the PtAu/Ni wire electrodes were observed even when a PtAu/Ni wire electrode was prepared in an aqueous solution containing both 0.010 mM K2PtCl4 and 1.0 mM HAuCl4, it is considered that a small amount of Pt was effectively modified or incorporated and affected the electrochemical properties significantly. The CV results for ethanol oxidation were compared with those for the electrocatalytic oxidations of methanol, 1-propanol, and 2-propanol. Besides, the CV results recorded with the present PtAu/Ni wire electrodes are discussed in comparison with some previous results obtained using other PtAu nanoelectrocatalysts.
Collapse
Affiliation(s)
- Sota Funo
- Department
of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8520, Japan
| | - Fumikazu Sato
- Department
of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8520, Japan
| | - Zhiwei Cai
- Ministry-of-Education
Key Laboratory for the Green Preparation and Application of Functional
Materials, Hubei Key Laboratory of Polymer Materials, School of Materials
Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang, Wuhan 430062, China
| | - Gang Chang
- Ministry-of-Education
Key Laboratory for the Green Preparation and Application of Functional
Materials, Hubei Key Laboratory of Polymer Materials, School of Materials
Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang, Wuhan 430062, China
| | - Yunbin He
- Ministry-of-Education
Key Laboratory for the Green Preparation and Application of Functional
Materials, Hubei Key Laboratory of Polymer Materials, School of Materials
Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang, Wuhan 430062, China
| | - Munetaka Oyama
- Department
of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8520, Japan
| |
Collapse
|
38
|
Li Z, Song M, Zhu W, Zhuang W, Du X, Tian L. MOF-derived hollow heterostructures for advanced electrocatalysis. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213946] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
39
|
Müller D, Zámbó D, Dorfs D, Bigall NC. Cryoaerogels and Cryohydrogels as Efficient Electrocatalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007908. [PMID: 33749130 DOI: 10.1002/smll.202007908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/01/2021] [Indexed: 05/14/2023]
Abstract
Additive-free cryoaerogel coatings from noble metal nanoparticles are prepared and electrochemically investigated. By using liquid nitrogen or isopentane as cooling medium, two different superstructures are created for each type of noble metal nanoparticle. These materials (made from the same amount of particles) have superior morphological and catalytic properties as compared to simply immobilized, densely packed nanoparticles. The morphology of all materials is investigated with scanning electron microscopy (SEM). Electrochemically active surface areas (ECSAs) are calculated from cyclic voltammetry measurements. The catalytic activity is studied for the ethanol oxidation reaction (EOR). Both are found to be increased for superstructured materials prepared by cryoaerogelation. Furthermore, cryoaerogels with cellular to dendritic structure that arise from freezing with isopentane show the best catalytic performance and highest ECSA. Moreover, as a new class of materials, cryohydrogels are created for the first time by thawing flash-frozen nanoparticle solutions. Structure and morphology of these materials match with the corresponding types of cryoaerogels and are confirmed via SEM. Even the catalytic activity in EOR is in accordance with the results from cryoaerogel coatings. As a proof of concept, this approach offers a novel platform towards the easier and faster production of cryogelated materials for wet-chemical applications.
Collapse
Affiliation(s)
- Dennis Müller
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstraße 3A, 30167, Hannover, Germany
- Laboratory for Nano and Quantum Engineering, Leibniz Universität Hannover, Schneiderberg 39, 30167, Hannover, Germany
| | - Dániel Zámbó
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstraße 3A, 30167, Hannover, Germany
- Laboratory for Nano and Quantum Engineering, Leibniz Universität Hannover, Schneiderberg 39, 30167, Hannover, Germany
| | - Dirk Dorfs
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstraße 3A, 30167, Hannover, Germany
- Laboratory for Nano and Quantum Engineering, Leibniz Universität Hannover, Schneiderberg 39, 30167, Hannover, Germany
- Cluster of Excellence PhoenixD, Photonics, Optics and Engineering-Innovation Across Disciplines, 30167, Hannover, Germany
| | - Nadja C Bigall
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstraße 3A, 30167, Hannover, Germany
- Laboratory for Nano and Quantum Engineering, Leibniz Universität Hannover, Schneiderberg 39, 30167, Hannover, Germany
- Cluster of Excellence PhoenixD, Photonics, Optics and Engineering-Innovation Across Disciplines, 30167, Hannover, Germany
| |
Collapse
|
40
|
LIANG YY, WU Q, LIANG F. Analysis of Catalytic Activity of Au@Pd Core-shell Nanodendrites for Highly Efficient Ethanol Electrooxidation. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1016/s1872-2040(21)60103-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
41
|
Wala M, Simka W. Effect of Anode Material on Electrochemical Oxidation of Low Molecular Weight Alcohols-A Review. Molecules 2021; 26:2144. [PMID: 33918545 PMCID: PMC8070219 DOI: 10.3390/molecules26082144] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
The growing climate crisis inspires one of the greatest challenges of the 21st century-developing novel power sources. One of the concepts that offer clean, non-fossil electricity production is fuel cells, especially when the role of fuel is played by simple organic molecules, such as low molecular weight alcohols. The greatest drawback of this technology is the lack of electrocatalytic materials that would enhance reaction kinetics and good stability under process conditions. Currently, electrodes for direct alcohol fuel cells (DAFCs) are mainly based on platinum, which not only provides a poor reaction rate but also readily deactivates because of poisoning by reaction products. Because of these disadvantages, many researchers have focused on developing novel electrode materials with electrocatalytic properties towards the oxidation of simple alcohols, such as methanol, ethanol, ethylene glycol or propanol. This paper presents the development of electrode materials and addresses future challenges that still need to be overcome before direct alcohol fuel cells can be commercialized.
Collapse
Affiliation(s)
| | - Wojciech Simka
- Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Str. 6, 44-100 Gliwice, Poland;
| |
Collapse
|
42
|
Modification with platinum of silver-deposited nickel wire electrodes for electrocatalytic oxidation of alcohols. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2021.106939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
43
|
Antoniassi RM, Quiroz J, Barbosa ECM, Parreira LS, Isidoro RA, Spinacé EV, Silva JCM, Camargo PHC. Improving the Electrocatalytic Activities and CO Tolerance of Pt NPs by Incorporating TiO
2
Nanocubes onto Carbon Supports. ChemCatChem 2021. [DOI: 10.1002/cctc.202002066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rodolfo M. Antoniassi
- Instituto de Química (IQ) Universidade de São Paulo (USP) Cidade Universitária Av. Prof. Lineu Prestes, 748 São Paulo SP 05508-000 Brazil
| | - Jhon Quiroz
- Instituto de Química (IQ) Universidade de São Paulo (USP) Cidade Universitária Av. Prof. Lineu Prestes, 748 São Paulo SP 05508-000 Brazil
- Department of Chemistry University of Helsinki A.I. Virtasen aukio 1 Helsinki Finland
| | - Eduardo C. M. Barbosa
- Instituto de Química (IQ) Universidade de São Paulo (USP) Cidade Universitária Av. Prof. Lineu Prestes, 748 São Paulo SP 05508-000 Brazil
| | - Luanna S. Parreira
- Instituto de Química (IQ) Universidade de São Paulo (USP) Cidade Universitária Av. Prof. Lineu Prestes, 748 São Paulo SP 05508-000 Brazil
| | - Roberta A. Isidoro
- Instituto de Pesquisas Energéticas e Nucleares IPEN/CNEN-SP Cidade Universitária Av. Prof. Lineu Prestes, 2242 São Paulo SP 05508-900 Brazil
| | - Estevam V. Spinacé
- Instituto de Pesquisas Energéticas e Nucleares IPEN/CNEN-SP Cidade Universitária Av. Prof. Lineu Prestes, 2242 São Paulo SP 05508-900 Brazil
| | - Julio C. M. Silva
- Instituto de Química da Universidade Federal Fluminense Grupo de Eletroquímica e Materiais Nanoestruturados Campus Valonguinho Niterói RJ 24020-141 Brazil
| | - Pedro. H. C. Camargo
- Instituto de Química (IQ) Universidade de São Paulo (USP) Cidade Universitária Av. Prof. Lineu Prestes, 748 São Paulo SP 05508-000 Brazil
- Department of Chemistry University of Helsinki A.I. Virtasen aukio 1 Helsinki Finland
| |
Collapse
|
44
|
Pan Y, Paschoalino WJ, Szuchmacher Blum A, Mauzeroll J. Recent Advances in Bio-Templated Metallic Nanomaterial Synthesis and Electrocatalytic Applications. CHEMSUSCHEM 2021; 14:758-791. [PMID: 33296559 DOI: 10.1002/cssc.202002532] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Developing metallic nanocatalysts with high reaction activity, selectivity and practical durability is a promising and active subfield in electrocatalysis. In the classical "bottom-up" approach to synthesize stable nanomaterials by chemical reduction, stabilizing additives such as polymers or organic surfactants must be present to cap the nanoparticle to prevent material bulk aggregation. In recent years, biological systems have emerged as green alternatives to support the uncoated inorganic components. One key advantage of biological templates is their inherent ability to produce nanostructures with controllable composition, facet, size and morphology under ecologically friendly synthetic conditions, which are difficult to achieve with traditional inorganic synthesis. In addition, through genetic engineering or bioconjugation, bio-templates can provide numerous possibilities for surface functionalization to incorporate specific binding sites for the target metals. Therefore, in bio-templated systems, the electrocatalytic performance of the formed nanocatalyst can be tuned by precisely controlling the material surface chemistry. With controlled improvements in size, morphology, facet exposure, surface area and electron conductivity, bio-inspired nanomaterials often exhibit enhanced catalytic activity towards electrode reactions. In this Review, recent research developments are presented in bio-approaches for metallic nanomaterial synthesis and their applications in electrocatalysis for sustainable energy storage and conversion systems.
Collapse
Affiliation(s)
- Yani Pan
- Department of Chemistry, McGill University, 801 Sherbrooke West, Montreal H3 A 0B8, Quebec, Canada
| | - Waldemir J Paschoalino
- Department of Chemistry, McGill University, 801 Sherbrooke West, Montreal H3 A 0B8, Quebec, Canada
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas, P.O. Box 6154, 13084-971, Campinas, SP, Brazil
| | - Amy Szuchmacher Blum
- Department of Chemistry, McGill University, 801 Sherbrooke West, Montreal H3 A 0B8, Quebec, Canada
| | - Janine Mauzeroll
- Department of Chemistry, McGill University, 801 Sherbrooke West, Montreal H3 A 0B8, Quebec, Canada
| |
Collapse
|
45
|
Xu H, Shang H, Wang C, Du Y. Recent Progress of Ultrathin 2D Pd-Based Nanomaterials for Fuel Cell Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005092. [PMID: 33448126 DOI: 10.1002/smll.202005092] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/07/2020] [Indexed: 06/12/2023]
Abstract
Pd- and Pd-based catalysts have emerged as potential alternatives to Pt- and Pt-based catalysts for numerous electrocatalytic reactions, particularly fuel cell-related reactions, including the anodic fuel oxidation reaction (FOR) and cathodic oxygen reduction reaction (ORR). The creation of Pd- and Pd-based architectures with large surface areas, numerous low-coordinated atoms, and high density of defects and edges is the most promising strategy for improving the electrocatalytic performance of fuel cells. Recently, 2D Pd-based nanomaterials with single or few atom thickness have attracted increasing interest as potential candidates for both the ORR and FOR, owing to their remarkable advantages, including high intrinsic activity, high electron mobility, and straightforward surface functionalization. In this review, the recent advances in 2D Pd-based nanomaterials for the FOR and ORR are summarized. A fundamental understanding of the FOR and ORR is elaborated. Subsequently, the advantages and latest advances in 2D Pd-based nanomaterials for the FOR and ORR are scientifically and systematically summarized. A systematic discussion of the synthesis methods is also included which should guide researchers toward more efficient 2D Pd-based electrocatalysts. Lastly, the future outlook and trends in the development of 2D Pd-based nanomaterials toward fuel cell development are also presented.
Collapse
Affiliation(s)
- Hui Xu
- College of Chemistry Chemical Engineering and Materials Science Soochow University, Suzhou, 215123, P. R. China
| | - Hongyuan Shang
- College of Chemistry Chemical Engineering and Materials Science Soochow University, Suzhou, 215123, P. R. China
| | - Cheng Wang
- College of Chemistry Chemical Engineering and Materials Science Soochow University, Suzhou, 215123, P. R. China
| | - Yukou Du
- College of Chemistry Chemical Engineering and Materials Science Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
46
|
Ding Y, Xue Q, Hong QL, Li FM, Jiang YC, Li SN, Chen Y. Hydrogen and Potassium Acetate Co-Production from Electrochemical Reforming of Ethanol at Ultrathin Cobalt Sulfide Nanosheets on Nickel Foam. ACS APPLIED MATERIALS & INTERFACES 2021; 13:4026-4033. [PMID: 33459016 DOI: 10.1021/acsami.0c20554] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The sluggish reaction kinetics of the anodic oxygen evolution reaction increases the energy consumption of the overall water electrolysis for high-purity hydrogen generation. In this work, ultrathin cobalt sulfide nanosheets (Co3S4-NSs) on nickel foam (Ni-F) nanohybrids (termed as Co3S4-NSs/Ni-F) are synthesized using cyanogel hydrolysis and a sulfurization two-step approach. Physical characterizations reveal that Co3S4-NSs with a 1.7 nm thickness have abundant holes, implying the big surface area, abundant active edge atoms, and sufficient active sites. Electrochemical measurements show that as-synthesized Co3S4-NSs/Ni-F have excellent electrocatalytic activity and selectivity for ethanol oxidation reaction and hydrogen evolution reaction. Due to their bifunctional property of Co3S4-NSs/Ni-F nanohybrids, a symmetric Co3S4-NSs/Ni-F∥Co3S4-NSs/Ni-F ethanol electrolyzer can be effectively constructed, which only requires a 1.48 V electrolysis voltage to reach a current density of 10 mA cm-2 for high-purity hydrogen generation at the cathode as well as value-added potassium acetate generation at the anode, much lower than the electrolysis voltage of traditional electrochemical water splitting (1.64 V).
Collapse
Affiliation(s)
- Yu Ding
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, PR China
| | - Qi Xue
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, PR China
| | - Qing-Ling Hong
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China
| | - Fu-Min Li
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, PR China
| | - Yu-Cheng Jiang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China
| | - Shu-Ni Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China
| | - Yu Chen
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, PR China
| |
Collapse
|
47
|
Zhang G, Ma Y, Fu X, Zhao W, Liu F, Liu M, Zheng Y. Enriching the branching of Au@PdAu core–shell nanocrystals using a syringe pump: kinetics control meets lattice mismatch. CrystEngComm 2021. [DOI: 10.1039/d1ce00107h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Gold@palladium–gold nanocrystals with a tunable branched shape are prepared via seeded growth, where the use of a syringe pump allows the manipulation over reaction kinetics as coupled by surface diffusion and strain caused by lattice mismatch.
Collapse
Affiliation(s)
- Gongguo Zhang
- Department of Chemistry and Chemical Engineering
- Jining University
- Qufu
- P. R. China
| | - Yanyun Ma
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices
- Soochow University
- Suzhou
- P. R. China
| | - Xiaowei Fu
- Department of Chemistry and Chemical Engineering
- Jining University
- Qufu
- P. R. China
| | - Wenjun Zhao
- Department of Chemistry and Chemical Engineering
- Jining University
- Qufu
- P. R. China
| | - Feng Liu
- International Research Center for Renewable Energy
- National Key Laboratory of Multiphase Flow in Power Engineering
- Xi'an Jiaotong University
- Xi'an
- China
| | - Maochang Liu
- International Research Center for Renewable Energy
- National Key Laboratory of Multiphase Flow in Power Engineering
- Xi'an Jiaotong University
- Xi'an
- China
| | - Yiqun Zheng
- Department of Chemistry and Chemical Engineering
- Jining University
- Qufu
- P. R. China
| |
Collapse
|
48
|
Li S, Yang M, Jin R, Niu H, Liao C, Yang H, Jin J, Ma J. Coupling palladium nanocrystals over D‑phenylalanine-functionalized carbon nanotubes as an advanced electrocatalyst for hydrogen evolution and ethanol oxidation. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
49
|
Toward Overcoming the Challenges in the Comparison of Different Pd Nanocatalysts: Case Study of the Ethanol Oxidation Reaction. INORGANICS 2020. [DOI: 10.3390/inorganics8110059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Precious metal nanoparticles, in particular palladium nanomaterials, show excellent catalytic properties and are key in the development of energy systems. For instance, ethanol fuel cells are promising devices for sustainable energy conversion, where Pd-based catalysts are key catalysts for the related ethanol oxidation reaction (EOR). Pd is a limited resource; thus, a remaining challenge is the development of efficient and stable Pd-based catalysts. This calls for a deeper understanding of the Pd properties at the nanoscale. This knowledge can be gained in comparative studies of different Pd nanomaterials. However, such studies remain challenging to perform and interpret due to the lack of cross-studies using the same Pd nanomaterials as a reference. Here, as-prepared sub 3 nm diameter surfactant-free Pd nanoparticles supported on carbon are obtained by a simple approach. The as-prepared catalysts with Pd loading 10 and 30 wt % show higher activity and stability compared to commercially available counterparts for the EOR. Upon electrochemical testing, a significant size increase and loss of electrochemical active surface are observed for the as-prepared catalysts, whereas the commercial samples show an increase in the electrochemically active surface area and moderate size increase. This study shines light on the challenging comparison of different catalysts across the literature. Further advancement in Pd (electro)catalyst design will gain from including self-prepared catalysts. The simple synthesis detailed easily leads to suitable nanoparticles to be used as a reference for more systematic comparative studies of Pd catalysts across the literature.
Collapse
|
50
|
Guo W, Meng Z, Chen N, Li H, Cai S, Wang R, Tang H. Co/N Co‐doped Micro‐/Mesoporous Carbon Nanospheres as Efficient Oxygen Reduction and Oxygen Evolution Reactions Electrocatalysts. ChemistrySelect 2020. [DOI: 10.1002/slct.202003423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Weibin Guo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 P. R. China
| | - Zihan Meng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 P. R. China
| | - Neng Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 P. R. China
| | - Hao Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 P. R. China
| | - Shichang Cai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 P. R. China
| | - Rui Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 P. R. China
| | - Haolin Tang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 P. R. China
| |
Collapse
|