1
|
Behloul S, Yan Z, De Oliveira Vigier K, Guégan F, Jérôme F. N,N-Dimethylhydrazine as a Reversible Derivatization Agent to Promote the Hydroxymethylation of Furfural with Formaldehyde. CHEMSUSCHEM 2025:e2500318. [PMID: 40131008 DOI: 10.1002/cssc.202500318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 03/26/2025]
Abstract
In this report, the synthesis of 5-hydroxymethylfurfural from concentrated feeds of two low-cost and industrially abundant chemicals: Furfural and formaldehyde is explored. By adjusting the acidity of the solvent, an alternative mechanism is discovered in which the reaction selectivity stops to the hydroxymethylation step, in contrast to previously reported acid-catalyzed pathways leading to the formation of the bisfuranic dimer as a major product. One of the keys of this study relies on the reversible derivation of the -CHO group of furfural with N,N-Dimethylhydrazine which plays a dual role: (1) it restores the nucleophilicity of the furan ring and (2) it reacts with HCHO to form in situ an electrophilic zwiterrionic species stabilized through hydrogen transfer. By means of experimental and theoretical investigations, this reaction is optimized and it is discovered that guaiacol can be used as a bio-based and safe solvent. Under optimized conditions, the hydroxymethylation of the furan ring of furfural occurs with more than 95% selectivity, at only 50 °C and with a stoichiometric amount of HCHO. A concentrated feed of furfural as high as 40 wt% in guaiacol can be employed without impacting the reaction selectivity, leading to an improvement of the reactor productivity to about 25 kg m-3 h-1. The recovery of the reaction products and the recycling of the N,N-dimehylhydrazone are also discussed.
Collapse
Affiliation(s)
- Sarah Behloul
- Institut de Chimie des Milieux et Matériaux de Poitiers, Université de Poitiers, CNRS, 1 rue Marcel Doré, 86073, Poitiers, France
| | - Zhen Yan
- Eco-Efficient Products and Process Laboratory, Syensqo/CNRS, 3966 Jin Du Rd., Xin Zhuang Industrial Zone, Shanghai, 201108, China
| | - Karine De Oliveira Vigier
- Institut de Chimie des Milieux et Matériaux de Poitiers, Université de Poitiers, CNRS, 1 rue Marcel Doré, 86073, Poitiers, France
| | - Frederic Guégan
- Institut de Chimie des Milieux et Matériaux de Poitiers, Université de Poitiers, CNRS, 1 rue Marcel Doré, 86073, Poitiers, France
| | - François Jérôme
- Institut de Chimie des Milieux et Matériaux de Poitiers, Université de Poitiers, CNRS, 1 rue Marcel Doré, 86073, Poitiers, France
| |
Collapse
|
2
|
Mattioli RR, Santos CS, de Souza BB, Branco PD, Bolt RRA, Raby‐Buck SE, Gomes Cabral TL, Tormena CF, Browne DL, Pastre JC. On the Valorisation of Chitin-Derived Furans by Milling. CHEMSUSCHEM 2025; 18:e202401584. [PMID: 39240242 PMCID: PMC11790004 DOI: 10.1002/cssc.202401584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/07/2024]
Abstract
Chitin-derived furans offer a sustainable alternative feedstock for nitrogen appended aromatic compounds. Herein, we address the challenge of using chitin-derived furans, 3-acetamido-5-acetylfuran (3A5AF) and 3-acetamido-5-furfural aldehyde (3A5F), to favour the formation of exo Diels-Alder adducts and 4-acetylaminophthalimides respectively, using a mechanochemical ball-milling technique. Mechanochemical activation is explored through the synthesis of 7-oxa-norbornene backbones with novel substitution pattern from 3A5AF in yields up to 77 % and improved exo:endo selectivity compared to solution-phase reactions. The synthesis of 4-acetylaminophthalimides from 3A5F in yields up to 79 % is also showcased from hydrazone derivatives.
Collapse
Affiliation(s)
- Renan Rodini Mattioli
- Institute of ChemistryState University of Campinas (UNICAMP)Campinas, SP13083-970Brazil
- Department of Pharmaceutical and Biological ChemistrySchool of PharmacyUniversity College London (UCL)29-39 Brunswick SquareLondonWC1N 1AXUK
| | - Camila Souza Santos
- Institute of ChemistryState University of Campinas (UNICAMP)Campinas, SP13083-970Brazil
| | - Bruna Butke de Souza
- Institute of ChemistryState University of Campinas (UNICAMP)Campinas, SP13083-970Brazil
| | | | - Robert R. A. Bolt
- Department of Pharmaceutical and Biological ChemistrySchool of PharmacyUniversity College London (UCL)29-39 Brunswick SquareLondonWC1N 1AXUK
| | - Sarah E. Raby‐Buck
- Department of Pharmaceutical and Biological ChemistrySchool of PharmacyUniversity College London (UCL)29-39 Brunswick SquareLondonWC1N 1AXUK
| | | | - Claudio F. Tormena
- Institute of ChemistryState University of Campinas (UNICAMP)Campinas, SP13083-970Brazil
| | - Duncan L. Browne
- Department of Pharmaceutical and Biological ChemistrySchool of PharmacyUniversity College London (UCL)29-39 Brunswick SquareLondonWC1N 1AXUK
| | - Julio C. Pastre
- Institute of ChemistryState University of Campinas (UNICAMP)Campinas, SP13083-970Brazil
| |
Collapse
|
3
|
Zheng S, Zhang Z, He S, Yang H, Atia H, Abdel-Mageed AM, Wohlrab S, Baráth E, Tin S, Heeres HJ, Deuss PJ, de Vries JG. Benzenoid Aromatics from Renewable Resources. Chem Rev 2024; 124:10701-10876. [PMID: 39288258 PMCID: PMC11467972 DOI: 10.1021/acs.chemrev.4c00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/25/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024]
Abstract
In this Review, all known chemical methods for the conversion of renewable resources into benzenoid aromatics are summarized. The raw materials that were taken into consideration are CO2; lignocellulose and its constituents cellulose, hemicellulose, and lignin; carbohydrates, mostly glucose, fructose, and xylose; chitin; fats and oils; terpenes; and materials that are easily obtained via fermentation, such as biogas, bioethanol, acetone, and many more. There are roughly two directions. One much used method is catalytic fast pyrolysis carried out at high temperatures (between 300 and 700 °C depending on the raw material), which leads to the formation of biochar; gases, such as CO, CO2, H2, and CH4; and an oil which is a mixture of hydrocarbons, mostly aromatics. The carbon selectivities of this method can be reasonably high when defined small molecules such as methanol or hexane are used but are rather low when highly oxygenated compounds such as lignocellulose are used. The other direction is largely based on the multistep conversion of platform chemicals obtained from lignocellulose, cellulose, or sugars and a limited number of fats and terpenes. Much research has focused on furan compounds such as furfural, 5-hydroxymethylfurfural, and 5-chloromethylfurfural. The conversion of lignocellulose to xylene via 5-chloromethylfurfural and dimethylfuran has led to the construction of two large-scale plants, one of which has been operational since 2023.
Collapse
Affiliation(s)
- Shasha Zheng
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Zhenlei Zhang
- State
Key Laboratory of Heavy Oil Processing, College of Chemical Engineering
and Environment, China University of Petroleum
(Beijing), 102249 Beijing, China
| | - Songbo He
- Joint International
Research Laboratory of Circular Carbon, Nanjing Tech University, Nanjing 211816, PR China
| | - Huaizhou Yang
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Hanan Atia
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Ali M. Abdel-Mageed
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Sebastian Wohlrab
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Eszter Baráth
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Sergey Tin
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Hero J. Heeres
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Peter J. Deuss
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Johannes G. de Vries
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| |
Collapse
|
4
|
Shukla H, Promcharoen P, Poonsawat T, Chakarawet K, Chumkaeo P, Somsook E. Diels-Alder Cycloaddition of 2,5-Bis(hydroxymethyl)furan (BHMF) and N-Phenylmaleimide Derivatives. ACS OMEGA 2024; 9:36380-36388. [PMID: 39220524 PMCID: PMC11359630 DOI: 10.1021/acsomega.4c03804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/07/2024] [Accepted: 07/09/2024] [Indexed: 09/04/2024]
Abstract
Currently, amidst atmospheric menace where natural calamities such as wildfire and floods are becoming more frequent than ever, biobased derivatives offer a sustainable alternative to conventional ways, for instance, petrochemical commodities. Biobased products, obtained from agricultural waste, including 5-(hydroxymethyl)furfural (HMF), 2,5-bis(hydroxymethyl)furan (BHMF), and 2,5-furandicarboxylic acid (FDCA) are promising chemical platforms in the biorefinery, which is yet to be explored. The Diels-Alder cycloaddition of BHMF and N-phenylmaleimide derivatives under optimal reaction conditions is investigated in this report. First, HMF is reduced to BHMF in the presence of NaBH4, and then the Diels-Alder reaction of BHMF and N-phenylmaleimide derivatives is investigated to produce Diels-Alder adducts. All novel compounds are synthesized in acceptable yields and effectively characterized by employing important techniques such as one-dimensional (1D) NMR spectroscopy (1H, 13C, DEPT-90, and DEPT- 135), two-dimensional (2D) NMR spectroscopy (1H-1H COSY, 1H-13C HSQC, and 1H-13C HMBC), IR spectroscopy, elemental analysis, mass spectrum (QTOF), and single-crystal X-ray diffraction (SC-XRD). Furthermore, this study underlines the necessity of sustainable synthetic methodologies and gives critical insights into the progress of ecologically friendly methodologies, providing a new avenue as a tunable precursor for the challenging functionalized polymer in the future.
Collapse
Affiliation(s)
- Harshit Shukla
- NANOCAST
Laboratory, Center for Catalysis Science and Technology (CAST), Department
of Chemistry and Center of Excellence for Innovation in Chemistry,
Faculty of Science, Mahidol University, 272 Rama VI Rd., Ratchathewi, Bangkok 10400, Thailand
| | - Peerapong Promcharoen
- NANOCAST
Laboratory, Center for Catalysis Science and Technology (CAST), Department
of Chemistry and Center of Excellence for Innovation in Chemistry,
Faculty of Science, Mahidol University, 272 Rama VI Rd., Ratchathewi, Bangkok 10400, Thailand
| | - Thinnaphat Poonsawat
- NANOCAST
Laboratory, Center for Catalysis Science and Technology (CAST), Department
of Chemistry and Center of Excellence for Innovation in Chemistry,
Faculty of Science, Mahidol University, 272 Rama VI Rd., Ratchathewi, Bangkok 10400, Thailand
| | - Khetpakorn Chakarawet
- Department
of Chemistry, Faculty of Science, Mahidol
University, 272 Rama
VI Rd., Ratchathewi, Bangkok 10400, Thailand
| | - Peerapong Chumkaeo
- NANOCAST
Laboratory, Center for Catalysis Science and Technology (CAST), Department
of Chemistry and Center of Excellence for Innovation in Chemistry,
Faculty of Science, Mahidol University, 272 Rama VI Rd., Ratchathewi, Bangkok 10400, Thailand
| | - Ekasith Somsook
- NANOCAST
Laboratory, Center for Catalysis Science and Technology (CAST), Department
of Chemistry and Center of Excellence for Innovation in Chemistry,
Faculty of Science, Mahidol University, 272 Rama VI Rd., Ratchathewi, Bangkok 10400, Thailand
| |
Collapse
|
5
|
Behloul S, Gayraud O, Frapper G, Guégan F, Upitak K, Thomas CM, Yan Z, De Oliveira Vigier K, Jérôme F. Acid-Catalyzed Activation and Condensation of the =C 5H Bond of Furfural on Aldehydes, an Entry Point to Biobased Monomers. CHEMSUSCHEM 2024; 17:e202400289. [PMID: 38503687 DOI: 10.1002/cssc.202400289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 03/21/2024]
Abstract
Furfural is an industrially relevant biobased chemical platform. Unlike classical furan, or C-alkylated furans, which have been previously described in the current literature, the =C5H bond of furfural is unreactive. As a result, on a large scale, C=C and C=O bond hydrogenation/hydrogenolysis is mainly performed, with furfuryl alcohol and methyl tetrahydrofuran being the two main downstream chemicals. Here, we show that the derivatization of the -CHO group of furfural restores the reactivity of its =C5H bond, thus permitting its double condensation on various alkyl aldehydes. Overcoming the recalcitrance of the =C5H bond of furfural has opened an access to a biobased monomer, whose potential have been investigated in the fabrication of renewably-sourced poly(silylether). By means of a combined theoretical-experimental study, a reactivity scale for furfural and its protected derivatives against carbonylated compounds has been established using an electrophilicity descriptor, a means to predict the molecular diversity and complexity this pathway may support, and also to de-risk any project related to this topic. Finally, by using performance criteria for industrial operations in the field of fuels and commodities, we discussed the industrial potential of this work in terms of cost, E-factor, reactor productivity and catalyst consumption.
Collapse
Affiliation(s)
- Sarah Behloul
- Institut de Chimie des Milieux et Matériaux de Poitiers, Université de Poitiers, CNRS, 1 rue Marcel Doré, 86073, Poitiers, France
| | - Oscar Gayraud
- Institut de Chimie des Milieux et Matériaux de Poitiers, Université de Poitiers, CNRS, 1 rue Marcel Doré, 86073, Poitiers, France
| | - Gilles Frapper
- Institut de Chimie des Milieux et Matériaux de Poitiers, Université de Poitiers, CNRS, 1 rue Marcel Doré, 86073, Poitiers, France
| | - Frédéric Guégan
- Institut de Chimie des Milieux et Matériaux de Poitiers, Université de Poitiers, CNRS, 1 rue Marcel Doré, 86073, Poitiers, France
| | - Kanokon Upitak
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 75005, Paris, France
| | - Christophe M Thomas
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 75005, Paris, France
| | - Z Yan
- Eco-Efficient Products and Process Laboratory, Syensqo/CNRS, 3966 Jin Du Rd., Xin Zhuang Industrial Zone, Shanghai, 201108, China
| | - Karine De Oliveira Vigier
- Institut de Chimie des Milieux et Matériaux de Poitiers, Université de Poitiers, CNRS, 1 rue Marcel Doré, 86073, Poitiers, France
| | - François Jérôme
- Institut de Chimie des Milieux et Matériaux de Poitiers, Université de Poitiers, CNRS, 1 rue Marcel Doré, 86073, Poitiers, France
| |
Collapse
|
6
|
Ratier A, Moulandou-Koumba RD, Anizan M, Behloul S, Guegan F, Frapper G, Remaury QB, De Oliveira Vigier K, Zheng J, Jérôme F. Catalytic synthesis of renewable phenol derivatives from biobased furanic derivatives. RSC Adv 2023; 13:30369-30377. [PMID: 37849695 PMCID: PMC10578459 DOI: 10.1039/d3ra06461a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/11/2023] [Indexed: 10/19/2023] Open
Abstract
Here, we study a sequence Diels-Alder/aromatization reaction between biobased furanic derivatives and alkynes, paving the way to renewable phenols. Guided by DFT calculations, we revealed that, in the case of dimethylfuran, the methyl group can migrate during the aromatization step, making this substrate also eligible to access renewable phenols. This reaction has been then successfully transposed to furfural and furfuryl alcohol, allowing molecular diversity and complexity to be created on phenol ring starting from two cheap biobased furanic derivatives available on large scale.
Collapse
Affiliation(s)
- Adrien Ratier
- Institut de Chimie des Milieux et Matériaux de Poitiers, Université de Poitiers, CNRS 1 rue Michel Brunet 86073 Poitiers France
| | - Richail D Moulandou-Koumba
- Institut de Chimie des Milieux et Matériaux de Poitiers, Université de Poitiers, CNRS 1 rue Michel Brunet 86073 Poitiers France
| | - Mélanie Anizan
- Institut de Chimie des Milieux et Matériaux de Poitiers, Université de Poitiers, CNRS 1 rue Michel Brunet 86073 Poitiers France
| | - Sarah Behloul
- Institut de Chimie des Milieux et Matériaux de Poitiers, Université de Poitiers, CNRS 1 rue Michel Brunet 86073 Poitiers France
| | - Fréderic Guegan
- Institut de Chimie des Milieux et Matériaux de Poitiers, Université de Poitiers, CNRS 1 rue Michel Brunet 86073 Poitiers France
| | - Gilles Frapper
- Institut de Chimie des Milieux et Matériaux de Poitiers, Université de Poitiers, CNRS 1 rue Michel Brunet 86073 Poitiers France
| | - Quentin Blancart Remaury
- Institut de Chimie des Milieux et Matériaux de Poitiers, Université de Poitiers, CNRS 1 rue Michel Brunet 86073 Poitiers France
| | - Karine De Oliveira Vigier
- Institut de Chimie des Milieux et Matériaux de Poitiers, Université de Poitiers, CNRS 1 rue Michel Brunet 86073 Poitiers France
| | - Jianxia Zheng
- Eco-Efficient Products and Process Laboratory SOLVAY/CNRS 3966 Jin Du Rd., Xin Zhuang Industrial Zone Shanghai 201108 China
| | - François Jérôme
- Institut de Chimie des Milieux et Matériaux de Poitiers, Université de Poitiers, CNRS 1 rue Michel Brunet 86073 Poitiers France
| |
Collapse
|
7
|
Liu Z, Kong Z, Cui S, Liu L, Wang F, Wang Y, Wang S, Zang SQ. Electrocatalytic Mechanism of Defect in Spinels for Water and Organics Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302216. [PMID: 37259266 DOI: 10.1002/smll.202302216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/07/2023] [Indexed: 06/02/2023]
Abstract
Spinels display promising electrocatalytic ability for oxygen evolution reaction (OER) and organics oxidation reaction because of flexible structure, tunable component, and multifold valence. Unfortunately, limited exposure of active sites, poor electronic conductivity, and low intrinsic ability make the electrocatalytic performance of spinels unsatisfactory. Defect engineering is an effective method to enhance the intrinsic ability of electrocatalysts. Herein, the recent advances in defect spinels for OER and organics electrooxidation are reviewed. The defect types that exist in spinels are first introduced. Then the catalytic mechanism and dynamic evolution of defect spinels during the electrochemical process are summarized in detail. Finally, the challenges of defect spinel electrocatalysts are brought up. This review aims to deepen the understanding about the role and evolution of defects in spinel for electrochemical water/organics oxidation and provide a significant reference for the design of efficient defect spinel electrocatalysts.
Collapse
Affiliation(s)
- Zhijuan Liu
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhijie Kong
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Shasha Cui
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Luyu Liu
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Fen Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Yanyong Wang
- State Key Laboratory of Chem/Bio-sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Shuangyin Wang
- State Key Laboratory of Chem/Bio-sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
8
|
van der Loo CHM, Schim van der Loeff R, Martín A, Gomez-Sal P, Borst MLG, Pouwer K, Minnaard AJ. π-Facial selectivity in the Diels-Alder reaction of glucosamine-based chiral furans and maleimides. Org Biomol Chem 2023; 21:1888-1894. [PMID: 36607338 DOI: 10.1039/d2ob02221d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Furans derived from carbohydrate feedstocks are a versatile class of bio-renewable building blocks and have been used extensively to access 7-oxanorbornenes via Diels-Alder reactions. Due to their substitution patterns these furans typically have two different π-faces and therefore furnish racemates in [4 + 2]-cycloadditions. We report the use of an enantiopure glucosamine derived furan that under kinetic conditions predominantly affords the exo-product with a high π-face selectivity of 6.5 : 1. The structure of the product has been resolved unequivocally by X-ray crystallography, and a multi-gram synthesis (2.8 g, 58% yield) confirms the facile accessibility of this multifunctional enantiopure building block.
Collapse
Affiliation(s)
- Cornelis H M van der Loo
- Department of Chemical Biology, Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands.
| | - Rutger Schim van der Loeff
- Department of Chemical Biology, Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands.
| | - Avelino Martín
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andres M. Del Rio" (IQAR), Universidad de Alcalá. Alcalá de Henares, 28805, Madrid, Spain
| | - Pilar Gomez-Sal
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andres M. Del Rio" (IQAR), Universidad de Alcalá. Alcalá de Henares, 28805, Madrid, Spain
| | - Mark L G Borst
- Symeres B.V., Kadijk 3, 9747 AT Groningen, The Netherlands
| | - Kees Pouwer
- Symeres B.V., Kadijk 3, 9747 AT Groningen, The Netherlands
| | - Adriaan J Minnaard
- Department of Chemical Biology, Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
9
|
Dynamic materials derived from biobased furans: towards the ‘sleeping giant’ awakening. MENDELEEV COMMUNICATIONS 2023. [DOI: 10.1016/j.mencom.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
10
|
Cioc RC, Crockatt M, van der Waal JC, Bruijnincx PCA. Targeting Valuable Chemical Commodities: Hydrazine-mediated Diels-Alder Aromatization of Biobased Furfurals. CHEMSUSCHEM 2022; 15:e202201139. [PMID: 35833422 PMCID: PMC9804822 DOI: 10.1002/cssc.202201139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/13/2022] [Indexed: 06/15/2023]
Abstract
A hydrazine-mediated approach towards renewable aromatics production via Diels-Alder aromatization of readily available, biobased furfurals was explored as alterative to the more classical approaches that rely on reactive but uneconomical reduced dienes (e. g., 2,5-dimethylfuran). To enable cycloaddition chemistry with these otherwise unreactive formyl furans, substrate activation by N,N-dimethyl hydrazone formation was investigated. The choice of the reaction partner was key to the success of the transformation, and in this respect acrylic acid showed the most promising results in the synthesis of aromatics. This strategy allowed for selectivities up to 60 % for a complex transformation consisting of Diels-Alder cycloaddition, oxabridge opening, decarboxylation, and dehydration. Exploration of the furfural scope yielded generic structure-reactivity-stability relationships. The proposed methodology enabled the redox-efficient, operationally simple, and mild synthesis of renewable (p-disubstituted) aromatics of commercial importance under remarkably mild conditions.
Collapse
Affiliation(s)
- Răzvan C. Cioc
- Organic Chemistry and CatalysisDebye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrecht (TheNetherlands
| | - Marc Crockatt
- Department of Sustainable Process and Energy Systems, TNOLeeghwaterstraat 442628 CADelft (TheNetherlands
| | - Jan C. van der Waal
- Department of Sustainable Process and Energy Systems, TNOLeeghwaterstraat 442628 CADelft (TheNetherlands
| | - Pieter C. A. Bruijnincx
- Organic Chemistry and CatalysisDebye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrecht (TheNetherlands
| |
Collapse
|
11
|
Wu D, Han D, Zhou W, Streiff S, Khodakov AY, Ordomsky VV. Surface modification of metallic catalysts for the design of selective processes. CATALYSIS REVIEWS 2022. [DOI: 10.1080/01614940.2022.2079809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Dan Wu
- UCCS–Unité de Catalyse et Chimie du Solide, Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ, Artois, France
- Eco-Efficient Products and Processes Laboratory (E2P2L), UMI 3464 CNRS-Solvay, Shanghai, Jiangsu, People’s Republic of China
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan, China
| | - Dandan Han
- College of Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Wenjuan Zhou
- Eco-Efficient Products and Processes Laboratory (E2P2L), UMI 3464 CNRS-Solvay, Shanghai, Jiangsu, People’s Republic of China
| | - Stephane Streiff
- Eco-Efficient Products and Processes Laboratory (E2P2L), UMI 3464 CNRS-Solvay, Shanghai, Jiangsu, People’s Republic of China
| | - Andrei Y. Khodakov
- UCCS–Unité de Catalyse et Chimie du Solide, Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ, Artois, France
| | - Vitaly V. Ordomsky
- UCCS–Unité de Catalyse et Chimie du Solide, Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ, Artois, France
| |
Collapse
|
12
|
Cioc RC, Crockatt M, van der Waal JC, Bruijnincx PCA. The Interplay between Kinetics and Thermodynamics in Furan Diels-Alder Chemistry for Sustainable Chemicals Production. Angew Chem Int Ed Engl 2022; 61:e202114720. [PMID: 35014138 PMCID: PMC9304315 DOI: 10.1002/anie.202114720] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Indexed: 01/21/2023]
Abstract
Biomass-derived furanic platform molecules have emerged as promising building blocks for renewable chemicals and functional materials. To this aim, the Diels-Alder (DA) cycloaddition stands out as a versatile strategy to convert these renewable resources in highly atom-efficient ways. Despite nearly a century worth of examples of furan DA chemistry, clear structure-reactivity-stability relationships are still to be established. Detailed understanding of the intricate interplay between kinetics and thermodynamics in these very particular [4+2] cycloadditions is essential to push further development and truly expand the scope beyond the ubiquitous addend combinations of electron-rich furans and electron-deficient olefins. Herein, we provide pertinent examples of DA chemistry, taken from various fields, to highlight trends, establish correlations and answer open questions in the field with the aim to support future efforts in the sustainable chemicals and materials production.
Collapse
Affiliation(s)
- Răzvan C. Cioc
- Organic Chemistry and CatalysisDebye Institute for Nanomaterials ScienceFaculty of ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Marc Crockatt
- Department of Sustainable Process and Energy Systems, TNOLeeghwaterstraat 442628CADelftThe Netherlands
| | - Jan C. van der Waal
- Department of Sustainable Process and Energy Systems, TNOLeeghwaterstraat 442628CADelftThe Netherlands
| | - Pieter C. A. Bruijnincx
- Organic Chemistry and CatalysisDebye Institute for Nanomaterials ScienceFaculty of ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| |
Collapse
|
13
|
Yuan L, Hu Y, Zhao Z, Li G, Wang A, Cong Y, Wang F, Zhang T, Li N. Production of Copolyester Monomers from Plant‐Based Acrylate and Acetaldehyde. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lin Yuan
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences 19A Yuquan Road Shijingshan District, Beijing 100049 China
| | - Yancheng Hu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Zhitong Zhao
- College of Chemistry and Chemical Engineering Taiyuan University of Technology Taiyuan Shanxi 030024 China
| | - Guangyi Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Aiqin Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Yu Cong
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Feng Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Ning Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| |
Collapse
|
14
|
Cioc R, Crockatt M, Van der Waal JC, Bruijnincx P. The Interplay between Kinetics and Thermodynamics in Furan Diels‐Alder Chemistry for Sustainable Chemicals Production. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Razvan Cioc
- Utrecht University: Universiteit Utrecht Chemistry NETHERLANDS
| | - Marc Crockatt
- TNO Sustainable Process and Energy Systems NETHERLANDS
| | | | - Pieter Bruijnincx
- Utrecht University Chemistry Universiteitsweg99Netherlands 3584 CG Utrecht NETHERLANDS
| |
Collapse
|
15
|
Li Z, Jiang Y, Li Y, Zhang H, Li H, Yang S. Advances in Diels-Alder/aromatization of biomass furan derivatives towards renewable aromatic hydrocarbons. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02122b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effective upgrading of renewable resources into high value-added chemicals is of great significance to achieve the sustainable economic development, as well as the implementation of carbon neutral technologies practically....
Collapse
|
16
|
Yuan L, Hu Y, Zhao Z, Li G, Wang A, Cong Y, Wang F, Zhang T, Li N. Production of Copolyester Monomers from Plant-Based Acrylate and Acetaldehyde. Angew Chem Int Ed Engl 2021; 61:e202113471. [PMID: 34850519 DOI: 10.1002/anie.202113471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Indexed: 12/28/2022]
Abstract
PCTA is an important copolyester that has been widely used in our daily necessities. Currently, its monomers are industrially produced from petroleum-derived xylene. To reduce the reliance on fossil energy, we herein disclose an alternative route to access PCTA monomer (terephthalate/isophthalate=2.4/1) in 61 % overall yield using plant-based acrylate and acetaldehyde as the feedstocks. The process includes Morita-Baylis-Hillman (MBH) reaction of acetaldehyde with acrylate, subsequent one-step dehydration/Diels-Alder reaction with acrylate over H2 SO4 /SiO2 catalyst, and final Pd/C-catalyzed dehydrogenation. Besides, when varying the final step to hydrogenation, another important monomer UNOXOL™ diol (1,4-trans/1,4-cis/1,3-trans/1,3-cis=5.2/2/2.5/1) can be produced in 67 % overall yield.
Collapse
Affiliation(s)
- Lin Yuan
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Yancheng Hu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Zhitong Zhao
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Guangyi Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Aiqin Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Yu Cong
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Feng Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Ning Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| |
Collapse
|
17
|
Galkin KI, Ananikov VP. Intermolecular Diels-Alder Cycloadditions of Furfural-Based Chemicals from Renewable Resources: A Focus on the Regio- and Diastereoselectivity in the Reaction with Alkenes. Int J Mol Sci 2021; 22:11856. [PMID: 34769287 PMCID: PMC8584476 DOI: 10.3390/ijms222111856] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 12/26/2022] Open
Abstract
A recent strong trend toward green and sustainable chemistry has promoted the intensive use of renewable carbon sources for the production of polymers, biofuels, chemicals, monomers and other valuable products. The Diels-Alder reaction is of great importance in the chemistry of renewable resources and provides an atom-economic pathway for fine chemical synthesis and for the production of materials. The biobased furans furfural and 5-(hydroxymethyl)furfural, which can be easily obtained from the carbohydrate part of plant biomass, were recognized as "platform chemicals" that will help to replace the existing oil-based refining to biorefining. Diels-Alder cycloaddition of furanic dienes with various dienophiles represents the ideal example of a "green" process characterized by a 100% atom economy and a reasonable E-factor. In this review, we first summarize the literature data on the regio- and diastereoselectivity of intermolecular Diels-Alder reactions of furfural derivatives with alkenes with the aim of establishing the current progress in the efficient production of practically important low-molecular-weight products. The information provided here will be useful and relevant to scientists in many fields, including medical and pharmaceutical research, polymer development and materials science.
Collapse
Affiliation(s)
- Konstantin I. Galkin
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, 119991 Moscow, Russia;
- Laboratory of Functional Composite Materials, Bauman Moscow State Technical University, 2nd Baumanskaya Street 5/1, 105005 Moscow, Russia
| | - Valentine P. Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, 119991 Moscow, Russia;
| |
Collapse
|
18
|
Mesoporous tin phosphate as an effective catalyst for fast cyclodehydration of bio-based citral into p-cymene. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
19
|
Ravasco JMJM, Gomes RFA. Recent Advances on Diels-Alder-Driven Preparation of Bio-Based Aromatics. CHEMSUSCHEM 2021; 14:3047-3053. [PMID: 34058082 PMCID: PMC8453924 DOI: 10.1002/cssc.202100813] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/21/2021] [Indexed: 05/08/2023]
Abstract
The preparation of high value-added chemicals from renewable resources is a crucial approach towards a sustainable economy. One prominent alternative to the production of petroleum-based chemicals from fossil resources is through the sequential Diels-Alder/aromatization reactions of biomass-derived furan platforms. This Concept is focused on the recent boom in bio-based furan DA strategies for aromatization of bio-based platform chemicals, particularly that of furfurals, ranging from indirect use and activation strategies to recent examples of direct DA reaction of these electron-withdrawing biomass-derived furans.
Collapse
Affiliation(s)
- Joao M. J. M. Ravasco
- Research Institute for Medicines (iMed.ULisboa)Faculty of PharmacyUniversity of LisbonAvenida Professor Gama Pinto1649-003LisbonPortugal
| | - Rafael F. A. Gomes
- Research Institute for Medicines (iMed.ULisboa)Faculty of PharmacyUniversity of LisbonAvenida Professor Gama Pinto1649-003LisbonPortugal
| |
Collapse
|