1
|
Weldon M, Ganguly S, Euler C. Co-consumption for plastics upcycling: A perspective. Metab Eng Commun 2025; 20:e00253. [PMID: 39802937 PMCID: PMC11717657 DOI: 10.1016/j.mec.2024.e00253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/21/2024] [Accepted: 11/18/2024] [Indexed: 01/16/2025] Open
Abstract
The growing plastics end-of-life crisis threatens ecosystems and human health globally. Microbial plastic degradation and upcycling have emerged as potential solutions to this complex challenge, but their industrial feasibility and limitations thereon have not been fully characterized. In this perspective paper, we review literature describing both plastic degradation and transformation of plastic monomers into value-added products by microbes. We aim to understand the current feasibility of combining these into a single, closed-loop process. Our analysis shows that microbial plastic degradation is currently the rate-limiting step to "closing the loop", with reported rates that are orders of magnitude lower than those of pathways to upcycle plastic degradation products. We further find that neither degradation nor upcycling have been demonstrated at rates sufficiently high to justify industrialization at present. As a potential way to address these limitations, we suggest more investigation into mixotrophic approaches, showing that those which leverage the unique properties of plastic degradation products such as ethylene glycol might improve rates sufficiently to motivate industrial process development.
Collapse
Affiliation(s)
- Michael Weldon
- Department of Chemical Engineering, University of Waterloo, Canada
| | - Sanniv Ganguly
- Department of Chemical Engineering, University of Waterloo, Canada
| | - Christian Euler
- Department of Chemical Engineering, University of Waterloo, Canada
| |
Collapse
|
2
|
Xing H, Akram E, Ali R, Gao Y, Zhang Y. Diluted Alkaline Pretreatment in Hexafluoroisopropanol Facilitates Chemoenzymatic Depolymerization of Polyethylene Terephthalate. ENVIRONMENTAL RESEARCH 2025:121794. [PMID: 40340007 DOI: 10.1016/j.envres.2025.121794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 04/19/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025]
Abstract
Enzymatic PET degradation presents a sustainable and eco-friendly solution for recycling and upgrading PET materials. While various PET-degrading enzymes have proven effective in converting low-crystallinity PET into monomers, their efficiency decreases significantly for high-crystallinity PET. Given that most commercially available PET products are highly crystalline and have a limited specific surface area, conventional methods typically resort to heat treatment and ball milling to achieve decrystallization and micronization before enzymatic hydrolysis. However, these pretreatments often compromise environmental benefits due to their high energy consumption and dust pollution, and are difficult to scale up. In this study, we developed a chemoenzymatic strategy that efficiently depolymerizes waste PET materials into monomers in just 4 hours. This process involves an alkaline treatment with diluted NaOH in 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP), followed by enzymatic hydrolysis of the PET nanosuspensions generated from solvent exchange. The alkaline treatment partially breaks down the PET molecular chains and mitigates recrystallization during the precipitation process. Importantly, the complete hydrolysis of PET is attributed to reduced crystallinity rather than particle size. Notably, this method eliminates the need for PET micronization and minimizes the usage of NaOH. The effectiveness of this method was demonstrated through the hydrolysis of various commercially available PET products, showcasing its potential to advance enzymatic degradation processes for PET recycling.
Collapse
Affiliation(s)
- Hao Xing
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ekram Akram
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Rohan Ali
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yunzhengshan Gao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yifei Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
3
|
Lee S, Jeon BW, Seong JY, Lee I, Song HM, Ryu MH, Pandey A, Kim GH, Seo SO, Sung BH, Park SJ, Ryu J, Joo JC. Efficient biological funneling of lignin into 2-pyrone-4,6-dicarboxylic acid via electrocatalytic depolymerization and genetically engineered Pseudomonas putida KT2440. Int J Biol Macromol 2025; 306:141657. [PMID: 40032124 DOI: 10.1016/j.ijbiomac.2025.141657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 02/04/2025] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
Lignin has been an abundant biomass resource with remarkable potential to produce value-added chemicals. The comprehensive process from lignin degradation to the biological conversion of its monomers remains a challenge for demonstrating the industrial applicability of lignin refinery. Herein, Pseudomonas putida KT-PDCV overexpressing homologous vanillate-O-methylase (VanAB) could efficiently produce 2-pyrone-4,6-dicarboxylic acid (PDC) from lignin-derived compounds (LDC), including S-unit monomers (e.g., syringate and syringaldehyde). The engineered strain efficiently consumed syringate with other types of LDCs, such as p-coumarate and ferulate, and produced PDC up to 67.2 mM from mixed model lignin with a molar yield of 98 %. The efficient electrolyzer degraded practical lignin into the S-unit-dominant mixture of LDCs with remarkable performance. In addition, P. putida KT-PDCV directly utilized the mixture of LDCs without significant susceptibility to impurities, yielding a PDC of 0.91 mM with a molar yield of 62.3 %.
Collapse
Affiliation(s)
- Siseon Lee
- Department of Chemical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea; Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea.
| | - Byoung Wook Jeon
- Department of Chemical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| | - Jeong Yeon Seong
- Department of Chemical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| | - Inhui Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| | - Hye Min Song
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Mi Hee Ryu
- Green Carbon Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
| | - Ashutosh Pandey
- Institute for Water and Wastewater Technology, Durban University of Technology, Steve Biko Campus, Durban 4001, South Africa; Bioenergy Research Laboratory, Department of Biotechnology, AKS University, Satna, Madhya Pradesh 485001, India.
| | - Geun-Hyung Kim
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
| | - Seung-Oh Seo
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
| | - Bong Hyun Sung
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Biosystems and Bioengineering, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea; Graduate School of Engineering Biology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Si Jae Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Jungki Ryu
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| | - Jeong Chan Joo
- Department of Chemical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
4
|
Li M, Chen Z, Zhang W, Wu T, Qi Q, Huo Y. Customization of Ethylene Glycol (EG)-Induced BmoR-Based Biosensor for the Directed Evolution of PET Degrading Enzymes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413205. [PMID: 39927766 PMCID: PMC11967783 DOI: 10.1002/advs.202413205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/25/2025] [Indexed: 02/11/2025]
Abstract
The immense volume of plastic waste poses continuous threats to the ecosystem and human health. Despite substantial efforts to enhance the catalytic activity, robustness, expression, and tolerance of plastic-degrading enzymes, the lack of high-throughput screening (HTS) tools hinders efficient enzyme engineering for industrial applications. Herein, we develop a novel fluorescence-based HTS tool for evolving polyethylene terephthalate (PET) degrading enzymes by constructing an engineered BmoR-based biosensor targeting the PET breakdown product, ethylene glycol (EG). The EG-responsive biosensors, with notably enhanced dynamic range and operation range, are customized by fluorescence-activated cell sorting (FACS)-assisted transcription factor engineering. The ingeniously designed SUMO-MHETase-FastPETase (SMF) chimera successfully addresses the functional soluble expression of MHETase in Escherichia coli and mitigates the inhibitory effect of mono-(2-hydroxyethyl) terephthalic acid (MHET) intermediate commonly observed with PETase alone. The obtained SMM3F mutant demonstrates 1.59-fold higher terephthalic acid (TPA) production, with a 1.18-fold decrease in Km, a 1.29-fold increase in Vmax, and a 1.52-fold increase in kcat/Km, indicating stronger affinity and catalytic activity toward MHET. Furthermore, the SMM3F crude extract depolymerizes 5 g L-1 bis-(2-hydroxyethyl) terephthalic acid (BHET) into TPA completely at 37 °C within 10 h, which is then directedly converted into value-added protocatechuic acid (PCA) (997.16 mg L-1) and gallic acid (GA) (411.69 mg L-1) at 30 °C, establishing an eco-friendly 'PET-BHET-MHET-TPA-PCA-GA' upcycling route. This study provides a valuable HTS tool for screening large-scale PET and MHET hydrolases candidates or metagenomic libraries, and propels the complete biodegradation and upcycling of PET waste.
Collapse
Affiliation(s)
- Min Li
- Department of GastroenterologyAerospace Center HospitalCollege of Life ScienceBeijing Institute of TechnologyNo. 5 South Zhongguancun Street, Haidian DistrictBeijing100081China
| | - Zhenya Chen
- Department of GastroenterologyAerospace Center HospitalCollege of Life ScienceBeijing Institute of TechnologyNo. 5 South Zhongguancun Street, Haidian DistrictBeijing100081China
- Tangshan Research InstituteBeijing Institute of TechnologyNo. 57, South Jianshe Road, Lubei DistrictTangshanHebei063000China
- Center for Future FoodsMuyuan LaboratoryZhengzhouHenan450016China
| | - Wuyuan Zhang
- Department of GastroenterologyAerospace Center HospitalCollege of Life ScienceBeijing Institute of TechnologyNo. 5 South Zhongguancun Street, Haidian DistrictBeijing100081China
| | - Tong Wu
- Department of GastroenterologyAerospace Center HospitalCollege of Life ScienceBeijing Institute of TechnologyNo. 5 South Zhongguancun Street, Haidian DistrictBeijing100081China
| | - Qingsheng Qi
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoShandong266237China
| | - Yi‐Xin Huo
- Department of GastroenterologyAerospace Center HospitalCollege of Life ScienceBeijing Institute of TechnologyNo. 5 South Zhongguancun Street, Haidian DistrictBeijing100081China
- Tangshan Research InstituteBeijing Institute of TechnologyNo. 57, South Jianshe Road, Lubei DistrictTangshanHebei063000China
- Center for Future FoodsMuyuan LaboratoryZhengzhouHenan450016China
| |
Collapse
|
5
|
Diao J, Tian Y, Hu Y, Moon TS. Producing multiple chemicals through biological upcycling of waste poly(ethylene terephthalate). Trends Biotechnol 2025; 43:620-646. [PMID: 39581772 DOI: 10.1016/j.tibtech.2024.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 10/26/2024] [Accepted: 10/31/2024] [Indexed: 11/26/2024]
Abstract
Poly(ethylene terephthalate) (PET) waste is of low degradability in nature, and its mismanagement threatens numerous ecosystems. To combat the accumulation of waste PET in the biosphere, PET bio-upcycling, which integrates chemical pretreatment to produce PET-derived monomers with their microbial conversion into value-added products, has shown promise. The recently discovered Rhodococcus jostii RPET strain can metabolically degrade terephthalic acid (TPA) and ethylene glycol (EG) as sole carbon sources, and it has been developed into a microbial chassis for PET upcycling. However, the scarcity of synthetic biology tools, specifically designed for this non-model microbe, limits the development of a microbial cell factory for expanding the repertoire of bioproducts from postconsumer PET. Herein, we describe the development of potent genetic tools for RPET, including two inducible and titratable expression systems for tunable gene expression, along with serine integrase-based recombinational tools (SIRT) for genome editing. Using these tools, we systematically engineered the RPET strain to ultimately establish microbial supply chains for producing multiple chemicals, including lycopene, lipids, and succinate, from postconsumer PET waste bottles, achieving the highest titer of lycopene ever reported thus far in RPET [i.e., 22.6 mg/l of lycopene, ~10 000-fold higher than that of the wild-type (WT) strain]. This work highlights the great potential of plastic upcycling as a generalizable means of sustainable production of diverse chemicals.
Collapse
Affiliation(s)
- Jinjin Diao
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St Louis, St Louis, MO 63130, USA.
| | - Yuxin Tian
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St Louis, St Louis, MO 63130, USA; Synthetic Biology Group, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Yifeng Hu
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St Louis, St Louis, MO 63130, USA
| | - Tae Seok Moon
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St Louis, St Louis, MO 63130, USA; Division of Biology and Biomedical Sciences, Washington University in St Louis, St Louis, MO 63130, USA; Synthetic Biology Group, J. Craig Venter Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
6
|
Lu Q, Tang D, Liang Q, Wang S. Biotechnology for the degradation and upcycling of traditional plastics. ENVIRONMENTAL RESEARCH 2024; 263:120140. [PMID: 39395553 DOI: 10.1016/j.envres.2024.120140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/14/2024]
Abstract
Traditional plastics, predominantly derived from petrochemicals, are extensively utilized in modern industry and daily life. However, inadequate management and disposal practices have resulted in widespread environmental contamination, with polyethylene, polypropylene, polyvinyl chloride, polyethylene terephthalate, and polystyrene being the most prevalent pollutants. Biological methods for plastic degradation have garnered significant attention due to their cost-effectiveness and potential for resource recovery, positioning them as promising strategies for sustainable plastic waste management. While polyethylene terephthalate, characterized by its relatively less stable C-O bonds, has been extensively studied and demonstrates significant potential for biodegradation. In contrast, the biodegradation of other plastics remains a significant challenge due to the inherent stability of their C-C backbone structures. This review comprehensively examines the state-of-the-art biotechnology for treating these traditional plastics, focusing on: (1) the roles of specific microorganisms and enzymes, their taxonomic classifications, and the metabolic pathways involved in plastic biodegradation; and (2) a proposed two-stage hybrid approach integrating physicochemical and biological processes to enhance the biodegradation or upcycling of these traditional plastics. Additionally, the review highlights the critical role of multi-omics approaches and tailored strategies in enhancing the efficiency of plastic biodegradation while examining the impact of plastic molecular structures and additives on their degradation potential. It also addresses key challenges and delineates future research directions to foster the development of innovative biological methods for the effective and sustainable management of plastic waste.
Collapse
Affiliation(s)
- Qihong Lu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Daoyu Tang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China
| | - Qi Liang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China
| | - Shanquan Wang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China.
| |
Collapse
|
7
|
Hu Y, Tian Y, Zou C, Moon TS. The current progress of tandem chemical and biological plastic upcycling. Biotechnol Adv 2024; 77:108462. [PMID: 39395608 DOI: 10.1016/j.biotechadv.2024.108462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/31/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024]
Abstract
Each year, millions of tons of plastics are produced for use in such applications as packaging, construction, and textiles. While plastic is undeniably useful and convenient, its environmental fate and transport have raised growing concerns about waste and pollution. However, the ease and low cost of producing virgin plastic have so far made conventional plastic recycling economically unattractive. Common contaminants in plastic waste and shortcomings of the recycling processes themselves typically mean that recycled plastic products are of relatively low quality in some cases. The high cost and high energy requirements of typical recycling operations also reduce their economic benefits. In recent years, the bio-upcycling of chemically treated plastic waste has emerged as a promising alternative to conventional plastic recycling. Unlike recycling, bio-upcycling uses relatively mild process conditions to economically transform pretreated plastic waste into value-added products. In this review, we first provide a précis of the general methodology and limits of conventional plastic recycling. Then, we review recent advances in hybrid chemical/biological upcycling methods for different plastics, including polyethylene terephthalate, polyurethane, polyamide, polycarbonate, polyethylene, polypropylene, polystyrene, and polyvinyl chloride. For each kind of plastic, we summarize both the pretreatment methods for making the plastic bio-available and the microbial chassis for degrading or converting the treated plastic waste to value-added products. We also discuss both the limitations of upcycling processes for major plastics and their potential for bio-upcycling.
Collapse
Affiliation(s)
- Yifeng Hu
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Yuxin Tian
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Chenghao Zou
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Tae Seok Moon
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, United States; Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, United States; Synthetic Biology Group, J. Craig Venter Institute, La Jolla, CA, United States.
| |
Collapse
|
8
|
Miao R, Xu G, Ding Y, Ding Z, Woodard J, Tu T, Luo H, Wu N, Yao B, Guan F, Tian J. Engineering dual-functional and thermophilic BMHETase for efficient degradation of polyethylene terephthalate. BIORESOURCE TECHNOLOGY 2024; 414:131556. [PMID: 39357610 DOI: 10.1016/j.biortech.2024.131556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/15/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
Polyethylene terephthalate (PET) biodegradation is hindered by the intermediates bis (2-hydroxyethyl) terephthalate (BHET) and mono (2-hydroxyethyl) terephthalate (MHET). BMHETase, a thermophilic hydrolase identified from the UniParc database, exhibits degradation activity towards both BHET and MHET. BMHETase showed higher activity on BHET than LCCICCG and FASTPETase at temperatures ranging from 50 to 70℃. To enhance its activity in degrading MHET, BMHETase was engineered to mimic Ideonella sakaiensis MHETase. The resulting 6-point mutant's activities on MHET and BHET were 8 and 2 times those of the WT, with both optimal temperatures increased by 5℃. This enhancement may be attributed to the BMHETase6M's intensified binding ability with MHET and enlarged binding pocket. When combined with LCCICCG, BMHETase6M achieved complete degradation of MHET in PET films to terephthalic acid, indicating broad application potential. These findings suggest that BMHETase6M holds promise as a candidate for enhancing PET biodegradation efficiency and plastic waste management.
Collapse
Affiliation(s)
- Ruiju Miao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guoshun Xu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yekun Ding
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zundan Ding
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Jaie Woodard
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Tao Tu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Huiying Luo
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Ningfeng Wu
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Bin Yao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Feifei Guan
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Jian Tian
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
9
|
Rezaei Z, Dinani AS, Moghimi H. Cutting-edge developments in plastic biodegradation and upcycling via engineering approaches. Metab Eng Commun 2024; 19:e00256. [PMID: 39687771 PMCID: PMC11647663 DOI: 10.1016/j.mec.2024.e00256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/25/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
The increasing use of plastics has resulted in the production of high quantities of plastic waste that pose a serious risk to the environment. The upcycling of plastics into value-added products offers a potential solution for resolving the plastics environmental crisis. Recently, various microorganisms and their enzymes have been identified for their ability to degrade plastics effectively. Furthermore, many investigations have revealed the application of plastic monomers as carbon sources for bio-upcycling to generate valuable materials such as biosurfactants, bioplastics, and biochemicals. With the advancement in the fields of synthetic biology and metabolic engineering, the construction of high-performance microbes and enzymes for plastic removal and bio-upcycling can be achieved. Plastic valorization can be optimized by improving uptake and conversion efficiency, engineering transporters and enzymes, metabolic pathway reconstruction, and also using a chemo-biological hybrid approach. This review focuses on engineering approaches for enhancing plastic removal and the methods of depolymerization and upcycling processes of various microplastics. Additionally, the major challenges and future perspectives for facilitating the development of a sustainable circular plastic economy are highlighted.
Collapse
Affiliation(s)
- Zeinab Rezaei
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Amir Soleimani Dinani
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Hamid Moghimi
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
10
|
Tavşanoğlu ÜN, Koraltan İ, Basaran Kankılıç G, Çırak T, Ertürk Ş, Ürker O, Güçlü P, Ünlü H, Çağan AS, Deniz Yağcıoğlu K, Akyürek Z. Assessing microplastic pollution in a river basin: A multidisciplinary study on circularity, sustainability, and socio-economic impacts. ENVIRONMENTAL RESEARCH 2024; 262:119819. [PMID: 39173820 DOI: 10.1016/j.envres.2024.119819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Plastic pollution has emerged as a significant environmental challenge worldwide, posing serious threats to ecosystems and human health. This study seeks to explore the interplay among circularity, sustainability, and the release of microplastics within the freshwater ecosystems situated along the western Black Sea coast- Düzce, Türkiye. Employing a multidisciplinary approach that integrates environmental science, economics, and policy analysis, the research examines the current state of plastic pollution in the region, considering diverse land uses and socio-economic lifestyles. Conducted over four different seasons, the current study identifies the prevailing types of microplastics in the region. Fibers dominate, comprising 86.7% in each season, followed by film and fragments at 7.7% and 7.0%, respectively. Notably, polyethylene (PE) and polypropylene (PP) emerges as the primary polymer types. The distribution of polymer types varies across different land uses within the region, emphasizing the influential role of land use in shaping the abundance polymer composition. The comprehensive assessment of pollution, as reflected in the overall pollution load index (PLI) of the Melen River indicating a concerning level of pollution (PLI>1). Finally, the study unveiled the relationship between socio-economic activities as well as the seasonal precipitation patterns, and microplastic contamination in the region. This underscored the importance of site-specific mitigation measures on reducing the amount of microplastics. Lastly, incorporating sustainable practices within the circular economy framework fosters a harmonious balance between economic development and environmental protection in Türkiye.
Collapse
Affiliation(s)
- Ülkü Nihan Tavşanoğlu
- Department of Biology, Çankırı Karatekin University, Uluyazı Campus, 18100, Çankırı, Türkiye.
| | - İdris Koraltan
- Institute of Natural and Applied Sciences, Akdeniz University, Dumlupınar Avenue, 07258, Antalya, Türkiye
| | | | - Tamer Çırak
- Alternative Energy Sources Technology Program, Aksaray University, Bahçesaray, 68100, Aksaray, Türkiye
| | - Şeyma Ertürk
- Department of Geodetic and Geographic Information Technologies, Middle East Technical University, Üniversiteliler Street, 06800, Ankara, Türkiye
| | - Okan Ürker
- Department of Environmental Health, Çankırı Karatekin University, Taşmescit Street, 18200, Çankırı, Türkiye
| | - Pembe Güçlü
- Department of Business Administration, Uluyazı Campus, 18100, Çankırı, Türkiye
| | - Hülya Ünlü
- Department of Economics, Uluyazı Campus, 18100, Çankırı, Türkiye
| | - Ali Serhan Çağan
- Department of Biology, Çankırı Karatekin University, Uluyazı Campus, 18100, Çankırı, Türkiye; Wildlife Programme, Kastamonu University, Mehmet Yetkin Street, 37800, Araç, Kastamonu, Türkiye
| | - Kıymet Deniz Yağcıoğlu
- Department of Geology Engineering, Ankara University, Dögol Street, 0600, Ankara, Türkiye
| | - Zuhal Akyürek
- Department of Geodetic and Geographic Information Technologies, Middle East Technical University, Üniversiteliler Street, 06800, Ankara, Türkiye; Department of Civil Engineering, Üniversiteliler Street, 06800, Ankara, Türkiye Ankara, Türkiye
| |
Collapse
|
11
|
Teke S, Saud S, Bhattarai RM, Ali A, Nguyen L, Denra A, Nguyen DB, Mok YS. Optimization of PET depolymerization for enhanced terephthalic acid recovery from commercial PET and post consumer PET-bottles via low-temperature alkaline hydrolysis. CHEMOSPHERE 2024; 365:143391. [PMID: 39307467 DOI: 10.1016/j.chemosphere.2024.143391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024]
Abstract
The increasing demand for plastic has resulted in a surge in plastic waste production. Polyethylene terephthalate (PET), commonly used in beverage bottle manufacturing, is only partially recycled, with an estimated recycling rate of just 28.4% in 2019. This accumulation of plastic waste is harmful to the environment and living organisms, necessitating effective recycling methods for PET waste. One promising method is alkaline hydrolysis using NaOH, which can break down PET into its monomer components, terephthalic acid (TPA) and ethylene glycol (EG). This process not only recycles PET efficiently but also manages contaminants effectively, producing high-quality TPA, supporting the development of a circular economy. This study looks into PET depolymerization via alkaline hydrolysis at low temperature by investigating effects of various factors: pH levels, water to ethanol ratio, NaOH concentration, NaOH to PET ratio, reaction time, PET size, reusability of unreacted PET, air plasma pretreatment of PET, and different kinds of PET. Promisingly, PET conversion rates of over 90% and a TPA purity of 99.6% were achieved in this study highlighting the efficacy of alkaline hydrolysis in depolymerizing post-consumer PET waste. Ultimately, this research advances sustainable plastic waste management and supports the integration of PET into a circular economy framework.
Collapse
Affiliation(s)
- Sosiawati Teke
- Department of Chemical Engineering, Jeju National University, Jeju, 63243, Republic of Korea; Department of Physics, Halu Oleo University, Kendari, 931332, Indonesia
| | - Shirjana Saud
- Department of Chemical Engineering, Jeju National University, Jeju, 63243, Republic of Korea; Institute of Theoretical and Applied Research, Duy Tan University, Hanoi, 100000, Viet Nam; Institute of Research and Development, Duy Tan University, Danang, 550000, Viet Nam.
| | - Roshan Mangal Bhattarai
- Department of Chemical Engineering, Jeju National University, Jeju, 63243, Republic of Korea
| | - Adnan Ali
- Department of Chemical Engineering, Jeju National University, Jeju, 63243, Republic of Korea
| | - Lan Nguyen
- Department of Chemical Engineering, Jeju National University, Jeju, 63243, Republic of Korea
| | - Avik Denra
- Department of Chemical Engineering, Jeju National University, Jeju, 63243, Republic of Korea
| | - Duc Ba Nguyen
- Institute of Theoretical and Applied Research, Duy Tan University, Hanoi, 100000, Viet Nam; Institute of Research and Development, Duy Tan University, Danang, 550000, Viet Nam
| | - Young Sun Mok
- Department of Chemical Engineering, Jeju National University, Jeju, 63243, Republic of Korea.
| |
Collapse
|
12
|
Retnadhas S, Ducat DC, Hegg EL. Nature-Inspired Strategies for Sustainable Degradation of Synthetic Plastics. JACS AU 2024; 4:3323-3339. [PMID: 39328769 PMCID: PMC11423324 DOI: 10.1021/jacsau.4c00388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 09/28/2024]
Abstract
Synthetic plastics have become integral to our daily lives, yet their escalating production, limited biodegradability, and inadequate waste management contribute to environmental contamination. Biological plastic degradation is one promising strategy to address this pollution. The inherent chemical and physical properties of synthetic plastics, however, pose challenges for microbial enzymes, hindering the effective degradation and the development of a sustainable biological recycling process. This Perspective explores alternative, nature-inspired strategies designed to overcome some key limitations in currently available plastic-degrading enzymes. Nature's refined degradation pathways for natural polymers, such as cellulose, present a compelling framework for the development of efficient technologies for enzymatic plastic degradation. By drawing insights from nature, we propose a general strategy of employing substrate binding domains to improve targeting and multienzyme scaffolds to overcome enzymatic efficiency limitations. As one potential application, we outline a multienzyme pathway to upcycle polyethylene into alkenes. Employing nature-inspired strategies can present a path toward sustainable solution to the environmental impact of synthetic plastics.
Collapse
Affiliation(s)
- Sreeahila Retnadhas
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Daniel C Ducat
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, United States
| | - Eric L Hegg
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
13
|
Li A, Wu L, Cui H, Song Y, Zhang X, Li X. Unlocking a Sustainable Future for Plastics: A Chemical-Enzymatic Pathway for Efficient Conversion of Mixed Waste to MHET and Energy-Saving PET Recycling. CHEMSUSCHEM 2024; 17:e202301612. [PMID: 38385577 DOI: 10.1002/cssc.202301612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 02/23/2024]
Abstract
The heterogeneous monomers obtained from plastic waste degradation are unfavorable for PET recondensation and high-value derivative synthesis. Herein, we developed an efficient chemical-enzymatic approach to convert mixed plastic wastes into homogeneous mono-2-hydroxyethyl terephthalate (MHET) without downstream purification, benefiting from three discovered BHETases (KbEst, KbHyd, and BrevEst) in nature. Towards the mixed plastic waste, integrating the chemical K2CO3-driven glycolysis process with the BHETase depolymerization technique resulted in an MHET yield of up to 98.26 % in 40 h. Remarkably, BrevEst accomplished the highest BHET hydrolysis (~87 % efficiency in 12 h) for yielding analytical-grade MHET compared to seven state-of-the-art PET hydrolases (18 %-40 %). In an investigation combining quantum theoretical computations and experimental validations, we established a MHET-initiated PET repolymerization pathway. This shortcut approach with MHET promises to strengthen the valorization of mixed plastics, offering a substantially more efficient and energy-saving route for PET recycling.
Collapse
Affiliation(s)
- Anni Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210009, People's Republic of China
| | - Luxuan Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210009, People's Republic of China
| | - Haiyang Cui
- School of Life Sciences, Nanjing Normal University, Nanjing, People's Republic of China
| | - Yibo Song
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210009, People's Republic of China
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210009, People's Republic of China
| | - Xiujuan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210009, People's Republic of China
| |
Collapse
|
14
|
Baluk MA, Trzebiatowska PJ, Pieczyńska A, Makowski D, Kroczewska M, Łuczak J, Zaleska-Medynska A. A new strategy for PET depolymerization: Application of bimetallic MOF-74 as a selective catalyst. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 363:121360. [PMID: 38850902 DOI: 10.1016/j.jenvman.2024.121360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/24/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
Large-volume production of poly(ethylene terephthalate) (PET), especially in the form of bottles and food packaging containers, causes problems with polymer waste management. Waste PET could be recycled thermally, mechanically or chemically and the last method allows to obtain individual monomers, but most often it is carried out in the presence of homogeneous catalysts, that are difficult to separate and reuse. In view of this, this work reports for the first time, application of bimetallic MOF-74 - as heterogeneous catalyst - for depolymerization of PET with high monomer (bishydroxyethyl terephthalate, BHET) recovery. The effect of type and amount of second metal in the MOF-74 (Mg/M) was systematically investigated. The results showed increased activity of MOF-74 (Mg/M) containing Co2+, Zn2+ and Mn2+ as a second metal, while the opposite correlation was observed for Cu2+ and Ni2+. It was found that the highest catalytic activity was demonstrated by the introduction of Mg-Mn into MOF-74 with ratio molar 1:1, which resulted in complete depolymerization of PET and 91.8% BHET yield within 4 h. Furthermore, the obtained catalyst showed good stability in 5 reaction cycles and allowed to achieve high-purity BHET, which was confirmed by HPLC analysis. The as-prepared MOF-74 (Mg/Mn) was easy to separate from the post-reaction mixture, clean and reuse in the next depolymerization reaction.
Collapse
Affiliation(s)
- Mateusz Adam Baluk
- Department of Environmental Technology, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdansk, Poland.
| | | | - Aleksandra Pieczyńska
- Department of Environmental Technology, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdansk, Poland
| | - Damian Makowski
- Department of Environmental Technology, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdansk, Poland
| | - Malwina Kroczewska
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Justyna Łuczak
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland; Advanced Materials Center, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Adriana Zaleska-Medynska
- Department of Environmental Technology, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdansk, Poland.
| |
Collapse
|
15
|
Weiland F, Kohlstedt M, Wittmann C. Biobased de novo synthesis, upcycling, and recycling - the heartbeat toward a green and sustainable polyethylene terephthalate industry. Curr Opin Biotechnol 2024; 86:103079. [PMID: 38422776 DOI: 10.1016/j.copbio.2024.103079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 03/02/2024]
Abstract
Polyethylene terephthalate (PET) has revolutionized the industrial sector because of its versatility, with its predominant uses in the textiles and packaging materials industries. Despite the various advantages of this polymer, its synthesis is, unfavorably, tightly intertwined with nonrenewable fossil resources. Additionally, given its widespread use, accumulating PET waste poses a significant environmental challenge. As a result, current research in the areas of biological recycling, upcycling, and de novo synthesis is intensifying. Biological recycling involves the use of micro-organisms or enzymes to breakdown PET into monomers, offering a sustainable alternative to traditional recycling. Upcycling transforms PET waste into value-added products, expanding its potential application range and promoting a circular economy. Moreover, studies of cascading biological and chemical processes driven by microbial cell factories have explored generating PET using renewable, biobased feedstocks such as lignin. These avenues of research promise to mitigate the environmental footprint of PET, underlining the importance of sustainable innovations in the industry.
Collapse
Affiliation(s)
- Fabia Weiland
- Institute of Systems Biotechnology, Saarland University, Germany
| | | | | |
Collapse
|
16
|
Amalia L, Chang CY, Wang SSS, Yeh YC, Tsai SL. Recent advances in the biological depolymerization and upcycling of polyethylene terephthalate. Curr Opin Biotechnol 2024; 85:103053. [PMID: 38128200 DOI: 10.1016/j.copbio.2023.103053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/16/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
Polyethylene terephthalate (PET) is favored for its exceptional properties and widespread daily use. This review highlights recent advancements that enable the development of biological tools for PET decomposition, transforming PET into valuable platform chemicals and materials in upcycling processes. Enhancing PET hydrolases' catalytic activity and efficiency through protein engineering strategies is a priority, facilitating more effective PET waste management. Efforts to create novel PET hydrolases for large-scale PET depolymerization continue, but cost-effectiveness remains challenging. Hydrolyzed monomers must add additional value to make PET recycling economically attractive. Valorization of hydrolysis products through the upcycling process is expected to produce new compounds with different values and qualities from the initial polymer, making the decomposed monomers more appealing. Advances in synthetic biology and enzyme engineering hold promise for PET upcycling. While biological depolymerization offers environmental benefits, further research is needed to make PET upcycling sustainable and economically feasible.
Collapse
Affiliation(s)
- Lita Amalia
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Chia-Yu Chang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Steven S-S Wang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Chun Yeh
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Shen-Long Tsai
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
| |
Collapse
|
17
|
Qu Z, Chen K, Zhang L, Sun Y. Computation-Based Design of Salt Bridges in PETase for Enhanced Thermostability and Performance for PET Degradation. Chembiochem 2023; 24:e202300373. [PMID: 37639367 DOI: 10.1002/cbic.202300373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 08/31/2023]
Abstract
Polyethylene terephthalate (PET) is one of the most widely used plastics, and the accumulation of PET poses a great threat to the environment. IsPETase can degrade PET rapidly at moderate temperatures, but its application is greatly limited by the low stability. Herein, molecular dynamics (MD) simulations combined with a sequence alignment strategy were adopted to introduce salt bridges into the flexible region of IsPETase to improve its thermal stability. In the designed variants, the Tm values of IsPETaseI168R/S188D and IsPETaseI168R/S188E were 7.4 and 8.7 °C higher than that of the wild type, respectively. The release of products degraded by IsPETaseI168R/S188E was 4.3 times that of the wild type. Tertiary structure characterization demonstrated that the structure of the variants IsPETaseI168R/S188D and IsPETaseI168R/S188E became more compact. Extensive MD simulations verified that a stable salt bridge was formed between the residue R168 and D186 in IsPETaseI168R/S188D , while in IsPETaseI168R/S188E an R168-D186-E188 salt bridge network was observed. These results confirmed that the proposed computation-based salt bridge design strategy could efficiently generate variants with enhanced thermal stability for the long-term degradation of PET, which would be helpful for the design of enzymes with improved stability.
Collapse
Affiliation(s)
- Zhi Qu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and, Key Laboratory of Systems Bioengineering and, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Kun Chen
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and, Key Laboratory of Systems Bioengineering and, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Lin Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and, Key Laboratory of Systems Bioengineering and, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and, Key Laboratory of Systems Bioengineering and, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, China
| |
Collapse
|
18
|
Shingwekar D, Laster H, Kemp H, Mellies JL. Two-Step Chemo-Microbial Degradation of Post-Consumer Polyethylene Terephthalate (PET) Plastic Enabled by a Biomass-Waste Catalyst. Bioengineering (Basel) 2023; 10:1253. [PMID: 38002377 PMCID: PMC10669257 DOI: 10.3390/bioengineering10111253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Polyethylene terephthalate (PET) pollution has significant environmental consequences; thus, new degradation methods must be explored to mitigate this problem. We previously demonstrated that a consortium of three Pseudomonas and two Bacillus species can synergistically degrade PET in culture. The consortium more readily consumes bis(2-hydroxyethyl) terephthalate (BHET), a byproduct created in PET depolymerization, compared to PET, and can fully convert BHET into metabolically usable monomers, namely terephthalic acid (TPA) and ethylene glycol (EG). Because of its crystalline structure, the main limitation of the biodegradation of post-consumer PET is the initial transesterification from PET to BHET, depicting the need for a transesterification step in the degradation process. Additionally, there have been numerous studies done on the depolymerization reaction of PET to BHET, yet few have tested the biocompatibility of this product with a bacterial consortium. In this work, a two-step process is implemented for sustainable PET biodegradation, where PET is first depolymerized to form BHET using an orange peel ash (OPA)-catalyzed glycolysis reaction, followed by the complete degradation of the BHET glycolysis product by the bacterial consortium. Results show that OPA-catalyzed glycolysis reactions can fully depolymerize PET, with an average BHET yield of 92% (w/w), and that the reaction product is biocompatible with the bacterial consortium. After inoculation with the consortium, 19% degradation of the glycolysis product was observed in 2 weeks, for a total degradation percentage of 17% when taking both steps into account. Furthermore, the 10-week total BHET degradation rate was 35%, demonstrating that the glycolysis products are biocompatible with the consortium for longer periods of time, for a total two-step degradation rate of 33% over 10 weeks. While we predict that complete degradation is achievable using this method, further experimentation with the consortium can allow for a circular recycling process, where TPA can be recovered from culture media and reused to create new materials.
Collapse
Affiliation(s)
| | - Helen Laster
- Department of Biology, Reed College, Portland, OR 97202, USA
| | - Hannah Kemp
- Department of Biology, Reed College, Portland, OR 97202, USA
| | - Jay L Mellies
- Department of Biology, Reed College, Portland, OR 97202, USA
| |
Collapse
|
19
|
Qian X, Jiang M, Dong W. Tandem chemical deconstruction and biological upcycling of poly(ethylene terephthalate). Trends Biotechnol 2023; 41:1223-1226. [PMID: 37105776 DOI: 10.1016/j.tibtech.2023.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/22/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023]
Abstract
Upcycling processes via tandem chemical deconstruction and biological transformation has shown promise for poly(ethylene terephthalate) (PET) waste open-loop management. Under this framework, postconsumer PET becomes a low-cost and abundant starting material for the synthesis of high-value chemicals.
Collapse
Affiliation(s)
- Xiujuan Qian
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China; Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, Nanjing Tech University, Nanjing, China
| | - Min Jiang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China; Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, Nanjing Tech University, Nanjing, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China.
| | - Weiliang Dong
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China; Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, Nanjing Tech University, Nanjing, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China.
| |
Collapse
|
20
|
Delmulle T, Bovijn S, Deketelaere S, Castelein M, Erauw T, D'hooghe M, Soetaert WK. Engineering Comamonas testosteroni for the production of 2-pyrone-4,6-dicarboxylic acid as a promising building block. Microb Cell Fact 2023; 22:188. [PMID: 37726725 PMCID: PMC10510227 DOI: 10.1186/s12934-023-02202-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/06/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND Plastics are an indispensable part of our daily life. However, mismanagement at their end-of-life results in severe environmental consequences. The microbial conversion of these polymers into new value-added products offers a promising alternative. In this study, we engineered the soil-bacterium Comamonas testosteroni KF-1, a natural degrader of terephthalic acid, for the conversion of the latter to the high-value product 2-pyrone-4,6-dicarboxylic acid. RESULTS In order to convert terephthalic acid to 2-pyrone-4,6-dicarboxylic acid, we deleted the native PDC hydrolase and observed only a limited amount of product formation. To test whether this was the result of an inhibition of terephthalic acid uptake by the carbon source for growth (i.e. glycolic acid), the consumption of both carbon sources was monitored in the wild-type strain. Both carbon sources were consumed at the same time, indicating that catabolite repression was not the case. Next, we investigated if the activity of pathway enzymes remained the same in the wild-type and mutant strain. Here again, no statistical differences could be observed. Finally, we hypothesized that the presence of a pmdK variant in the degradation operon could be responsible for the observed phenotype and created a double deletion mutant strain. This newly created strain accumulated PDC to a larger extent and again consumed both carbon sources. The double deletion strain was then used in a bioreactor experiment, leading to the accumulation of 6.5 g/L of product in 24 h with an overall productivity of 0.27 g/L/h. CONCLUSIONS This study shows the production of the chemical building block 2-pyrone-4,6-dicarboxylic acid from terephthalic acid through an engineered C. testosteroni KF-1 strain. It was observed that both a deletion of the native PDC hydrolase as well as a pmdK variant is needed to achieve high conversion yields. A product titer of 6.5 g/L in 24 h with an overall productivity of 0.27 g/L/h was achieved.
Collapse
Affiliation(s)
- Tom Delmulle
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, 9000, Belgium.
| | - Stijn Bovijn
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, 9000, Belgium
| | - Sari Deketelaere
- SynBioC Research group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, 9000, Belgium
| | - Martijn Castelein
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, 9000, Belgium
| | - Tom Erauw
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, 9000, Belgium
| | - Matthias D'hooghe
- SynBioC Research group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, 9000, Belgium
| | - Wim K Soetaert
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, 9000, Belgium
| |
Collapse
|
21
|
Li A, Sheng Y, Cui H, Wang M, Wu L, Song Y, Yang R, Li X, Huang H. Discovery and mechanism-guided engineering of BHET hydrolases for improved PET recycling and upcycling. Nat Commun 2023; 14:4169. [PMID: 37443360 PMCID: PMC10344914 DOI: 10.1038/s41467-023-39929-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Although considerable research achievements have been made to address the plastic crisis using enzymes, their applications are limited due to incomplete degradation and low efficiency. Herein, we report the identification and subsequent engineering of BHETases, which have the potential to improve the efficiency of PET recycling and upcycling. Two BHETases (ChryBHETase and BsEst) are identified from the environment via enzyme mining. Subsequently, mechanism-guided barrier engineering is employed to yield two robust and thermostable ΔBHETases with up to 3.5-fold enhanced kcat/KM than wild-type, followed by atomic resolution understanding. Coupling ΔBHETase into a two-enzyme system overcomes the challenge of heterogeneous product formation and results in up to 7.0-fold improved TPA production than seven state-of-the-art PET hydrolases, under the conditions used here. Finally, we employ a ΔBHETase-joined tandem chemical-enzymatic approach to valorize 21 commercial post-consumed plastics into virgin PET and an example chemical (p-phthaloyl chloride) for achieving the closed-loop PET recycling and open-loop PET upcycling.
Collapse
Affiliation(s)
- Anni Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210009, People's Republic of China
| | - Yijie Sheng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210009, People's Republic of China
| | - Haiyang Cui
- RWTH Aachen University, Templergraben 55, Aachen, 52062, Germany
- University of Illinois at Urbana-Champaign, Carl R. Woese Institute for Genomic Biology, 1206 West Gregory Drive, Urbana, IL, 61801, USA
| | - Minghui Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210009, People's Republic of China
| | - Luxuan Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210009, People's Republic of China
| | - Yibo Song
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210009, People's Republic of China
| | - Rongrong Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210009, People's Republic of China
| | - Xiujuan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210009, People's Republic of China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
22
|
Świderek K, Velasco-Lozano S, Galmés MÀ, Olazabal I, Sardon H, López-Gallego F, Moliner V. Mechanistic studies of a lipase unveil effect of pH on hydrolysis products of small PET modules. Nat Commun 2023; 14:3556. [PMID: 37321996 PMCID: PMC10272158 DOI: 10.1038/s41467-023-39201-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 06/02/2023] [Indexed: 06/17/2023] Open
Abstract
Biocatalysis is a key technology enabling plastic recycling. However, despite advances done in the development of plastic-degrading enzymes, the molecular mechanisms that govern their catalytic performance are poorly understood, hampering the engineering of more efficient enzyme-based technologies. In this work, we study the hydrolysis of PET-derived diesters and PET trimers catalyzed by the highly promiscuous lipase B from Candida antarctica (CALB) through QM/MM molecular dynamics simulations supported by experimental Michaelis-Menten kinetics. The computational studies reveal the role of the pH on the CALB regioselectivity toward the hydrolysis of bis-(hydroxyethyl) terephthalate (BHET). We exploit this insight to perform a pH-controlled biotransformation that selectively hydrolyzes BHET to either its corresponding diacid or monoesters using both soluble and immobilized CALB. The discoveries presented here can be exploited for the valorization of BHET resulting from the organocatalytic depolymerization of PET.
Collapse
Affiliation(s)
- Katarzyna Świderek
- BioComp Group, Institute of Advanced Materials (INAM), Universitat Jaume I, 12071, Castellón, Spain.
| | - Susana Velasco-Lozano
- Heterogeneous Biocatalysis Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón, 182, 20014 Donostia-San Sebastián, Spain
| | - Miquel À Galmés
- BioComp Group, Institute of Advanced Materials (INAM), Universitat Jaume I, 12071, Castellón, Spain
| | - Ion Olazabal
- POLYMAT, Department of Polymer Science and Technology, University of the Basque Country UPV/EHU, Manuel de Lardizabal, 3, 20018, Donostia-San Sebastián, Spain
| | - Haritz Sardon
- POLYMAT, Department of Polymer Science and Technology, University of the Basque Country UPV/EHU, Manuel de Lardizabal, 3, 20018, Donostia-San Sebastián, Spain
| | - Fernando López-Gallego
- Heterogeneous Biocatalysis Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón, 182, 20014 Donostia-San Sebastián, Spain.
- IKERBASQUE, Basque Foundation for Science, 48013, Bilbao, Spain.
| | - Vicent Moliner
- BioComp Group, Institute of Advanced Materials (INAM), Universitat Jaume I, 12071, Castellón, Spain.
| |
Collapse
|
23
|
Li A, Cui H, Sheng Y, Qiao J, Li X, Huang H. Global plastic upcycling during and after the COVID-19 pandemic: The status and perspective. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2023; 11:110092. [PMID: 37200549 PMCID: PMC10167783 DOI: 10.1016/j.jece.2023.110092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/10/2023] [Accepted: 05/08/2023] [Indexed: 05/20/2023]
Abstract
Plastic pollution has become one of the most pressing environmental issues worldwide since the vast majority of post-consumer plastics are hard to degrade in the environment. The coronavirus disease (COVID-19) pandemic had disrupted the previous effort of plastic pollution mitigation to a great extent due to the overflow of plastic-based medical waste. In the post-pandemic era, the remaining challenge is how to motivate global action towards a plastic circular economy. The need for one package of sustainable and systematic plastic upcycling approaches has never been greater to address such a challenge. In this review, we summarized the threat of plastic pollution during COVID-19 to public health and ecosystem. In order to solve the aforementioned challenges, we present a shifting concept, regeneration value from plastic waste, that provides four promising pathways to achieve a sustainable circular economy: 1) Increasing reusability and biodegradability of plastics; 2) Transforming plastic waste into high-value products by chemical approaches; 3) The closed-loop recycling can be promoted by biodegradation; 4) Involving renewable energy into plastic upcycling. Additionally, the joint efforts from different social perspectives are also encouraged to create the necessary economic and environmental impetus for a circular economy.
Collapse
Affiliation(s)
- Anni Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China
| | - Haiyang Cui
- RWTH Aachen University, Templergraben 55, 52062 Aachen, Germany
| | - Yijie Sheng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China
| | - Jie Qiao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China
| | - Xiujuan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China
- School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| |
Collapse
|
24
|
You SM, Lee SS, Ryu MH, Song HM, Kang MS, Jung YJ, Song EC, Sung BH, Park SJ, Joo JC, Kim HT, Cha HG. β-Ketoadipic acid production from poly(ethylene terephthalate) waste via chemobiological upcycling. RSC Adv 2023; 13:14102-14109. [PMID: 37180017 PMCID: PMC10168023 DOI: 10.1039/d3ra02072j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
The upcycling of poly(ethylene terephthalate) (PET) waste can simultaneously produce value-added chemicals and reduce the growing environmental impact of plastic waste. In this study, we designed a chemobiological system to convert terephthalic acid (TPA), an aromatic monomer of PET, to β-ketoadipic acid (βKA), a C6 keto-diacid that functions as a building block for nylon-6,6 analogs. Using microwave-assisted hydrolysis in a neutral aqueous system, PET was converted to TPA with Amberlyst-15, a conventional catalyst with high conversion efficiency and reusability. The bioconversion process of TPA into βKA used a recombinant Escherichia coli βKA expressing two conversion modules for TPA degradation (tphAabc and tphB) and βKA synthesis (aroY, catABC, and pcaD). To improve bioconversion, the formation of acetic acid, a deleterious factor for TPA conversion in flask cultivation, was efficiently regulated by deleting the poxB gene along with operating the bioreactor to supply oxygen. By applying two-stage fermentation consisting of the growth phase in pH 7 followed by the production phase in pH 5.5, a total of 13.61 mM βKA was successfully produced with 96% conversion efficiency. This efficient chemobiological PET upcycling system provides a promising approach for the circular economy to acquire various chemicals from PET waste.
Collapse
Affiliation(s)
- Sang-Mook You
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT) Ulsan 44429 Republic of Korea
| | - Si Seon Lee
- Department of Biotechnology, The Catholic University of Korea Bucheon-si Gyeonggi-do 14662 Republic of Korea
| | - Mi Hee Ryu
- Green Carbon Research Center Korea Research Institute of Chemical Technology (KRICT) Daejeon 34114 Republic of Korea
| | - Hye Min Song
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science & Engineering, Ewha Woman's University Seoul 03760 Republic of Korea
| | - Min Soo Kang
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT) Ulsan 44429 Republic of Korea
| | - Ye Jean Jung
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT) Ulsan 44429 Republic of Korea
| | - Eun Chae Song
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University Daejeon 34134 Republic of Korea
| | - Bong Hyun Sung
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology Daejeon 34141 Republic of Korea
| | - Si Jae Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science & Engineering, Ewha Woman's University Seoul 03760 Republic of Korea
| | - Jeong Chan Joo
- Department of Biotechnology, The Catholic University of Korea Bucheon-si Gyeonggi-do 14662 Republic of Korea
| | - Hee Taek Kim
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University Daejeon 34134 Republic of Korea
| | - Hyun Gil Cha
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT) Ulsan 44429 Republic of Korea
| |
Collapse
|
25
|
Pellis A, Guebitz GM, Ribitsch D. Bio-upcycling of multilayer materials and blends: closing the plastics loop. Curr Opin Biotechnol 2023; 81:102938. [PMID: 37058877 DOI: 10.1016/j.copbio.2023.102938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/15/2023] [Accepted: 03/15/2023] [Indexed: 04/16/2023]
Abstract
The urge to discover and develop new technologies for closing the plastic carbon cycle is motivating industries, governments, and academia to work closely together to find suitable solutions in a timely manner. In this review article, a combination of uprising breakthrough technologies is presented highlighting their potential and complementarity to be integrated one with the other, therefore providing a potential solution to efficiently solve the plastics problem. First, modern approaches for bio-exploration and engineering of polymer-active enzymes are presented to degrade polymers into valuable building blocks. Special focus is placed on the recovery of components from multilayered materials since these complex materials can only be recycled insufficiently or not at all by existing technologies. Then, the potential of microbes and enzymes for resynthesis of polymers and reuse of building blocks is summarized and discussed. Finally, examples for improvement of the bio-based content and enzymatic degradability and future perspectives are given.
Collapse
Affiliation(s)
- Alessandro Pellis
- Department of Chemistry and Industrial Chemistry, University of Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Georg M Guebitz
- ACIB - Austrian Centre of Industrial Biotechnology, Krenngasse 37, 8010 Graz, Austria; Department of Agrobiotechnology, IFA-Tulln, Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences Vienna, 1180 Vienna, Austria
| | - Doris Ribitsch
- ACIB - Austrian Centre of Industrial Biotechnology, Krenngasse 37, 8010 Graz, Austria; Department of Agrobiotechnology, IFA-Tulln, Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences Vienna, 1180 Vienna, Austria.
| |
Collapse
|
26
|
Jung H, Shin G, Kwak H, Hao LT, Jegal J, Kim HJ, Jeon H, Park J, Oh DX. Review of polymer technologies for improving the recycling and upcycling efficiency of plastic waste. CHEMOSPHERE 2023; 320:138089. [PMID: 36754297 DOI: 10.1016/j.chemosphere.2023.138089] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/02/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Human society has become increasingly reliant on plastic because it allows for convenient and sanitary living. However, recycling rates are currently low, which means that the majority of plastic waste ends up in landfills or the ocean. Increasing recycling and upcycling rates is a critical strategy for addressing the issues caused by plastic pollution, but there are several technical limitations to overcome. This article reviews advancements in polymer technology that aim to improve the efficiency of recycling and upcycling plastic waste. In food packaging, natural polymers with excellent gas barrier properties and self-cleaning abilities have been introduced as environmentally friendly alternatives to existing materials and to reduce food-derived contamination. Upcycling and valorization approaches have emerged to transform plastic waste into high-value-added products. Recent advancements in the development of recyclable high-performance plastics include the design of super engineering thermoplastics and engineering chemical bonds of thermosets to make them recyclable and biodegradable. Further research is needed to develop more cost-effective and scalable technologies to address the plastic pollution problem through sustainable recycling and upcycling.
Collapse
Affiliation(s)
- Hyuni Jung
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
| | - Giyoung Shin
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
| | - Hojung Kwak
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
| | - Lam Tan Hao
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea; Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Jonggeon Jegal
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
| | - Hyo Jeong Kim
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
| | - Hyeonyeol Jeon
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea; Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| | - Jeyoung Park
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea; Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea.
| | - Dongyeop X Oh
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea; Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
27
|
Orlando M, Molla G, Castellani P, Pirillo V, Torretta V, Ferronato N. Microbial Enzyme Biotechnology to Reach Plastic Waste Circularity: Current Status, Problems and Perspectives. Int J Mol Sci 2023; 24:3877. [PMID: 36835289 PMCID: PMC9967032 DOI: 10.3390/ijms24043877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
The accumulation of synthetic plastic waste in the environment has become a global concern. Microbial enzymes (purified or as whole-cell biocatalysts) represent emerging biotechnological tools for waste circularity; they can depolymerize materials into reusable building blocks, but their contribution must be considered within the context of present waste management practices. This review reports on the prospective of biotechnological tools for plastic bio-recycling within the framework of plastic waste management in Europe. Available biotechnology tools can support polyethylene terephthalate (PET) recycling. However, PET represents only ≈7% of unrecycled plastic waste. Polyurethanes, the principal unrecycled waste fraction, together with other thermosets and more recalcitrant thermoplastics (e.g., polyolefins) are the next plausible target for enzyme-based depolymerization, even if this process is currently effective only on ideal polyester-based polymers. To extend the contribution of biotechnology to plastic circularity, optimization of collection and sorting systems should be considered to feed chemoenzymatic technologies for the treatment of more recalcitrant and mixed polymers. In addition, new bio-based technologies with a lower environmental impact in comparison with the present approaches should be developed to depolymerize (available or new) plastic materials, that should be designed for the required durability and for being susceptible to the action of enzymes.
Collapse
Affiliation(s)
- Marco Orlando
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant, 21100 Varese, Italy
| | - Gianluca Molla
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant, 21100 Varese, Italy
| | - Pietro Castellani
- Department of Theoretical and Applied Sciences (DiSTA), University of Insubria, Via G.B. Vico 46, 21100 Varese, Italy
| | - Valentina Pirillo
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant, 21100 Varese, Italy
| | - Vincenzo Torretta
- Department of Theoretical and Applied Sciences (DiSTA), University of Insubria, Via G.B. Vico 46, 21100 Varese, Italy
| | - Navarro Ferronato
- Department of Theoretical and Applied Sciences (DiSTA), University of Insubria, Via G.B. Vico 46, 21100 Varese, Italy
| |
Collapse
|
28
|
Mudondo J, Lee HS, Jeong Y, Kim TH, Kim S, Sung BH, Park SH, Park K, Cha HG, Yeon YJ, Kim HT. Recent Advances in the Chemobiological Upcycling of Polyethylene Terephthalate (PET) into Value-Added Chemicals. J Microbiol Biotechnol 2023; 33:1-14. [PMID: 36451300 PMCID: PMC9895998 DOI: 10.4014/jmb.2208.08048] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 12/02/2022]
Abstract
Polyethylene terephthalate (PET) is a plastic material commonly applied to beverage packaging used in everyday life. Owing to PET's versatility and ease of use, its consumption has continuously increased, resulting in considerable waste generation. Several physical and chemical recycling processes have been developed to address this problem. Recently, biological upcycling is being actively studied and has come to be regarded as a powerful technology for overcoming the economic issues associated with conventional recycling methods. For upcycling, PET should be degraded into small molecules, such as terephthalic acid and ethylene glycol, which are utilized as substrates for bioconversion, through various degradation processes, including gasification, pyrolysis, and chemical/biological depolymerization. Furthermore, biological upcycling methods have been applied to biosynthesize value-added chemicals, such as adipic acid, muconic acid, catechol, vanillin, and glycolic acid. In this review, we introduce and discuss various degradation methods that yield substrates for bioconversion and biological upcycling processes to produce value-added biochemicals. These technologies encourage a circular economy, which reduces the amount of waste released into the environment.
Collapse
Affiliation(s)
- Joyce Mudondo
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hoe-Suk Lee
- Department of Biochemical Engineering Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Yunhee Jeong
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Tae Hee Kim
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seungmi Kim
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Bong Hyun Sung
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - See-Hyoung Park
- Department of Biological and Chemical Engineering, Hongik University, Sejong 30016, Republic of Korea
| | - Kyungmoon Park
- Department of Biological and Chemical Engineering, Hongik University, Sejong 30016, Republic of Korea
| | - Hyun Gil Cha
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea,Corresponding authors H.G. Cha Phone: +82-52-241-6317 Fax: +82-52-241-6349 E-mail:
| | - Young Joo Yeon
- Department of Biochemical Engineering Gangneung-Wonju National University, Gangneung 25457, Republic of Korea,Y.J. Yeon Phone: +82-33-640-2401 Fax: +82-33-640-2410 E-mail:
| | - Hee Taek Kim
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea,H.T. Kim Phone: +82-42-821-6722 Fax:+82-42-821-8785 E-mail:
| |
Collapse
|
29
|
Tarazona NA, Wei R, Brott S, Pfaff L, Bornscheuer UT, Lendlein A, Machatschek R. Rapid depolymerization of poly(ethylene terephthalate) thin films by a dual-enzyme system and its impact on material properties. CHEM CATALYSIS 2022; 2:3573-3589. [PMID: 37350932 PMCID: PMC10284027 DOI: 10.1016/j.checat.2022.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/17/2022] [Accepted: 11/04/2022] [Indexed: 06/24/2023]
Abstract
Enzymatic hydrolysis holds great promise for plastic waste recycling and upcycling. The interfacial catalysis mode, and the variability of polymer specimen properties under different degradation conditions, add to the complexity and difficulty of understanding polymer cleavage and engineering better biocatalysts. We present a systemic approach to studying the enzyme-catalyzed surface erosion of poly(ethylene terephthalate) (PET) while monitoring/controlling operating conditions in real time with simultaneous detection of mass loss and changes in viscoelastic behavior. PET nanofilms placed on water showed a porous morphology and a thickness-dependent glass transition temperature (Tg) between 40°C and 44°C, which is >20°C lower than the Tg of bulk amorphous PET. Hydrolysis by a dual-enzyme system containing thermostabilized variants of Ideonella sakaiensis PETase and MHETase resulted in a maximum depolymerization of 70% in 1 h at 50°C. We demonstrate that increased accessible surface area, amorphization, and Tg reduction speed up PET degradation while simultaneously lowering the threshold for degradation-induced crystallization.
Collapse
Affiliation(s)
- Natalia A. Tarazona
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, Kantstraße 55, 14513 Teltow, Germany
| | - Ren Wei
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Straße 8, 17489 Greifswald, Germany
| | - Stefan Brott
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Straße 8, 17489 Greifswald, Germany
| | - Lara Pfaff
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Straße 8, 17489 Greifswald, Germany
| | - Uwe T. Bornscheuer
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Straße 8, 17489 Greifswald, Germany
| | - Andreas Lendlein
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, Kantstraße 55, 14513 Teltow, Germany
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14469 Potsdam, Germany
| | - Rainhard Machatschek
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, Kantstraße 55, 14513 Teltow, Germany
| |
Collapse
|
30
|
Lomwongsopon P, Varrone C. Critical Review on the Progress of Plastic Bioupcycling Technology as a Potential Solution for Sustainable Plastic Waste Management. Polymers (Basel) 2022; 14:polym14224996. [PMID: 36433123 PMCID: PMC9692586 DOI: 10.3390/polym14224996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Plastic production worldwide has doubled in the last two decades and is expected to reach a four-fold increase by 2050. The durability of plastic makes them a perfect material for many applications, but it is also a key limitation to their end-of-life management. The current plastic lifecycle is far from circular, with only 13% being collected for recycling and 9% being successfully recycled, indicating the failure of current recycling technology. The remaining plastic waste streams are thus incinerated, landfilled, or worse, mismanaged, leading to them leaking into the environment. To promote plastic circularity, keeping material in the loop is a priority and represents a more sustainable solution. This can be achieved through the reuse of plastic items, or by using plastic waste as a resource for new materials, instead of discarding them as waste. As the discovery of plastic-degrading/utilizing microorganisms and enzymes has been extensively reported recently, the possibility of developing biological plastic upcycling processes is opening up. An increasing amount of studies have investigated the use of plastic as a carbon source for biotechnological processes to produce high-value compounds such as bioplastics, biochemicals, and biosurfactants. In the current review, the advancements in fossil-based plastic bio- and thermochemical upcycling technologies are presented and critically discussed. In particular, we highlight the developed (bio)depolymerization coupled with bioconversion/fermentation processes to obtain industrially valuable products. This review is expected to contribute to the future development and scale-up of effective plastic bioupcycling processes that can act as a drive to increase waste removal from the environment and valorize post-consumer plastic streams, thus accelerating the implementation of a circular (plastic) economy.
Collapse
|
31
|
Zhou H, Wang Y, Ren Y, Li Z, Kong X, Shao M, Duan H. Plastic Waste Valorization by Leveraging Multidisciplinary Catalytic Technologies. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hua Zhou
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Ye Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yue Ren
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhenhua Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xianggui Kong
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mingfei Shao
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haohong Duan
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
32
|
Gao R, Pan H, Kai L, Han K, Lian J. Microbial degradation and valorization of poly(ethylene terephthalate) (PET) monomers. World J Microbiol Biotechnol 2022; 38:89. [PMID: 35426614 DOI: 10.1007/s11274-022-03270-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/23/2022] [Indexed: 12/22/2022]
Abstract
The polyethylene terephthalate (PET) is one of the major plastics with a huge annual production. Alongside with its mass production and wide applications, PET pollution is threatening and damaging the environment and human health. Although mechanical or chemical methods can deal with PET, the process suffers from high cost and the hydrolyzed monomers will cause secondary pollution. Discovery of plastic-degrading microbes and the corresponding enzymes emerges new hope to cope with this issue. Combined with synthetic biology and metabolic engineering, microbial cell factories not only provide a promising approach to degrade PET, but also enable the conversion of its monomers, ethylene glycol (EG) and terephthalic acid (TPA), into value-added compounds. In this way, PET wastes can be handled in environment-friendly and more potentially cost-effective processes. While PET hydrolases have been extensively reviewed, this review focuses on the microbes and metabolic pathways for the degradation of PET monomers. In addition, recent advances in the biotransformation of TPA and EG into value-added compounds are discussed in detail.
Collapse
Affiliation(s)
- Rui Gao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, China.,Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, 310027, Hangzhou, China
| | - Haojie Pan
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Lei Kai
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, 22116, Xuzhou, China.,Jiangsu Keybio Co. LTD, 22116, Xuzhou, China
| | - Kun Han
- Jiangsu Keybio Co. LTD, 22116, Xuzhou, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, China. .,Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, 310027, Hangzhou, China.
| |
Collapse
|
33
|
Biochemical and structural characterization of an aromatic ring-hydroxylating dioxygenase for terephthalic acid catabolism. Proc Natl Acad Sci U S A 2022; 119:e2121426119. [PMID: 35312352 PMCID: PMC9060491 DOI: 10.1073/pnas.2121426119] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
SignificanceMore than 400 million tons of plastic waste is produced each year, the overwhelming majority of which ends up in landfills. Bioconversion strategies aimed at plastics have emerged as important components of enabling a circular economy for synthetic plastics, especially those that exhibit chemically similar linkages to those found in nature, such as polyesters. The enzyme system described in this work is essential for mineralization of the xenobiotic components of poly(ethylene terephthalate) (PET) in the biosphere. Our description of its structure and substrate preferences lays the groundwork for in vivo or ex vivo engineering of this system for PET upcycling.
Collapse
|
34
|
Wei R, von Haugwitz G, Pfaff L, Mican J, Badenhorst CP, Liu W, Weber G, Austin HP, Bednar D, Damborsky J, Bornscheuer UT. Mechanism-Based Design of Efficient PET Hydrolases. ACS Catal 2022; 12:3382-3396. [PMID: 35368328 PMCID: PMC8939324 DOI: 10.1021/acscatal.1c05856] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/04/2022] [Indexed: 01/06/2023]
Abstract
Polyethylene terephthalate (PET) is the most widespread synthetic polyester, having been utilized in textile fibers and packaging materials for beverages and food, contributing considerably to the global solid waste stream and environmental plastic pollution. While enzymatic PET recycling and upcycling have recently emerged as viable disposal methods for a circular plastic economy, only a handful of benchmark enzymes have been thoroughly described and subjected to protein engineering for improved properties over the last 16 years. By analyzing the specific material properties of PET and the reaction mechanisms in the context of interfacial biocatalysis, this Perspective identifies several limitations in current enzymatic PET degradation approaches. Unbalanced enzyme-substrate interactions, limited thermostability, and low catalytic efficiency at elevated reaction temperatures, and inhibition caused by oligomeric degradation intermediates still hamper industrial applications that require high catalytic efficiency. To overcome these limitations, successful protein engineering studies using innovative experimental and computational approaches have been published extensively in recent years in this thriving research field and are summarized and discussed in detail here. The acquired knowledge and experience will be applied in the near future to address plastic waste contributed by other mass-produced polymer types (e.g., polyamides and polyurethanes) that should also be properly disposed by biotechnological approaches.
Collapse
Affiliation(s)
- Ren Wei
- Institute
of Biochemistry, Department of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany
| | - Gerlis von Haugwitz
- Institute
of Biochemistry, Department of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany
| | - Lara Pfaff
- Institute
of Biochemistry, Department of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany
| | - Jan Mican
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, 625 00 Brno, Czech Republic
- International
Clinical Research Center, St. Anne’s University Hospital and
Faculty of Medicine, Masaryk University, 656 91 Brno, Czech Republic
| | - Christoffel P.
S. Badenhorst
- Institute
of Biochemistry, Department of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany
| | - Weidong Liu
- Tianjin
Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport
Economic Area, Tianjin, 300308, China
| | - Gert Weber
- Macromolecular
Crystallography, Helmholtz-Zentrum Berlin
für Materialien und Energie, Albert-Einstein-Straße 15, D-12489 Berlin, Germany
| | - Harry P. Austin
- Institute
of Biochemistry, Department of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany
| | - David Bednar
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, 625 00 Brno, Czech Republic
- International
Clinical Research Center, St. Anne’s University Hospital and
Faculty of Medicine, Masaryk University, 656 91 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, 625 00 Brno, Czech Republic
- International
Clinical Research Center, St. Anne’s University Hospital and
Faculty of Medicine, Masaryk University, 656 91 Brno, Czech Republic
| | - Uwe T. Bornscheuer
- Institute
of Biochemistry, Department of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany
| |
Collapse
|
35
|
Affiliation(s)
- Dhananjay Dileep
- Chemical and Biological Engineering, Sweeney Hall, Iowa State University 618 Bissell Road Ames 50011 Iowa USA
| | - Michael Forrester
- Chemical and Biological Engineering, Sweeney Hall, Iowa State University 618 Bissell Road Ames 50011 Iowa USA
| | - Eric Cochran
- Chemical and Biological Engineering, Sweeney Hall, Iowa State University 618 Bissell Road Ames 50011 Iowa USA
| |
Collapse
|