1
|
Lu S, Liu X, Guo Y, Wang Y. Efficient Hydrocracking of Waste Polyethylene into Branched Liquid Fuels over Low Pt-loaded Nb 2O 5 Catalyst. CHEMSUSCHEM 2025; 18:e202402042. [PMID: 39469777 DOI: 10.1002/cssc.202402042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 10/30/2024]
Abstract
Catalytic hydrocracking of polyethylene to branched liquid fuels has drawn particular attention. Here, bifunctional Pt/Nb2O5 catalysts with different Pt loadings were prepared for polyethylene hydrocracking. It was found that the low-loading Pt/Nb2O5 catalysts exhibited significantly higher catalytic activity than those of high-loading Pt/Nb2O5 catalysts, with the 0.2Pt/Nb2O5 catalyst having the best catalytic performance (79.2 % yield of liquid fuels (C5-C19) with branched alkanes accounting for 85.2 %). Detailed characterizations revealed that the activation of H2 played a crucial role in the efficient hydrocracking of polyethylene. The 0.2Pt/Nb2O5 catalyst, with highly dispersed Pt nanoclusters on the surface, facilitated the highly active Hδ- species formation, thereby enhancing hydrocracking activity. This work highlights the importance of H2 activation in the hydrocracking of polyethylene and provides insights for the design of efficient catalysts.
Collapse
Affiliation(s)
- Shenglu Lu
- State key laboratory of green chemical engineering and industrial catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, PR China
| | - Xiaohui Liu
- State key laboratory of green chemical engineering and industrial catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, PR China
| | - Yong Guo
- State key laboratory of green chemical engineering and industrial catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, PR China
| | - Yanqin Wang
- State key laboratory of green chemical engineering and industrial catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, PR China
| |
Collapse
|
2
|
Liu Z, Chang SH, Mailhot G. Emerging Biochemical Conversion for Plastic Waste Management: A Review. Molecules 2025; 30:1255. [PMID: 40142030 PMCID: PMC11946717 DOI: 10.3390/molecules30061255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/07/2025] [Accepted: 03/08/2025] [Indexed: 03/28/2025] Open
Abstract
In recent years, vast amounts of plastic waste have been released into the environment worldwide, posing a severe threat to human health and ecosystems. Despite the partial success of traditional plastic waste management technologies, their limitations underscore the need for innovative approaches. This review provides a comprehensive overview of recent advancements in chemical and biological technologies for converting and utilizing plastic waste. Key topics include the technical parameters, characteristics, processes, and reaction mechanisms underlying these emerging technologies. Additionally, the review highlights the importance of conducting economic analyses and life cycle assessments of these emerging technologies, offering valuable insights and establishing a robust foundation for future research. By leveraging the literature from the last five years, this review explores innovative chemical approaches, such as hydrolysis, hydrogenolysis, alcoholysis, ammonolysis, pyrolysis, and photolysis, which break down high-molecular-weight macromolecules into oligomers or small molecules by cracking or depolymerizing specific chemical groups within plastic molecules. It also examines innovative biological methods, including microbial enzymatic degradation, which employs microorganisms or enzymes to convert high-molecular-weight macromolecules into oligomers or small molecules through degradation and assimilation mechanisms. The review concludes by discussing future research directions focused on addressing the technological, economic, and scalability challenges of emerging plastic waste management technologies, with a strong commitment to promoting sustainable solutions and achieving lasting environmental impact.
Collapse
Affiliation(s)
- Zhongchuang Liu
- Department of Environmental Engineering Technology, College of Power Engineering, Chongqing Electric Power College, No. 9, Electric Power Fourth Village, Jiulongpo District, Chongqing 400053, China
| | - Siu Hua Chang
- Waste Management and Resource Recovery (WeResCue) Group, Chemical Engineering Studies, College of Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, Permatang Pauh 13500, Penang, Malaysia;
| | - Gilles Mailhot
- Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne—Centre National de la Recherche Scientifique (CNRS), F-63000 Clermont-Ferrand, France
| |
Collapse
|
3
|
Cao J, Feng X, Wang Y, Gong X, Zheng X, Gao J, Shi S. Selective Hydrogenolysis Conversion of Polyethylene into Alkyl Oil Over Iridium-based Catalyst. CHEMSUSCHEM 2025; 18:e202400427. [PMID: 39172751 DOI: 10.1002/cssc.202400427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 08/24/2024]
Abstract
Plastic not only brings convenience but also places a great burden on the environment. Utilizing plastic as a low-cost feed-stock for producing valuable chemicals and fuels is one of the most attractive directions. Among the huge types of plastics, polyolefins (PO), especially polyethylene (PE), were the most abundant type and the most difficult to upgrade. Hydrocracking and hydrogenolysis operate at relatively low reaction temperatures which show promising applications. Herein, Iridium-based catalysts were developed and proved to be effective in PE hydrogenolysis under relatively mild conditions. Catalysts were characterized by TEM, HRTEM, SEM, HAADF-STEM, XPS, CO chemisorption and H2 chemisorption etc. The Ir catalysts showed similar reactivity but better selectivity for liquid products than Ru under similar conditions. A highest 92.7 % percent of liquid products could be obtained under 250 °C, 3 MPa of H2 in 8 hours with Ir/γ-Al2O3 catalyst. The support could also affect the performance, including Lewis acid amount, surface areas, and morphology. And we suppose Iridium catalysts could serve as another choice for plastic hydrogenolysis under mild conditions.
Collapse
Affiliation(s)
- Jieqi Cao
- Dalian Nat i onal Laboratory for Clean Energy, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiao Feng
- Dalian Nat i onal Laboratory for Clean Energy, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yinwei Wang
- Dalian Nat i onal Laboratory for Clean Energy, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xinbin Gong
- Dalian Nat i onal Laboratory for Clean Energy, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
| | - Xiaoxia Zheng
- Dalian Nat i onal Laboratory for Clean Energy, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
| | - Jin Gao
- Dalian Nat i onal Laboratory for Clean Energy, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
| | - Song Shi
- Dalian Nat i onal Laboratory for Clean Energy, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
| |
Collapse
|
4
|
de Souza AS, Ferreira PG, de Jesus IS, de Oliveira RPRF, de Carvalho AS, Futuro DO, Ferreira VF. Recent Progress in Polyolefin Plastic: Polyethylene and Polypropylene Transformation and Depolymerization Techniques. Molecules 2024; 30:87. [PMID: 39795145 PMCID: PMC11721993 DOI: 10.3390/molecules30010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
This paper highlights the complexity and urgency of addressing plastic pollution, drawing attention to the environmental challenges posed by improperly discarded plastics. Petroleum-based plastic polymers, with their remarkable range of physical properties, have revolutionized industries worldwide. Their versatility-from flexible to rigid and hydrophilic to hydrophobic-has fueled an ever-growing demand. However, their versatility has also contributed to a massive global waste problem as plastics pervade virtually every ecosystem, from the depths of oceans to the most remote terrestrial landscapes. Plastic pollution manifests not just as visible waste-such as fishing nets, bottles, and garbage bags-but also as microplastics, infiltrating food chains and freshwater sources. This crisis is exacerbated by the unsustainable linear model of plastic production and consumption, which prioritizes convenience over long-term environmental health. The mismanagement of plastic waste not only pollutes ecosystems but also releases greenhouse gases like carbon dioxide during degradation and incineration, thereby complicating efforts to achieve global climate and sustainability goals. Given that mechanical recycling only addresses a fraction of macroplastics, innovative approaches are needed to improve this process. Methods like pyrolysis and hydrogenolysis offer promising solutions by enabling the chemical transformation and depolymerization of plastics into reusable materials or valuable chemical feedstocks. These advanced recycling methods can support a circular economy by reducing waste and creating high-value products. In this article, the focus on pyrolysis and hydrogenolysis underscores the need to move beyond traditional recycling. These methods exemplify the potential for science and technology to mitigate plastic pollution while aligning with sustainability objectives. Recent advances in the pyrolysis and hydrogenolysis of polyolefins focus on their potential for advanced recycling, breaking down plastics at a molecular level to create feedstocks for new products or fuels. Pyrolysis produces pyrolysis oil and syngas, with applications in renewable energy and chemicals. However, some challenges of this process include scalability, feedstock variety, and standardization, as well as environmental concerns about emissions. Companies like Shell and ExxonMobil are investing heavily to overcome these barriers and improve recycling efficiencies. By leveraging these transformative strategies, we can reimagine the lifecycle of plastics and address one of the most pressing environmental challenges of our time. This review updates the knowledge of the fields of pyrolysis and hydrogenolysis of plastics derived from polyolefins based on the most recent works available in the literature, highlighting the techniques used, the types of products obtained, and the highest yields.
Collapse
Affiliation(s)
- Acácio Silva de Souza
- Programa de Pós-Graduação em Ciências Aplicadas a Produtos para a Saúde, Laboratório de Inovação em Química e Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Rua Doutor Mario Vianna, 523, Santa Rosa, Niterói 24241-000, RJ, Brazil; (P.G.F.); (I.S.d.J.); (R.P.R.F.d.O.); (A.S.d.C.); (D.O.F.)
| | | | | | | | | | | | - Vitor Francisco Ferreira
- Programa de Pós-Graduação em Ciências Aplicadas a Produtos para a Saúde, Laboratório de Inovação em Química e Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Rua Doutor Mario Vianna, 523, Santa Rosa, Niterói 24241-000, RJ, Brazil; (P.G.F.); (I.S.d.J.); (R.P.R.F.d.O.); (A.S.d.C.); (D.O.F.)
| |
Collapse
|
5
|
Manal AK, Shivhare A, Lande S, Srivastava R. Synergistic catalysis for promoting selective C-C/C-O cleavage in plastic waste: structure-activity relationship and rational design of heterogeneous catalysts for liquid hydrocarbon production. Chem Commun (Camb) 2024; 60:13143-13168. [PMID: 39431918 DOI: 10.1039/d4cc03261f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Ever-increasing consumption of plastic products and poor waste management infrastructure have resulted in a massive accumulation of plastic waste in environments, causing adverse effects on climate and living organisms. Although contributing ∼10% towards the total plastic waste management infrastructure, the chemical recycling of plastic waste is considered a viable option to valorize plastic waste into platform chemicals and liquid fuels. Among the various chemical upcycling processes, catalytic hydroprocessing has attracted interest due to its potential to offer higher selectivity than other thermal-based approaches. Heterogeneous catalytic hydroprocessing reactions offer routes for converting plastic waste into essential industrially important molecules. However, the functional group similarities in the plastic polymers frequently constrain reaction selectivity. Therefore, a fundamental understanding of metal selection for targeted bond activation and plastic interaction on solid surfaces is essential for catalyst design and reaction engineering. In this review, we critically assess the structure-activity relationship of catalysts used in the hydroprocessing of plastic waste for the selective production of liquid hydrocarbons. We discuss the significance of C-C/C-O bond activation in plastic waste through active site modulation and surface modification to elucidate reaction networks and pathways for achieving selective bond activation and cleavage. Finally, we highlight current challenges and future opportunities in catalyst design to upcycle real-life plastic waste and produce selective liquid hydrocarbons.
Collapse
Affiliation(s)
- Arjun K Manal
- Catalysis Research Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar-140001, Punjab, India.
| | - Atal Shivhare
- Catalysis Research Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar-140001, Punjab, India.
| | - Sharad Lande
- Research & Development, Reliance Industries Ltd, Thane Belapur Road, Ghansoli, Navi Mumbai-400701, India
| | - Rajendra Srivastava
- Catalysis Research Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar-140001, Punjab, India.
| |
Collapse
|
6
|
Sun J, Dong J, Gao L, Zhao YQ, Moon H, Scott SL. Catalytic Upcycling of Polyolefins. Chem Rev 2024; 124:9457-9579. [PMID: 39151127 PMCID: PMC11363024 DOI: 10.1021/acs.chemrev.3c00943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 08/18/2024]
Abstract
The large production volumes of commodity polyolefins (specifically, polyethylene, polypropylene, polystyrene, and poly(vinyl chloride)), in conjunction with their low unit values and multitude of short-term uses, have resulted in a significant and pressing waste management challenge. Only a small fraction of these polyolefins is currently mechanically recycled, with the rest being incinerated, accumulating in landfills, or leaking into the natural environment. Since polyolefins are energy-rich materials, there is considerable interest in recouping some of their chemical value while simultaneously motivating more responsible end-of-life management. An emerging strategy is catalytic depolymerization, in which a portion of the C-C bonds in the polyolefin backbone is broken with the assistance of a catalyst and, in some cases, additional small molecule reagents. When the products are small molecules or materials with higher value in their own right, or as chemical feedstocks, the process is called upcycling. This review summarizes recent progress for four major catalytic upcycling strategies: hydrogenolysis, (hydro)cracking, tandem processes involving metathesis, and selective oxidation. Key considerations include macromolecular reaction mechanisms relative to small molecule mechanisms, catalyst design for macromolecular transformations, and the effect of process conditions on product selectivity. Metrics for describing polyolefin upcycling are critically evaluated, and an outlook for future advances is described.
Collapse
Affiliation(s)
- Jiakai Sun
- Department
of Chemistry and Biochemistry, University
of California, Santa
Barbara, California 93106-9510, United States
| | - Jinhu Dong
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106-5080, United
States
| | - Lijun Gao
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106-5080, United
States
| | - Yu-Quan Zhao
- Department
of Chemistry and Biochemistry, University
of California, Santa
Barbara, California 93106-9510, United States
| | - Hyunjin Moon
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106-5080, United
States
| | - Susannah L. Scott
- Department
of Chemistry and Biochemistry, University
of California, Santa
Barbara, California 93106-9510, United States
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106-5080, United
States
| |
Collapse
|
7
|
Chu M, Wang X, Wang X, Xu P, Zhang L, Li S, Feng K, Zhong J, Wang L, Li Y, He L, Cao M, Zhang Q, Chi L, Chen J. Layered Double Hydroxide Derivatives for Polyolefin Upcycling. J Am Chem Soc 2024; 146:10655-10665. [PMID: 38564662 DOI: 10.1021/jacs.4c00327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
While Ru-catalyzed hydrogenolysis holds significant promise in converting waste polyolefins into value-added alkane fuels, a major constraint is the high cost of noble metal catalysts. In this work, we propose, for the first time, that Co-based catalysts derived from CoAl-layered double hydroxide (LDH) are alternatives for efficient polyolefin hydrogenolysis. Leveraging the chemical flexibility of the LDH platform, we reveal that metallic Co species serve as highly efficient active sites for polyolefin hydrogenolysis. Furthermore, we introduced Ni into the Co framework to tackle the issue of restricted hydrogenation ability associated with contiguous Co-Co sites. In-situ analysis indicates that the integration of Ni induces electron transfer and facilitates hydrogen spillover. This dual effect synergistically enhances the hydrogenation/desorption of olefin intermediates, resulting in a significant reduction in the yield of low-value CH4 from 27.1 to 12.6%. Through leveraging the unique properties of LDH, we have developed efficient and cost-effective catalysts for the sustainable recycling and valorization of waste polyolefin materials.
Collapse
Affiliation(s)
- Mingyu Chu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, P. R. China
| | - Xianpeng Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, P. R. China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, Macau SAR 999078, P. R. China
| | - Xuchun Wang
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Panpan Xu
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Lin Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, P. R. China
| | - Shengming Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, P. R. China
| | - Kun Feng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, P. R. China
| | - Jun Zhong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, P. R. China
| | - Lu Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, P. R. China
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, P. R. China
| | - Le He
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, P. R. China
| | - Muhan Cao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, P. R. China
| | - Qiao Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, P. R. China
| | - Lifeng Chi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, P. R. China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, Macau SAR 999078, P. R. China
| | - Jinxing Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
8
|
Pichugov AV, Escomel L, Lassalle S, Petit J, Jabbour R, Gajan D, Veyre L, Fonda E, Lesage A, Thieuleux C, Camp C. Highly Selective and Efficient Perdeuteration of n-Pentane via H/D Exchange Catalyzed by a Silica-Supported Hafnium-Iridium Bimetallic Complex. Angew Chem Int Ed Engl 2024; 63:e202400992. [PMID: 38373040 DOI: 10.1002/anie.202400992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 02/20/2024]
Abstract
A Surface OrganoMetallic Chemistry (SOMC) approach is used to prepare a novel hafnium-iridium catalyst immobilized on silica, HfIr/SiO2, featuring well-defined [≡SiOHf(CH2 tBu)2(μ-H)3IrCp*] surface sites. Unlike the monometallic analogous materials Hf/SiO2 and Ir/SiO2, which promote n-pentane deuterogenolysis through C-C bond scission, we demonstrate that under the same experimental conditions (1 bar D2, 250 °C, 3 h, 0.5 mol %), the heterobimetallic catalyst HfIr/SiO2 is highly efficient and selective for the perdeuteration of alkanes with D2, exemplified on n-pentane, without substantial deuterogenolysis (<2 % at 95 % conversion). Furthermore this HfIr/SiO2 catalyst is robust and can be re-used several times without evidence of decomposition. This represents substantial advance in catalytic H/D isotope exchange (HIE) reactions of C(sp3)-H bonds.
Collapse
Affiliation(s)
- Andrey V Pichugov
- Laboratory of Catalysis, Polymerization, Processes and Materials, CP2 M UMR 5128, Université de Lyon, Institut de Chimie de Lyon, CNRS, Université Lyon 1, CPE Lyon, 43 Bd du 11 Novembre 1918, F-69616, Villeurbanne, France
| | - Léon Escomel
- Laboratory of Catalysis, Polymerization, Processes and Materials, CP2 M UMR 5128, Université de Lyon, Institut de Chimie de Lyon, CNRS, Université Lyon 1, CPE Lyon, 43 Bd du 11 Novembre 1918, F-69616, Villeurbanne, France
| | - Sébastien Lassalle
- Laboratory of Catalysis, Polymerization, Processes and Materials, CP2 M UMR 5128, Université de Lyon, Institut de Chimie de Lyon, CNRS, Université Lyon 1, CPE Lyon, 43 Bd du 11 Novembre 1918, F-69616, Villeurbanne, France
| | - Julien Petit
- Laboratory of Catalysis, Polymerization, Processes and Materials, CP2 M UMR 5128, Université de Lyon, Institut de Chimie de Lyon, CNRS, Université Lyon 1, CPE Lyon, 43 Bd du 11 Novembre 1918, F-69616, Villeurbanne, France
| | - Ribal Jabbour
- Centre de RMN à Hauts Champs de Lyon CRMN, UMR5082, Université de Lyon, CNRS, ENS Lyon, Université Claude Bernard Lyon 1, 69100, Villeurbanne, France
| | - David Gajan
- Centre de RMN à Hauts Champs de Lyon CRMN, UMR5082, Université de Lyon, CNRS, ENS Lyon, Université Claude Bernard Lyon 1, 69100, Villeurbanne, France
| | - Laurent Veyre
- Laboratory of Catalysis, Polymerization, Processes and Materials, CP2 M UMR 5128, Université de Lyon, Institut de Chimie de Lyon, CNRS, Université Lyon 1, CPE Lyon, 43 Bd du 11 Novembre 1918, F-69616, Villeurbanne, France
| | - Emiliano Fonda
- Synchrotron SOLEIL L'Orme des Merisiers, Saint Aubin BP-48, 91192, Gif sur Yvette, France
| | - Anne Lesage
- Centre de RMN à Hauts Champs de Lyon CRMN, UMR5082, Université de Lyon, CNRS, ENS Lyon, Université Claude Bernard Lyon 1, 69100, Villeurbanne, France
| | - Chloé Thieuleux
- Laboratory of Catalysis, Polymerization, Processes and Materials, CP2 M UMR 5128, Université de Lyon, Institut de Chimie de Lyon, CNRS, Université Lyon 1, CPE Lyon, 43 Bd du 11 Novembre 1918, F-69616, Villeurbanne, France
| | - Clément Camp
- Laboratory of Catalysis, Polymerization, Processes and Materials, CP2 M UMR 5128, Université de Lyon, Institut de Chimie de Lyon, CNRS, Université Lyon 1, CPE Lyon, 43 Bd du 11 Novembre 1918, F-69616, Villeurbanne, France
| |
Collapse
|
9
|
Xu S, Tang J, Fu L. Catalytic Strategies for the Upcycling of Polyolefin Plastic Waste. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:3984-4000. [PMID: 38364857 DOI: 10.1021/acs.langmuir.3c03195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Chemical upgrading of waste plastics is currently one of the most important methods for addressing plastic pollution. In comparison to the current methods of incineration or landfill, chemical upgrading enables the utilization of carbon and hydrogen elements in waste plastics as resources. This process strongly relies on efficient catalysts and reaction systems. Through catalyst design, waste plastics can be converted into fuels or chemicals under the optimized reaction conditions, extending their life cycles. In this review, we systematically discuss various chemical conversion methods for polyolefin waste plastics, which account for a large proportion of waste plastics. We further explore the remaining challenges and future development trends in this field, including improving product value through product engineering and shifting research perspectives to exploring the tolerance of catalysts toward impurities in practical waste plastic waste rather than using pure plastic feedstock.
Collapse
Affiliation(s)
- Shaodan Xu
- College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Junhong Tang
- College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Li Fu
- College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, People's Republic of China
| |
Collapse
|
10
|
Kang Q, Chu M, Xu P, Wang X, Wang S, Cao M, Ivasenko O, Sham TK, Zhang Q, Sun Q, Chen J. Entropy Confinement Promotes Hydrogenolysis Activity for Polyethylene Upcycling. Angew Chem Int Ed Engl 2023; 62:e202313174. [PMID: 37799095 DOI: 10.1002/anie.202313174] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 10/07/2023]
Abstract
Chemical upcycling that catalyzes waste plastics back to high-purity chemicals holds great promise in end-of-life plastics valorization. One of the main challenges in this process is the thermodynamic limitations imposed by the high intrinsic entropy of polymer chains, which makes their adsorption on catalysts unfavorable and the transition state unstable. Here, we overcome this challenge by inducing the catalytic reaction inside mesoporous channels, which possess a strong confined ability to polymer chains, allowing for stabilization of the transition state. This approach involves the synthesis of p-Ru/SBA catalysts, in which Ru nanoparticles are uniformly distributed within the channels of an SBA-15 support, using a precise impregnation method. The unique design of the p-Ru/SBA catalyst has demonstrated significant improvements in catalytic performance for the conversion of polyethylene into high-value liquid fuels, particularly diesel. The catalyst achieved a high solid conversion rate of 1106 g ⋅ gRu -1 ⋅ h-1 at 230 °C. Comparatively, this catalytic activity is 4.9 times higher than that of a control catalyst, Ru/SiO2 , and 14.0 times higher than that of a commercial catalyst, Ru/C, at 240 °C. This remarkable catalytic activity opens up immense opportunities for the chemical upcycling of waste plastics.
Collapse
Affiliation(s)
- Qingyun Kang
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Mingyu Chu
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, P. R. China
| | - Panpan Xu
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Xuchun Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, P. R. China
- Department of Chemistry, University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Shiqi Wang
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Muhan Cao
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Oleksandr Ivasenko
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Tsun-Kong Sham
- Department of Chemistry, University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Qiao Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Qiming Sun
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Jinxing Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|