1
|
Chin PY, Moldenhauer LM, Lubell WD, Olson DM, Chemtob S, Keelan JA, Robertson SA. Inhibition of interleukin-1 signaling protects against Group B streptococcus-induced preterm birth and fetal loss in mice. J Reprod Immunol 2025; 169:104520. [PMID: 40139077 DOI: 10.1016/j.jri.2025.104520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/20/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025]
Abstract
Group B streptococcus is a common microbial agent associated with spontaneous preterm birth and fetal inflammatory response syndrome. In this study, we evaluated the utility of rytvela, a novel peptide antagonist of the interleukin-1 receptor, to suppress inflammatory activation, prolong gestation and improve neonatal outcomes induced in mice by Group B streptococcus. Pregnant mice were administered rytvela or PBS on gestation day 16.5, immediately prior and following surgical administration of heat-killed Group B streptococcus (hkGBS) or PBS into the uterine cavity. Treatment with rytvela prevented preterm delivery and alleviated fetal demise in utero and in the perinatal phase elicited by hkGBS. Compared to pups exposed to hkGBS alone, pups of dams co-administered rytvela exhibited substantially improved survival and growth through to weaning. Analysis by qPCR showed expression of inflammatory cytokine genes Il1b, Il6, Tnf, and Ifng in uterine tissues, and Il1b, Il6, and Tnf in fetal membranes, were stimulated by hkGBS and this increase was suppressed by co-administration of rytvela. Premature induction of uterine activation gene Ptgs2 in the myometrium was also attenuated by rytvela treatment. These data show that activation of IL1-mediated signaling in response to Group B streptococcus triggers an inflammatory cascade that causes preterm parturition and fetal inflammatory injury, and that rytvela can suppress inflammatory mediators to substantially improve pregnancy and fetal outcomes. Our findings add to accumulating evidence supporting clinical investigation of rytvela for fetal protection and delaying preterm birth.
Collapse
Affiliation(s)
- Peck Y Chin
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia
| | - Lachlan M Moldenhauer
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia
| | - William D Lubell
- Department of Chemistry, Université de Montréal, Montreal, Quebec H3T1J4, Canada
| | - David M Olson
- Departments of Obstetrics & Gynecology, Pediatrics and Physiology, University of Alberta, Edmonton, Alberta T6G2S2, Canada
| | - Sylvain Chemtob
- Department of Pharmacology, Université de Montréal, Montreal, Quebec H3T1J4, Canada
| | - Jeffrey A Keelan
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6008, Australia
| | - Sarah A Robertson
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
2
|
Cao J, Wang Y, Lin Q, Wang S, Shen Y, Zhang L, Li W, Chen L, Liu C, Yao S, Shuai L, Chen X, Li Z, Chang Y. IL-1β stimulates ADAMTS9 expression and contributes to preterm prelabor rupture of membranes. Cell Commun Signal 2025; 23:127. [PMID: 40057799 PMCID: PMC11890524 DOI: 10.1186/s12964-025-02120-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/22/2025] [Indexed: 05/13/2025] Open
Abstract
BACKGROUND Preterm prelabor rupture of membranes (pPROM) is a leading cause of neonatal morbidity and mortality. While intra-amniotic infection is a well-established driver of pPROM, the role of sterile intra-amniotic inflammation remains unclear. Recent evidence suggests that interleukin-1 beta (IL-1β) promotes extracellular matrix (ECM) remodeling via downstream effectors, a disintegrin-like and metalloproteinase domain with thrombospondin type 1 motif 9 (ADAMTS9), while protein O-fucosyltransferase 2 (POFUT2) facilitates its O-fucosylation and secretion, amplifying ECM degradation. This study investigates how IL-1β-triggered nuclear factor kappa-B (NF-κB) activation promotes ADAMTS9 and POFUT2 expression, ultimately driving fetal membrane ECM remodeling and weakening in pPROM without signs of intra-amniotic infection. METHODS A nested case-control study included maternal serum and fetal membrane samples from 60 pregnant women (34 pPROM, 26 full-term births [FTB]). ELISA measured serum levels of IL-1β and ADAMTS9, and their correlations were analyzed. Mechanistic studies utilized primary human amniotic epithelial cells (hAECs) and fetal membrane-decidua explants with IL-1β treatment. The role of NF-κB was explored using chromatin immunoprecipitation (ChIP) and luciferase assays to assess NF-κB binding to the promoters of ADAMTS9 and POFUT2. A murine model of sterile intra-amniotic inflammation under ultrasound-guided IL-1β injection was used to validate in vitro findings and assess pregnancy outcomes. RESULTS Serum IL-1β and ADAMTS9 levels at 16 weeks of gestation were significantly higher in pPROM cases compared to FTB controls (P < 0.001). A combined model of these biomarkers demonstrated high predictive accuracy for pPROM (AUC = 0.83). Mechanistically, IL-1β activated NF-κB, leading to its binding to the promoters of ADAMTS9 and POFUT2. NF-κB activation promoted ADAMTS9 expression, while POFUT2 enhanced its secretion. Together, these processes drove versican degradation and ECM weakening. Intra-amniotic administration of IL-1β in mice induced fetal membrane weakening, preterm birth, and adverse neonatal outcomes, which were mitigated by the NF-κB inhibitor BAY 11-7082 treatment. CONCLUSION Maternal serum ADAMTS9 levels at mid-gestation are promising non-invasive biomarkers for pPROM risk stratification. Mechanistically, IL-1β-induced NF-κB activation promotes ADAMTS9 expression and POFUT2-dependent secretion, contributing to fetal membrane weakening. These findings provide new insights into the role and potential therapeutic target for sterile intra-amniotic inflammation in pPROM.
Collapse
Affiliation(s)
- Jiasong Cao
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, 300100, China
- Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, 300100, China
- Tianjin Institute of Gynecology Obstetrics, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, 300100, China
| | - Yixin Wang
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Qimei Lin
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, 300100, China
- Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, 300100, China
- Tianjin Institute of Gynecology Obstetrics, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, 300100, China
| | - Shuqi Wang
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, 300100, China
- Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, 300100, China
| | - Yongmei Shen
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, 300100, China
- Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, 300100, China
- Tianjin Institute of Gynecology Obstetrics, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, 300100, China
| | - Lei Zhang
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, 300100, China
- Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, 300100, China
| | - Wen Li
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, 300100, China
- Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, 300100, China
- Tianjin Institute of Gynecology Obstetrics, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, 300100, China
| | - Ling Chen
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, 300100, China
- Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, 300100, China
| | - Chunliu Liu
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, 300120, China
| | - Shihan Yao
- Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, 300100, China
| | - Ling Shuai
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, 300100, China
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Xu Chen
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, 300100, China
- Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, 300100, China
| | - Zongjin Li
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, 300100, China.
- School of Medicine, Nankai University, Tianjin, 300071, China.
- Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, 300071, China.
| | - Ying Chang
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, 300100, China.
- Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, 300100, China.
- Medical School, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
3
|
Mureanu N, Bowman AM, Porter-Wright IA, Verma P, Efthymiou A, Nicolaides KH, Scotta C, Lombardi G, Tribe RM, Shangaris P. The Immunomodulatory Role of Regulatory T Cells in Preterm Birth and Associated Pregnancy Outcomes. Int J Mol Sci 2024; 25:11878. [PMID: 39595948 PMCID: PMC11593591 DOI: 10.3390/ijms252211878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
Spontaneous preterm birth (sPTB), defined as live birth before 37 weeks of gestational age, is associated with immune dysregulation and pro-inflammatory conditions that profoundly impact newborn health. The question of immune integrity at the maternal-foetal interface is a focus of recent studies centring not only sPTB but the conditions often affiliated with this outcome. Regulatory T cells (Tregs) play a critical anti-inflammatory role in pregnancy, promoting foetal tolerance and placentation. Due to this gestational role, it is hypothesised that decreased or dysfunctional Tregs may be implicated in cases of sPTB. This review examines studies comparing Treg presence in healthy term pregnancies and those with sPTB-associated conditions. Conflicting findings across different conditions and within sPTB itself have been identified. However, notable findings from the research indicate increased proinflammatory cytokines in pregnancies suffering from premature rupture of membranes (pPROM), chorioamnionitis, infection, preeclampsia, and gestational diabetes (GDM). Additionally, reduced Treg levels were identified in preeclampsia, GDM, and pPROM as well as chorioamnionitis presenting with increased Treg dysfunctionality. Treg deficiencies may contribute to health issues in preterm newborns. Current sPTB treatments are limited, underscoring the potential of in utero therapies targeting inflammation, including T cell interventions. Future research aims to establish consensus on the role of Tregs in sPTB and associated conditions and advancing understanding of mechanisms leading to Treg deficiencies in adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Nicoleta Mureanu
- School of Life Course & Population Sciences, King’s College London, 10th Floor North Wing, St Thomas’ Hospital, London SE1 7EH, UK; (N.M.); (A.M.B.); (A.E.); (K.H.N.); (R.M.T.)
- Harris Birthright Research Centre for Fetal Medicine, King’s College London, London SE1 7EH, UK
- Faculty of Medicine, Department of Obstetrics and Gynaecology, Carol Davila University of Medicine and Pharmacy, Bulevardul Eroii Sanitari 8, 050474 Bucharest, Romania
| | - Amanda M. Bowman
- School of Life Course & Population Sciences, King’s College London, 10th Floor North Wing, St Thomas’ Hospital, London SE1 7EH, UK; (N.M.); (A.M.B.); (A.E.); (K.H.N.); (R.M.T.)
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King’s College London, London SE1 7EH, UK; (I.A.P.-W.); (P.V.); (C.S.); (G.L.)
| | - Imogen A. Porter-Wright
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King’s College London, London SE1 7EH, UK; (I.A.P.-W.); (P.V.); (C.S.); (G.L.)
| | - Priya Verma
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King’s College London, London SE1 7EH, UK; (I.A.P.-W.); (P.V.); (C.S.); (G.L.)
| | - Athina Efthymiou
- School of Life Course & Population Sciences, King’s College London, 10th Floor North Wing, St Thomas’ Hospital, London SE1 7EH, UK; (N.M.); (A.M.B.); (A.E.); (K.H.N.); (R.M.T.)
- Harris Birthright Research Centre for Fetal Medicine, King’s College London, London SE1 7EH, UK
| | - Kypros H. Nicolaides
- School of Life Course & Population Sciences, King’s College London, 10th Floor North Wing, St Thomas’ Hospital, London SE1 7EH, UK; (N.M.); (A.M.B.); (A.E.); (K.H.N.); (R.M.T.)
- Harris Birthright Research Centre for Fetal Medicine, King’s College London, London SE1 7EH, UK
| | - Cristiano Scotta
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King’s College London, London SE1 7EH, UK; (I.A.P.-W.); (P.V.); (C.S.); (G.L.)
- Department of Life Sciences, Centre for Inflammation Research and Translational Medicine, Brunel University London, London UB8 3PH, UK
| | - Giovanna Lombardi
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King’s College London, London SE1 7EH, UK; (I.A.P.-W.); (P.V.); (C.S.); (G.L.)
| | - Rachel M. Tribe
- School of Life Course & Population Sciences, King’s College London, 10th Floor North Wing, St Thomas’ Hospital, London SE1 7EH, UK; (N.M.); (A.M.B.); (A.E.); (K.H.N.); (R.M.T.)
| | - Panicos Shangaris
- School of Life Course & Population Sciences, King’s College London, 10th Floor North Wing, St Thomas’ Hospital, London SE1 7EH, UK; (N.M.); (A.M.B.); (A.E.); (K.H.N.); (R.M.T.)
- Harris Birthright Research Centre for Fetal Medicine, King’s College London, London SE1 7EH, UK
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King’s College London, London SE1 7EH, UK; (I.A.P.-W.); (P.V.); (C.S.); (G.L.)
| |
Collapse
|
4
|
Lee H, Takamizu A, Nishizaki Y, Yanagisawa N, Nojiri S, Itakura A, Yin N, Liu Z, Wang L, Ran Y, Chen J, Leimert KB, Makino S, Takeda S, Qi H, Takeda J, Olson DM. Activation of peripheral leukocyte migration before spontaneous labor at term. Am J Obstet Gynecol 2024; 231:539.e1-539.e13. [PMID: 39442996 DOI: 10.1016/j.ajog.2024.02.280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Leukocytes are induced to migrate into the uterus at parturition, releasing cytokines and chemokines that activate it for delivery. A specific chemotactic signal is required for these actions, and published evidence suggests that it comes from the human fetal membranes and has a time-dependent component (ie, cells obtained at term in labor migrate more than cells obtained at term not yet in labor). The hypothesis that the fetal membrane chemoattractants activate the leukocytes to become responsive for migration was tested. OBJECTIVE This study aimed to: (1) examine the changes in leukocyte migration-responsiveness longitudinally from the late third trimester, to in labor, to 3 days postpartum; (2) explore the specific week-to-week changes in migration before delivery; (3) define the timing of chemokine receptor expression patterns in leukocytes relative to migration and the changes in cytokine and chemokine concentrations in maternal serum; (4) examine the ability of term fetal membrane-conditioned medium and term maternal serum to increase cell responsiveness; and (5) test the potential of the leukocyte migration assay to predict delivery within 1 week. STUDY DESIGN Leukocyte migration in response to a chemoattractive extract of term human fetal membranes was studied using a modified Boyden chamber. Flow cytometry assessed migrated cell phenotypes. The relationship between the expression of chemokine receptors and migration was tested using quantitative polymerase chain reaction, the bioassay, and regression analyses. Cytokines and chemokines in maternal serum were quantified using multiplex analysis. Conditioned medium from fetal membrane explants and maternal serum were evaluated for their abilities to enhance leukocyte migration using the bioassay. The ability of the bioassay to predict term delivery was assessed using receiver-operating characteristic curve and cost-curve analysis. RESULTS The number of leukocytes that migrated at term delivery was increased relative to the late third trimester, followed by a significant fall in numbers that migrated at 3 days postpartum (P=.002). The largest increase in migrated cells occurred 1 to 2 weeks before delivery. The messenger RNA abundance of several chemokine receptors increased in peripheral leukocytes at term in labor relative to the third trimester, and this correlated with an increase in migrated cells in 5 of 6 cases (R=0.589 to 0.897; P<.03). The concentrations of several chemokines and cytokines in maternal serum increased with labor onset. Fetal membrane explant-conditioned medium and maternal serum obtained at term labor increased the responsiveness of leukocytes to fetal membrane chemoattractive extract. The bioassay was demonstrated to predict delivery within 7 days with excellent performance characteristics using a cohort prevalence of 71.7% (positive predictive value=96.1%; negative predictive value=58.5%; sensitivity=74.2%; specificity=92.3%; positive likelihood ratio=9.25; and negative likelihood ratio=0.28). A single determination was validated to have a high degree of confidence. CONCLUSION Term human fetal membranes release chemoattractants near the end of pregnancy that increase in ability to activate and attract an increasing number of leukocytes as gestation advances.
Collapse
Affiliation(s)
- Han Lee
- Department of Physiology, University of Alberta, Edmonton, Canada
| | - Ai Takamizu
- Department of Obstetrics and Gynecology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Yuji Nishizaki
- Medical Technology Innovation Center, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Naotake Yanagisawa
- Medical Technology Innovation Center, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Shuko Nojiri
- Medical Technology Innovation Center, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Atsuo Itakura
- Department of Obstetrics and Gynecology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Nanlin Yin
- Department of Obstetrics and Gynecology, Chongqing Medical University, Chongqing, China
| | - Zheng Liu
- Department of Obstetrics and Gynecology, Chongqing Medical University, Chongqing, China
| | - Lulu Wang
- Department of Obstetrics and Gynecology, Chongqing Medical University, Chongqing, China
| | - Yuxin Ran
- Department of Obstetrics and Gynecology, Chongqing Medical University, Chongqing, China
| | - Jenelle Chen
- Department of Physiology, University of Alberta, Edmonton, Canada
| | | | - Shintaro Makino
- Department of Obstetrics and Gynecology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Satoru Takeda
- Department of Obstetrics and Gynecology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Hongbo Qi
- Department of Obstetrics and Gynecology, Chongqing Medical University, Chongqing, China
| | - Jun Takeda
- Department of Obstetrics and Gynecology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - David M Olson
- Departments of Obstetrics and Gynecology and Pediatrics and Physiology, University of Alberta, Edmonton, Canada.
| |
Collapse
|
5
|
Oei JL. Improving neurological and mental health outcomes for children with prenatal drug exposure. Semin Fetal Neonatal Med 2024; 29:101557. [PMID: 39537449 DOI: 10.1016/j.siny.2024.101557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Prenatal drug exposure is a global public health problem that will never be completely eliminated. Some drugs are essential for maternal health but many others are used recreationally and for non-medical reasons. Both legal and illegal drugs of addiction and dependency have the potential to cause permanent and even intergenerational harm to the developing child and understanding the direct impact of drugs of addiction on child neurodevelopmental and mental health is difficult and confounded by many social, environmental and possibly, genetic factors. Furthermore, many drugs are not clear neuroteratogens and their impact on the child may be indolent and not appreciated for a long time after exposure has occurred. Despite this, there are numerous windows of opportunity to improve the eventual outcomes of the child including utilising the enormous benefits of neuroplasticity and general principles of basic health care and support. This chapter will discuss current understanding of the impact of drugs of addiction on the growing child and offer possible mitigation strategies to improve outcomes.
Collapse
Affiliation(s)
- Ju Lee Oei
- Department of Newborn Care, the Royal Hospital for Women, Randwick, NSW, Australia; School of Paediatrics, Faculty of Medicine, University of New South Wales, NSW, Australia.
| |
Collapse
|
6
|
Bautista-Bautista G, Salguero-Zacarias S, Villeda-Gabriel G, García-López G, Osorio-Caballero M, Palafox-Vargas ML, Acuña-González RJ, Lara-Pereyra I, Díaz-Ruíz O, Flores-Herrera H. Escherichia coli induced matrix metalloproteinase-9 activity and type IV collagen degradation is regulated by progesterone in human maternal decidual. BMC Pregnancy Childbirth 2024; 24:645. [PMID: 39367340 PMCID: PMC11451097 DOI: 10.1186/s12884-024-06847-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/20/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Escherichia coli (E. coli) is one of the main bacteria associated with preterm premature rupture of membranes by increasing pro-matrix metalloproteinase 9 (proMMP-9) and degradation of type IV collagen in human feto-maternal interface (HFMi). proMMP-9 is regulated by progesterone (P4) but it is unclear whether P4 inhibits proMMP in human maternal decidual (MDec). This study aimed to determine a role of P4 on proMMP-2 and - 9 and type IV collagen induced by E. coli infection in MDec. METHODS Nine HFMi were mounted in a Transwell system. MDec was stimulated with P4 or E. coli for 3-, 6-, or 24-hours. proMMP-2, -9 and type IV collagen were assessed. RESULTS Gelatin zymography revealed an increase in proMMP-9 after 3, 6, and 24 h of stimulating MDec with E. coli. Using immunofluorescence, it was confirmed the increase in the HFMi tissue and a reduction on the amount of type IV collagen leading to the separation of fetal amniochorion and MDEc. The degradative activity of proMMP-9 was reduced by 20% by coincubation with P4. CONCLUSIONS P4 modulates the activity of proMMP-9 induced by E. coli stimulation but it was unable to completely reverse the degradation of type IV collagen in human MDec tissue.
Collapse
Affiliation(s)
- Gerardo Bautista-Bautista
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Urales #800 Col. Lomas de Virreyes CP 11000, Tercer piso de la Torre de Investigación, Ciudad de México, México
| | - Santos Salguero-Zacarias
- Departamento de Tococirugia y Urgencias, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México, México
| | - Graciela Villeda-Gabriel
- Departamento de Inmunología e infectología, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México, México
| | - Guadalupe García-López
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes , Ciudad de México, México
| | - Mauricio Osorio-Caballero
- Departamento de Salud Sexual y Reproductiva, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México, México
| | - Martha Leticia Palafox-Vargas
- Departamento de Anatomía Patológica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México, México
| | - Ricardo Josué Acuña-González
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Urales #800 Col. Lomas de Virreyes CP 11000, Tercer piso de la Torre de Investigación, Ciudad de México, México
| | - Irlando Lara-Pereyra
- Departamento de Ginecología, Hospital General de Zona 252, Instituto Mexicano del Seguro Social, Atlacomulco, México
| | - Oscar Díaz-Ruíz
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hector Flores-Herrera
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Urales #800 Col. Lomas de Virreyes CP 11000, Tercer piso de la Torre de Investigación, Ciudad de México, México.
| |
Collapse
|
7
|
Qazi KR, Govindaraj D, Martí M, de Jong Y, Jensen GB, Abrahamsson T, Jenmalm MC, Sverremark-Ekström E. Impact of Extreme Prematurity, Chorioamnionitis, and Sepsis on Neonatal Monocyte Characteristics and Functions. J Innate Immun 2024; 16:470-488. [PMID: 39278208 PMCID: PMC11521501 DOI: 10.1159/000541468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024] Open
Abstract
INTRODUCTION The innate branch of the immune system is important in early life, in particular for infants born preterm. METHODS We performed a longitudinal analysis of the peripheral monocyte compartment in extremely preterm children from a randomized, placebo-controlled study of probiotic supplementation. PBMCs and fecal samples were collected at several timepoints during the first months of life. Monocyte characteristics were analyzed by flow cytometry, and LPS-stimulated PBMC culture supernatants were analyzed by Luminex or ELISA. Plasma cytokines and gut microbiota composition were analyzed by ELISA and 16S rRNA-sequencing, respectively. RESULTS The extremely preterm infants had persistent alterations in their monocyte characteristics that were further aggravated in chorioamnionitis cases. They showed a markedly reduced TLR4 expression and hampered LPS-stimulated cytokine responses 14 days after birth. Notably, at later timepoints, TLR4 expression and LPS responses no longer correlated. Sepsis during the first weeks of life strongly associated with increased pro-inflammatory, and reduced IL-10, responses also at postmenstrual week 36. Further, we report a correlation between gut microbiota features and monocyte phenotype and responses, but also that probiotic supplementation associated with distinct monocyte phenotypic characteristics, without significantly influencing their responsiveness. CONCLUSION Extremely preterm infants have monocyte characteristics and functional features that deviate from infants born full-term. Some of these differences persist until they reach an age corresponding to full-term, potentially making them more vulnerable to microbial exposures during the first months of life.
Collapse
Affiliation(s)
- Khaleda Rahman Qazi
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Dhanapal Govindaraj
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Magalí Martí
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Ymke de Jong
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Georg Bach Jensen
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Crown Princess Victoria Children’s Hospital, Linköping, Sweden
| | - Thomas Abrahamsson
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Crown Princess Victoria Children’s Hospital, Linköping, Sweden
| | - Maria C. Jenmalm
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Eva Sverremark-Ekström
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
8
|
Habelrih T, Augustin TL, Mauffette-Whyte F, Ferri B, Sawaya K, Côté F, Gallant M, Olson DM, Chemtob S. Inflammatory mechanisms of preterm labor and emerging anti-inflammatory interventions. Cytokine Growth Factor Rev 2024; 78:50-63. [PMID: 39048393 DOI: 10.1016/j.cytogfr.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Preterm birth is a major public health concern, requiring a deeper understanding of its underlying inflammatory mechanisms and to develop effective therapeutic strategies. This review explores the complex interaction between inflammation and preterm labor, highlighting the pivotal role of the dysregulation of inflammation in triggering premature delivery. The immunological environment of pregnancy, characterized by a fragile balance of immune tolerance and resistance, is disrupted in preterm labor, leading to a pathological inflammatory response. Feto-maternal infections, among other pro-inflammatory stimuli, trigger the activation of toll-like receptors and the production of pro-inflammatory mediators, promoting uterine contractility and cervical ripening. Emerging anti-inflammatory therapeutics offer promising approaches for the prevention of preterm birth by targeting key inflammatory pathways. From TLR-4 antagonists to chemokine and interleukin receptor antagonists, these interventions aim to modulate the inflammatory environment and prevent adverse pregnancy outcomes. In conclusion, a comprehensive understanding of the inflammatory mechanisms leading to preterm labor is crucial for the development of targeted interventions in hope of reducing the incidence of preterm birth and improving neonatal health outcomes.
Collapse
Affiliation(s)
- Tiffany Habelrih
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada; Research Center, CHU Sainte-Justine, Montreal, QC, Canada
| | - Thalyssa-Lyn Augustin
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada; Research Center, CHU Sainte-Justine, Montreal, QC, Canada
| | - Félix Mauffette-Whyte
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada; Research Center, CHU Sainte-Justine, Montreal, QC, Canada
| | - Béatrice Ferri
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada; Research Center, CHU Sainte-Justine, Montreal, QC, Canada
| | - Kevin Sawaya
- Research Center, CHU Sainte-Justine, Montreal, QC, Canada; Programmes de cycles supérieurs en sciences biomédicales, Faculté de médecine, Université de Montréal, Montreal, QC, Canada
| | - France Côté
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada; Research Center, CHU Sainte-Justine, Montreal, QC, Canada
| | - Mathilde Gallant
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada; Research Center, CHU Sainte-Justine, Montreal, QC, Canada
| | - David M Olson
- Departments of Obstetrics and Gynecology, Pediatrics, and Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Sylvain Chemtob
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada; Research Center, CHU Sainte-Justine, Montreal, QC, Canada.
| |
Collapse
|
9
|
Kurmanova A, Urazbayeva G, Salimbayeva D, Terlikbayeva A, Kypshakbayeva Z, Smailov M. The relationship between Toll-like receptor-4 genes and preeclampsia outcomes. J Assist Reprod Genet 2024; 41:1917-1923. [PMID: 38819715 PMCID: PMC11263512 DOI: 10.1007/s10815-024-03147-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024] Open
Abstract
PURPOSE The study aimed to analyse the relationship of the rs4986790 locus of the TLR4 gene with the overall risk of preeclampsia, including both its early and late forms. METHODS The study used standard genetic analysis methods such as DNA extraction, PCR amplification, and genotyping of the rs4986790 locus of the TLR4 gene to assess the association with the development of preeclampsia and peripartal stroke in 207 pregnant women from the southern regions of Kazakhstan from 2016 to 2022, of whom 103 had peripartal stroke on the background of preeclampsia (the main group) and 104 preeclampsia (comparative group). RESULTS The results of the study demonstrate that the AG and AG + GG genotypes at the rs4986790 locus of the TLR4 gene are significantly associated with an increased risk of developing an early form of preeclampsia. This opens up a new perspective in the identification of genetic markers that can serve as indicators of a tendency to develop preeclampsia in earlier periods of pregnancy. CONCLUSION It was noted that the rs4986790 locus did not show a statistically significant association with the risk of late preeclampsia. An important aspect of the study revealed the relationship of genotypes with the development of peripartal stroke on the background of preeclampsia. This study offers practical insights for creating targeted genetic screening and personalised treatments for preeclampsia, aiming to improve patient outcomes. To fully understand the molecular mechanisms underlying the identified association, additional research is required to identify deeper molecular pathways and relationships, and to develop new strategies for the prevention and treatment of preeclampsia.
Collapse
Affiliation(s)
- Almagul Kurmanova
- Department of Clinical Subjects, Al-Farabi Kazakh National University, Almaty, Republic of Kazakhstan.
| | - Gulfairuz Urazbayeva
- The Scientific Center for Obstetrics, Gynecology and Perinatology, Almaty, Republic of Kazakhstan
| | - Damilya Salimbayeva
- Department of Strategic Development and Science, The Scientific Center for Obstetrics, Gynecology and Perinatology, Almaty, Republic of Kazakhstan
| | - Aigul Terlikbayeva
- The Scientific Center for Obstetrics, Gynecology and Perinatology, Almaty, Republic of Kazakhstan
| | - Zhanar Kypshakbayeva
- Department of Clinical Subjects, Al-Farabi Kazakh National University, Almaty, Republic of Kazakhstan
| | - Makhambet Smailov
- Faculty of Postgraduate Education, Asfendiyarov Kazakh National Medical University, Almaty, Republic of Kazakhstan
| |
Collapse
|
10
|
Habelrih T, Ferri B, Côté F, Sévigny J, Augustin TL, Sawaya K, Lubell WD, Olson DM, Girard S, Chemtob S. Preventing Preterm Birth: Exploring Innovative Solutions. Clin Perinatol 2024; 51:497-510. [PMID: 38705654 DOI: 10.1016/j.clp.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
This review examines the complexities of preterm birth (PTB), emphasizes the pivotal role of inflammation in the pathogenesis of preterm labor, and assesses current available interventions. Antibiotics, progesterone analogs, mechanical approaches, nonsteroidal anti-inflammatory drugs, and nutritional supplementation demonstrate a limited efficacy. Tocolytic agents, targeting uterine activity and contractility, inadequately prevent PTB by neglecting to act on uteroplacental inflammation. Emerging therapies targeting toll-like receptors, chemokines, and interleukin receptors exhibit promise in mitigating inflammation and preventing PTB.
Collapse
Affiliation(s)
- Tiffany Habelrih
- Université de Montréal, Pavillion Roger-Gaudry, 2900 boul Edouard-Montpetit, H3T 1J4, Montréal, Québec, Canada; Centre de recherche du CHU Sainte-Justine, 3175 ch de la Côte-Sainte-Catherine, H3T 1C5, Montréal, Québec, Canada
| | - Béatrice Ferri
- Université de Montréal, Pavillion Roger-Gaudry, 2900 boul Edouard-Montpetit, H3T 1J4, Montréal, Québec, Canada; Centre de recherche du CHU Sainte-Justine, 3175 ch de la Côte-Sainte-Catherine, H3T 1C5, Montréal, Québec, Canada
| | - France Côté
- Université de Montréal, Pavillion Roger-Gaudry, 2900 boul Edouard-Montpetit, H3T 1J4, Montréal, Québec, Canada; Centre de recherche du CHU Sainte-Justine, 3175 ch de la Côte-Sainte-Catherine, H3T 1C5, Montréal, Québec, Canada
| | - Juliane Sévigny
- Département de Biologie, Université de Sherbrooke, Voie 9, J1X 2X9, Sherbrooke, Québec, Canada
| | - Thalyssa-Lyn Augustin
- Université de Montréal, Pavillion Roger-Gaudry, 2900 boul Edouard-Montpetit, H3T 1J4, Montréal, Québec, Canada; Centre de recherche du CHU Sainte-Justine, 3175 ch de la Côte-Sainte-Catherine, H3T 1C5, Montréal, Québec, Canada
| | - Kevin Sawaya
- Centre de recherche du CHU Sainte-Justine, 3175 ch de la Côte-Sainte-Catherine, H3T 1C5, Montréal, Québec, Canada; Department of Microbiology and Immunology, McGill University, 3775 Rue University, Room 511, H3A 2B4, Montréal, Québec, Canada
| | - William D Lubell
- Département de Chimie, Université de Montréal, Complexe des Sciences, 1375 avenue Thérèse-Lavoie-Roux, Montréal, Québec, H2V 0B3, Canada
| | - David M Olson
- Departments of Obstetrics and Gynecology, Pediatrics, and Physiology, University of Alberta, 220 HMRC, T6G 2S2, Edmonton, Alberta, Canada
| | - Sylvie Girard
- Department of Obstetrics and Gynecology, Department of Immunology, Mayo Clinic, 200 First Street SW, Guggenheim Building 3rd floor, Rochester, MN 55905, USA
| | - Sylvain Chemtob
- Université de Montréal, Pavillion Roger-Gaudry, 2900 boul Edouard-Montpetit, H3T 1J4, Montréal, Québec, Canada; Centre de recherche du CHU Sainte-Justine, 3175 ch de la Côte-Sainte-Catherine, H3T 1C5, Montréal, Québec, Canada.
| |
Collapse
|
11
|
Bao J, Ma X, Kent LN, Wakle-Prabagaran M, McCarthy R, England SK. BKCa channels are involved in spontaneous and lipopolysaccharide-stimulated uterine contraction in late gestation mice†. Biol Reprod 2024; 110:798-807. [PMID: 38134962 PMCID: PMC11017124 DOI: 10.1093/biolre/ioad174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/27/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023] Open
Abstract
The large-conductance, voltage-gated, calcium (Ca2+)-activated potassium channel (BKCa) is one of the most abundant potassium channels in the myometrium. Previous work conducted by our group has identified a link between inflammation, BKCa channels and excitability of myometrial smooth muscle cells. Here, we investigate the role of BKCa channels in spontaneous and lipopolysaccharide (LPS)-stimulated uterine contraction to gain a better understanding of the relationship between the BKCa channel and uterine contraction in basal and inflammatory states. Uteri of C57BL/6 J mice on gestational day 18.5 (GD18.5) were obtained and either fixed in formalin or used immediately for tension recording or isolation of primary myocytes for patch-clamp. Paraffin sections were used for immunofluorescenctdetection of BKCa and Toll-like receptor (TLR4). For tension recordings, LPS was administered to determine its effect on uterine contractions. Paxilline, a BKCa inhibitor, was used to dissect the role of BKCa in uterine contraction in basal and inflammatory states. Finally, patch-clamp recordings were performed to investigate the relationship between LPS, the BKCa channel and membrane currents in mouse myometrial smooth muscle cells (mMSMCs). We confirmed the expression of BKCa and TLR4 in the myometrium of GD18.5 mice and found that inhibiting BKCa channels with paxilline suppressed both spontaneous and LPS-stimulated uterine contractions. Furthermore, application of BKCa inhibitors (paxilline or iberiotoxin) after LPS inhibited BKCa channel activity in mMSMCs. Moreover, pretreatment with BKCa inhibitor or the TLR4 inhibitor suppressed LPS-activated BKCa currents. Our study demonstrates that BKCa channels are involved in both basal and LPS-stimulated uterine contraction in pregnant mice.
Collapse
Affiliation(s)
- Junjie Bao
- Preterm Birth Prevention and Treatment Research Unit, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiaofeng Ma
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lindsey N Kent
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Monali Wakle-Prabagaran
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ronald McCarthy
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sarah K England
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
12
|
Ansari A, You YA, Lee G, Kim SM, Park SW, Hur YM, Kim YJ. Dysbiotic Vaginal Microbiota Induces Preterm Birth Cascade via Pathogenic Molecules in the Vagina. Metabolites 2024; 14:45. [PMID: 38248848 PMCID: PMC10821287 DOI: 10.3390/metabo14010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
Dysbiotic vaginal microbiota (DVM) disturb the vaginal environment, including pH, metabolite, protein, and cytokine profiles. This study investigated the impact of DVM on the vaginal environment in 40 Korean pregnant women and identified predictable biomarkers of birth outcomes. Cervicovaginal fluid (CVF) samples were collected in the third trimester using vaginal swabs, examined for pH, and stored at -80 °C for further analysis. The samples were grouped as full-term (FTB, n = 20) and preterm (PTB, n = 20) births. The microbiota was profiled in the V1-V9 regions. The levels of targeted metabolites, TLR-4, and cytokines were determined. The pH of CVF from PTB (>4.5) was significantly higher than that of the CVF from FTB (>3.5) (p < 0.05). Neonatal gestational age at delivery, birth weight, and Apgar score differed significantly between groups. The relative abundances of beneficial Lactobacillus spp., such as Lactobacillus gasseri, Lactobacillus jensenii, and Bifidobacterium, were higher in FTB, whereas those of pathogenic Enterococcus faecalis, Staphylococcus, Prevotella, Ureaplasma parvum, and Corynebacterium spp. were higher in PTB. Acetate, methanol, TLR-4, and TNF-α levels were negatively correlated with gestational age at delivery and birth weight. Moreover, ethanol, methanol, TLR-4, IL-6, IL-1β, and TNF-α levels were positively correlated with succinate, acetate, acetoacetate, formate, and ammonia. Overall, DVM induces preterm birth via pathogenic molecules in the vagina.
Collapse
Affiliation(s)
- AbuZar Ansari
- Department of Obstetrics and Gynecology and Ewha Medical Research Institute, Ewha Womans University, Seoul 07985, Republic of Korea; (Y.-A.Y.); (G.L.); (S.M.K.); (S.W.P.); (Y.M.H.)
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 07984, Republic of Korea
| | - Young-Ah You
- Department of Obstetrics and Gynecology and Ewha Medical Research Institute, Ewha Womans University, Seoul 07985, Republic of Korea; (Y.-A.Y.); (G.L.); (S.M.K.); (S.W.P.); (Y.M.H.)
| | - Gain Lee
- Department of Obstetrics and Gynecology and Ewha Medical Research Institute, Ewha Womans University, Seoul 07985, Republic of Korea; (Y.-A.Y.); (G.L.); (S.M.K.); (S.W.P.); (Y.M.H.)
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 07984, Republic of Korea
| | - Soo Min Kim
- Department of Obstetrics and Gynecology and Ewha Medical Research Institute, Ewha Womans University, Seoul 07985, Republic of Korea; (Y.-A.Y.); (G.L.); (S.M.K.); (S.W.P.); (Y.M.H.)
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 07984, Republic of Korea
| | - Sun Wha Park
- Department of Obstetrics and Gynecology and Ewha Medical Research Institute, Ewha Womans University, Seoul 07985, Republic of Korea; (Y.-A.Y.); (G.L.); (S.M.K.); (S.W.P.); (Y.M.H.)
| | - Young Min Hur
- Department of Obstetrics and Gynecology and Ewha Medical Research Institute, Ewha Womans University, Seoul 07985, Republic of Korea; (Y.-A.Y.); (G.L.); (S.M.K.); (S.W.P.); (Y.M.H.)
| | - Young Ju Kim
- Department of Obstetrics and Gynecology and Ewha Medical Research Institute, Ewha Womans University, Seoul 07985, Republic of Korea; (Y.-A.Y.); (G.L.); (S.M.K.); (S.W.P.); (Y.M.H.)
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 07984, Republic of Korea
| |
Collapse
|
13
|
Flores A, Nguyen NM, Pendyala G. Developmental outcomes with perinatal exposure (DOPE) to prescription opioids. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2023; 2:339-351. [PMID: 38058996 PMCID: PMC10696573 DOI: 10.1515/nipt-2023-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/07/2023] [Indexed: 12/08/2023]
Abstract
Researchers have found considerable evidence in the past 20 years that perinatal opioid exposure leads to an increased risk of developmental disorders in offspring that persist into adulthood. The use of opioids to treat pain concerning pregnancy, delivery, and postpartum complications has been rising. As a result, communities have reported a 300-400 % increase in Neonatal Opioid Withdrawal Syndrome (NOWS). NOWS represents the initial stage of several behavioral, phenotypic, and synaptic deficits. This review article summarizes the Developmental Outcomes of Perinatal Exposure (DOPE) to prescription opioids. Moreover, we also seek to connect these findings to clinical research that describes DOPE at multiple stages of life. Since specific mechanisms that underlie DOPE remain unclear, this article aims to provide a framework for conceptualizing across all ages and highlight the implications they may have for longevity.
Collapse
Affiliation(s)
- Adrian Flores
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
- Department of Cellular and Integrative Physiology, UNMC, Omaha, NE, USA
| | - Nghi M. Nguyen
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
- Department of Genetics, Cell Biology and Anatomy, UNMC, Omaha, NE, USA
| | - Gurudutt Pendyala
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
- Department of Genetics, Cell Biology and Anatomy, UNMC, Omaha, NE, USA
- Child Health Research Institute, Omaha, NE, USA
- National Strategic Research Institute, UNMC, Omaha, NE, USA
| |
Collapse
|
14
|
Hur YM, Yoo JY, You YA, Park S, Kim SM, Lee G, Kim YJ. A genome-wide and candidate gene association study of preterm birth in Korean pregnant women. PLoS One 2023; 18:e0294948. [PMID: 38019868 PMCID: PMC10686439 DOI: 10.1371/journal.pone.0294948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/12/2023] [Indexed: 12/01/2023] Open
Abstract
Preterm birth (PTB) refers to delivery before 37 weeks of gestation. Premature neonates exhibit higher neonatal morbidity and mortality rates than term neonates; therefore, it is crucial to predict and prevent PTB. Advancements enable the prediction and prevention of PTB using genetic approaches, especially by investigating its correlation with single nucleotide polymorphisms (SNPs). We aimed to identify impactive and relevant SNPs for the prediction of PTB via whole-genome sequencing analyses of the blood of 31 pregnant women with PTB (n = 13) and term birth (n = 18) who visited the Ewha Womans University Mokdong Hospital from November 1, 2018 to February 29, 2020. A genome-wide association study was performed using PLINK 1.9 software and 256 SNPs were selected and traced through protein-protein interactions. Moreover, a validation study by genotyping was performed on 60 other participants (preterm birth, n = 30; term birth, n = 30) for 25 SNPs related to ion channel binding and receptor complex pathways. Odds ratios were calculated using additive, dominant, and recessive genetic models. The risk of PTB in women with the AG allele of rs2485579 (gene name: RYR2) was significantly 4.82-fold increase, and the risk of PTB in women with the AG allele of rs7903957 (gene name: TBX5) was significantly 0.25-fold reduce. Our results suggest that rs2485579 (in RYR2) can be a genetic marker of PTB, which is considered through the association with abnormal cytoplasmic Ca2+ concentration and dysfunctional uterine contraction due to differences of RYR2 in the sarcoplasmic reticulum.
Collapse
Affiliation(s)
- Young Min Hur
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University Mokdong Hospital, Seoul, Korea
| | - Jae Young Yoo
- Division of Biobank, Korea National Institute of Health (KNIH), Korea Disease Control and Prevention Agency (KDCA), Cheongju, Korea
| | - Young Ah You
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University Mokdong Hospital, Seoul, Korea
| | - Sunwha Park
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University Mokdong Hospital, Seoul, Korea
| | - Soo Min Kim
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University Mokdong Hospital, Seoul, Korea
| | - Gain Lee
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University Mokdong Hospital, Seoul, Korea
| | - Young Ju Kim
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University Mokdong Hospital, Seoul, Korea
| |
Collapse
|
15
|
Kelly SB, Tran NT, Polglase GR, Hunt RW, Nold MF, Nold-Petry CA, Olson DM, Chemtob S, Lodygensky GA, Robertson SA, Gunn AJ, Galinsky R. A systematic review of immune-based interventions for perinatal neuroprotection: closing the gap between animal studies and human trials. J Neuroinflammation 2023; 20:241. [PMID: 37864272 PMCID: PMC10588248 DOI: 10.1186/s12974-023-02911-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/28/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND Perinatal infection/inflammation is associated with a high risk for neurological injury and neurodevelopmental impairment after birth. Despite a growing preclinical evidence base, anti-inflammatory interventions have not been established in clinical practice, partly because of the range of potential targets. We therefore systematically reviewed preclinical studies of immunomodulation to improve neurological outcomes in the perinatal brain and assessed their therapeutic potential. METHODS We reviewed relevant studies published from January 2012 to July 2023 using PubMed, Medline (OvidSP) and EMBASE databases. Studies were assessed for risk of bias using the SYRCLE risk of bias assessment tool (PROSPERO; registration number CRD42023395690). RESULTS Forty preclinical publications using 12 models of perinatal neuroinflammation were identified and divided into 59 individual studies. Twenty-seven anti-inflammatory agents in 19 categories were investigated. Forty-five (76%) of 59 studies reported neuroprotection, from all 19 categories of therapeutics. Notably, 10/10 (100%) studies investigating anti-interleukin (IL)-1 therapies reported improved outcome, whereas half of the studies using corticosteroids (5/10; 50%) reported no improvement or worse outcomes with treatment. Most studies (49/59, 83%) did not control core body temperature (a known potential confounder), and 25 of 59 studies (42%) did not report the sex of subjects. Many studies did not clearly state whether they controlled for potential study bias. CONCLUSION Anti-inflammatory therapies are promising candidates for treatment or even prevention of perinatal brain injury. Our analysis highlights key knowledge gaps and opportunities to improve preclinical study design that must be addressed to support clinical translation.
Collapse
Affiliation(s)
- Sharmony B Kelly
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Melbourne, VIC, 3168, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Nhi T Tran
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Melbourne, VIC, 3168, Australia
| | - Graeme R Polglase
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Melbourne, VIC, 3168, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Rodney W Hunt
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Melbourne, VIC, 3168, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- Monash Newborn, Monash Children's Hospital, Melbourne, Australia
| | - Marcel F Nold
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Melbourne, VIC, 3168, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- Monash Newborn, Monash Children's Hospital, Melbourne, Australia
| | - Claudia A Nold-Petry
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Melbourne, VIC, 3168, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - David M Olson
- Department of Obstetrics and Gynaecology, University of Alberta, Edmonton, Canada
| | - Sylvain Chemtob
- Department of Paediatrics, CHU Sainte Justine Research Centre, University of Montreal, Quebec, Canada
| | - Gregory A Lodygensky
- Department of Paediatrics, CHU Sainte Justine Research Centre, University of Montreal, Quebec, Canada
| | - Sarah A Robertson
- The University of Adelaide, Robinson Research Institute, North Adelaide, SA, Australia
| | - Alistair J Gunn
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Robert Galinsky
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Melbourne, VIC, 3168, Australia.
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
16
|
Chen Z, Li J, Xu W, Wu X, Xiang F, Li X, Zhang M, Zheng J, Kang X, Wu R. Elevated expression of Toll-like receptor 4 and cytokines in both serum and myometrium at term may serve as promising biomarkers for uterine activation preceding labor. Front Endocrinol (Lausanne) 2023; 14:1255925. [PMID: 37867523 PMCID: PMC10585141 DOI: 10.3389/fendo.2023.1255925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/12/2023] [Indexed: 10/24/2023] Open
Abstract
Objective Increased inflammation and cytokine levels are considered risk factors and promoters of preterm birth (PTB). However, the regulatory mechanism of pregnancy-related inflammation remains unclear. Toll-like receptor 4 (TLR4) plays a critical role in inflammatory responses in various diseases. Therefore, our study aimed to investigate whether TLR4 is involved in the inflammatory responses during uterine activation for labor, with the goal of identifying potential biomarkers for uterine activation at term. Materials and methods We used flow cytometry to detect TLR4 expression on CD14+ maternal blood monocytes in the first, second, and third trimesters. ELISA was employed to measure TLR4 and cytokines levels in the maternal serum of term non-labor (TNL), term labor (TL) women and LPS induced preterm labor and PBS injected controls. TLR4siRNA was transfected into the human myometrial smooth muscle cells (HMSMCs), which were subsequently treated with IL-1β. The mRNA and protein levels of TLR4, uterine contraction-related protein connexin 43 (CX43), oxytocin receptor (OTR), MAPK/NF-κB signaling pathway, and cytokines were analyzed using qRT-PCR, western blotting, and immunohistochemistry. Results The study revealed TLR4 expression on CD14+ maternal blood monocytes was higher in the third trimester group compared to the first and second trimester groups (p<0.001). Maternal serum concentrations of TLR4 and cytokines were significantly higher in the TL group than the TNL group (p<0.001). TLR4, OTR, CX43, activated MAPK/NF-κB expression, and cytokines levels were upregulated in TL group, and similarly significantly higher in the LPS-induced preterm group than in the control group. Using the HMSMCs we demonstrated that TLR4siRNA transfection suppressed contractility. Interfering with TLR4 expression reduced the expression of OTR, CX43, cytokines, and MAPK/NF-κB activation. There was a significant positive relationship between TLR4 expression and the inflammatory status in the myometrium. ROC analysis indicated that TLR4 and cytokines may serve as potential biomarkers for predicting uterine activation for labor. Conclusion Our data suggest that TLR4 and cytokines can act as stimulators of uterine activation for labor at term. Furthermore, the MAPK/NF-κB pathway appears to be one of the potential signaling pathways mediating TLR4's regulation of parturition initiation.
Collapse
Affiliation(s)
- Zixi Chen
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinpeng Li
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenjuan Xu
- Department of Obstetrics and Gynecology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaomei Wu
- Department of Obstetrics and Gynecology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fenfen Xiang
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoxiao Li
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mengzhe Zhang
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jin Zheng
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiangdong Kang
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rong Wu
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
17
|
Mizuno S, Nagaie S, Tamiya G, Kuriyama S, Obara T, Ishikuro M, Tanaka H, Kinoshita K, Sugawara J, Yamamoto M, Yaegashi N, Ogishima S. Establishment of the early prediction models of low-birth-weight reveals influential genetic and environmental factors: a prospective cohort study. BMC Pregnancy Childbirth 2023; 23:628. [PMID: 37653383 PMCID: PMC10472725 DOI: 10.1186/s12884-023-05919-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 08/12/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Low birth weight (LBW) is a leading cause of neonatal morbidity and mortality, and increases various disease risks across life stages. Prediction models of LBW have been developed before, but have limitations including small sample sizes, absence of genetic factors and no stratification of neonate into preterm and term birth groups. In this study, we challenged the development of early prediction models of LBW based on environmental and genetic factors in preterm and term birth groups, and clarified influential variables for LBW prediction. METHODS We selected 22,711 neonates, their 21,581 mothers and 8,593 fathers from the Tohoku Medical Megabank Project Birth and Three-Generation cohort study. To establish early prediction models of LBW for preterm birth and term birth groups, we trained AI-based models using genetic and environmental factors of lifestyles. We then clarified influential environmental and genetic factors for predicting LBW in the term and preterm groups. RESULTS We identified 2,327 (10.22%) LBW neonates consisting of 1,077 preterm births and 1,248 term births. Our early prediction models archived the area under curve 0.96 and 0.95 for term LBW and preterm LBW models, respectively. We revealed that environmental factors regarding eating habits and genetic features related to fetal growth were influential for predicting LBW in the term LBW model. On the other hand, we identified that genomic features related to toll-like receptor regulations and infection reactions are influential genetic factors for prediction in the preterm LBW model. CONCLUSIONS We developed precise early prediction models of LBW based on lifestyle factors in the term birth group and genetic factors in the preterm birth group. Because of its accuracy and generalisability, our prediction model could contribute to risk assessment of LBW in the early stage of pregnancy and control LBW risk in the term birth group. Our prediction model could also contribute to precise prediction of LBW based on genetic factors in the preterm birth group. We then identified parental genetic and maternal environmental factors during pregnancy influencing LBW prediction, which are major targets for understanding the LBW to address serious burdens on newborns' health throughout life.
Collapse
Affiliation(s)
- Satoshi Mizuno
- Department of Informatics for Genomic Medicine, Group of Integrated Database Systems, Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8575, Japan
| | - Satoshi Nagaie
- Department of Informatics for Genomic Medicine, Group of Integrated Database Systems, Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8575, Japan
| | - Gen Tamiya
- Department of Statistical Genetics and Genomics, Group of Disease Risk Prediction, Tohoku Medical Megabank Organization, Tohoku University, Miyagi, Japan
| | - Shinichi Kuriyama
- Department of Molecular Epidemiology, Group of the Birth and Three-Generation Cohort Study, Tohoku Medical Megabank Organization, Tohoku University, Miyagi, Japan
| | - Taku Obara
- Department of Molecular Epidemiology, Group of the Birth and Three-Generation Cohort Study, Tohoku Medical Megabank Organization, Tohoku University, Miyagi, Japan
| | - Mami Ishikuro
- Department of Molecular Epidemiology, Group of the Birth and Three-Generation Cohort Study, Tohoku Medical Megabank Organization, Tohoku University, Miyagi, Japan
| | - Hiroshi Tanaka
- Medical Data Science Promotion, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kengo Kinoshita
- Department of Statistical Genetics and Genomics, Group of Systems Bioinformatics, Tohoku Medical Megabank Organization, Tohoku University, Miyagi, Japan
| | - Junichi Sugawara
- Department of Gynecology and Obstetrics, Tohoku University Graduate School of Medicine, Tohoku University, Miyagi, Japan
- Department of Feto-Maternal Medical Science, Group of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Miyagi, Japan
- Suzuki Memorial Hospital 3-5-5, Satonomori, Iwanumashi, Miyagi, 989-2481, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Graduate School of Medicine, Tohoku University, Sendai, Japan
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Miyagi, Japan
| | - Nobuo Yaegashi
- Department of Gynecology and Obstetrics, Tohoku University Graduate School of Medicine, Tohoku University, Miyagi, Japan
| | - Soichi Ogishima
- Department of Informatics for Genomic Medicine, Group of Integrated Database Systems, Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8575, Japan.
| |
Collapse
|
18
|
Cao X, Zhou X, Chen S, Xu C. Integration of transcriptomics and metabolomics reveals the responses of the maternal circulation and maternal-fetal interface to LPS-induced preterm birth in mice. Front Immunol 2023; 14:1213902. [PMID: 37649476 PMCID: PMC10464907 DOI: 10.3389/fimmu.2023.1213902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023] Open
Abstract
Background Term birth (TB) and preterm birth (PTB) are characterized by uterine contractions, rupture of the chorioamniotic membrane, decidual activation, and other physiological and pathological changes. In this study, we hypothesize that inflammation can cause changes in mRNA expression and metabolic stability in the placenta, decidua, chorioamniotic membrane, uterus and peripheral blood, ultimately leading to PTB. Methods To comprehensively assess the effects of inflammation on mRNA expression and metabolite production in different tissues of pregnancy, we used a mouse PTB model by intraperitoneally injecting lipopolysaccharide (LPS) and integrated transcriptomics and metabolomics studies. Results Our analysis identified 152 common differentially expressed genes (DEGs) and 8 common differentially expressed metabolites (DEMs) in the placenta, decidua, chorioamniotic membrane, uterus, and peripheral blood, or placenta and uterus after LPS injection, respectively. Our bioinformatics analysis revealed significant enrichment of the NOD-like receptor signaling pathway (mmu04621), TNF signaling pathway (mmu04668), IL-17 signaling pathway (mmu04657), and NF-kappa B signaling pathway in the transcriptomics of different tissues, and Hormone synthesis, Lysosome, NOD-like receptor signaling pathway, and Protein digest and absorption pathway in metabolomics. Moreover, we found that several upstream regulators and master regulators, including STAT1, STAT3, and NFKB1, were altered after exposure to inflammation in the different tissues. Interaction network analysis of transcriptomics and metabolomics DEGs and DEMs also revealed functional changes in mice intraperitoneally injected with LPS. Conclusions Overall, our study identified significant and biologically relevant alterations in the placenta, decidua, chorioamniotic membrane, uterus, peripheral blood transcriptome and the placenta and uterus metabolome in mice exposed to LPS. Thus, a comprehensive analysis of different pregnancy tissues in mice intraperitoneally injected with LPS by combining transcriptomics and metabolomics may help to systematically understand the local and systemic changes associated with PTB caused by inflammation.
Collapse
Affiliation(s)
- Xianling Cao
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuanyou Zhou
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Songchang Chen
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chenming Xu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
19
|
Huang G, Yao D, Yan X, Zheng M, Yan P, Chen X, Wang D. Emerging role of toll-like receptors signaling and its regulators in preterm birth: a narrative review. Arch Gynecol Obstet 2023; 308:319-339. [PMID: 35916961 DOI: 10.1007/s00404-022-06701-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/03/2022] [Indexed: 11/02/2022]
Abstract
INTRODUCTION Despite intensive research, preterm birth (PTB) rates have not decreased significantly in recent years due to a lack of understanding of the underlying causes and insufficient treatment options for PTB. We are committed to finding promising biomarkers for the treatment of PTB. METHODS An extensive search of the literature was conducted with MEDLINE/PubMed, and in total, 151 studies were included and summarized in the present review. RESULTS Substantial evidence supports that the infection and/or inflammatory cascade associated with infection is an early event in PTB. Toll-like receptor (TLR) is a prominent pattern recognition receptor (PRR) found on both immune and non-immune cells, including fetal membrane cells. The activation of TLR downstream molecules, followed by TLR binding to its ligand, is critical for infection and inflammation, leading to the involvement of the TLR signaling pathway in PTB. TLR ligands are derived from microbial components and molecules released by damaged and dead cells. Particularly, TLR4 is an essential TLR because of its ability to recognize lipopolysaccharide (LPS). In this comprehensive overview, we discuss the role of TLR signaling in PTB, focus on numerous host-derived genetic and epigenetic regulators of the TLR signaling pathway, and cover ongoing research and prospective therapeutic options for treating PTB by inhibiting TLR signaling. CONCLUSION This is a critical topic because TLR-related molecules and mechanisms may enable obstetricians to better understand the physiological changes in PTB and develop new treatment and prevention strategies.
Collapse
Affiliation(s)
- Ge Huang
- Department of Gynecology and Obstetrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Dan Yao
- Department of Gynecology and Obstetrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaoli Yan
- Department of Gynecology and Obstetrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Mingyu Zheng
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ping Yan
- Department of Gynecology and Obstetrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaoxia Chen
- Department of Gynecology and Obstetrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Dan Wang
- Department of Gynecology and Obstetrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
20
|
El-Gendy ZA, Taher RF, Elgamal AM, Serag A, Hassan A, Jaleel GAA, Farag MA, Elshamy AI. Metabolites Profiling and Bioassays Reveal Bassia indica Ethanol Extract Protective Effect against Stomach Ulcers Development via HMGB1/TLR-4/NF-κB Pathway. Antioxidants (Basel) 2023; 12:1263. [PMID: 37371993 DOI: 10.3390/antiox12061263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Clinical manifestation of gastric ulcers is frequent, in addition to their costly drug regimens, warranting the development of novel drugs at lower costs. Although Bassia indica is well characterized for its anti-inflammatory and antioxidant potential, capacity of its ethanol extract (BIEE) to prevent stomach ulcers' progression has not been reported. A nuclear protein termed high-mobility group box 1 (HMGB1) plays a key role in the formation of stomach ulcers by triggering a number of inflammatory responses. The main purpose of the current investigation was to evaluate the in vivo anti-inflammatory and anti-ulcerogenic capabilities of BIEE against ethanol-induced gastric ulcers in rats via the HMGB1/TLR-4/NF-B signaling pathway. HMGB1 and Nuclear factor kappa (NF-B) expression, IL-1β and Nrf2 contents showed an increase along with ulcer development, concurrent with an increase in immunohistochemical TLR-4 level. In contrast, pre-treatment with BIEE significantly reduced HMGB1 and Nuclear factor kappa (NF-B) expression levels, IL-1β and Nrf2 contents and ulcer index value. Such protective action was further confirmed based on histological and immunohistochemical TLR-4 assays. Untargeted analysis via UPLC-ESI-Qtof-MS has allowed for the comprehensive characterization of 40 metabolites in BIEE mostly belonged to two main chemical classes, viz., flavonoids and lipids. These key metabolites, particularly flavonoids, suggesting a mediation for the anti-inflammatory and anti-ulcerogenic properties of BIEE, pose it as a promising natural drug regimen for treatment of stomach ulcers.
Collapse
Affiliation(s)
- Zeinab A El-Gendy
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt
| | - Rehab F Taher
- Department of Natural Compounds Chemistry, National Research Center, 33 El Bohouth St., Dokki, Giza 12622, Egypt
| | - Abdelbaset M Elgamal
- Department of Chemistry of Microbial and Natural Products, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| | - Ahmed Serag
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11751, Egypt
| | - Azza Hassan
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Gehad A Abdel Jaleel
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr el Aini St., Cairo 11562, Egypt
| | - Abdelsamed I Elshamy
- Department of Natural Compounds Chemistry, National Research Center, 33 El Bohouth St., Dokki, Giza 12622, Egypt
| |
Collapse
|
21
|
Daskalakis G, Psarris A, Koutras A, Fasoulakis Z, Prokopakis I, Varthaliti A, Karasmani C, Ntounis T, Domali E, Theodora M, Antsaklis P, Pappa KI, Papapanagiotou A. Maternal Infection and Preterm Birth: From Molecular Basis to Clinical Implications. CHILDREN (BASEL, SWITZERLAND) 2023; 10:children10050907. [PMID: 37238455 DOI: 10.3390/children10050907] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
As the leading cause of neonatal morbidity and mortality, preterm birth is recognized as a major public health concern around the world. The purpose of this review is to analyze the connection between infections and premature birth. Spontaneous preterm birth is commonly associated with intrauterine infection/inflammation. The overproduction of prostaglandins caused by the inflammation associated with an infection could lead to uterine contractions, contributing to preterm delivery. Many pathogens, particularly Chlamydia trachomatis, Neisseria gonorrhoeae, Trichomonas vaginalis, Gardnerella vaginalis, Ureaplasma urealyticum, Mycoplasma hominis, Actinomyces, Candida spp., and Streptococcus spp. have been related with premature delivery, chorioamnionitis, and sepsis of the neonate. Further research regarding the prevention of preterm delivery is required in order to develop effective preventive methods with the aim of reducing neonatal morbidity.
Collapse
Affiliation(s)
- George Daskalakis
- First Department of Obstetrics and Gynecology, 'Alexandra' Hospital, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Alexandros Psarris
- First Department of Obstetrics and Gynecology, 'Alexandra' Hospital, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Antonios Koutras
- First Department of Obstetrics and Gynecology, 'Alexandra' Hospital, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Zacharias Fasoulakis
- First Department of Obstetrics and Gynecology, 'Alexandra' Hospital, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Ioannis Prokopakis
- First Department of Obstetrics and Gynecology, 'Alexandra' Hospital, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Antonia Varthaliti
- First Department of Obstetrics and Gynecology, 'Alexandra' Hospital, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Christina Karasmani
- First Department of Obstetrics and Gynecology, 'Alexandra' Hospital, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Thomas Ntounis
- First Department of Obstetrics and Gynecology, 'Alexandra' Hospital, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Ekaterini Domali
- First Department of Obstetrics and Gynecology, 'Alexandra' Hospital, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Marianna Theodora
- First Department of Obstetrics and Gynecology, 'Alexandra' Hospital, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Panos Antsaklis
- First Department of Obstetrics and Gynecology, 'Alexandra' Hospital, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Kalliopi I Pappa
- First Department of Obstetrics and Gynecology, 'Alexandra' Hospital, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Angeliki Papapanagiotou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| |
Collapse
|
22
|
Xiao L, Zhao F. Microbial transmission, colonisation and succession: from pregnancy to infancy. Gut 2023; 72:772-786. [PMID: 36720630 PMCID: PMC10086306 DOI: 10.1136/gutjnl-2022-328970] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/10/2023] [Indexed: 02/02/2023]
Abstract
The microbiome has been proven to be associated with many diseases and has been used as a biomarker and target in disease prevention and intervention. Currently, the vital role of the microbiome in pregnant women and newborns is increasingly emphasised. In this review, we discuss the interplay of the microbiome and the corresponding immune mechanism between mothers and their offspring during the perinatal period. We aim to present a comprehensive picture of microbial transmission and potential immune imprinting before and after delivery. In addition, we discuss the possibility of in utero microbial colonisation during pregnancy, which has been highly debated in recent studies, and highlight the importance of the microbiome in infant development during the first 3 years of life. This holistic view of the role of the microbial interplay between mothers and infants will refine our current understanding of pregnancy complications as well as diseases in early life and will greatly facilitate the microbiome-based prenatal diagnosis and treatment of mother-infant-related diseases.
Collapse
Affiliation(s)
- Liwen Xiao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fangqing Zhao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of System Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
23
|
Brockway HM, Wilson SL, Kallapur SG, Buhimschi CS, Muglia LJ, Jones HN. Characterization of methylation profiles in spontaneous preterm birth placental villous tissue. PLoS One 2023; 18:e0279991. [PMID: 36952446 PMCID: PMC10035933 DOI: 10.1371/journal.pone.0279991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Indexed: 03/25/2023] Open
Abstract
Preterm birth is a global public health crisis which results in significant neonatal and maternal mortality. Yet little is known regarding the molecular mechanisms of idiopathic spontaneous preterm birth, and we have few diagnostic markers for adequate assessment of placental development and function. Previous studies of placental pathology and our transcriptomics studies suggest a role for placental maturity in idiopathic spontaneous preterm birth. It is known that placental DNA methylation changes over gestation. We hypothesized that if placental hypermaturity is present in our samples, we would observe a unique idiopathic spontaneous preterm birth DNA methylation profile potentially driving the gene expression differences we previously identified in our placental samples. Our results indicate the idiopathic spontaneous preterm birth DNA methylation pattern mimics the term birth methylation pattern suggesting hypermaturity. Only seven significant differentially methylated regions fitting the idiopathic spontaneous preterm birth specific (relative to the controls) profile were identified, indicating unusually high similarity in DNA methylation between idiopathic spontaneous preterm birth and term birth samples. We identified an additional 1,718 significantly methylated regions in our gestational age matched controls where the idiopathic spontaneous preterm birth DNA methylation pattern mimics the term birth methylation pattern, again indicating a striking level of similarity between the idiopathic spontaneous preterm birth and term birth samples. Pathway analysis of these regions revealed differences in genes within the WNT and Cadherin signaling pathways, both of which are essential in placental development and maturation. Taken together, these data demonstrate that the idiopathic spontaneous preterm birth samples display a hypermature methylation signature than expected given their respective gestational age which likely impacts birth timing.
Collapse
Affiliation(s)
- Heather M. Brockway
- Department of Physiology and Functional Genomics, College of Medicine at the University of Florida, Gainesville, Florida, United States of America
| | - Samantha L. Wilson
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Suhas G. Kallapur
- Divisions of Neonatology and Developmental Biology, David Geffen School of Medicine at the University of California, UCLA Mattel Children’s Hospital, Los Angeles, California, United States of America
| | - Catalin S. Buhimschi
- Department of Obstetrics and Gynecology, The University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Louis J. Muglia
- Burroughs Wellcome Fund, Research Triangle Park, North Carolina, United States of America
| | - Helen N. Jones
- Department of Physiology and Functional Genomics, College of Medicine at the University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
24
|
Radford-Smith DE, Anthony DC. Mechanisms of Maternal Diet-Induced Obesity Affecting the Offspring Brain and Development of Affective Disorders. Metabolites 2023; 13:455. [PMID: 36984895 PMCID: PMC10053489 DOI: 10.3390/metabo13030455] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
Depression and metabolic disease are common disorders that share a bidirectional relationship and continue to increase in prevalence. Maternal diet and maternal behaviour both profoundly influence the developmental trajectory of offspring during the perinatal period. At an epidemiological level, both maternal depression and obesity during pregnancy have been shown to increase the risk of neuropsychiatric disease in the subsequent generation. Considerable progress has been made to understand the mechanisms by which maternal obesity disrupts the developing offspring gut-brain axis, priming offspring for the development of affective disorders. This review outlines such mechanisms in detail, including altered maternal care, the maternal microbiome, inflammation, breast milk composition, and maternal and placental metabolites. Subsequently, offspring may be prone to developing gut-brain interaction disorders with concomitant changes to brain energy metabolism, neurotransmission, and behaviour, alongside gut dysbiosis. The gut microbiome may act as a key modifiable, and therefore treatable, feature of the relationship between maternal obesity and the offspring brain function. Further studies examining the relationship between maternal nutrition, the maternal microbiome and metabolites, and offspring neurodevelopment are warranted to identify novel therapeutic targets.
Collapse
Affiliation(s)
- Daniel E. Radford-Smith
- Department of Psychiatry, University of Oxford, Warneford Hospital, Warneford Lane, Oxford OX37JX, UK
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX13TA, UK
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX13QT, UK
| | - Daniel C. Anthony
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX13QT, UK
| |
Collapse
|
25
|
Li S, Yan B, Li TKT, Lu J, Gu Y, Tan Y, Gong F, Lam TW, Xie P, Wang Y, Lin G, Luo R. Ultra-low-coverage genome-wide association study-insights into gestational age using 17,844 embryo samples with preimplantation genetic testing. Genome Med 2023; 15:10. [PMID: 36788602 PMCID: PMC9926832 DOI: 10.1186/s13073-023-01158-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 01/26/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Very low-coverage (0.1 to 1×) whole genome sequencing (WGS) has become a promising and affordable approach to discover genomic variants of human populations for genome-wide association study (GWAS). To support genetic screening using preimplantation genetic testing (PGT) in a large population, the sequencing coverage goes below 0.1× to an ultra-low level. However, the feasibility and effectiveness of ultra-low-coverage WGS (ulcWGS) for GWAS remains undetermined. METHODS We built a pipeline to carry out analysis of ulcWGS data for GWAS. To examine its effectiveness, we benchmarked the accuracy of genotype imputation at the combination of different coverages below 0.1× and sample sizes from 2000 to 16,000, using 17,844 embryo PGT samples with approximately 0.04× average coverage and the standard Chinese sample HG005 with known genotypes. We then applied the imputed genotypes of 1744 transferred embryos who have gestational ages and complete follow-up records to GWAS. RESULTS The accuracy of genotype imputation under ultra-low coverage can be improved by increasing the sample size and applying a set of filters. From 1744 born embryos, we identified 11 genomic risk loci associated with gestational ages and 166 genes mapped to these loci according to positional, expression quantitative trait locus, and chromatin interaction strategies. Among these mapped genes, CRHBP, ICAM1, and OXTR were more frequently reported as preterm birth related. By joint analysis of gene expression data from previous studies, we constructed interrelationships of mainly CRHBP, ICAM1, PLAGL1, DNMT1, CNTLN, DKK1, and EGR2 with preterm birth, infant disease, and breast cancer. CONCLUSIONS This study not only demonstrates that ulcWGS could achieve relatively high accuracy of adequate genotype imputation and is capable of GWAS, but also provides insights into the associations between gestational age and genetic variations of the fetal embryos from Chinese population.
Collapse
Affiliation(s)
- Shumin Li
- grid.194645.b0000000121742757Department of Computer Science, The University of Hong Kong, Hong Kong, China
| | - Bin Yan
- grid.194645.b0000000121742757Department of Computer Science, The University of Hong Kong, Hong Kong, China
| | - Thomas K. T. Li
- grid.415550.00000 0004 1764 4144Department of Obstetrics & Gynecology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Jianliang Lu
- grid.194645.b0000000121742757Department of Computer Science, The University of Hong Kong, Hong Kong, China
| | - Yifan Gu
- grid.216417.70000 0001 0379 7164NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, 410008 Hunan China ,grid.477823.d0000 0004 1756 593XClinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410013 Hunan China
| | - Yueqiu Tan
- grid.216417.70000 0001 0379 7164NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, 410008 Hunan China ,grid.477823.d0000 0004 1756 593XClinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410013 Hunan China
| | - Fei Gong
- grid.216417.70000 0001 0379 7164NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, 410008 Hunan China ,grid.477823.d0000 0004 1756 593XClinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410013 Hunan China
| | - Tak-Wah Lam
- grid.194645.b0000000121742757Department of Computer Science, The University of Hong Kong, Hong Kong, China
| | - Pingyuan Xie
- Hunan Normal University School of Medicine, Changsha, 410013, Hunan, China. .,National Engineering and Research Center of Human Stem Cell, Changsha, Hunan, China.
| | - Yuexuan Wang
- Department of Computer Science, The University of Hong Kong, Hong Kong, China. .,College of Computer Science and Technology, Zhejiang University, Hangzhou, China.
| | - Ge Lin
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, 410008, Hunan, China. .,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410013, Hunan, China. .,National Engineering and Research Center of Human Stem Cell, Changsha, Hunan, China.
| | - Ruibang Luo
- Department of Computer Science, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
26
|
Lodge-Tulloch NA, Toews AJ, Atallah A, Cotechini T, Girard S, Graham CH. Cross-Generational Impact of Innate Immune Memory Following Pregnancy Complications. Cells 2022; 11:3935. [PMID: 36497193 PMCID: PMC9741472 DOI: 10.3390/cells11233935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Pregnancy complications can have long-term negative effects on the health of the affected mothers and their children. In this review, we highlight the underlying inflammatory etiologies of common pregnancy complications and discuss how aberrant inflammation may lead to the acquisition of innate immune memory. The latter can be described as a functional epigenetic reprogramming of innate immune cells following an initial exposure to an inflammatory stimulus, ultimately resulting in an altered response following re-exposure to a similar inflammatory stimulus. We propose that aberrant maternal inflammation associated with complications of pregnancy increases the cross-generational risk of developing noncommunicable diseases (i.e., pregnancy complications, cardiovascular disease, and metabolic disease) through a process mediated by innate immune memory. Elucidating a role for innate immune memory in the cross-generational health consequences of pregnancy complications may lead to the development of novel strategies aimed at reducing the long-term risk of disease.
Collapse
Affiliation(s)
| | - Alexa J. Toews
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Aline Atallah
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Tiziana Cotechini
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Sylvie Girard
- Department of Obstetrics and Gynecology, Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Charles H. Graham
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
27
|
In Vitro Anti-Influenza A Virus H1N1 Effect of Sesquiterpene-Rich Extracts of Carpesium abrotanoides. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238313. [PMID: 36500406 PMCID: PMC9739900 DOI: 10.3390/molecules27238313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022]
Abstract
Due to a high content of sesquiterpenes, Carpesium abrotanoides has been investigated to fully explore its health-promoting properties. Therefore, this work aimed to assess, for the first time, the anti-influenza A virus H1N1 potential of sesquiterpene-targeted fractions of the herb derived from C. abrotanoides. Five compounds, including four sesquiterpenes and one aldehyde, were isolated and identified from the sesquiterpene-rich extracts of C. abrotanoides (SECA), and the contents of three main sesquiterpenes in the SECA were determined. Furthermore, SECA showed a significant protective effect in the MDCK cells infected with influenza A virus (H1N1) in three different conditions: premixed administration, prophylactic administration, and therapeutic administration. SECA can significantly decrease the mRNA expressions of TLR4, MyD88, NF-κB, TNF-α, and IL-6, as well as the protein expressions of TLR4, MyD88, and NF-κB. This result suggests that SECA can resist the influenza A virus H1N1 through the TLR4/MyD88/NF-κB signal pathway.
Collapse
|
28
|
Qin Q, Liu H, He W, Guo Y, Zhang J, She J, Zheng F, Zhang S, Muyldermans S, Wen Y. Single Domain Antibody application in bacterial infection diagnosis and neutralization. Front Immunol 2022; 13:1014377. [PMID: 36248787 PMCID: PMC9558170 DOI: 10.3389/fimmu.2022.1014377] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/15/2022] [Indexed: 11/21/2022] Open
Abstract
Increasing antibiotic resistance to bacterial infections causes a serious threat to human health. Efficient detection and treatment strategies are the keys to preventing and reducing bacterial infections. Due to the high affinity and antigen specificity, antibodies have become an important tool for diagnosis and treatment of various human diseases. In addition to conventional antibodies, a unique class of “heavy-chain-only” antibodies (HCAbs) were found in the serum of camelids and sharks. HCAbs binds to the antigen through only one variable domain Referred to as VHH (variable domain of the heavy chain of HCAbs). The recombinant format of the VHH is also called single domain antibody (sdAb) or nanobody (Nb). Sharks might also have an ancestor HCAb from where SdAbs or V-NAR might be engineered. Compared with traditional Abs, Nbs have several outstanding properties such as small size, high stability, strong antigen-binding affinity, high solubility and low immunogenicity. Furthermore, they are expressed at low cost in microorganisms and amenable to engineering. These superior properties make Nbs a highly desired alternative to conventional antibodies, which are extensively employed in structural biology, unravelling biochemical mechanisms, molecular imaging, diagnosis and treatment of diseases. In this review, we summarized recent progress of nanobody-based approaches in diagnosis and neutralization of bacterial infection and further discussed the challenges of Nbs in these fields.
Collapse
Affiliation(s)
- Qian Qin
- Department of General Surgery, Center for Microbiome Research of Med-X Institute, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Hao Liu
- Center for Biomedical Research, Institute of Future Agriculture, Northwest A&F University, Yangling, China
| | - Wenbo He
- Department of General Surgery, Center for Microbiome Research of Med-X Institute, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yucheng Guo
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Jiaxin Zhang
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Junjun She
- Department of General Surgery, Center for Microbiome Research of Med-X Institute, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Fang Zheng
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Sicai Zhang
- Center for Biomedical Research, Institute of Future Agriculture, Northwest A&F University, Yangling, China
| | - Serge Muyldermans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Yurong Wen
- Department of General Surgery, Center for Microbiome Research of Med-X Institute, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
29
|
Zhang Y, Liang X, Bao X, Xiao W, Chen G. Toll-like receptor 4 (TLR4) inhibitors: Current research and prospective. Eur J Med Chem 2022; 235:114291. [DOI: 10.1016/j.ejmech.2022.114291] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 01/10/2023]
|
30
|
Belville C, Ponelle-Chachuat F, Rouzaire M, Gross C, Pereira B, Gallot D, Sapin V, Blanchon L. Physiological TLR4 regulation in human fetal membranes as an explicative mechanism of a pathological preterm case. eLife 2022; 11:71521. [PMID: 35119365 PMCID: PMC8816379 DOI: 10.7554/elife.71521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 01/17/2022] [Indexed: 12/15/2022] Open
Abstract
The integrity of human fetal membranes is crucial for harmonious fetal development throughout pregnancy. Their premature rupture is often the consequence of a physiological phenomenon that has been exacerbated. Beyond all the implied biological processes, inflammation is of primary importance and is qualified as ‘sterile’ at the end of pregnancy. In this study, complementary methylomic and transcriptomic strategies on amnion and choriodecidua explants obtained from the altered (cervix zone) and intact fetal membranes at term and before labour were used. By cross-analysing genome-wide studies strengthened by in vitro experiments, we deciphered how the expression of toll-like receptor 4 (TLR4), an actor in pathological fetal membrane rupture, is controlled. Indeed, it is differentially regulated in the altered zone and between both layers by a dual mechanism: (1) the methylation of TLR4 and miRNA promoters and (2) targeting by miRNA (let-7a-2 and miR-125b-1) acting on the 3’-UTR of TLR4. Consequently, this study demonstrates that fine regulation of TLR4 is required for sterile inflammation establishment at the end of pregnancy and that it may be dysregulated in the pathological premature rupture of membranes.
Collapse
Affiliation(s)
- Corinne Belville
- Team 'Translational approach to epithelial injury and repair', iGReD, Université Clermont Auvergne, Clermont-ferrand, France
| | - Flora Ponelle-Chachuat
- Team 'Translational approach to epithelial injury and repair', iGReD, Université Clermont Auvergne, Clermont-ferrand, France
| | - Marion Rouzaire
- Team 'Translational approach to epithelial injury and repair', iGReD, Université Clermont Auvergne, Clermont-ferrand, France
| | - Christelle Gross
- Team 'Translational approach to epithelial injury and repair', iGReD, Université Clermont Auvergne, Clermont-ferrand, France
| | - Bruno Pereira
- CHU Clermont-Ferrand, Biostatistics unit (DRCI) Department, clermont-ferrand, France
| | - Denis Gallot
- Team 'Translational approach to epithelial injury and repair', iGReD, Université Clermont Auvergne, Clermont-ferrand, France.,CHU Clermont-Ferrand, Obstetrics and Gynaecology Department, Clermont-ferrand, France
| | - Vincent Sapin
- Team 'Translational approach to epithelial injury and repair', iGReD, Université Clermont Auvergne, Clermont-ferrand, France.,CHU Clermont-Ferrand, Biochemistry and Molecular Genetic Department, Clermont-Ferrand, France
| | - Loïc Blanchon
- Team 'Translational approach to epithelial injury and repair', iGReD, Université Clermont Auvergne, Clermont-ferrand, France
| |
Collapse
|
31
|
Gomez-Lopez N, Garcia-Flores V, Chin PY, Groome HM, Bijland MT, Diener KR, Romero R, Robertson SA. Macrophages exert homeostatic actions in pregnancy to protect against preterm birth and fetal inflammatory injury. JCI Insight 2021; 6:146089. [PMID: 34622802 PMCID: PMC8525593 DOI: 10.1172/jci.insight.146089] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 08/20/2021] [Indexed: 01/08/2023] Open
Abstract
Macrophages are commonly thought to contribute to the pathophysiology of preterm labor by amplifying inflammation — but a protective role has not previously been considered to our knowledge. We hypothesized that given their antiinflammatory capability in early pregnancy, macrophages exert essential roles in maintenance of late gestation and that insufficient macrophages may predispose individuals to spontaneous preterm labor and adverse neonatal outcomes. Here, we showed that women with spontaneous preterm birth had reduced CD209+CD206+ expression in alternatively activated CD45+CD14+ICAM3– macrophages and increased TNF expression in proinflammatory CD45+CD14+CD80+HLA-DR+ macrophages in the uterine decidua at the materno-fetal interface. In Cd11bDTR/DTR mice, depletion of maternal CD11b+ myeloid cells caused preterm birth, neonatal death, and postnatal growth impairment, accompanied by uterine cytokine and leukocyte changes indicative of a proinflammatory response, while adoptive transfer of WT macrophages prevented preterm birth and partially rescued neonatal loss. In a model of intra-amniotic inflammation–induced preterm birth, macrophages polarized in vitro to an M2 phenotype showed superior capacity over nonpolarized macrophages to reduce uterine and fetal inflammation, prevent preterm birth, and improve neonatal survival. We conclude that macrophages exert a critical homeostatic regulatory role in late gestation and are implicated as a determinant of susceptibility to spontaneous preterm birth and fetal inflammatory injury.
Collapse
Affiliation(s)
- Nardhy Gomez-Lopez
- Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia.,Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, US Department of Health and Human Services; Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology and.,Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Valeria Garcia-Flores
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, US Department of Health and Human Services; Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology and
| | - Peck Yin Chin
- Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Holly M Groome
- Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Melanie T Bijland
- Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Kerrilyn R Diener
- Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia.,University of South Australia Cancer Research Institute, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, US Department of Health and Human Services; Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA.,Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA.,Detroit Medical Center, Detroit, Michigan, USA
| | - Sarah A Robertson
- Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
32
|
Choltus H, Lavergne M, De Sousa Do Outeiro C, Coste K, Belville C, Blanchon L, Sapin V. Pathophysiological Implication of Pattern Recognition Receptors in Fetal Membranes Rupture: RAGE and NLRP Inflammasome. Biomedicines 2021; 9:biomedicines9091123. [PMID: 34572309 PMCID: PMC8466405 DOI: 10.3390/biomedicines9091123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/28/2022] Open
Abstract
Preterm prelabor ruptures of fetal membranes (pPROM) are a pregnancy complication responsible for 30% of all preterm births. This pathology currently appears more as a consequence of early and uncontrolled process runaway activation, which is usually implicated in the physiologic rupture at term: inflammation. This phenomenon can be septic but also sterile. In this latter case, the inflammation depends on some specific molecules called “alarmins” or “damage-associated molecular patterns” (DAMPs) that are recognized by pattern recognition receptors (PRRs), leading to a microbial-free inflammatory response. Recent data clarify how this activation works and which receptor translates this inflammatory signaling into fetal membranes (FM) to manage a successful rupture after 37 weeks of gestation. In this context, this review focused on two PRRs: the receptor for advanced glycation end-products (RAGE) and the NLRP7 inflammasome.
Collapse
Affiliation(s)
- Helena Choltus
- CNRS, INSERM, GReD, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (H.C.); (M.L.); (C.D.S.D.O.); (K.C.); (C.B.); (L.B.)
| | - Marilyne Lavergne
- CNRS, INSERM, GReD, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (H.C.); (M.L.); (C.D.S.D.O.); (K.C.); (C.B.); (L.B.)
| | - Coraline De Sousa Do Outeiro
- CNRS, INSERM, GReD, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (H.C.); (M.L.); (C.D.S.D.O.); (K.C.); (C.B.); (L.B.)
| | - Karen Coste
- CNRS, INSERM, GReD, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (H.C.); (M.L.); (C.D.S.D.O.); (K.C.); (C.B.); (L.B.)
| | - Corinne Belville
- CNRS, INSERM, GReD, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (H.C.); (M.L.); (C.D.S.D.O.); (K.C.); (C.B.); (L.B.)
| | - Loïc Blanchon
- CNRS, INSERM, GReD, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (H.C.); (M.L.); (C.D.S.D.O.); (K.C.); (C.B.); (L.B.)
| | - Vincent Sapin
- CNRS, INSERM, GReD, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (H.C.); (M.L.); (C.D.S.D.O.); (K.C.); (C.B.); (L.B.)
- CHU de Clermont-Ferrand, Biochemistry and Molecular Genetic Department, 63000 Clermont-Ferrand, France
- Correspondence: ; Tel.: +33-473-178-174
| |
Collapse
|
33
|
Trophoblasts Modulate the Ca 2+ Oscillation and Contraction of Myometrial Smooth Muscle Cells by Small Extracellular Vesicle- (sEV-) Mediated Exporting of miR-25-3p during Premature Labor. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8140667. [PMID: 34413928 PMCID: PMC8369173 DOI: 10.1155/2021/8140667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/06/2021] [Accepted: 07/26/2021] [Indexed: 12/31/2022]
Abstract
The placenta could transmit information to the maternal circulation via the secretion of small extracellular vesicles (sEVs), but little is known about whether and how these sEVs participate in premature labor (PTL). We speculate that miRNA plays an important role in sEV-mediated fetal-maternal information transmission. The present study was aimed at investigating whether the placenta can regulate the contraction of the maternal myometrium via sEV-mediated transmit of miR-25-3p during PTL. The expression of miR-25-3p and its targets Cav3.2 and SERCA2a in clinical samples, cells, and animal specimens was detected. The role of miR-25-3p was observed in the LPS-induced preterm labor mouse model. The sEVs from HTR-8/SVneo cells were characterized by transmission electron microscopy and nanoparticle tracking analysis. The Ca2+ oscillation in HMSMs was analyzed by an intracellular Ca2+ change tracking assay on a confocal microscope. The contraction of HMSMs was detected by a collagen matrix contraction assay. We found that miR-25-3p can directly bind to the 3′UTR of Cav3.2 and SERCA2a. The miR-25-3p level was decreased, and the expression of its targets Cav3.2 and SERCA2a was increased in the placenta and myometrium tissues of PTL patients. Forced upregulation of miR-25-3p reduced the oxidative stress and inflammation responses and the incidence of PTL in LPS-treated mice. The expression of miR-25-3p was not changed in LPS-stimulated human myometrial smooth muscle cells (HMSMs) but was strongly reduced in the trophoblast cell and its sEVs. Additionally, the trophoblast cell line HTR-8/SVneo could transmit miR-25-3p into HMSMs via sEVs. The sEVs derived from LPS-stimulated trophoblasts upregulated the expression of Cav3.2 and SERCA2a and triggered Ca2+ oscillation as well as the contraction of HMSMs; these effects were partially reversed by the overexpression of miR-25-3p in the trophoblasts. Further, the upregulation of miR-25-3p induced changes of Ca2+ oscillation and contraction of HMSMs mediated by sEVs which were also abrogated by the knockdown of miR-25-3p in HMSMs. The results demonstrated that miR-25-3p plays a crucial role in PTL via Cav3.2- and SERCA2a-mediated Ca2+ oscillation and contraction of HMSMs. PTL seems to be related to the decreased exosomal miR-25-3p content transmitted by the trophoblasts under inflammatory conditions.
Collapse
|
34
|
High Mobility Group Box 1 in Pig Amniotic Membrane Experimentally Infected with E. coli O55. Biomolecules 2021; 11:biom11081146. [PMID: 34439812 PMCID: PMC8393629 DOI: 10.3390/biom11081146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 12/15/2022] Open
Abstract
Intra-amniotic infections (IAI) are one of the reasons for preterm birth. High mobility group box 1 (HMGB1) is a nuclear protein with various physiological functions, including tissue healing. Its excessive extracellular release potentiates inflammatory reaction and can revert its action from beneficial to detrimental. We infected the amniotic fluid of a pig on the 80th day of gestation with 1 × 104 colony forming units (CFUs) of E. coli O55 for 10 h, and evaluated the appearance of HMGB1, receptor for glycation endproducts (RAGE), and Toll-like receptor (TLR) 4 in the amniotic membrane and fluid. Sham-infected amniotic fluid served as a control. The expression and release of HMGB1 were evaluated by Real-Time PCR, immunofluorescence, immunohistochemistry, and ELISA. The infection downregulated HMGB1 mRNA expression in the amniotic membrane, changed the distribution of HMGB1 protein in the amniotic membrane, and increased its level in amniotic fluid. All RAGE mRNA, protein expression in the amniotic membrane, and soluble RAGE level in the amniotic fluid were downregulated. TLR4 mRNA and protein expression and soluble TLR4 were all upregulated. HMGB1 is a potential target for therapy to suppress the exaggerated inflammatory response. This controlled expression and release can, in some cases, prevent the preterm birth of vulnerable infants. Studies on suitable animal models can contribute to the development of appropriate therapy.
Collapse
|
35
|
Sabnis RW. Thienopyridinyl and Thiazolopyridinyl Compounds as IRAK4 Inhibitors. ACS Med Chem Lett 2021; 12:532-533. [PMID: 33859790 DOI: 10.1021/acsmedchemlett.1c00147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Indexed: 12/27/2022] Open
Affiliation(s)
- Ram W. Sabnis
- Smith, Gambrell & Russell LLP, 1230 Peachtree Street NE, Suite 3100, Atlanta, Georgia 30309, United States
| |
Collapse
|
36
|
Muñoz-Pérez VM, Ortiz MI, Salas-Casa A, Pérez-Guerrero J, Castillo-Pacheco N, Barragán-Ramírez G, Hernándes-Alejandro M. In vitro effects of citral on the human myometrium: Potential adjunct therapy to prevent preterm births. Birth Defects Res 2021; 113:613-622. [PMID: 33484091 DOI: 10.1002/bdr2.1873] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Premature infants contribute to infant morbidity and mortality especially in low resource settings. Information on tocolytic and/or anti-inflammatory effects of several plant extracts, such as citral, could help prevent preterm birth cases and reduce the number of preterm infants. The aim of this study was to evaluate the in vitro tocolytic and anti-inflammatory effect of citral on myometrial tissues of the human uterus. METHODS Myometrial samples from uteri obtained after hysterectomy were used in functional tests to evaluate the inhibitory effect of citral on PGF-2α induced contractions. The intracellular cyclic adenosine monophosphate (cAMP) levels generated in response to citral in human myometrial homogenates were measured by ELISAs. Forskolin was used as a positive control. The anti-inflammatory effect of citral was determined through the measurement of two pro-inflammatory cytokines, tumor necrosis factor-α (TNFα) and interleukin (IL)-1β, and the anti-inflammatory cytokine IL-10, in human myometrial explants stimulated with lipopolysaccharide (LPS). RESULTS Citral was able to induce a significant inhibition of PGF-2α induced contractions at the highest concentration level (p < .05). Citral caused a concentration-dependent increase in myometrial cAMP levels (p < .05) and a concentration-dependent decrease in LPS-induced TNFα and IL-1β production, while IL-10 production increased significantly (p < .05). The anti-inflammatory and tocolytic effects induced by citral could be associated with an increase in cAMP levels in human myometrial samples. CONCLUSION These properties place citral as a potentially safe and effective adjuvant agent in preterm birth cases, an obstetric and gynecological problem that requires urgent attention.
Collapse
Affiliation(s)
- Víctor Manuel Muñoz-Pérez
- Área Académica de Medicina del Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Pachuca, Mexico
| | - Mario I Ortiz
- Área Académica de Medicina del Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Pachuca, Mexico
| | - Andrés Salas-Casa
- Área Académica de Gerontología del Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Pachuca, Mexico
| | - Jessica Pérez-Guerrero
- Departamento de Ginecología y Obstetricia del Hospital General de los SSH, Pachuca, Mexico
| | - Narmi Castillo-Pacheco
- Departamento de Ginecología y Obstetricia del Hospital General de los SSH, Pachuca, Mexico
| | | | - Mario Hernándes-Alejandro
- Departamento de Bioingeniería, Unidad profesional Interdisciplinaria de biotecnología del Instituto Politécnico Nacional (UPIBI-IPN), México City, Mexico
| |
Collapse
|