1
|
Prince N, Lasky-Su JA, Kelly RS. Metabolomic studies of respiratory infections in early life: A narrative review. Pediatr Allergy Immunol 2025; 36:e70086. [PMID: 40221829 DOI: 10.1111/pai.70086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/21/2025] [Accepted: 04/02/2025] [Indexed: 04/15/2025]
Abstract
Respiratory infections are a leading cause of morbidity and mortality during the early life period, and experiencing recurrent infections may increase the risk of developing chronic respiratory diseases, such as asthma. Over the last several decades, metabolomics methods have been applied to inform upon the underlying biochemistry of pediatric respiratory infection response, to discriminate between respiratory infection types, and to identify biomarkers of severity and susceptibility. While these studies have demonstrated the power of applying metabolomics to the study of pediatric respiratory infection and contributed to an understanding of respiratory infections during the unique period of immune development, key differences in study design, infection type(s) of interest, biosamples, metabolomics measurement methods, and lack of external validation have limited the translation of these findings into the clinic. The purpose of this review is to summarize overlaps across existing studies of commonly reported metabolomics findings and emphasize areas of opportunity for future study. We highlight several metabolomics pathways-such as the citric acid cycle and sphingolipid metabolism-that have been reported consistently in respiratory infection response. We then discuss putatively identified metabolomic markers to discriminate between respiratory infection types and possible markers of infection severity and proneness. Finally, we close with a summary and perspective of future directions of the field.
Collapse
Affiliation(s)
- Nicole Prince
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jessica A Lasky-Su
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Rachel S Kelly
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Shimura T, Isago H, Morita Y, Ohkawa R, Yoshikawa N, Ono Y, Kurano M. Modulating lysophospholipids with Paraoxonase-1: Exploring its impact on inflammatory responses and immune reactions. Biochem Biophys Res Commun 2025; 746:151234. [PMID: 39746221 DOI: 10.1016/j.bbrc.2024.151234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/21/2024] [Accepted: 12/21/2024] [Indexed: 01/04/2025]
Abstract
INTRODUCTION Paraoxonase-1 (PON1) is a crucial esterase in cardiovascular health, closely associated with HDL and known for its antioxidant and anti-inflammatory properties. Reduced PON1 activity has been linked to cardiovascular diseases. Lysophospholipids (LysoPLs), essential for cellular processes and immune responses, are implicated in the pathogenesis of cardiovascular diseases and are bound to lipoproteins, contributing to their diverse effects. Thus, we hypothesize that the relationship between PON1 and cardiovascular diseases may involve the modulation of LysoPLs by PON1. This study aims to investigate how PON1 potentially influences LysoPLs. METHODS We quantified the levels of LysoPLs in HepG2 cells by using liquid chromatography-mass spectrometry, manipulating PON1 expression or knockdown. RESULTS In cells overexpressing PON1, there was a significant increase in cellular levels of lysophosphatidylserine (LysoPS) and medium levels of LysoPS. Conversely, in cells with PON-1 knockdown, cellular levels of lysophosphatidylcholine (LysoPC) and medium levels of LysoPC showed a significant decrease. CONCLUSIONS PON1 is involved in modulating LysoPLs, which contribute to the antioxidant and anti-inflammatory properties of HDL, often attributed to PON1.
Collapse
Affiliation(s)
- Takuya Shimura
- Clinical Bioanalysis and Molecular Biology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan; Department of Clinical Laboratory, Kawaguchi Municipal Medical Center, Saitama, Japan
| | - Hideaki Isago
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Yoshifumi Morita
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Ryunosuke Ohkawa
- Clinical Bioanalysis and Molecular Biology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Naoyuki Yoshikawa
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Yoshikazu Ono
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Makoto Kurano
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan; Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
3
|
Xiao M, Wang T, Tang C, He M, Li Y, Li X. Evaluation of Lipid Changes During the Drying Process of Cordyceps sinensis by Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry (UPLC-MS/MS)-Based Lipidomics Technique. J Fungi (Basel) 2024; 10:855. [PMID: 39728352 DOI: 10.3390/jof10120855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024] Open
Abstract
Comprehensive analysis of the lipid content in Cordyceps sinensis samples is essential for optimizing their effective use. Understanding the lipid profile can significantly enhance the application of this valuable fungus across various fields, including nutrition and medicine. However, to date, there is limited knowledge regarding the effects of different drying methods on the quality of lipids present in Cordyceps sinensis. In this study, we employed a broadly targeted lipidomic strategy to conduct a comprehensive analysis of the lipid composition in Cordyceps sinensis subjected to various drying methods. A comprehensive analysis identified a total of 765 distinct lipid species from fresh Cordyceps sinensis (FC), vacuum-freeze-dried Cordyceps sinensis (VG), oven-dried Cordyceps sinensis (OG), and air-dried Cordyceps sinensis (AG). Among these, glycerophospholipids (GP) were the most abundant, followed by glycerides (GL) and sphingolipids (SP). In this study, a total of 659 lipids demonstrated statistically significant differences, as indicated by a p-value (p) < 1. Among these lipids, triglycerides (TG) exhibited the highest concentration, followed by several others, including ceramide-ascorbic acid (Cer-AS), phosphatidylethanolamine (PE), lysophosphatidylcholine (LPC), and phosphatidylserine (PS). OG was the fastest drying method; however, PCA and OPLS-DA analyses indicated that the most significant changes in the lipids of Cordyceps sinensis were observed under the OG method. Specifically, 517 differentially accumulated lipids were significantly down-regulated, while only 10 lipids were significantly up-regulated. This disparity may be attributed to the degradation and oxidation of lipids. The metabolic pathways of glycerolipid, glycerophospholipid, and cholesterol are critical during the drying process of Cordyceps sinensis. This study provides valuable insights that can enhance quality control and offer guidelines for the appropriate storage of this medicinal fungus.
Collapse
Affiliation(s)
- Mengjun Xiao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining 810016, China
| | - Tao Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining 810016, China
| | - Chuyu Tang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining 810016, China
| | - Min He
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining 810016, China
| | - Yuling Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining 810016, China
| | - Xiuzhang Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining 810016, China
| |
Collapse
|
4
|
Ibáñez-Prada ED, Guerrero JL, Bustos IG, León L, Fuentes YV, Santamaría-Torres M, Restrepo-Martínez JM, Serrano-Mayorga CC, Mendez L, Gomez-Duque S, Santacruz CA, Conway-Morris A, Martín-Loeches I, Gonzalez-Juarbe N, Cala MP, Reyes LF. The unique metabolic and lipid profiles of patients with severe COVID-19 compared to severe community-acquired pneumonia: a potential prognostic and therapeutic target. Expert Rev Respir Med 2024; 18:815-829. [PMID: 39327745 DOI: 10.1080/17476348.2024.2409264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Compare the changes and differences in metabolome and lipidome profiles among severe COVID-19 and CAP patients with ARF to identify biomarkers that could be used for personalized diagnosis, prognosis, and treatment. RESEARCH DESIGN AND METHODS Plasma samples were taken at hospital admission (baseline) and on the 5th day of hospitalization (follow-up) and examined by RP-LC-QTOF-MS and HILIC-LC-QTOF-MS. RESULTS 127 patients, 17 with CAP and 110 with COVID-19, were included. The analysis revealed 87 altered metabolites, suggesting changes in the metabolism of arachidonic acid, glycerolipids, glycerophospholipids, linoleic acid, pyruvate, glycolysis, among others. Most of these metabolites are involved in inflammatory, hypoxic, and thrombotic processes. At baseline, the greatest differences were found in phosphatidylcholine (PC) 31:4 (p < 0.001), phosphoserine (PS) 34:3 (p < 0.001), and phosphatidylcholine (PC) 36:5 (p < 0.001), all of which were notably decreased in COVID-19 patients. At follow-up, the most dysregulated metabolites were monomethyl-phosphatidylethanolamine (PE-Nme) 40:5 (p < 0.001) and phosphatidylcholine (PC) 38:4 (p < 0.001). CONCLUSIONS Metabolic and lipidic alterations suggest inhibition of innate anti-inflammatory and anti-thrombotic mechanisms in COVID-19 patients, which might lead to increased viral proliferation, uncontrolled inflammation, and thrombi formation. Results provide novel targets for predictive biomarkers against CAP and COVID-19. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Elsa D Ibáñez-Prada
- Unisabana Center for Translational Science, Universidad de La Sabana Chía, Colombia
- Clínica Universidad de La Sabana Chía, Colombia
| | - Jose L Guerrero
- MetCore-Metabolomics Core Facility, Vice-Presidency of Research and Knowledge Creation, Universidad de Los Andes, Bogotá, Colombia
| | - Ingrid G Bustos
- Unisabana Center for Translational Science, Universidad de La Sabana Chía, Colombia
| | - Lizeth León
- MetCore-Metabolomics Core Facility, Vice-Presidency of Research and Knowledge Creation, Universidad de Los Andes, Bogotá, Colombia
| | - Yuli V Fuentes
- Unisabana Center for Translational Science, Universidad de La Sabana Chía, Colombia
| | - Mary Santamaría-Torres
- MetCore-Metabolomics Core Facility, Vice-Presidency of Research and Knowledge Creation, Universidad de Los Andes, Bogotá, Colombia
| | | | | | - Lina Mendez
- Clínica Universidad de La Sabana Chía, Colombia
| | - Salome Gomez-Duque
- Unisabana Center for Translational Science, Universidad de La Sabana Chía, Colombia
| | - Carlos A Santacruz
- Fundación Santa Fe de Bogotá, Bogotá, Colombia
- Critical Care Department, Instituto de Ensino e Pesquisa do Pará, Brasil - IEPPA, Brazil
| | - Andrew Conway-Morris
- Division of Anesthesia, Department of Medicine, University of Cambridge, Cambridge, UK
- Division of Immunology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Ignacio Martín-Loeches
- Department of Clinical Medicine, St James's Hospital, Multidisciplinary Intensive Care Research Organization (MICRO), Dublin, Ireland
| | | | - Mónica P Cala
- MetCore-Metabolomics Core Facility, Vice-Presidency of Research and Knowledge Creation, Universidad de Los Andes, Bogotá, Colombia
| | - Luis Felipe Reyes
- Unisabana Center for Translational Science, Universidad de La Sabana Chía, Colombia
- Clínica Universidad de La Sabana Chía, Colombia
- Pandemic Sciences Institute, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Uranbileg B, Isago H, Nakayama H, Jubishi D, Okamoto K, Sakai E, Kubota M, Tsutsumi T, Moriya K, Kurano M. Comprehensive metabolic modulations of sphingolipids are promising severity indicators in COVID-19. FASEB J 2024; 38:e23827. [PMID: 39012295 DOI: 10.1096/fj.202401099r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024]
Abstract
The COVID-19 pandemic, caused by SARS-CoV-2, has had a significant worldwide impact, affecting millions of people. COVID-19 is characterized by a heterogenous clinical phenotype, potentially involving hyperinflammation and prolonged tissue damage, although the exact underlying mechanisms are yet to be fully understood. Sphingolipid metabolites, which govern cell survival and proliferation, have emerged as key players in inflammatory signaling and cytokine responses. Given the complex metabolic pathway of sphingolipids, this study aimed to understand their potential role in the pathogenesis of COVID-19. We conducted a comprehensive examination of sphingolipid modulations across groups classified based on disease severity, incorporating a time-course in serum and urine samples. Several sphingolipids, including sphingosine, lactosylceramide, and hexosylceramide, emerged as promising indicators of COVID-19 severity, as validated by correlation analyses conducted on both serum and urine samples. Other sphingolipids, such as sphingosine 1-phosphate, ceramides, and deoxy-dihydroceramides, decreased in both COVID-19 patients and individuals with non-COVID infectious diseases. This suggests that these sphingolipids are not specifically associated with COVID-19 but rather with pathological conditions caused by infectious diseases. Our analysis of urine samples revealed elevated levels of various sphingolipids, with changes dependent on disease severity, potentially highlighting the acute kidney injury associated with COVID-19. This study illuminates the intricate relationship between disturbed sphingolipid metabolism, COVID-19 severity, and clinical factors. These findings provide valuable insights into the broader landscape of inflammatory diseases.
Collapse
Affiliation(s)
- Baasanjav Uranbileg
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hideaki Isago
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hitoshi Nakayama
- Laboratory of Biochemistry, Faculty of Health Care and Nursing, Juntendo University, Chiba, Japan
- Institute for Environmental and Gender-specific Medicine, Graduate School of Medicine, Juntendo University, Chiba, Japan
| | - Daisuke Jubishi
- Department of Infectious Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Koh Okamoto
- Department of Infectious Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Eri Sakai
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Nihon Waters K.K., Tokyo, Japan
| | | | - Takeya Tsutsumi
- Department of Infectious Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kyoji Moriya
- Department of Infectious Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Makoto Kurano
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
6
|
Zhou Q, Chang C, Wang Y, Gai X, Chen Y, Gao X, Liang Y, Sun Y. Comparative analysis of lysophospholipid metabolism profiles and clinical characteristics in patients with high vs. low C-reactive protein levels in acute exacerbations of chronic obstructive pulmonary disease. Clin Chim Acta 2024; 561:119816. [PMID: 38885755 DOI: 10.1016/j.cca.2024.119816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/09/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND The precise role of lysophospholipids (LysoPLs) in the pathogenesis of acute exacerbations of Chronic Obstructive Pulmonary Disease (AECOPD) remains unclear. In this study, we sought to elucidate the differences in serum LysoPL metabolite profiles and their correlation with clinical features between patients with low versus high CRP levels. METHODS A total of 58 patients with AECOPD were enrolled in the study. Patients were classified into two groups: low CRP group (CRP < 20 mg/L, n = 34) and high CRP group (CRP ≥ 20 mg/L, n = 24). Clinical data were collected, and the LysoPL metabolite profiles were analyzed using Liquid Chromatography-Mass Spectrometry (LC-MS) and identified by matching with the LipidBlast library. RESULTS Nineteen differential LysoPLs were initially identified through Student's t-test (p < 0.05 and VIP > 1). Subsequently, four LysoPLs, LPC(16:0), LPE(18:2), LPC(22:0), and LPC(24:0), were identified by FDR adjustment (adjusted p < 0.05). These four lysoPLs had a significant negative correlation with CRP. Integrative analysis revealed that LPC (16:0) and LPC (22:0) correlated with less hypercapnic respiratory failure and ICU admission. CONCLUSION AECOPD patients with high CRP levels demonstrated a distinctive LysoPL metabolism profile, with LPC (16:0), LPE(18:2), LPC(22:0), and LPC(24:0) being the most significantly altered lipid molecules. These alterations were associated with poorer clinical outcomes.
Collapse
Affiliation(s)
- Qiqiang Zhou
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Chun Chang
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China; Research Center for Chronic Airway Diseases, Peking University Health Science Center, Beijing, China
| | - Yating Wang
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Xiaoyan Gai
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China; Research Center for Chronic Airway Diseases, Peking University Health Science Center, Beijing, China
| | - Yahong Chen
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China; Research Center for Chronic Airway Diseases, Peking University Health Science Center, Beijing, China
| | - Xu Gao
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Ying Liang
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China; Research Center for Chronic Airway Diseases, Peking University Health Science Center, Beijing, China.
| | - Yongchang Sun
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China; Research Center for Chronic Airway Diseases, Peking University Health Science Center, Beijing, China
| |
Collapse
|
7
|
Chen Y, Peng C, Zhu L, Wang J, Cao Q, Chen X, Li J. Atopic Dermatitis and Psoriasis: Similarities and Differences in Metabolism and Microbiome. Clin Rev Allergy Immunol 2024; 66:294-315. [PMID: 38954264 DOI: 10.1007/s12016-024-08995-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2024] [Indexed: 07/04/2024]
Abstract
Atopic dermatitis and psoriasis are common chronic inflammatory diseases of high incidence that share some clinical features, including symptoms of pruritus and pain, scaly lesions, and histologically, acanthosis and hyperkeratosis. Meanwhile, they are both commonly comorbid with metabolic disorders such as obesity and diabetes, indicating that both diseases may exist with significant metabolic disturbances. Metabolomics reveals that both atopic dermatitis and psoriasis have abnormalities in a variety of metabolites, including lipids, amino acids, and glucose. Meanwhile, recent studies have highlighted the importance of the microbiome and its metabolites in the pathogenesis of atopic dermatitis and psoriasis. Metabolic alterations and microbiome dysbiosis can also affect the immune, inflammatory, and epidermal barrier, thereby influencing the development of atopic dermatitis and psoriasis. Focusing on the metabolic and microbiome levels, this review is devoted to elaborating the similarities and differences between atopic dermatitis and psoriasis, thus providing insights into the intricate relationship between both conditions.
Collapse
Affiliation(s)
- Yihui Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Furong Laboratory, Changsha, 410008, China
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Furong Laboratory, Changsha, 410008, China
| | - Lei Zhu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Furong Laboratory, Changsha, 410008, China
| | - Jiayi Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Furong Laboratory, Changsha, 410008, China
| | - Qiaozhi Cao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Furong Laboratory, Changsha, 410008, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Furong Laboratory, Changsha, 410008, China.
| | - Jie Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Furong Laboratory, Changsha, 410008, China.
| |
Collapse
|
8
|
Suzuki T, Kurano M, Isono A, Uchino T, Sayama Y, Tomomitsu H, Mayumi D, Shibayama R, Sekiguchi T, Edo N, Uno-Eder K, Uno K, Morita K, Ishikawa T, Tsukamoto K. Genetic and biochemical analysis of severe hypertriglyceridemia complicated with acute pancreatitis or with low post-heparin lipoprotein lipase mass. Endocr J 2024; 71:447-460. [PMID: 38346769 DOI: 10.1507/endocrj.ej23-0438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/24/2024] Open
Abstract
Severe hypertriglyceridemia is a pathological condition caused by genetic factors alone or in combination with environmental factors, sometimes leading to acute pancreatitis (AP). In this study, exome sequencing and biochemical analyses were performed in 4 patients with hypertriglyceridemia complicated by obesity or diabetes with a history of AP or decreased post-heparin LPL mass. In a patient with a history of AP, SNP rs199953320 resulting in LMF1 nonsense mutation and APOE rs7412 causing apolipoprotein E2 were both found in heterozygous form. Three patients were homozygous for APOA5 rs2075291, and one was heterozygous. ELISA and Western blot analysis of the serum revealed the existence of apolipoprotein A-V in the lipoprotein-free fraction regardless of the presence or absence of rs2075291; furthermore, the molecular weight of apolipoprotein A-V was different depending on the class of lipoprotein or lipoprotein-free fraction. Lipidomics analysis showed increased serum levels of sphingomyelin and many classes of glycerophospholipid; however, when individual patients were compared, the degree of increase in each class of phospholipid among cases did not coincide with the increases seen in total cholesterol and triglycerides. Moreover, phosphatidylcholine, lysophosphatidylinositol, and sphingomyelin levels tended to be higher in patients who experienced AP than those who did not, suggesting that these phospholipids may contribute to the onset of AP. In summary, this study revealed a new disease-causing gene mutation in LMF1, confirmed an association between overlapping of multiple gene mutations and severe hypertriglyceridemia, and suggested that some classes of phospholipid may be involved in the pathogenesis of AP.
Collapse
Affiliation(s)
- Takashi Suzuki
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo 173-8605, Japan
| | - Makoto Kurano
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- Endowed Chairs Department of Clinical Research Medicine, Teikyo University, Tokyo 173-8605, Japan
| | - Akari Isono
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo 173-8605, Japan
| | - Takuya Uchino
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo 173-8605, Japan
| | - Yohei Sayama
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo 173-8605, Japan
| | - Honami Tomomitsu
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo 173-8605, Japan
| | - Daiki Mayumi
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo 173-8605, Japan
| | - Ruriko Shibayama
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo 173-8605, Japan
| | - Toru Sekiguchi
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo 173-8605, Japan
| | - Naoki Edo
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo 173-8605, Japan
| | - Kiyoko Uno-Eder
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo 173-8605, Japan
- Teikyo Academic Research Center, Teikyo University, Tokyo 173-8605, Japan
| | - Kenji Uno
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo 173-8605, Japan
| | - Koji Morita
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo 173-8605, Japan
| | - Toshio Ishikawa
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo 173-8605, Japan
| | - Kazuhisa Tsukamoto
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo 173-8605, Japan
| |
Collapse
|
9
|
Uranbileg B, Isago H, Sakai E, Kubota M, Saito Y, Kurano M. Alzheimer's disease manifests abnormal sphingolipid metabolism. Front Aging Neurosci 2024; 16:1368839. [PMID: 38774265 PMCID: PMC11106446 DOI: 10.3389/fnagi.2024.1368839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/10/2024] [Indexed: 05/24/2024] Open
Abstract
Introduction Alzheimer's disease (AD) is associated with disturbed metabolism, prompting investigations into specific metabolic pathways that may contribute to its pathogenesis and pathology. Sphingolipids have garnered attention due to their known physiological impact on various diseases. Methods We conducted comprehensive profiling of sphingolipids to understand their possible role in AD. Sphingolipid levels were measured in AD brains, Cerad score B brains, and controls, as well as in induced pluripotent stem (iPS) cells (AD, PS, and control), using liquid chromatography mass spectrometry. Results AD brains exhibited higher levels of sphingosine (Sph), total ceramide 1-phosphate (Cer1P), and total ceramide (Cer) compared to control and Cerad-B brains. Deoxy-ceramide (Deoxy-Cer) was elevated in Cerad-B and AD brains compared to controls, with increased sphingomyelin (SM) levels exclusively in Cerad-B brains. Analysis of cell lysates revealed elevated dihydroceramide (dhSph), total Cer1P, and total SM in AD and PS cells versus controls. Multivariate analysis highlighted the relevance of Sph, Cer, Cer1P, and SM in AD pathology. Machine learning identified Sph, Cer, and Cer1P as key contributors to AD. Discussion Our findings suggest the potential importance of Sph, Cer1P, Cer, and SM in the context of AD pathology. This underscores the significance of sphingolipid metabolism in understanding and potentially targeting mechanisms underlying AD.
Collapse
Affiliation(s)
- Baasanjav Uranbileg
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hideaki Isago
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | - Yuko Saito
- Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Makoto Kurano
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
10
|
Bernardo RA, Roque JV, de Oliveira Júnior CI, Lima NM, Machado LS, Duarte GRM, Costa NL, Sorgi CA, Soares FFL, Vaz BG, Chaves AR. Exploring salivary lipid profile changes in COVID-19 patients: Insights from mass spectrometry analysis. Talanta 2024; 269:125522. [PMID: 38091738 DOI: 10.1016/j.talanta.2023.125522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
The most common COVID-19 testing relies on the use of nasopharyngeal swabs. However, this sampling step is very uncomfortable and is one of the biggest challenges regarding population testing. In the present study, the use of saliva as an alternative sample for COVID-19 diagnosis was investigated. Therefore, high-resolution mass spectrometry analysis and chemometric approaches were applied to salivary lipid extracts. Two data organizations were used: classical MS data and pseudo-MS image datasets. The latter transformed MS data into pseudo-images, simplifying data interpretation. Classification models achieved high accuracy, with pseudo-MS image data performing exceptionally well. PLS-DA with OPSDA successfully separated COVID-19 and healthy groups, serving as a potential diagnostic tool. The most important lipids for COVID-19 classification were elucidated and include sphingolipids, ceramides, phospholipids, and glycerolipids. These lipids play a crucial role in viral replication and the inflammatory response. While pseudo-MS image data excelled in classification, it lacked the ability to annotate important variables, which was performed using classical MS data. These findings have the potential to improve clinical diagnosis using rapid, non-invasive testing methods and accurate high-volume results.
Collapse
Affiliation(s)
- Ricardo A Bernardo
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil; Departamento de Química, Universidade Federal do Paraná, 81531-980, Curitiba, PR, Brazil.
| | - Jussara V Roque
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil
| | - Charles I de Oliveira Júnior
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil; Departamento de Química, Universidade Federal de Jataí, 75804-020, Jataí, GO, Brazil
| | | | - Lucas Santos Machado
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil
| | | | - Nádia L Costa
- Faculdade de Odontologia, Universidade Federal de Goiás, 74605-020, Goiânia, GO, Brazil
| | - Carlos A Sorgi
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14015-130, Ribeirão Preto, SP, Brazil
| | - Frederico F L Soares
- Departamento de Química, Universidade Federal do Paraná, 81531-980, Curitiba, PR, Brazil
| | - Boniek G Vaz
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil
| | - Andréa R Chaves
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil; Departamento de Química, Universidade Federal de Jataí, 75804-020, Jataí, GO, Brazil.
| |
Collapse
|
11
|
Thomas S, Samuel SV, Hoch A, Syphurs C, Diray-Arce J. The Implication of Sphingolipids in Viral Infections. Int J Mol Sci 2023; 24:17303. [PMID: 38139132 PMCID: PMC10743733 DOI: 10.3390/ijms242417303] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Sphingolipids are involved in cell signaling and metabolic pathways, and their metabolites play a critical role in host defense against intracellular pathogens. Here, we review the known mechanisms of sphingolipids in viral infections and discuss the potential implication of the study of sphingolipid metabolism in vaccine and therapeutic development.
Collapse
Affiliation(s)
- Sanya Thomas
- Precision Vaccines Program, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA; (S.T.); (A.H.); (C.S.)
- Harvard Medical School, Boston, MA 02115, USA;
| | - Stephen Varghese Samuel
- Harvard Medical School, Boston, MA 02115, USA;
- Department of Emergency Medicine, Christian Medical College and Hospital, Vellore 632004, India
| | - Annmarie Hoch
- Precision Vaccines Program, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA; (S.T.); (A.H.); (C.S.)
| | - Caitlin Syphurs
- Precision Vaccines Program, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA; (S.T.); (A.H.); (C.S.)
| | - Joann Diray-Arce
- Precision Vaccines Program, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA; (S.T.); (A.H.); (C.S.)
- Harvard Medical School, Boston, MA 02115, USA;
| |
Collapse
|
12
|
Meng H, Sengupta A, Ricciotti E, Mrčela A, Mathew D, Mazaleuskaya LL, Ghosh S, Brooks TG, Turner AP, Schanoski AS, Lahens NF, Tan AW, Woolfork A, Grant G, Susztak K, Letizia AG, Sealfon SC, Wherry EJ, Laudanski K, Weljie AM, Meyer NJ, FitzGerald GA. Deep phenotyping of the lipidomic response in COVID-19 and non-COVID-19 sepsis. Clin Transl Med 2023; 13:e1440. [PMID: 37948331 PMCID: PMC10637636 DOI: 10.1002/ctm2.1440] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/15/2023] [Accepted: 10/01/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Lipids may influence cellular penetrance by viral pathogens and the immune response that they evoke. We deeply phenotyped the lipidomic response to SARs-CoV-2 and compared that with infection with other pathogens in patients admitted with acute respiratory distress syndrome to an intensive care unit (ICU). METHODS Mass spectrometry was used to characterise lipids and relate them to proteins, peripheral cell immunotypes and disease severity. RESULTS Circulating phospholipases (sPLA2, cPLA2 (PLA2G4A) and PLA2G2D) were elevated on admission in all ICU groups. Cyclooxygenase, lipoxygenase and epoxygenase products of arachidonic acid (AA) were elevated in all ICU groups compared with controls. sPLA2 predicted severity in COVID-19 and correlated with TxA2, LTE4 and the isoprostane, iPF2α-III, while PLA2G2D correlated with LTE4. The elevation in PGD2, like PGI2 and 12-HETE, exhibited relative specificity for COVID-19 and correlated with sPLA2 and the interleukin-13 receptor to drive lymphopenia, a marker of disease severity. Pro-inflammatory eicosanoids remained correlated with severity in COVID-19 28 days after admission. Amongst non-COVID ICU patients, elevations in 5- and 15-HETE and 9- and 13-HODE reflected viral rather than bacterial disease. Linoleic acid (LA) binds directly to SARS-CoV-2 and both LA and its di-HOME products reflected disease severity in COVID-19. In healthy marines, these lipids rose with seroconversion. Eicosanoids linked variably to the peripheral cellular immune response. PGE2, TxA2 and LTE4 correlated with T cell activation, as did PGD2 with non-B non-T cell activation. In COVID-19, LPS stimulated peripheral blood mononuclear cell PGF2α correlated with memory T cells, dendritic and NK cells while LA and DiHOMEs correlated with exhausted T cells. Three high abundance lipids - ChoE 18:3, LPC-O-16:0 and PC-O-30:0 - were altered specifically in COVID. LPC-O-16:0 was strongly correlated with T helper follicular cell activation and all three negatively correlated with multi-omic inflammatory pathways and disease severity. CONCLUSIONS A broad based lipidomic storm is a predictor of poor prognosis in ARDS. Alterations in sPLA2, PGD2 and 12-HETE and the high abundance lipids, ChoE 18:3, LPC-O-16:0 and PC-O-30:0 exhibit relative specificity for COVID-19 amongst such patients and correlate with the inflammatory response to link to disease severity.
Collapse
Affiliation(s)
- Hu Meng
- Institute for Translational Medicine and TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Arjun Sengupta
- Department of Systems Pharmacology and Translational TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Emanuela Ricciotti
- Institute for Translational Medicine and TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Systems Pharmacology and Translational TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Antonijo Mrčela
- Institute for Translational Medicine and TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Divij Mathew
- Department of Systems Pharmacology and Translational TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Institute for Immunology and Immune HealthPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Liudmila L. Mazaleuskaya
- Institute for Translational Medicine and TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Soumita Ghosh
- Institute for Translational Medicine and TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Thomas G. Brooks
- Institute for Translational Medicine and TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Alexandra P. Turner
- Department of MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | - Nicholas F. Lahens
- Institute for Translational Medicine and TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Ai Wen Tan
- Department of Systems Pharmacology and Translational TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Ashley Woolfork
- Department of Systems Pharmacology and Translational TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Greg Grant
- Institute for Translational Medicine and TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of GeneticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Katalin Susztak
- Department of MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Andrew G. Letizia
- Naval Medical Research CenterSilver SpringMarylandUSA
- Naval Medical Research Unit TWOSingaporeSingapore
| | - Stuart C. Sealfon
- Department of NeurologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - E. John Wherry
- Department of Systems Pharmacology and Translational TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Institute for Immunology and Immune HealthPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Krzysztof Laudanski
- Department of Anesthesiology and Critical CarePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Aalim M. Weljie
- Institute for Translational Medicine and TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Systems Pharmacology and Translational TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Nuala J. Meyer
- Institute for Translational Medicine and TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Garret A. FitzGerald
- Institute for Translational Medicine and TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Systems Pharmacology and Translational TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
13
|
Albóniga OE, Moreno E, Martínez-Sanz J, Vizcarra P, Ron R, Díaz-Álvarez J, Rosas Cancio-Suarez M, Sánchez-Conde M, Galán JC, Angulo S, Moreno S, Barbas C, Serrano-Villar S. Differential abundance of lipids and metabolites related to SARS-CoV-2 infection and susceptibility. Sci Rep 2023; 13:15124. [PMID: 37704651 PMCID: PMC10500013 DOI: 10.1038/s41598-023-40999-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/20/2023] [Indexed: 09/15/2023] Open
Abstract
The mechanisms driving SARS-CoV-2 susceptibility remain poorly understood, especially the factors determining why unvaccinated individuals remain uninfected despite high-risk exposures. To understand lipid and metabolite profiles related with COVID-19 susceptibility and disease progression. We collected samples from an exceptional group of unvaccinated healthcare workers heavily exposed to SARS-CoV-2 but not infected ('non-susceptible') and subjects who became infected during the follow-up ('susceptible'), including non-hospitalized and hospitalized patients with different disease severity providing samples at early disease stages. Then, we analyzed their plasma metabolomic profiles using mass spectrometry coupled with liquid and gas chromatography. We show specific lipids profiles and metabolites that could explain SARS-CoV-2 susceptibility and COVID-19 severity. More importantly, non-susceptible individuals show a unique lipidomic pattern characterized by the upregulation of most lipids, especially ceramides and sphingomyelin, which could be interpreted as markers of low susceptibility to SARS-CoV-2 infection. This study strengthens the findings of other researchers about the importance of studying lipid profiles as relevant markers of SARS-CoV-2 pathogenesis.
Collapse
Affiliation(s)
- Oihane E Albóniga
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660, Madrid, Spain
| | - Elena Moreno
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, IRYCIS, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Martínez-Sanz
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, IRYCIS, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Pilar Vizcarra
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, IRYCIS, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Raquel Ron
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, IRYCIS, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Jorge Díaz-Álvarez
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, IRYCIS, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Rosas Cancio-Suarez
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, IRYCIS, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Matilde Sánchez-Conde
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, IRYCIS, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Carlos Galán
- Department of Microbiology, Hospital Universitario Ramón y Cajal, IRYCIS, 28034, Madrid, Spain
- CIBERESP, Instituto de Salud Carlos III, Madrid, Spain
| | - Santiago Angulo
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660, Madrid, Spain
| | - Santiago Moreno
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, IRYCIS, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660, Madrid, Spain
| | - Sergio Serrano-Villar
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, IRYCIS, 28034, Madrid, Spain.
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain.
- Department of Infectious Diseases, Hospital Universitario Ramon y Cajal, Facultad de Medicina, Universidad de Alcalá (IRYCIS), Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain.
| |
Collapse
|
14
|
Menichetti F. The Potential Role of Hypothalamic Phospholipid Liposomes in the Supportive Therapy of Some Manifestations of Post-COVID-19 Condition: Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and Brain Fog. J Clin Med 2023; 12:5478. [PMID: 37685544 PMCID: PMC10488182 DOI: 10.3390/jcm12175478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Post-COVID-19 condition (commonly known as Long COVID) is a heterogeneous clinical condition in which Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and brain fog stand out among the different clinical symptoms and syndromes. Cerebral metabolic alterations and neuroendocrine disorders seem to constitute an important part of the pathophysiology of Post-COVID-19 condition (PCC). Given the substantial lack of specific drugs and effective therapeutic strategies, hypothalamic phospholipid liposomes, which have been on the market for several years as adjuvant therapy for cerebral metabolic alterations resulting from neuroendocrine disorders, might represent a potential option in an overall therapeutic strategy that aims to control PCC-associated symptoms and syndromes. Their pharmacological mechanisms and clinical effects strongly support their potential effectiveness in PCC. Our initial clinical experience seems to corroborate this rationale. Further controlled clinical research is warranted in order to verify this hypothesis.
Collapse
|
15
|
Farooqui AA, Farooqui T, Sun GY, Lin TN, Teh DBL, Ong WY. COVID-19, Blood Lipid Changes, and Thrombosis. Biomedicines 2023; 11:biomedicines11041181. [PMID: 37189799 DOI: 10.3390/biomedicines11041181] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Although there is increasing evidence that oxidative stress and inflammation induced by COVID-19 may contribute to increased risk and severity of thromboses, the underlying mechanism(s) remain to be understood. The purpose of this review is to highlight the role of blood lipids in association with thrombosis events observed in COVID-19 patients. Among different types of phospholipases A2 that target cell membrane phospholipids, there is increasing focus on the inflammatory secretory phospholipase A2 IIA (sPLA2-IIA), which is associated with the severity of COVID-19. Analysis indicates increased sPLA2-IIA levels together with eicosanoids in the sera of COVID patients. sPLA2 could metabolise phospholipids in platelets, erythrocytes, and endothelial cells to produce arachidonic acid (ARA) and lysophospholipids. Arachidonic acid in platelets is metabolised to prostaglandin H2 and thromboxane A2, known for their pro-coagulation and vasoconstrictive properties. Lysophospholipids, such as lysophosphatidylcholine, could be metabolised by autotaxin (ATX) and further converted to lysophosphatidic acid (LPA). Increased ATX has been found in the serum of patients with COVID-19, and LPA has recently been found to induce NETosis, a clotting mechanism triggered by the release of extracellular fibres from neutrophils and a key feature of the COVID-19 hypercoagulable state. PLA2 could also catalyse the formation of platelet activating factor (PAF) from membrane ether phospholipids. Many of the above lipid mediators are increased in the blood of patients with COVID-19. Together, findings from analyses of blood lipids in COVID-19 patients suggest an important role for metabolites of sPLA2-IIA in COVID-19-associated coagulopathy (CAC).
Collapse
Affiliation(s)
- Akhlaq A Farooqui
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, OH 43210, USA
| | - Tahira Farooqui
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, OH 43210, USA
| | - Grace Y Sun
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Teng-Nan Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11929, Taiwan
| | - Daniel B L Teh
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119260, Singapore
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119260, Singapore
- Neurobiology Research Programme, Life Sciences Institute, National University of Singapore, Singapore 119260, Singapore
| | - Wei-Yi Ong
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119260, Singapore
- Neurobiology Research Programme, Life Sciences Institute, National University of Singapore, Singapore 119260, Singapore
| |
Collapse
|
16
|
Bruzzone C, Conde R, Embade N, Mato JM, Millet O. Metabolomics as a powerful tool for diagnostic, pronostic and drug intervention analysis in COVID-19. Front Mol Biosci 2023; 10:1111482. [PMID: 36876049 PMCID: PMC9975567 DOI: 10.3389/fmolb.2023.1111482] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
COVID-19 currently represents one of the major health challenges worldwide. Albeit its infectious character, with onset affectation mainly at the respiratory track, it is clear that the pathophysiology of COVID-19 has a systemic character, ultimately affecting many organs. This feature enables the possibility of investigating SARS-CoV-2 infection using multi-omic techniques, including metabolomic studies by chromatography coupled to mass spectrometry or by nuclear magnetic resonance (NMR) spectroscopy. Here we review the extensive literature on metabolomics in COVID-19, that unraveled many aspects of the disease including: a characteristic metabotipic signature associated to COVID-19, discrimination of patients according to severity, effect of drugs and vaccination treatments and the characterization of the natural history of the metabolic evolution associated to the disease, from the infection onset to full recovery or long-term and long sequelae of COVID.
Collapse
Affiliation(s)
- Chiara Bruzzone
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bilbao, Bizkaia, Spain
| | - Ricardo Conde
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bilbao, Bizkaia, Spain
| | - Nieves Embade
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bilbao, Bizkaia, Spain
| | - José M. Mato
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bilbao, Bizkaia, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Oscar Millet
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bilbao, Bizkaia, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
17
|
Shimura T, Kurano M, Okamoto K, Jubishi D, Hashimoto H, Kano K, Igarashi K, Shimamoto S, Aoki J, Moriya K, Yatomi Y. Decrease in serum levels of autotaxin in COVID-19 patients. Ann Med 2022; 54:3189-3200. [PMID: 36369824 PMCID: PMC9665086 DOI: 10.1080/07853890.2022.2143554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
INTRODUCTION In order to identify therapeutic targets in Coronavirus disease 2019 (COVID-19), it is important to identify molecules involved in the biological responses that are modulated in COVID-19. Lysophosphatidic acids (LPAs) are involved in the pulmonary inflammation and fibrosis are one of the candidate molecules. The aim of this study was to evaluate the association between the serum levels of autotaxin (ATX), which are enzymes involved in the synthesis of lysophosphatidic acids. MATERIAL AND METHODS We enrolled 134 subjects with COVID-19 and 58 normal healthy subjects for the study. We measured serum ATX levels longitudinally in COVID-19 patients and investigated the time course and the association with severity and clinical parameters. RESULTS The serum ATX levels were reduced in all patients with COVID-19, irrespective of the disease severity, and were negatively associated with the serum CRP, D-dimer, and anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody levels. DISCUSSION Considering the biological properties of LPAs in the pulmonary inflammation and fibrosis, modulation of ATX might be compensatory biological responses to suppress immunological overreaction especially in the lung, which is an important underlying mechanism for the mortality of the disease. CONCLUSIONS COVID-19 patients showed a decrease in the serum levels of ATX, irrespective of the disease severity. Key MessagesAutotaxin (ATX) is an enzyme involved in the synthesis of lysophosphatidic acid (LPA), which has been reported to be involved in pulmonary inflammation and fibrosis. Patients with COVID-19 show decrease in the serum levels of ATX. Modulation of ATX might be compensatory biological responses to suppress immunological overreaction.
Collapse
Affiliation(s)
- Takuya Shimura
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Makoto Kurano
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan.,Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Koh Okamoto
- Department of Infectious Diseases, The University of Tokyo Hospital, Tokyo, Japan
| | - Daisuke Jubishi
- Department of Infectious Diseases, The University of Tokyo Hospital, Tokyo, Japan
| | - Hideki Hashimoto
- Department of Infectious Diseases, The University of Tokyo Hospital, Tokyo, Japan
| | - Kuniyuki Kano
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Koji Igarashi
- Bioscience Division, TOSOH Corporation, Kanagawa, Japan
| | | | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Kyoji Moriya
- Department of Infectious Diseases, The University of Tokyo Hospital, Tokyo, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan.,Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
18
|
Kurano M, Jubishi D, Okamoto K, Hashimoto H, Sakai E, Morita Y, Saigusa D, Kano K, Aoki J, Harada S, Okugawa S, Doi K, Moriya K, Yatomi Y. Dynamic modulations of urinary sphingolipid and glycerophospholipid levels in COVID-19 and correlations with COVID-19-associated kidney injuries. J Biomed Sci 2022; 29:94. [PMCID: PMC9647768 DOI: 10.1186/s12929-022-00880-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/29/2022] [Indexed: 11/11/2022] Open
Abstract
Background Among various complications of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), renal complications, namely COVID-19-associated kidney injuries, are related to the mortality of COVID-19. Methods In this retrospective cross-sectional study, we measured the sphingolipids and glycerophospholipids, which have been shown to possess potent biological properties, using liquid chromatography-mass spectrometry in 272 urine samples collected longitudinally from 91 COVID-19 subjects and 95 control subjects without infectious diseases, to elucidate the pathogenesis of COVID-19-associated kidney injuries. Results The urinary levels of C18:0, C18:1, C22:0, and C24:0 ceramides, sphingosine, dihydrosphingosine, phosphatidylcholine, lysophosphatidylcholine, lysophosphatidic acid, and phosphatidylglycerol decreased, while those of phosphatidylserine, lysophosphatidylserine, phosphatidylethanolamine, and lysophosphatidylethanolamine increased in patients with mild COVID-19, especially during the early phase (day 1–3), suggesting that these modulations might reflect the direct effects of infection with SARS-CoV-2. Generally, the urinary levels of sphingomyelin, ceramides, sphingosine, dihydrosphingosine, dihydrosphingosine l-phosphate, phosphatidylcholine, lysophosphatidic acid, phosphatidylserine, lysophosphatidylserine, phosphatidylethanolamine, lysophosphatidylethanolamine, phosphatidylglycerol, lysophosphatidylglycerol, phosphatidylinositol, and lysophosphatidylinositol increased, especially in patients with severe COVID-19 during the later phase, suggesting that their modulations might result from kidney injuries accompanying severe COVID-19. Conclusions Considering the biological properties of sphingolipids and glycerophospholipids, an understanding of their urinary modulations in COVID-19 will help us to understand the mechanisms causing COVID-19-associated kidney injuries as well as general acute kidney injuries and may prompt researchers to develop laboratory tests for predicting maximum severity and/or novel reagents to suppress the renal complications of COVID-19. Supplementary Information The online version contains supplementary material available at 10.1186/s12929-022-00880-5.
Collapse
Affiliation(s)
- Makoto Kurano
- grid.26999.3d0000 0001 2151 536XDepartment of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655 Japan ,grid.412708.80000 0004 1764 7572Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Daisuke Jubishi
- grid.26999.3d0000 0001 2151 536XDepartment of Infectious Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Koh Okamoto
- grid.26999.3d0000 0001 2151 536XDepartment of Infectious Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hideki Hashimoto
- grid.26999.3d0000 0001 2151 536XDepartment of Infectious Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Eri Sakai
- grid.412708.80000 0004 1764 7572Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Yoshifumi Morita
- grid.412708.80000 0004 1764 7572Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Daisuke Saigusa
- grid.264706.10000 0000 9239 9995Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Kuniyuki Kano
- grid.26999.3d0000 0001 2151 536XDepartment of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Junken Aoki
- grid.26999.3d0000 0001 2151 536XDepartment of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Sohei Harada
- grid.26999.3d0000 0001 2151 536XDepartment of Infection Control and Prevention, The University of Tokyo, Tokyo, Japan
| | - Shu Okugawa
- grid.26999.3d0000 0001 2151 536XDepartment of Infectious Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kent Doi
- grid.412708.80000 0004 1764 7572Department of Emergency and Critical Care Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - Kyoji Moriya
- grid.26999.3d0000 0001 2151 536XDepartment of Infectious Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan ,grid.26999.3d0000 0001 2151 536XDepartment of Infection Control and Prevention, The University of Tokyo, Tokyo, Japan
| | - Yutaka Yatomi
- grid.26999.3d0000 0001 2151 536XDepartment of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655 Japan ,grid.412708.80000 0004 1764 7572Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
19
|
Kurano M, Okamoto K, Jubishi D, Hashimoto H, Sakai E, Saigusa D, Kano K, Aoki J, Harada S, Okugawa S, Doi K, Moriya K, Yatomi Y. Dynamic modulations of sphingolipids and glycerophospholipids in COVID-19. Clin Transl Med 2022; 12:e1069. [PMID: 36214754 PMCID: PMC9549873 DOI: 10.1002/ctm2.1069] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND A heterogeneous clinical phenotype is a characteristic of coronavirus disease 2019 (COVID-19). Therefore, investigating biomarkers associated with disease severity is important for understanding the mechanisms responsible for this heterogeneity and for developing novel agents to prevent critical conditions. This study aimed to elucidate the modulations of sphingolipids and glycerophospholipids, which have been shown to possess potent biological properties. METHODS We measured the serum sphingolipid and glycerophospholipid levels in a total of 887 samples from 215 COVID-19 subjects, plus 115 control subjects without infectious diseases and 109 subjects with infectious diseases other than COVID-19. RESULTS We observed the dynamic modulations of sphingolipids and glycerophospholipids in the serum of COVID-19 subjects, depending on the time course and severity. The elevation of C16:0 ceramide and lysophosphatidylinositol and decreases in C18:1 ceramide, dihydrosphingosine, lysophosphatidylglycerol, phosphatidylglycerol and phosphatidylinositol were specific to COVID-19. Regarding the association with maximum severity, phosphatidylinositol and phosphatidylcholine species with long unsaturated acyl chains were negatively associated, while lysophosphatidylethanolamine and phosphatidylethanolamine were positively associated with maximum severity during the early phase. Lysophosphatidylcholine and phosphatidylcholine had strong negative correlations with CRP, while phosphatidylethanolamine had strong positive ones. C16:0 ceramide, lysophosphatidylcholine, phosphatidylcholine and phosphatidylethanolamine species with long unsaturated acyl chains had negative correlations with D-dimer, while phosphatidylethanolamine species with short acyl chains and phosphatidylinositol had positive ones. Several species of phosphatidylcholine, phosphatidylethanolamine and sphingomyelin might serve as better biomarkers for predicting severe COVID-19 during the early phase than CRP and D-dimer. Compared with the lipid modulations seen in mice treated with lipopolysaccharide, tissue factor, or histone, the lipid modulations observed in severe COVID-19 were most akin to those in mice administered lipopolysaccharide. CONCLUSION A better understanding of the disturbances in sphingolipids and glycerophospholipids observed in this study will prompt further investigation to develop laboratory testing for predicting maximum severity and/or novel agents to suppress the aggravation of COVID-19.
Collapse
Affiliation(s)
- Makoto Kurano
- Department of Clinical Laboratory MedicineGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Koh Okamoto
- Department of Infectious DiseasesGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Daisuke Jubishi
- Department of Infectious DiseasesGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Hideki Hashimoto
- Department of Infectious DiseasesGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Eri Sakai
- Department of Clinical Laboratory MedicineGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Daisuke Saigusa
- Laboratory of Biomedical and Analytical SciencesFaculty of Pharma‐ScienceTeikyo UniversityTokyoJapan
| | - Kuniyuki Kano
- Department of Health ChemistryGraduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| | - Junken Aoki
- Department of Health ChemistryGraduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| | - Sohei Harada
- Department of Infection Control and PreventionThe University of TokyoTokyoJapan
| | - Shu Okugawa
- Department of Infectious DiseasesGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Kent Doi
- Department of Emergency and Critical Care MedicineThe University of Tokyo Hospital, Tokyo, Japan
| | - Kyoji Moriya
- Department of Infectious DiseasesGraduate School of MedicineThe University of TokyoTokyoJapan,Department of Infection Control and PreventionThe University of TokyoTokyoJapan
| | - Yutaka Yatomi
- Department of Clinical Laboratory MedicineGraduate School of MedicineThe University of TokyoTokyoJapan
| |
Collapse
|