1
|
Brooks HL, de Castro Brás LE, Brunt KR, Sylvester MA, Parvatiyar MS, Sirish P, Bansal SS, Sule R, Eadie AL, Knepper MA, Fenton RA, Lindsey ML, DeLeon-Pennell KY, Gomes AV. Guidelines on antibody use in physiology research. Am J Physiol Renal Physiol 2024; 326:F511-F533. [PMID: 38234298 PMCID: PMC11208033 DOI: 10.1152/ajprenal.00347.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/19/2024] Open
Abstract
Antibodies are one of the most used reagents in scientific laboratories and are critical components for a multitude of experiments in physiology research. Over the past decade, concerns about many biological methods, including those that use antibodies, have arisen as several laboratories were unable to reproduce the scientific data obtained in other laboratories. The lack of reproducibility could be largely attributed to inadequate reporting of detailed methods, no or limited verification by authors, and the production and use of unvalidated antibodies. The goal of this guideline article is to review best practices concerning commonly used techniques involving antibodies, including immunoblotting, immunohistochemistry, and flow cytometry. Awareness and integration of best practices will increase the rigor and reproducibility of these techniques and elevate the quality of physiology research.
Collapse
Affiliation(s)
- Heddwen L Brooks
- Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | | | - Keith R Brunt
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Saint John, New Brunswick, Canada
| | - Megan A Sylvester
- Department of Physiology, College of Medicine, University of Arizona, Tucson, Arizona, United States
| | - Michelle S Parvatiyar
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
| | - Padmini Sirish
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, California, United States
| | - Shyam S Bansal
- Department of Cellular and Molecular Physiology, Heart and Vascular Institute, Pennsylvania State University Hershey Medical Center, Hershey, Pennsylvania, United States
| | - Rasheed Sule
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California, United States
| | - Ashley L Eadie
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Saint John, New Brunswick, Canada
| | - Mark A Knepper
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Robert A Fenton
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Merry L Lindsey
- School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, United States
- Research Service, Nashville Veterans Affairs Medical Center, Nashville, Tennessee, United States
| | - Kristine Y DeLeon-Pennell
- Division of Cardiology, Department of Medicine, School of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
- Research Service, Ralph H Johnson Veterans Affairs Medical Center, Charleston, South Carolina, United States
| | - Aldrin V Gomes
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California, United States
| |
Collapse
|
2
|
Kapanadze T, Gamrekelashvili J, Sablotny S, Schroth FN, Xu Y, Chen R, Rong S, Shushakova N, Gueler F, Haller H, Limbourg FP. Validation of CSF-1 receptor (CD115) staining for analysis of murine monocytes by flow cytometry. J Leukoc Biol 2024; 115:573-582. [PMID: 38038378 DOI: 10.1093/jleuko/qiad147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 10/18/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023] Open
Abstract
CD115, the receptor for colony stimulating factor 1, is essential for survival and differentiation of monocytes and macrophages and is therefore frequently used to define monocyte subsets and their progenitors in immunological assays. However, CD115 surface expression and detection by flow cytometry is greatly influenced by cell isolation and processing methods, organ source, and disease context. In a systematic analysis of murine monocytes, we define experimental conditions that preserve or limit CD115 surface expression and staining by flow cytometry. We also find that, independent of conditions, CD115 surface levels are consistently lower in Ly6Clo monocytes than in Ly6Chi monocytes, with the exception of Ly6Clo monocytes in the bone marrow. Furthermore, in contrast to IL-34, the presence of colony stimulating factor 1 impairs CD115 antibody staining in a dose-dependent manner, which, in a model of ischemic kidney injury with elevated levels of colony stimulating factor 1, influenced quantification of kidney monocytes. Thus, staining and experimental conditions affect quantitative and qualitative analysis of monocytes and may influence experimental conclusions.
Collapse
Affiliation(s)
- Tamar Kapanadze
- Vascular Medicine Research, Department of Nephrology and Hypertension, Hannover Medical School, Hannover, D 30625, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| | - Jaba Gamrekelashvili
- Vascular Medicine Research, Department of Nephrology and Hypertension, Hannover Medical School, Hannover, D 30625, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| | - Stefan Sablotny
- Vascular Medicine Research, Department of Nephrology and Hypertension, Hannover Medical School, Hannover, D 30625, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| | - Frauline Nicole Schroth
- Vascular Medicine Research, Department of Nephrology and Hypertension, Hannover Medical School, Hannover, D 30625, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| | - Yuangao Xu
- Vascular Medicine Research, Department of Nephrology and Hypertension, Hannover Medical School, Hannover, D 30625, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| | - Rongjun Chen
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| | - Song Rong
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| | - Nelli Shushakova
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
- Phenos GmbH, Hannover, Germany
| | - Faikah Gueler
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| | - Hermann Haller
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| | - Florian P Limbourg
- Vascular Medicine Research, Department of Nephrology and Hypertension, Hannover Medical School, Hannover, D 30625, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| |
Collapse
|
3
|
Zhang T, Li Y, Wise AF, Kulkarni K, Aguilar MI, Samuel CS, Del Borgo M, Widdop RE, Ricardo SD. The protective effects of a novel AT 2 receptor agonist, β-Pro 7Ang III in ischemia-reperfusion kidney injury. Biomed Pharmacother 2023; 161:114556. [PMID: 36948137 DOI: 10.1016/j.biopha.2023.114556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND AND PURPOSE This study investigated the reno-protective effects of a highly selective AT2R agonist peptide, β-Pro7Ang III in a mouse model of acute kidney injury (AKI). METHODS C57BL/6 J mice underwent either sham surgery or unilateral kidney ischemia-reperfusion injury (IRI) for 40 min. IRI mice were treated with either β-Pro7Ang III or perindopril and at 7 days post-surgery the kidneys analysed for histopathology and the development of fibrosis and matrix metalloproteinase (MMP)-2 and -9 activity. The association of the therapeutic effects of β-Pro7Ang III with macrophage number and phenotype was determined in vivo and in vitro. KEY RESULTS Decreased kidney tubular injury, interstitial matrix expansion and reduced interstitial immune cell infiltration in IRI mice receiving β-Pro7Ang III treatment was observed at day 7, compared to IRI mice without treatment. This correlated to reduced collagen accumulation and MMP-2 activity in IRI mice following β-Pro7Ang III treatment. FACS analysis showed a reduced number and proportion of CD45+CD11b+F4/80+ macrophages in IRI kidneys in response to β-Pro7Ang III, correlating with a significant increase in M2 macrophage markers and decreased M1 markers at day 3 and 7 post-IR injury, respectively. In vitro analysis of cultured THP-1 cells showed that β-Pro7Ang III attenuated lipopolysaccharide (LPS)-induced tumour necrosis factor-α (TNF-α) and interleukin (IL)- 6 production but increased IL-10 secretion, compared to LPS alone. CONCLUSION Administration of β-Pro7Ang III via mini-pump improved kidney structure and reduced interstitial collagen accumulation, in parallel with an alteration of macrophage phenotype and anti-inflammatory cytokine release, therefore mitigating the downstream progression of ischemic AKI.
Collapse
Affiliation(s)
- Tingfang Zhang
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Yifang Li
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Andrea F Wise
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Ketav Kulkarni
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Chrishan S Samuel
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Mark Del Borgo
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Robert E Widdop
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Sharon D Ricardo
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
4
|
Kim MG, Yun D, Kang CL, Hong M, Hwang J, Moon KC, Jeong CW, Kwak C, Kim DK, Oh KH, Joo KW, Kim YS, Lee DS, Han SS. Kidney VISTA prevents IFNγ-IL-9 axis-mediated tubulointerstitial fibrosis after acute glomerular injury. J Clin Invest 2021; 132:151189. [PMID: 34752423 PMCID: PMC8718152 DOI: 10.1172/jci151189] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 11/05/2021] [Indexed: 11/17/2022] Open
Abstract
Severe glomerular injury ultimately leads to tubulointerstitial fibrosis that determines patient outcome, but the immunological molecules connecting these processes remain undetermined. The present study addressed whether V-domain Ig suppressor of T cell activation (VISTA), constitutively expressed in kidney macrophages, plays a protective role in tubulointerstitial fibrotic transformation after acute antibody-mediated glomerulonephritis. After acute glomerular injury using nephrotoxic serum, tubules in the VISTA-deficient (Vsir–/–) kidney suffered more damage than those in WT kidneys. When interstitial immune cells were examined, the contact frequency of macrophages with infiltrated T cells increased and the immunometabolic features of T cells changed to showing high oxidative phosphorylation and fatty acid metabolism and overproduction of IFN-γ. The Vsir–/– parenchymal tissue cells responded to this altered milieu of interstitial immune cells as more IL-9 was produced, which augmented tubulointerstitial fibrosis. Blocking antibodies against IFN-γ and IL-9 protected the above pathological process in VISTA-depleted conditions. In human samples with acute glomerular injury (e.g., antineutrophil cytoplasmic autoantibody vasculitis), high VISTA expression in tubulointerstitial immune cells was associated with low tubulointerstitial fibrosis and good prognosis. Therefore, VISTA is a sentinel protein expressed in kidney macrophages that prevents tubulointerstitial fibrosis via the IFN-γ/IL-9 axis after acute antibody-mediated glomerular injury.
Collapse
Affiliation(s)
- Min-Gang Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea, Republic of
| | - Donghwan Yun
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea, Republic of
| | - Chae Lin Kang
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea, Republic of
| | - Minki Hong
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea, Republic of
| | - Juhyeon Hwang
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea, Republic of
| | - Kyung Chul Moon
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea, Republic of
| | - Chang Wook Jeong
- Department of Urology, Seoul National University College of Medicine, Seoul, Korea, Republic of
| | - Cheol Kwak
- Department of Urology, Seoul National University College of Medicine, Seoul, Korea, Republic of
| | - Dong Ki Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea, Republic of
| | - Kook-Hwan Oh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea, Republic of
| | - Kwon Wook Joo
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea, Republic of
| | - Yon Su Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea, Republic of
| | - Dong-Sup Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea, Republic of
| | - Seung Seok Han
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea, Republic of
| |
Collapse
|
5
|
Wymann S, Dai Y, Nair AG, Cao H, Powers GA, Schnell A, Martin-Roussety G, Leong D, Simmonds J, Lieu KG, de Souza MJ, Mischnik M, Taylor S, Ow SY, Spycher M, Butcher RE, Pearse M, Zuercher AW, Baz Morelli A, Panousis C, Wilson MJ, Rowe T, Hardy MP. A novel soluble complement receptor 1 fragment with enhanced therapeutic potential. J Biol Chem 2020; 296:100200. [PMID: 33334893 PMCID: PMC7948397 DOI: 10.1074/jbc.ra120.016127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Human complement receptor 1 (HuCR1) is a pivotal regulator of complement activity, acting on all three complement pathways as a membrane-bound receptor of C3b/C4b, C3/C5 convertase decay accelerator, and cofactor for factor I-mediated cleavage of C3b and C4b. In this study, we sought to identify a minimal soluble fragment of HuCR1, which retains the complement regulatory activity of the wildtype protein. To this end, we generated recombinant, soluble, and truncated versions of HuCR1 and compared their ability to inhibit complement activation in vitro using multiple assays. A soluble form of HuCR1, truncated at amino acid 1392 and designated CSL040, was found to be a more potent inhibitor than all other truncation variants tested. CSL040 retained its affinity to both C3b and C4b as well as its cleavage and decay acceleration activity and was found to be stable under a range of buffer conditions. Pharmacokinetic studies in mice demonstrated that the level of sialylation is a major determinant of CSL040 clearance in vivo. CSL040 also showed an improved pharmacokinetic profile compared with the full extracellular domain of HuCR1. The in vivo effects of CSL040 on acute complement-mediated kidney damage were tested in an attenuated passive antiglomerular basement membrane antibody-induced glomerulonephritis model. In this model, CSL040 at 20 and 60 mg/kg significantly attenuated kidney damage at 24 h, with significant reductions in cellular infiltrates and urine albumin, consistent with protection from kidney damage. CSL040 thus represents a potential therapeutic candidate for the treatment of complement-mediated disorders.
Collapse
Affiliation(s)
- Sandra Wymann
- Research and Development, CSL Behring AG, Bern, Switzerland
| | - Yun Dai
- CSL Ltd, Bio21 Institute, Victoria, Australia
| | - Anup G Nair
- CSL Ltd, Bio21 Institute, Victoria, Australia
| | - Helen Cao
- CSL Ltd, Bio21 Institute, Victoria, Australia
| | | | - Anna Schnell
- Research and Development, CSL Behring AG, Bern, Switzerland
| | | | - David Leong
- CSL Ltd, Bio21 Institute, Victoria, Australia
| | | | - Kim G Lieu
- CSL Ltd, Bio21 Institute, Victoria, Australia
| | | | - Marcel Mischnik
- Research and Development, CSL Behring GmbH, Marburg, Germany
| | | | - Saw Yen Ow
- CSL Ltd, Bio21 Institute, Victoria, Australia
| | - Martin Spycher
- Research and Development, CSL Behring AG, Bern, Switzerland
| | | | | | | | | | | | | | - Tony Rowe
- CSL Ltd, Bio21 Institute, Victoria, Australia
| | | |
Collapse
|
6
|
Qiu L, Lai X, Wang JJ, Yeap XY, Han S, Zheng F, Lin C, Zhang Z, Procissi D, Fang D, Li L, Thorp EB, Abecassis MM, Kanwar YS, Zhang ZJ. Kidney-intrinsic factors determine the severity of ischemia/reperfusion injury in a mouse model of delayed graft function. Kidney Int 2020; 98:1489-1501. [PMID: 32822703 PMCID: PMC7814505 DOI: 10.1016/j.kint.2020.07.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 06/12/2020] [Accepted: 07/09/2020] [Indexed: 02/06/2023]
Abstract
Delayed graft function due to transplant ischemia/reperfusion injury adversely affects up to 50% of deceased-donor kidney transplant recipients. However, key factors contributing to the severity of ischemia/reperfusion injury remain unclear. Here, using a clinically relevant mouse model of delayed graft function, we demonstrated that donor genetic background and kidney-intrinsic MyD88/Trif-dependent innate immunity were key determinants of delayed graft function. Functional deterioration of kidney grafts directly corresponded with the duration of cold ischemia time. The graft dysfunction became irreversible after cold ischemia time exceeded six hours. When cold ischemia time reached four hours, kidney grafts displayed histological features reflective of delayed graft function seen in clinical kidney transplantation. Notably, kidneys of B6 mice exhibited significantly more severe histological and functional impairment than kidneys of C3H or BALB/c mice, regardless of recipient strains or alloreactivities. Furthermore, allografts of B6 mice also showed an upregulation of IL-6, neutrophil gelatinase-associated lipocalin, and endoplasmic reticulum stress genes, as well as an increased influx of host neutrophils and memory CD8 T-cells. In contrast, donor MyD88/Trif deficiency inhibited neutrophil influx and decreased the expression of IL-6 and endoplasmic reticulum stress genes, along with improved graft function and prolonged allograft survival. Thus, kidney-intrinsic factors involving genetic characteristics and innate immunity serve as critical determinants of the severity of delayed graft function. This preclinical murine model allows for further investigations of the mechanisms underlying delayed graft function.
Collapse
Affiliation(s)
- Longhui Qiu
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Xingqiang Lai
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Organ Transplant Center, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiao-Jing Wang
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Xin Yi Yeap
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Shulin Han
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Feibo Zheng
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Charlie Lin
- Weinberg Art and Science College, Northwestern University, Evanston, Illinois, USA
| | - Zhuoli Zhang
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Daniele Procissi
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Lin Li
- Department of Pathology and Laboratory Medicine, Cedars Sinai Medical Center, West Hollywood, California, USA
| | - Edward B Thorp
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Michael M Abecassis
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Yashpal S Kanwar
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Department of Medicine (Nephrology and Hypertension), Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Zheng J Zhang
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| |
Collapse
|
7
|
Verghese E, Martelotto LG, Cain JE, Williams TM, Wise AF, Hill PA, Langham RG, Watkins DN, Ricardo SD, Deane JA. Renal epithelial cells retain primary cilia during human acute renal allograft rejection injury. BMC Res Notes 2019; 12:718. [PMID: 31676011 PMCID: PMC6824085 DOI: 10.1186/s13104-019-4738-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 10/16/2019] [Indexed: 01/03/2023] Open
Abstract
Objectives Primary cilia are sensory organelles which co-ordinate several developmental/repair pathways including hedgehog signalling. Studies of human renal allografts suffering acute tubular necrosis have shown that length of primary cilia borne by epithelial cells doubles throughout the nephron and collecting duct, and then normalises as renal function returns. Conversely the loss of primary cilia has been reported in chronic allograft rejection and linked to defective hedgehog signalling. We investigated the fate of primary cilia in renal allografts suffering acute rejection. Results Here we observed that in renal allografts undergoing acute rejection, primary cilia were retained, with their length increasing 1 week after transplantation and remaining elevated. We used a mouse model of acute renal injury to demonstrate that elongated renal primary cilia in the injured renal tubule show evidence of smoothened accumulation, a biomarker for activation of hedgehog signalling. We conclude that primary cilium-mediated activation of hedgehog signalling is still possible during the acute phase of renal allograft rejection.
Collapse
Affiliation(s)
- Elizabeth Verghese
- Biomedical and Health Sciences, Victoria University, St Albans, Australia.
| | - Luciano G Martelotto
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Australia.,Centre for Cancer Research, VCCC, University of Melbourne, Melbourne, Australia
| | - Jason E Cain
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Australia
| | - Timothy M Williams
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Australia
| | - Andrea F Wise
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Australia
| | - Prudence A Hill
- Department of Anatomical Pathology, St Vincent's Hospital, Melbourne, Australia
| | - Robyn G Langham
- Department of Nephrology, St Vincent's Hospital, Melbourne, VIC, Australia.,Monash Rural Health, Monash University, Clayton, VIC, Australia
| | - D Neil Watkins
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Australia.,The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Darlinghurst, NSW, Australia
| | - Sharon D Ricardo
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Australia
| | - James A Deane
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Australia.
| |
Collapse
|
8
|
Williams TM, Wise AF, Layton DS, Ricardo SD. Phenotype and influx kinetics of leukocytes and inflammatory cytokine production in kidney ischemia/reperfusion injury. Nephrology (Carlton) 2018; 23:75-85. [PMID: 27696567 DOI: 10.1111/nep.12941] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/26/2016] [Accepted: 09/29/2016] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND AIM Kidney ischemia/reperfusion (IR) injury is characterized by tubular epithelial cell (TEC) death and an inflammatory response involving cytokine production and immune cell infiltration. In various kidney diseases, increased macrophage numbers correlate with injury severity and poor prognosis. However, macrophage plasticity enables a diverse range of functions, including wound healing, making them a key target for novel therapies. This study aimed to comprehensively characterize the changes in myeloid and epithelial cells and the production of cytokines throughout the experimental IR model of acute kidney injury to aid in the identification of targets to promote and enhance kidney regeneration and repair. METHODS Flow cytometric analysis of murine unilateral IR injury was used to assess TEC and myeloid cell subpopulations in conjunction with histological analysis and cytokine production at 6 h, 1, 3, 5 and 7 days post IR injury, spanning the initial inflammatory phase and the following reparative phase. RESULTS IR injury resulted in a rapid infiltration of Ly6Chigh monocytes and neutrophils with a steady rise in F4/80high MHCIIhigh macrophages over the injury time. The production of the inflammatory cytokines IL-6, MCP-1 and TNF coincided with an increase in IL-10 production. CONCLUSION This characterization will provide a reference point for future studies designed to manipulate immune cell phenotype and function in order to promote endogenous repair of damaged kidneys.
Collapse
Affiliation(s)
- Timothy M Williams
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Andrea F Wise
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Daniel S Layton
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia.,Biosecurity Flagship, CSIRO, Geelong, Australia
| | - Sharon D Ricardo
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| |
Collapse
|
9
|
Characterization of kidney CD45intCD11bintF4/80+MHCII+CX3CR1+Ly6C- "intermediate mononuclear phagocytic cells". PLoS One 2018; 13:e0198608. [PMID: 29856833 PMCID: PMC5983557 DOI: 10.1371/journal.pone.0198608] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 05/22/2018] [Indexed: 12/20/2022] Open
Abstract
Kidney immune cells play important roles in pathogenesis of many diseases, including ischemia-reperfusion injury (IRI) and transplant rejection. While studying murine kidney T cells, we serendipitously identified a kidney mononuclear phagocytic cell (MPC) subset characterized by intermediate surface expression of CD45 and CD11b. These CD45intCD11bint MPCs were further identified as F4/80+MHCII+CX3CR1+Ly6C- cells, comprising ~17% of total CD45+ cells in normal mouse kidney (P < 0.01) and virtually absent from all other organs examined except the heart. Systemic clodronate treatment had more significant depletive effect on the CD45intCD11bint population (77.3%±5.9%, P = 0.03) than on CD45highCD11b+ population (14.8%±16.6%, P = 0.49). In addition, CD45intCD11bint MPCs had higher phagocytic function in the normal kidney (35.6%±3.3% vs. 24.1%±2.2%, P = 0.04), but lower phagocytic capacity in post-ischemic kidney (54.9%±1.0% vs. 67.8%±1.9%, P < 0.01) compared to the CD45highCD11b+ population. Moreover, the CD45intCD11bint population had higher intracellular production of the pro-inflammatory tumor necrosis factor (TNF)-α (58.4%±5.2% vs. 27.3%±0.9%, P < 0.001) after lipopolysaccharide (LPS) stimulation and lower production of the anti-inflammatory interleukin (IL)-10 (7.2%±1.3% vs. 14.9%±2.2%, P = 0.02) following kidney IRI, suggesting a functional role under inflammatory conditions. The CD45intCD11bint cells increased early after IRI, and then abruptly decreased 48h later, whereas CD45highCD11b+ cells steadily increased after IRI before declining at 72h (P = 0.03). We also identified the CD45intCD11bint MPC subtype in human kidney. We conclude that CD45intCD11bint F4/80+MHCII+CX3CR1+Ly6C-population represent a unique subset of MPCs found in both mouse and human kidneys. Future studies will further characterize their role in kidney health and disease.
Collapse
|
10
|
Gut macrophage phenotype is dependent on the tumor microenvironment in colorectal cancer. Clin Transl Immunology 2016; 5:e76. [PMID: 27195119 PMCID: PMC4855270 DOI: 10.1038/cti.2016.21] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 03/30/2016] [Accepted: 03/31/2016] [Indexed: 02/07/2023] Open
Abstract
In contrast to many cancers, a high infiltration of macrophages in colorectal cancer (CRC) has been associated with improved prognosis for patients. Cytokines and other stimuli from the tumor microenvironment affect monocyte to macrophage maturation and subsequent phenotype and function. Heterogeneous myeloid populations were identified using a novel flow cytometry panel in both tumor and paired non-tumor bowel (NTB) from CRC patients. The frequency of macrophage subsets with a gut-conditioned phenotype was lower in tumor compared with NTB. We used an in vitro system to show that two of the macrophage populations represented pro-inflammatory and anti-inflammatory phenotypes. Conditioned media that contained high levels of interleukin-6 promoted and maintained an anti-inflammatory phenotype in vitro. This study demonstrates the plasticity and heterogeneity of macrophage subtypes in human CRC, and the feasibility of studying complex populations. Ex vivo experiments demonstrate that macrophage subsets are influenced by the tumor microenvironment.
Collapse
|