1
|
Lee SJ, Joo SA, Kim H, Lee Y, Chung SJ, Chae YJ, Maeng HJ. Involvement of CYP3A4 and MDR1 in altered metabolism and transport of indinavir in 1,25(OH) 2D 3-treated Caco-2 cells. Eur J Pharm Sci 2023; 183:106396. [PMID: 36736464 DOI: 10.1016/j.ejps.2023.106396] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/02/2023] [Accepted: 01/30/2023] [Indexed: 02/02/2023]
Abstract
Altered drug concentrations may induce unexpected toxicity or treatment failure; thus, understanding the factors that alter the pharmacokinetic profiles of drugs is crucial for optimal disease treatment. Vitamin D receptor (VDR), a nuclear receptor, regulates the expression of cytochrome P450 3A4 (CYP3A4) and multidrug resistance protein 1 (MDR1), which are crucial determinants of drug pharmacokinetics. In this study, we investigated the effects of 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3], a VDR ligand, on the metabolism, transport, and pharmacokinetics of indinavir, a dual substrate of CYP3A4 and MDR1. 1,25(OH)2D3 treatment for three days upregulated the expression levels of CYP3A4 and MDR1 in Caco-2 cells and consequently led to an increase in the level of a metabolite formed via CYP3A4 (indinavir M6) and the efflux ratio of indinavir in transport study. The increase in the metabolic reaction was also confirmed through a metabolism assay performed using the lysate of 1,25(OH)2D3-treated Caco-2 cells. In the Ussing chamber study conducted with the rat intestine, 1,25(OH)2D3 treatment did not alter the transport of indinavir into the basolateral side but increased indinavir M6 formation. Similarly, plasma levels of the metabolite increased in 1,25(OH)2D3-treated rats; however, systemic exposure to indinavir led to insignificant alterations. Considering the overlapping substrate specificities for CYP3A4 and MDR1 and their significant roles in drug pharmacokinetics, VDR may play an important role in drug interactions of CYP3A4 and MDR1 substrates for accessing more effective and safe disease treatments.
Collapse
Affiliation(s)
- Su-Jin Lee
- College of Pharmacy, Gachon University, Incheon 21936, Korea
| | - Seul-A Joo
- College of Pharmacy, Gachon University, Incheon 21936, Korea
| | - Heejeong Kim
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Yunjong Lee
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Suk-Jae Chung
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| | - Yoon-Jee Chae
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Woosuk University, Wanju 55338, Korea.
| | - Han-Joo Maeng
- College of Pharmacy, Gachon University, Incheon 21936, Korea.
| |
Collapse
|
2
|
Lee SG, Cho KH, Nguyen TTL, Vo DK, Chae YJ, Maeng HJ. Inhibitory effect of 20(S)-protopanaxadiol on cytochrome P450: Potential of its pharmacokinetic interactions in vivo. Biomed Pharmacother 2022; 153:113514. [DOI: 10.1016/j.biopha.2022.113514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/24/2022] [Accepted: 08/02/2022] [Indexed: 12/28/2022] Open
|
3
|
Han DG, Seo SW, Choi E, Kim MS, Yoo JW, Jung Y, Yoon IS. Impact of route-dependent phase-II gut metabolism and enterohepatic circulation on the bioavailability and systemic disposition of resveratrol in rats and humans: A comprehensive whole body physiologically-based pharmacokinetic modeling. Biomed Pharmacother 2022; 151:113141. [PMID: 35609369 DOI: 10.1016/j.biopha.2022.113141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/09/2022] [Accepted: 05/15/2022] [Indexed: 11/02/2022] Open
Abstract
Resveratrol, a natural polyphenolic phytoalexin, is a dietary supplement that improves the outcomes of metabolic, cardiovascular, and other age-related diseases due to its diverse pharmacological activities. Although there have been several preclinical and clinical investigations of resveratrol, the contributions of gut phase-II metabolism and enterohepatic circulation to the oral bioavailability and pharmacokinetics of resveratrol remain unclear. Furthermore, a physiologically-based pharmacokinetic (PBPK) model that accurately describes and predicts the systemic exposure profiles of resveratrol in clinical settings has not been developed. Experimental data were acquired from several perspectives, including in vitro protein binding and blood distribution, in vitro tissue S9 metabolism, in situ intestinal perfusion, and in vivo pharmacokinetics and excretion studies. Using these datasets, an in-house whole-body PBPK model incorporating route-dependent phase-II (glucuronidation and sulfation) gut metabolism and enterohepatic circulation processes was constructed and optimized for chemical-specific parameters. The developed PBPK model aligned with the observed systemic exposure profiles of resveratrol in single and multiple dosing regimens with an acceptable accuracy of 0.538-0.999-fold errors. Furthermore, the model simulations elucidated the substantial contribution of gut first-pass metabolism to the oral bioavailability of resveratrol and suggested differential effects of enterohepatic circulation on the systemic exposure of resveratrol between rats and humans. After partial modification and verification, our proposed PBPK model would be valuable to optimize dosage regimens and predict food-drug interactions with resveratrol-based natural products in various clinical scenarios.
Collapse
Affiliation(s)
- Dong-Gyun Han
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, South Korea
| | - Seong-Wook Seo
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, South Korea
| | - Eugene Choi
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, South Korea
| | - Min-Soo Kim
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, South Korea
| | - Jin-Wook Yoo
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, South Korea
| | - Yunjin Jung
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, South Korea
| | - In-Soo Yoon
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, South Korea.
| |
Collapse
|
4
|
Nguyen TTL, Kim JW, Choi HI, Maeng HJ, Koo TS. Development of an LC-MS/MS Method for ARV-110, a PROTAC Molecule, and Applications to Pharmacokinetic Studies. Molecules 2022; 27:molecules27061977. [PMID: 35335338 PMCID: PMC8954769 DOI: 10.3390/molecules27061977] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 02/04/2023] Open
Abstract
ARV-110, a novel proteolysis-targeting chimera (PROTAC), has been reported to show satisfactory safety and tolerability for prostate cancer therapy in phase I clinical trials. However, there is a lack of bioanalytical assays for ARV-110 determination in biological samples. In this study, we developed and validated an LC-MS/MS method for the quantitation of ARV-110 in rat and mouse plasma and applied it to pharmacokinetic studies. ARV-110 and pomalidomide (internal standard) were extracted from the plasma samples using the protein precipitation method. Sample separation was performed using a C18 column and a mobile phase of 0.1% formic acid in distilled water–0.1% formic acid in acetonitrile (30:70, v/v). Multiple reaction monitoring was used to quantify ARV-110 and pomalidomide with ion transitions at m/z 813.4 → 452.2 and 273.8 → 201.0, respectively. The developed method showed good linearity in the concentration range of 2–3000 ng/mL with acceptable accuracy, precision, matrix effect, process efficiency, and recovery. ARV-110 was stable in rat and mouse plasma under long-term storage, three freeze-thaw cycles, and in an autosampler, but unstable at room temperature and 37 °C. Furthermore, the elimination of ARV-110 via phase 1 metabolism in rat, mouse, and human hepatic microsomes was shown to be unlikely. Application of the developed method to pharmacokinetic studies revealed that the oral bioavailability of ARV-110 in rats and mice was moderate (23.83% and 37.89%, respectively). These pharmacokinetic findings are beneficial for future preclinical and clinical studies of ARV-110 and/or other PROTACs.
Collapse
Affiliation(s)
- Thi-Thao-Linh Nguyen
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea;
| | - Jin Woo Kim
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Korea; (J.W.K.); (H.-I.C.)
| | - Hae-In Choi
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Korea; (J.W.K.); (H.-I.C.)
| | - Han-Joo Maeng
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea;
- Correspondence: (H.-J.M.); (T.-S.K.); Tel.: +82-32-820-4935 (H.-J.M.); +82-42-821-8628 (T.-S.K.)
| | - Tae-Sung Koo
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Korea; (J.W.K.); (H.-I.C.)
- Correspondence: (H.-J.M.); (T.-S.K.); Tel.: +82-32-820-4935 (H.-J.M.); +82-42-821-8628 (T.-S.K.)
| |
Collapse
|
5
|
Effects of 1α,25-dihydroxyvitamin D3 on the pharmacokinetics and biodistribution of ergothioneine, an endogenous organic cation/carnitine transporter 1 substrate, in rats. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022; 52:341-351. [PMID: 35291466 PMCID: PMC8911105 DOI: 10.1007/s40005-022-00563-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/03/2022] [Indexed: 11/25/2022]
Abstract
Purpose This study aimed to investigate the effects of 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) on the expression levels of organic cation/carnitine transporter 1 (OCTN1) as well as the pharmacokinetics and biodistribution of ergothioneine, an OCTN1 substrate, in rats. Methods Rats pretreated with 1,25(OH)2D3 (2.56 nmol/kg/day) for four days were administered ergothioneine (2 mg/kg) intravenously. The expression levels of rat OCTN1 (rOCTN1) in organs were determined using real-time quantitative polymerase chain reaction. Ergothioneine levels in plasma, urine, and organs (with and without intravenous injection of exogenous ergothioneine) were determined using liquid chromatography-tandem mass spectrometry. Results 1,25(OH)2D3 pretreatment resulted in a significant decrease in rOCTN1 mRNA expression levels in the kidney and brain, a significant increase in basal plasma levels of ergothioneine (from 48 h), and a significant decrease in the tissue-plasma partition coefficient (Kp) in all tissues (except the heart and lungs) and the basal urine levels of ergothioneine. After intravenous administration, the pharmacokinetic profiles of ergothioneine were consistent with the basal levels of endogenous ergothioneine, with an increase in AUC∞ by 85%, a significant decrease in total clearance by 49%, and a decrease in Vss by 32% in 1,25(OH)2D3-treated rats. The Kp value and urinary recovery of ergothioneine also decreased in the 1,25(OH)2D3-treated group. Conclusion This study showed the effects of 1,25(OH)2D3 on the expression and function of rOCTN1 by investigating the interaction between 1,25(OH)2D3 and ergothioneine. Dose adjustment and possible changes in bioavailability should be considered before the co-administration of vitamin D or its active forms and OCTN1 substrates. Supplementary Information The online version contains supplementary material available at 10.1007/s40005-022-00563-1.
Collapse
|
6
|
Development and application of a physiologically based pharmacokinetic model for entrectinib in rats and scale-up to humans: Route-dependent gut wall metabolism. Biomed Pharmacother 2021; 146:112520. [PMID: 34902744 DOI: 10.1016/j.biopha.2021.112520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 11/21/2022] Open
Abstract
Entrectinib (Rozlytrek®) is an oral antineoplastic agent approved by the U.S. Food and Drug Administration in 2019 for the treatment of c-ros oncogene 1 (ROS1)-positive non-small cell lung cancer and neurotrophic tyrosine receptor kinase (NTRK) fusion-positive solid tumors. Although there have been a few studies on the pharmacokinetics of entrectinib, the relative contributions of several kinetic factors determining the oral bioavailability and systemic exposure of entrectinib are still worthy of investigation. Experimental data on the intestinal absorption and disposition of entrectinib in rats were acquired from studies on in vitro protein binding/tissue S9 metabolism, in situ intestinal perfusion, and in vivo dose-escalation/hepatic extraction. Using these datasets, an in-house whole-body physiologically based pharmacokinetic (PBPK) model incorporating the QGut model concepts and segregated blood flow in the gut was constructed and optimized with respect to drug-specific parameters. The established rat PBPK model was further extrapolated to humans through relevant physiological scale-up and parameter optimization processes. The optimized rat and human PBPK models adequately captured the impact of route-dependent gut metabolism on the systemic exposure to entrectinib and closely mirrored various preclinical and clinical observations. Our proposed PBPK model could be useful in optimizing dosage regimens and predicting drug interaction potential in various clinical conditions, after partial modification and validation.
Collapse
|
7
|
Lee C, Choi H, Park E, Nguyen T, Maeng H, Mee Lee K, Jun H, Shin D. Synthesis and anti-diabetic activity of novel biphenylsulfonamides as glucagon receptor antagonists. Chem Biol Drug Des 2021; 98:733-750. [PMID: 34310065 PMCID: PMC9291748 DOI: 10.1111/cbdd.13928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/24/2021] [Accepted: 07/10/2021] [Indexed: 11/27/2022]
Abstract
Type 2 diabetes is characterized by chronic hyperglycemia. Insulin, a hormone secreted from pancreatic β-cells, decreases blood glucose levels, and glucagon, a hormone secreted from pancreatic α-cells, increases blood glucose levels by counterregulation of insulin through stimulation of hepatic glucose production. In diabetic patients, dysregulation of glucagon secretion contributes to hyperglycemia. Thus, inhibition of the glucagon receptor is one strategy for the treatment of hyperglycemia in type 2 diabetes. In this paper, we report a series of biphenylsulfonamide derivatives that were designed, synthesized, and then evaluated by cAMP and hepatic glucose production assays as glucagon receptor antagonists. Of these, compound 7aB-3 decreased glucagon-induced cAMP production and glucagon-induced glucose production in the in vitro assays. Glucagon challenge tests and glucose tolerance tests showed that compound 7aB-3 significantly inhibited glucagon-induced glucose increases and improved glucose tolerance. These results suggest that compound 7aB-3 has therapeutic potential for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Chang‐Yong Lee
- College of PharmacyGachon Institute of Pharmaceutical ScienceGachon UniversityIncheonKorea
| | - Hojung Choi
- College of PharmacyGachon Institute of Pharmaceutical ScienceGachon UniversityIncheonKorea
- Lee Gil Ya Cancer and Diabetes InstituteGachon UniversityIncheonKorea
| | - Eun‐Young Park
- College of PharmacyMokpo National UniversityMuan‐gunJeollanam‐doKorea
| | - Thi‐Thao‐Linh Nguyen
- College of PharmacyGachon Institute of Pharmaceutical ScienceGachon UniversityIncheonKorea
| | - Han‐Joo Maeng
- College of PharmacyGachon Institute of Pharmaceutical ScienceGachon UniversityIncheonKorea
| | | | - Hee‐Sook Jun
- College of PharmacyGachon Institute of Pharmaceutical ScienceGachon UniversityIncheonKorea
- Lee Gil Ya Cancer and Diabetes InstituteGachon UniversityIncheonKorea
- Gachon Medical Research InstituteGil HospitalIncheonKorea
| | - Dongyun Shin
- College of PharmacyGachon Institute of Pharmaceutical ScienceGachon UniversityIncheonKorea
| |
Collapse
|
8
|
Bamfo NO, Hosey-Cojocari C, Benet LZ, Remsberg CM. Examination of Urinary Excretion of Unchanged Drug in Humans and Preclinical Animal Models: Increasing the Predictability of Poor Metabolism in Humans. Pharm Res 2021; 38:1139-1156. [PMID: 34254223 PMCID: PMC9855226 DOI: 10.1007/s11095-021-03076-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/19/2021] [Indexed: 01/24/2023]
Abstract
PURPOSE A dataset of fraction excreted unchanged in the urine (fe) values was developed and used to evaluate the ability of preclinical animal species to predict high urinary excretion, and corresponding poor metabolism, in humans. METHODS A literature review of fe values in rats, dogs, and monkeys was conducted for all Biopharmaceutics Drug Disposition Classification System (BDDCS) Class 3 and 4 drugs (n=352) and a set of Class 1 and 2 drugs (n=80). The final dataset consisted of 202 total fe values for 135 unique drugs. Human and animal data were compared through correlations, two-fold analysis, and binary classifications of high (fe ≥30%) versus low (<30%) urinary excretion in humans. Receiver Operating Characteristic curves were plotted to optimize animal fe thresholds. RESULTS Significant correlations were found between fe values for each animal species and human fe (p<0.05). Sixty-five percent of all fe values were within two-fold of human fe with animals more likely to underpredict human urinary excretion as opposed to overpredict. Dogs were the most reliable predictors of human fe of the three animal species examined with 72% of fe values within two-fold of human fe and the greatest accuracy in predicting human fe ≥30%. ROC determined thresholds of ≥25% in rats, ≥19% in dogs, and ≥10% in monkeys had improved accuracies in predicting human fe of ≥30%. CONCLUSIONS Drugs with high urinary excretion in animals are likely to have high urinary excretion in humans. Animal models tend to underpredict the urinary excretion of unchanged drug in humans.
Collapse
Affiliation(s)
- Nadia O Bamfo
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA
- Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Chelsea Hosey-Cojocari
- Division of Clinical Pharmacology, Toxicology, and Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, Missouri, USA
| | - Leslie Z Benet
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California, USA
| | - Connie M Remsberg
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA.
| |
Collapse
|
9
|
Doan TNK, Vo DK, Kim H, Balla A, Lee Y, Yoon IS, Maeng HJ. Differential Effects of 1α,25-Dihydroxyvitamin D 3 on the Expressions and Functions of Hepatic CYP and UGT Enzymes and Its Pharmacokinetic Consequences In Vivo. Pharmaceutics 2020; 12:pharmaceutics12111129. [PMID: 33238436 PMCID: PMC7700423 DOI: 10.3390/pharmaceutics12111129] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/19/2020] [Accepted: 11/21/2020] [Indexed: 12/17/2022] Open
Abstract
The compound 1α,25-Dihydroxyvitamin D3 (1,25(OH)2D3) is the active form of vitamin D3 and a representative ligand of the vitamin D receptor (VDR). Previous studies have described the impacts of 1,25(OH)2D3 on a small number of cytochrome P450 (CYP) and uridine diphosphate-glucuronyltransferase (UGT) enzymes, but comparatively little is known about interactions between several important CYP and UGT isoforms and 1,25(OH)2D3 in vitro and/or in vivo. Thus, we investigated the effects of 1,25(OH)2D3 on the gene and protein expressions and functional activities of selected CYPs and UGTs and their impacts on drug pharmacokinetics in rats. The mRNA/protein expressions of Cyp2b1 and Cyp2c11 were downregulated in rat liver by 1,25(OH)2D3. Consistently, the in vitro metabolic kinetics (Vmax and CLint) of BUP (bupropion; a Cyp2b1 substrate) and TOL (tolbutamide; a Cyp2c11 substrate) were significantly changed by 1,25(OH)2D3 treatment in liver microsomes, but the kinetics of acetaminophen (an Ugt1a6/1a7/1a8 substrate) remained unaffected, consistent with Western blotting data for Ugt1a6. In rat pharmacokinetic studies, the total body clearance (CL) and nonrenal clearance (CLNR) of BUP were significantly reduced by 1,25(OH)2D3, but unexpectedly, the total area under the plasma concentration versus time curve from time zero to infinity (AUC) of hydroxybupropion (HBUP) was increased probably due to a marked reduction in the renal clearance (CLR) of HBUP. Additionally, the AUC, CL, and CLNR for TOL and the AUC for 4-hydroxytolbutamide (HTOL) were unaffected by 1,25(OH)2D3 in vivo. Discrepancies between observed in vitro metabolic activity and in vivo pharmacokinetics of TOL were possibly due to a greater apparent distribution volume at the steady-state (Vss) and lower plasma protein binding in 1,25(OH)2D3-treated rats. Our results suggest possible drug-drug and drug-nutrient interactions and provide additional information concerning safe drug combinations and dosing regimens for patients taking VDR ligand drugs including 1,25(OH)2D3.
Collapse
Affiliation(s)
- Trang Nguyen Kieu Doan
- Department of Pharmacy, College of Pharmacy, Gachon University, Incheon 21936, Korea; (T.N.K.D.); (D.-K.V.); (A.B.)
| | - Dang-Khoa Vo
- Department of Pharmacy, College of Pharmacy, Gachon University, Incheon 21936, Korea; (T.N.K.D.); (D.-K.V.); (A.B.)
| | - Hyojung Kim
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (H.K.); (Y.L.)
| | - Anusha Balla
- Department of Pharmacy, College of Pharmacy, Gachon University, Incheon 21936, Korea; (T.N.K.D.); (D.-K.V.); (A.B.)
| | - Yunjong Lee
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (H.K.); (Y.L.)
| | - In-Soo Yoon
- Department of Manufacturing Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Korea
- Correspondence: (I.-S.Y.); (H.-J.M.); Tel.: +82-51-510-2806 (I.-S.Y.); +82-32-820-4935 (H.-J.M.)
| | - Han-Joo Maeng
- Department of Pharmacy, College of Pharmacy, Gachon University, Incheon 21936, Korea; (T.N.K.D.); (D.-K.V.); (A.B.)
- Correspondence: (I.-S.Y.); (H.-J.M.); Tel.: +82-51-510-2806 (I.-S.Y.); +82-32-820-4935 (H.-J.M.)
| |
Collapse
|
10
|
Seo SW, Park JW, Han DG, Kim JM, Kim S, Park T, Kang KH, Yang MH, Yoon IS. In Vitro and In Vivo Assessment of Metabolic Drug Interaction Potential of Dutasteride with Ketoconazole. Pharmaceutics 2019; 11:pharmaceutics11120673. [PMID: 31835695 PMCID: PMC6956158 DOI: 10.3390/pharmaceutics11120673] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 11/30/2019] [Accepted: 12/09/2019] [Indexed: 01/16/2023] Open
Abstract
Dutasteride (DUT) is a selective, potent, competitive, and irreversible inhibitor of both type-1 and type-2 5α-reductase (5AR) commonly used in the treatment of benign prostatic hyperplasia and androgenetic alopecia. In the present study, we developed a simple and sensitive high-performance liquid chromatography with fluorescence detection (HPLC-FL) method for simultaneous determination of DUT and its major active metabolite, 6β-hydroxydutasteride (H-DUT). Next, the pharmacokinetic interactions of DUT with ketoconazole (KET), a potent CYP3A inhibitor, were comprehensively investigated. In vivo rat intravenous and oral studies revealed that the pharmacokinetics of DUT and H-DUT were significantly altered by the co-administration of KET. Furthermore, the in vitro microsomal metabolism, blood distribution, and protein-binding studies suggest that the altered pharmacokinetics of DUT could be attributed primarily to the inhibition of the DUT metabolism by KET. To the best of our knowledge, this is the first study to show the drug interaction potential of DUT with azole antifungal drugs including KET, together with a newly developed HPLC-FL method for the simultaneous quantification of DUT and H-DUT.
Collapse
Affiliation(s)
- Seong-Wook Seo
- College of Pharmacy, Pusan National University, Busan 46241, Korea; (S.-W.S.); (D.-G.H.); (J.-M.K.)
| | - Jin Woo Park
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Jeonnam 58554, Korea;
| | - Dong-Gyun Han
- College of Pharmacy, Pusan National University, Busan 46241, Korea; (S.-W.S.); (D.-G.H.); (J.-M.K.)
| | - Ji-Min Kim
- College of Pharmacy, Pusan National University, Busan 46241, Korea; (S.-W.S.); (D.-G.H.); (J.-M.K.)
| | - Sanghyun Kim
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea; (S.K.); (T.P.)
| | - Taeuk Park
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea; (S.K.); (T.P.)
| | - Kyung-Hwa Kang
- Department of Physiology, College of Korean Medicine, Dongeui University, Busan 47227, Korea
- Correspondence: (K.-H.K.); (M.H.Y.); (I.-S.Y.)
| | - Min Hye Yang
- College of Pharmacy, Pusan National University, Busan 46241, Korea; (S.-W.S.); (D.-G.H.); (J.-M.K.)
- Correspondence: (K.-H.K.); (M.H.Y.); (I.-S.Y.)
| | - In-Soo Yoon
- College of Pharmacy, Pusan National University, Busan 46241, Korea; (S.-W.S.); (D.-G.H.); (J.-M.K.)
- Correspondence: (K.-H.K.); (M.H.Y.); (I.-S.Y.)
| |
Collapse
|