1
|
Patel SS, Bains A, Sharma M, Kumar A, Stephen Inbaraj B, Chawla P, Sridhar K. Recent Trends in Advanced Glycation End Products in Foods: Formation, Toxicity, and Innovative Strategies for Extraction, Detection, and Inhibition. Foods 2024; 13:4045. [PMID: 39766986 PMCID: PMC11727416 DOI: 10.3390/foods13244045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 01/15/2025] Open
Abstract
Advanced glycation end products (AGEs) are produced in foods during their thermal treatment through routes like the Maillard reaction. They have been linked to various health issues such as diabetes, neurodegenerative disorders, and cardiovascular diseases. There are multiple pathways through which AGEs can form in foods and the body. Therefore, this review work aims to explore multiple formation pathways of AGEs to gain insights into their generation mechanisms. Furthermore, this review work has analyzed the recent trends in the detection and inhibition of AGEs in food matrices. It can be highlighted, based on the surveyed literature, that UHPLC-Orbitrap-Q-Exactive-MS and UPLC-ESI-MS/MS can produce highly sensitive results with a low limit of detection levels for AGEs in food matrices. Moreover, various works on inhibitory agents like spices, herbs, fruits, vegetables, hydrocolloids, plasma-activated water, and probiotic bacteria were assessed for their capacity to suppress the formation of AGEs in food products and simulation models. Overall, it is essential to decrease the occurrence of AGEs in food products, and future scope might include studying the interaction of macromolecular components in food products to minimize the production of AGEs without sacrificing the organoleptic qualities of processed foods.
Collapse
Affiliation(s)
- Shubham Singh Patel
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Minaxi Sharma
- Research Centre for Life Science and Healthcare, Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute (CBI), University of Nottingham Ningbo China, Ningbo 315100, China
| | - Ankur Kumar
- Department of Interdisciplinary Sciences, National Institute of Food Technology Entrepreneurship and Management, Sonipat 131028, Haryana, India
| | | | - Prince Chawla
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, Tamil Nadu, India
| |
Collapse
|
2
|
Seryogina ES, Kamynina AV, Koroev DO, Volpina OM, Vinokurov AY, Abramov AY. RAGE induces physiological activation of NADPH oxidase in neurons and astrocytes and neuroprotection. FEBS J 2024; 291:1944-1957. [PMID: 38335056 DOI: 10.1111/febs.17086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/08/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
The transmembrane receptor for advanced glycation end products (RAGE) is a signaling receptor for many damage- and pathogen-associated molecules. Activation of RAGE is associated with inflammation and an increase in reactive oxygen species (ROS) production. Although several sources of ROS have been previously suggested, how RAGE induces ROS production is still unclear, considering the multiple targets of pathogen-associated molecules. Here, using acute brain slices and primary co-culture of cortical neurons and astrocytes, we investigated the effects of a range of synthetic peptides corresponding to the fragments of the RAGE V-domain on redox signaling. We found that the synthetic fragment (60-76) of the RAGE V-domain induces activation of ROS production in astrocytes and neurons from the primary co-culture and acute brain slices. This effect occurred through activation of RAGE and could be blocked by a RAGE inhibitor. Activation of RAGE by the synthetic fragment stimulates ROS production in NADPH oxidase (NOX). This RAGE-induced NOX activation produced only minor decreases in glutathione levels and increased the rate of lipid peroxidation, although it also reduced basal and β-amyloid induced cell death in neurons and astrocytes. Thus, specific activation of RAGE induces redox signaling through NOX, which can be a part of a cell protective mechanism.
Collapse
Affiliation(s)
| | - Anna V Kamynina
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry O Koroev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Olga M Volpina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | | - Andrey Y Abramov
- Orel State University, Russia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
3
|
Xie H, Yu Y, Yang Y, Sun Q, Li ZY, Ni MH, Li SN, Dai P, Cui YY, Cao XY, Jiang N, Du LJ, Gao W, Bi JJ, Yan LF, Cui GB. Commonalities and distinctions between the type 2 diabetes mellitus and Alzheimer's disease: a systematic review and multimodal neuroimaging meta-analysis. Front Neurosci 2023; 17:1301778. [PMID: 38125399 PMCID: PMC10731270 DOI: 10.3389/fnins.2023.1301778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Background Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM) are aging related diseases with high incidence. Because of the correlation of incidence rate and some possible mechanisms of comorbidity, the two diseases have been studied in combination by many researchers, and even some scholars call AD type 3 diabetes. But the relationship between the two is still controversial. Methods This study used seed-based d mapping software to conduct a meta-analysis of the whole brain resting state functional magnetic resonance imaging (rs-fMRI) study, exploring the differences in amplitude low-frequency fluctuation (ALFF) and cerebral blood flow (CBF) between patients (AD or T2DM) and healthy controls (HCs), and searching for neuroimaging evidence that can explain the relationship between the two diseases. Results The final study included 22 datasets of ALFF and 22 datasets of CBF. The results of T2DM group showed that ALFF increased in both cerebellum and left inferior temporal gyrus regions, but decreased in left middle occipital gyrus, right inferior occipital gyrus, and left anterior central gyrus regions. In the T2DM group, CBF increased in the right supplementary motor area, while decreased in the middle occipital gyrus and inferior parietal gyrus. The results of the AD group showed that the ALFF increased in the right cerebellum, right hippocampus, and right striatum, while decreased in the precuneus gyrus and right superior temporal gyrus. In the AD group, CBF in the anterior precuneus gyrus and inferior parietal gyrus decreased. Multimodal analysis within a disease showed that ALFF and CBF both decreased in the occipital lobe of the T2DM group and in the precuneus and parietal lobe of the AD group. In addition, there was a common decrease of CBF in the right middle occipital gyrus in both groups. Conclusion Based on neuroimaging evidence, we believe that T2DM and AD are two diseases with their respective characteristics of central nervous activity and cerebral perfusion. The changes in CBF between the two diseases partially overlap, which is consistent with their respective clinical characteristics and also indicates a close relationship between them. Systematic review registration PROSPERO [CRD42022370014].
Collapse
Affiliation(s)
- Hao Xie
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Ying Yu
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Yang Yang
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Qian Sun
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Ze-Yang Li
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Min-Hua Ni
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Si-Ning Li
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
- Faculty of Medical Technology, Xi’an Medical University, Xi’an, Shaanxi, China
| | - Pan Dai
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
- Faculty of Medical Technology, Xi’an Medical University, Xi’an, Shaanxi, China
| | - Yan-Yan Cui
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
- Faculty of Medical Technology, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Xin-Yu Cao
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
- Faculty of Medical Technology, Medical School of Yan’an University, Yan’an, Shaanxi, China
| | - Nan Jiang
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Li-Juan Du
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Wen Gao
- Student Brigade, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Jia-Jun Bi
- Student Brigade, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Lin-Feng Yan
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| | - Guang-Bin Cui
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, Shaanxi, China
| |
Collapse
|
4
|
Zhang Y, Zhan L, Wen Q, Feng Y, Luo Y, Tan T. Trapping Methylglyoxal by Taxifolin and Its Metabolites in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5026-5038. [PMID: 35420027 DOI: 10.1021/acs.jafc.2c02189] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Trapping of methylglyoxal (MGO), an important precursor of advanced glycation end products (AGEs), is considered an effective therapy for alleviating AGE-induced chronic metabolic diseases. In this paper, taxifolin (Tax) was first found to effectively trap MGO by forming mono- and di-MGO adducts under in vitro conditions. In addition, the mechanism of trapping MGO by Tax was also studied in vivo. Tax was demonstrated to efficiently trap endogenous MGO via formation of mono-MGO adducts in urine and fecal samples of C57BL/6J mice after oral administration of Tax and MGO. Mono-MGO adducts of Tax metabolites, including methylated Tax, aromadendrin, quercetin, and isorhamnetin, were identified in C57BL/6J mice urine and fecal samples by ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight tandem mass spectrometry (UHPLC-QTOF-MS/MS). One mono-MGO-Tax was purified from the in vitro reaction mixture, and its structure was elucidated as 6-MGO-Tax based on the analysis of UHPLC-QTOF-MS/MS and detailed nuclear magnetic resonance (NMR) data. Quantification studies demonstrated that Tax and its metabolites trapped MGO in a dose-dependent manner in C57BL/6J mice urine and fecal samples. Furthermore, we also detected mono-MGO adducts of Tax and methylated Tax in urine and fecal samples of diabetic db/db mice after oral administration of Tax. Taken together, our results demonstrated that dietary Tax has the potential to detoxify MGO and treat AGE-associated chronic diseases.
Collapse
Affiliation(s)
- Yiming Zhang
- The National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Yangming Road 56, Nanchang 330006, Jiangxi, China
| | - Lanlan Zhan
- The National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Yangming Road 56, Nanchang 330006, Jiangxi, China
| | - Quan Wen
- The National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Yangming Road 56, Nanchang 330006, Jiangxi, China
| | - Yulin Feng
- The National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Yangming Road 56, Nanchang 330006, Jiangxi, China
| | - Yun Luo
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Meiling Road 1688, Nanchang 330004, China
| | - Ting Tan
- The National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Yangming Road 56, Nanchang 330006, Jiangxi, China
| |
Collapse
|