1
|
Aboulthana WM, El-Feky AM, Ibrahim NES, Soliman AAF, Youssef AM. Phytochemical analysis and biological study on Sinapis alba L. seeds extract incorporated with metal nanoparticles, in vitro approach. Sci Rep 2025; 15:13782. [PMID: 40258907 PMCID: PMC12012182 DOI: 10.1038/s41598-025-95347-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/20/2025] [Indexed: 04/23/2025] Open
Abstract
White mustard (Sinapis alba L.) seeds are the most commonly used mustard species in herbal medicine to treat a wide range of inflammatory disorders. Due to its increased bioavailability and lower toxicity, the green biosynthesis of metal nanoparticles (M-NPs) utilizing plant extract as a capping agent has been demonstrated over a number of years. Thus, the current study sought to examine the in vitro biological activity of copper oxide nanoparticles (CuO-NPs) and selenium nanoparticles (Se-NPs) that were biosynthesized using aqueous, methanolic, and petroleum ether extracts from S. alba seeds. Phytochemical and in vitro biological activities (antioxidant, scavenging, anti-diabetic, anti-acetylcholinesterase, anti-arthritic, anti-inflammatory, and cytotoxic activities) were assayed in all prepared extracts before and after being used for the biosynthesis of the M-NPs. It was found that the total methanolic extract possessed the highest biological activities compared to other native extracts. The LC-ESI-MS/MS analysis of secondary metabolites showed that the total methanolic extract contained 7 phenolic acids and 9 flavonoid aglycones. This helped find the active ingredients. We characterized 8 phenolic acid derivatives, 7 flavonoid glycosides, 4 aliphatic glucosinolates, and 3 aromatic aryl glucosinolates in the aqueous extract. Furthermore, the methanolic extract contains the highest concentrations of total polyphenols, condensed tannins, and total flavonoid compounds. The biosynthesized Se-NPs using methanolic extract showed higher in vitro biological activities compared to those of the biosynthesized CuO-NPs. The median lethal dose (LD50) showed that the biosynthesized Se-NPs using the studied extracts appeared safer compared to those of the biosynthesized CuO-NPs. The findings of this study concluded that the total methanolic extract is the most suitable bioresource for biosynthesizing Se-NPs through green nanotechnology, with higher biological efficiency in relation to its metabolite fingerprint.
Collapse
Affiliation(s)
- Wael Mahmoud Aboulthana
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), P.O. 12622, Dokki, Giza, Egypt.
| | - Amal M El-Feky
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), P.O. 12622, Dokki, Giza, Egypt
| | - Noha El-Sayed Ibrahim
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), P.O. 12622, Dokki, Giza, Egypt
| | - Ahmed A F Soliman
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), P.O. 12622, Dokki, Giza, Egypt
| | - Ahmed Mahmoud Youssef
- Packaging Materials Department, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), P.O. 12622, Dokki, Giza, Egypt
| |
Collapse
|
2
|
Wu W, An J, Lan W, Chen H, Fei Q, Xu S, Yin R, Yang LL, Yang S. Design, synthesis, molecular docking and antimicrobial evaluation of benzoylurea derivatives containing difluoromethyl (trifluoromethyl) pyrimidine. PEST MANAGEMENT SCIENCE 2025; 81:1804-1816. [PMID: 39673224 DOI: 10.1002/ps.8593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 12/16/2024]
Abstract
BACKGROUND The reduction in agricultural product quality and yield caused by fungal and bacterial plant diseases has led to considerable economic losses in global crop production and poses a threat to human health. The primary method of control remains the use of chemical agents. In an effort to develop novel and highly effective antimicrobial agents, a series of benzoylurea derivatives incorporating a difluoromethyl (trifluoromethyl) pyrimidine structure were designed and synthesized. RESULTS In this study, we designed and synthesized a series of novel benzoylurea derivatives containing difluoromethyl (trifluoromethyl) pyrimidine fragments. Several of the synthesized compounds exhibited notable antifungal activity in vitro against PS, CBC, BBC and TBC. Their efficacy surpassed that of the positive controls HM and Pyr. Notably, 6s demonstrated an EC50 value of 4.10 μg mL-1, significantly lower than the 31.25 μg mL-1 for Pyr. In antibacterial assays, 6s also showed an 87.49% inhibition rate against Xoc. Moreover, in vivo tests against CBC revealed a protective efficacy of 59.39% at a concentration of 25 μg mL-1. Molecular docking simulations further supported its strong activity. To explore the mechanism of action of 6s on CBC, we conducted scanning electron microscopy, succinate dehydrogenase enzyme assays, and measurements of dry weight, membrane permeability, cellular contents, and ROS. CONCLUSION This study underscores the potential of benzoylurea derivatives containing difluoromethyl (trifluoromethyl) pyrimidine fragments as lead compounds for the management of CBC. The results offer important insights and pave the way for the development of novel fungicides, contributing to improved crop protection strategies in agriculture. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenneng Wu
- Food Science and Engineering Institute, College of Materials Science and Engineering, Guizhou Engineering Research Center for Characteristic Flavor Perception and Quality Control of Drug-Food Homologous Resources, Guiyang University, Guiyang, P. R. China
| | - Jiansong An
- Food Science and Engineering Institute, College of Materials Science and Engineering, Guizhou Engineering Research Center for Characteristic Flavor Perception and Quality Control of Drug-Food Homologous Resources, Guiyang University, Guiyang, P. R. China
| | - Wenjun Lan
- Food Science and Engineering Institute, College of Materials Science and Engineering, Guizhou Engineering Research Center for Characteristic Flavor Perception and Quality Control of Drug-Food Homologous Resources, Guiyang University, Guiyang, P. R. China
| | - Haijiang Chen
- Food Science and Engineering Institute, College of Materials Science and Engineering, Guizhou Engineering Research Center for Characteristic Flavor Perception and Quality Control of Drug-Food Homologous Resources, Guiyang University, Guiyang, P. R. China
| | - Qiang Fei
- Food Science and Engineering Institute, College of Materials Science and Engineering, Guizhou Engineering Research Center for Characteristic Flavor Perception and Quality Control of Drug-Food Homologous Resources, Guiyang University, Guiyang, P. R. China
| | - Su Xu
- Food Science and Engineering Institute, College of Materials Science and Engineering, Guizhou Engineering Research Center for Characteristic Flavor Perception and Quality Control of Drug-Food Homologous Resources, Guiyang University, Guiyang, P. R. China
| | - Rongxiu Yin
- Tea Research Institute, Guizhou Provincial Academy of Agricultural Sciences, Guiyang, China
| | - Lin-Lin Yang
- Food Science and Engineering Institute, College of Materials Science and Engineering, Guizhou Engineering Research Center for Characteristic Flavor Perception and Quality Control of Drug-Food Homologous Resources, Guiyang University, Guiyang, P. R. China
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Song Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| |
Collapse
|
3
|
Liu YL, Zhang Q, Li BQ, Zhang D, Chui RH, Zhang LL, Zhang Q, Ma LY. Progress in the study of anti-Alzheimer's disease activity of pyrimidine-containing bioactive molecules. Eur J Med Chem 2025; 285:117199. [PMID: 39799720 DOI: 10.1016/j.ejmech.2024.117199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/29/2024] [Accepted: 12/19/2024] [Indexed: 01/15/2025]
Abstract
Pyrimidines are aromatic, heterocyclic organic compounds characterized by a six-membered ring that contains four carbon atoms and two nitrogen atoms. They have been reported to exhibit a variety of biological activities such as antifungal, antiviral, and anti-Parkinsonian effects. Recently, there has been an increased focus on their potential anti-Alzheimer's properties. Several pyrimidine-based drugs and their analogs are currently undergoing various phases of clinical trials, indicating pyrimidine as a promising chemical structure for drug development. Notably, modifications to the pyrimidine structure significantly influence their activity against Alzheimer's disease. For instance, the introduction of heteroatoms into the pyrimidine ring or alternations in the length of the linkage region have been shown to enhance therapeutic efficacy. This review provides a comprehensive overview of pyrimidine derivatives as potential therapeutics for Alzheimer's disease, with a focus on structure-activity relationship (SAR) studies, design strategies, and binding mechanisms. These insights could pave the way for the development of more effective anti-Alzheimer's medications.
Collapse
Affiliation(s)
- Yu-Lin Liu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Qian Zhang
- Jining First People's Hospital, Jining, 272000, PR China
| | - Bing-Qian Li
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Di Zhang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Rui-Hao Chui
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Lin-Lin Zhang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Qi Zhang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450002, PR China.
| | - Li-Ying Ma
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; China Meheco Topfond Pharmaceutical Co., Key Laboratory of Cardio-cerebrovascular Drug, Zhumadian, 463000, PR China.
| |
Collapse
|
4
|
Roney M, Huq AKMM, Rullah K, Zamri NB, Mohd Aluwi MFF. Curcumin, a bioactive compound of Turmeric (Curcuma longa) and its derivatives as α-amylase and α-glucosidase inhibitors. Cell Biochem Biophys 2025; 83:53-71. [PMID: 39112903 DOI: 10.1007/s12013-024-01477-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2024] [Indexed: 03/03/2025]
Abstract
Diabetes mellitus (DM) is a long-term metabolic disease characterised by a controlled metabolism of fat, carbohydrates, and proteins. In recent decades, it has grown into a significant global public health issue. According to the International Diabetes Federation, there were 425 million DM globally in 2017, and the number might be increased to 629 million by 2045 (a global 48% increase). Approximately 4.2 million deaths globally attributed to DM occur before the age of 60. The existing class of anti-diabetic medications is limited by side effects, which has led to the hunt for novel inhibitors that specifically target the α-amylase and α-glucosidase enzymes. Curcumin is a small-molecular-weight compound found in the roots of the Curcuma longa L (C. longa). plant, which has been used for culinary, medicinal, and other purposes throughout Asia for thousands of years. Curcumin has potent anti-inflammatory, anti-cancer, anti-angiogenic, antispasmodic, antibacterial, and anti-parasitic qualities. Even though the potential of curcumin to cure DM has been well investigated, its low solubility, rapid metabolism, and short plasma half-life have limited its application in DM. Therefore, the objectives of this review were to review the chemical composition of C. longa, the structure of curcumin, the degradation of curcumin, and the effects of curcumin derivatives on anti-diabetic properties against α-amylase and α-glucosidase enzymes. The results showed that C. longa contains carbohydrates, moisture, protein, fat, minerals, volatiles, fibre, and curcuminoids. Among the curcuminoids, curcumin is 60-70% present in C. longa. Moreover, curcumin and its derivatives have a lot of potential for treating DM, which was highlighted in this review. This review emphasises the several biological applications of curcumin, which collectively establish the foundation for its anti-diabetic characteristics. Considering these results, curcumin derivatives may be considered as potential agents in the pharmacotherapeutic management of patients with DM.
Collapse
Affiliation(s)
- Miah Roney
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang Darul Makmur, Malaysia
- Centre for Bio-aromatic Research, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang Darul Makmur, Malaysia
| | - A K M Moyeenul Huq
- Centre for Drug and Herbal Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kualalampu, 5300, Malaysia
| | - Kamal Rullah
- Drug Discovery and Synthetic Chemistry Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Bandar Indera Mahkota, 25200, Kuantan, Pahang, Malaysia
| | - Normaiza Binti Zamri
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang Darul Makmur, Malaysia
| | - Mohd Fadhlizil Fasihi Mohd Aluwi
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang Darul Makmur, Malaysia.
- Centre for Bio-aromatic Research, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang Darul Makmur, Malaysia.
| |
Collapse
|
5
|
Bhoomandla S, Chennuri BK, Sirisha S, Ganji S, Trivedi R, Karunasri A, Pandiri S. Design, Synthesis of Flurbiprofen Based 1,3,4-Oxadiazoles and Constrained Anticancer, Antioxidant Agents: In silico Docking Analysis. Chem Biodivers 2025; 22:e202401313. [PMID: 39365710 DOI: 10.1002/cbdv.202401313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/06/2024]
Abstract
Flurbiprofen, a primary component of a nonsteroidal anti-inflammatory drug (NSAID) used to relieve symptoms of arthritis, and is a considerable interest in medicinal chemistry due to its demonstrated potential as an effective agent in various therapeutic applications. In consideration of the 1,3,4-oxadiazole therapeutic potential and anticancer activity, a new series of flurbiprofen scaffolds have been prepared through a straightforward reaction between 5-(1-(2-fluoro-[1,1'-biphenyl]-4-yl)ethyl)-1,3,4-oxadiazole-2-thiol (4) and various organic active 2-chloro-N-phenyl acetamides (5). The synthesized series (6a-6k) was characterized using a combination of spectroscopic techniques, including FT-IR, mass, 1H-NMR, and 13C NMR, followed by physical data. The cytotoxicity of the newly synthesized congeners was investigated against MCF-7 (human breast cancer cell line) and A-549 (human lung carcinoma epithelial) cell lines and anti-inflammatory activity as DPPH and H2O2 radical scavenging ability. In the series, analogues 6c, 6e, 6h, and 6k showed excellent inhibitory activity against MCF-7 cells in the range of IC50 values of 9.10-13.67 μg mL-1 compared to DXN (IC50=9.24 μg mL-1). In this series, analogues 6c, 6f, 6h, and 6j show remarkable H2O2 radical scavenging inhibition IC50 of 48.25±0.21, 47.33±0.15, 51.10±0.25, and 44.40±0.07 μM by using ascorbic acid as a standard, whose IC50 is 49.90±0.27 μM. According to the docking results, the most potent cytotoxic compounds have a stronger binding affinity with the Flurbiprofen complex (PDB: 1R9O) because of their interactions with residues such as Arg416(A), Trp103(A), Phe97(A), Gly279(A), Ile188(A), Glu283(A), Thr287(A), Val462(A), Phe459(A), Leu345(A), Ile417(A), and Cys418(A). Furthermore, in silico drug-likeness prediction analysis suggested that the majority of the synthesized compounds exhibit good oral bioavailability based on their Lipinski's Rule of Five and toxicity using ADME/Tox predictions.
Collapse
Affiliation(s)
- Srinu Bhoomandla
- Department of Chemistry, Geethanjali College of Engineering and Technology, Cheeryal, Keesara, Medchal, Telanagana, 501301, India
- Department of Chemistry, School of Science, GITAM (Deemed to be University), Hyderabad, Telangana, 502329, India
| | - Bharath Kumar Chennuri
- Department of Chemistry, BVRIT Hyderabad College of Engineering for Women, Bachupally, Hyderabad, Telangana, 500090, India
| | - Surapaneni Sirisha
- Department of Chemistry, Gitam School of Science, Gitam University (Deemed to be University), Bengaluru Campus, Karnataka, 561203, India
- Department of Chemistry-H & S, CMRTC, Kandlakoya, Hyderabad, Telangana, 501401, India
| | - Saidulu Ganji
- Department of Chemistry, Chaitanya Bharathi Institute of Technology (A), Hyderabad, Telangana, 500075, India
| | - Rashmi Trivedi
- Department of Chemistry, Nalla Narsimha Reddy Education Society's Group of Institutions, Hyderabad, Telangana, India
| | - Ananthoju Karunasri
- Department of Chemistry, Mallareddy College of Engineering, Maisammaguda, Telangana, 500100, India
| | - Sreedhar Pandiri
- Department of Chemistry, Geethanjali College of Engineering and Technology, Cheeryal, Keesara, Medchal, Telanagana, 501301, India
- Department of Chemistry, Osmania University, Tarnaka, Hyderabad, Telangana, 500007, India
| |
Collapse
|
6
|
Hegazi NM, El Shabrawy M, Aboulthana WM, Ragheb AY, Ibrahim LF, Marzouk MM. UPLC-HRMS/MS Guided Isolation and NMR Investigation of Major Flavonoids from Enarthrocarpus strangulatus Boissier (Brassicaceae) with In Vitro Enzymes Inhibitory Potential. Chem Biodivers 2025; 22:e202401402. [PMID: 39370397 DOI: 10.1002/cbdv.202401402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/02/2024] [Accepted: 10/05/2024] [Indexed: 10/08/2024]
Abstract
Various members of the family Brassicaceae are economically important and traditionally used to treat many disorders. Among the family members, Enarthrocarpus strangulatus Boissier is a common Egyptian species that was rarely studied. Consequently, the current study aims to characterize its phytochemical composition and assess its potential bioactivity comprehensively. A metabolomics approach integrating UPLC-HRMS/MS-based molecular networking enabled the dereplication of 91 metabolites, including primary (i. e. organic acids, amino acids, fatty acids, and phospholipids) and secondary metabolites (i. e. glucosinolates, phenolic acids, and flavonoids). Among the 91 annotated features, 13 major metabolites were fully characterized following their isolation and purification. Exclusive of only three flavonoids, all the detected metabolites are described for the first time within this species. Furthermore, the crude extract and four major isolated flavonoids were subjected to in vitro biological screening, including antioxidant, radical scavenging, anti-diabetic, anti-Alzheimer's, and anti-inflammatory activities. It was noticed that nobiletin (61) exhibited the highest antioxidant and anti-Alzheimer's activities. At the same time, isorhamnetin 3-O-glucose (51) showed the highest anti-diabetic activity compared to the other isolated flavonoids and the total extract itself. Regarding the anti-inflammatory activity, no obvious differences were detected numerically among all studied flavonoids.
Collapse
Affiliation(s)
- Nesrine M Hegazi
- Phytochemistry and Plant Systematics Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), Dokki, Giza, 12622, Egypt
| | - Mona El Shabrawy
- Phytochemistry and Plant Systematics Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), Dokki, Giza, 12622, Egypt
| | - Wael M Aboulthana
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), Dokki, Giza, 12622, Egypt
| | - Alia Y Ragheb
- Phytochemistry and Plant Systematics Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), Dokki, Giza, 12622, Egypt
- Pharmacognosy Department, Faculty of Pharmacy, Sadat City University, Sadat City, 32897, Egypt
| | - Lamiaa F Ibrahim
- Phytochemistry and Plant Systematics Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), Dokki, Giza, 12622, Egypt
- Pharmacognosy Department, Faculty of Pharmacy, Sinai University-Kantara Branch, Ismailia, 41636, Egypt
| | - Mona M Marzouk
- Phytochemistry and Plant Systematics Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), Dokki, Giza, 12622, Egypt
| |
Collapse
|
7
|
Almehizia AA, Naglah AM, Aljafen SS, Hassan AS, Aboulthana WM. Assessment of the In Vitro Biological Activities of Schiff Base-Synthesized Copper Oxide Nanoparticles as an Anti-Diabetic, Anti-Alzheimer, and Anti-Cancer Agent. Pharmaceutics 2025; 17:180. [PMID: 40006547 PMCID: PMC11859031 DOI: 10.3390/pharmaceutics17020180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/19/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Numerous diseases such as diabetes, Alzheimer's disease, and cancer have spread in the whole world, especially in the Arab world. Also, various applications of Schiff-base functionalized nanoparticles and copper oxide nanoparticles (CuO-NPs) such as therapeutic applications have been discovered. Thus, the current research highlights (i) the synthesis of copper oxide nanoparticles (CuO-NPs) produced with a Schiff base (SB) serving as a capping agent during their synthesis and (ii) assessment of the in vitro biological activities of Schiff base-synthesized copper oxide nanoparticles (SB-CuO-NPs) and a Schiff base (SB). Methods: SB-CuO-NPs were characterized using ultraviolet-visible (UV-Vis) spectroscopy, zeta potential, DLS analysis, and transmission electron microscope (TEM). It also focuses on assessing the in vitro biological applications and activities, including antioxidant, scavenging, anti-diabetic, anti-Alzheimer, anti-arthritic, anti-inflammatory, cytotoxic activities, and enzymes inhibitory potential, of Schiff base-synthesized copper oxide nanoparticles (SB-CuO-NPs) and a Schiff base (SB) using methods described in the literature. Results: The results of the biological activities of the SB-CuO-NPs were compared with those of the SB. The SB-CuO-NPs demonstrated superior in vitro biological activities when compared to the SB from which they were produced. Conclusions: The results of this investigation concluded that the CuO-NPs, synthesized with the SB serving as an alternative capping agent, exhibited enhanced biological efficacy relative to the original SB. In the future, the biological efficiency of SB-CuO-NPs against diabetes, Alzheimer's, and cancer diseases will be assessed in experimental animals (in vivo).
Collapse
Affiliation(s)
- Abdulrahman A. Almehizia
- Drug Exploration and Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (A.A.A.); (S.S.A.)
| | - Ahmed M. Naglah
- Drug Exploration and Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (A.A.A.); (S.S.A.)
| | - Sadeem S. Aljafen
- Drug Exploration and Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (A.A.A.); (S.S.A.)
| | - Ashraf S. Hassan
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Wael M. Aboulthana
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Dokki, Cairo 12622, Egypt;
| |
Collapse
|
8
|
Iorkula TH, Jude-Kelly Osayawe O, Odogwu DA, Ganiyu LO, Faderin E, Awoyemi RF, Akodu BO, Ifijen IH, Aworinde OR, Agyemang P, Onyinyechi OL. Advances in pyrazolo[1,5- a]pyrimidines: synthesis and their role as protein kinase inhibitors in cancer treatment. RSC Adv 2025; 15:3756-3828. [PMID: 39911541 PMCID: PMC11795850 DOI: 10.1039/d4ra07556k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/30/2024] [Indexed: 02/07/2025] Open
Abstract
Pyrazolo[1,5-a]pyrimidines are a notable class of heterocyclic compounds with potent protein kinase inhibitor (PKI) activity, playing a critical role in targeted cancer therapy. Protein kinases, key regulators in cellular signalling, are frequently disrupted in cancers, making them important targets for small-molecule inhibitors. This review explores recent advances in pyrazolo[1,5-a]pyrimidine synthesis and their application as PKIs, with emphasis on inhibiting kinases such as CK2, EGFR, B-Raf, MEK, PDE4, BCL6, DRAK1, CDK1 and CDK2, Pim-1, among others. Several synthetic strategies have been developed for the efficient synthesis of pyrazolo[1,5-a]pyrimidines, including cyclization, condensation, three-component reactions, microwave-assisted methods, and green chemistry approaches. Palladium-catalyzed cross-coupling and click chemistry have enabled the introduction of diverse functional groups, enhancing the biological activity and structural diversity of these compounds. Structure-activity relationship (SAR) studies highlight the influence of substituent patterns on their pharmacological properties. Pyrazolo[1,5-a]pyrimidines act as ATP-competitive and allosteric inhibitors of protein kinases, with EGFR-targeting derivatives showing promise in non-small cell lung cancer (NSCLC) treatment. Their inhibitory effects on B-Raf and MEK kinases are particularly relevant in melanoma. Biological evaluations, including in vitro and in vivo studies, have demonstrated their cytotoxicity, kinase selectivity, and antiproliferative effects. Despite these advances, challenges such as drug resistance, off-target effects, and toxicity persist. Future research will focus on optimizing synthetic approaches, improving drug selectivity, and enhancing bioavailability to increase clinical efficacy.
Collapse
Affiliation(s)
- Terungwa H Iorkula
- Department of Chemistry and Biochemistry, Brigham Young University Provo Utah USA
| | | | - Daniel A Odogwu
- Department of Chemistry and Biochemistry, Brigham Young University Provo Utah USA
| | | | - Emmanuel Faderin
- Department of Pharmaceutical Sciences, Southern Illinois University 1Harirpin Dr Edwardsville IL 62026 USA
| | | | - Busayo Odunayo Akodu
- Department of Pharmaceutical Sciences, Southern Illinois University 1Harirpin Dr Edwardsville IL 62026 USA
| | | | | | - Peter Agyemang
- Department of Chemistry, Michigan Technological University 1400 Townsend Dr Houghton MI 49931 USA
| | | |
Collapse
|
9
|
Odeh DM, Odeh MM, Hafez TS, Hassan AS. Bioactive Fused Pyrazoles Inspired by the Adaptability of 5-Aminopyrazole Derivatives: Recent Review. Molecules 2025; 30:366. [PMID: 39860235 PMCID: PMC11767260 DOI: 10.3390/molecules30020366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Heterocyclic compounds, especially those containing the pyrazole moiety, are highly significant in organic chemistry and possess remarkable and diverse biological properties. The 5-aminopyrazole derivatives are key starting materials for the synthesis of numerous bioactive compounds such as pyrazolopyridine, pyrazolopyrimidine, pyrazoloquinazoline, and pyrazolotriazine derivatives. Many compounds inspired by the 5-aminopyrazole derivatives possess a wide spectrum of biological activities and medicinal applications such as antioxidants, anticancer agents, enzyme inhibitors, antimicrobials, and anti-tuberculosis activities. This review summarizes the recently reported synthesis methods and biological activities of fused pyrazole and pyrazole-based derivatives based on 5-aminopyrazole compounds within the last 5 years (2020 to present). One of the important goals of this review is to illustrate future strategies for the design, development, and utilization of pyrazole products as potent drugs.
Collapse
Affiliation(s)
- Dana M. Odeh
- Department of Pharmacy, Faculty of Pharmacy, Jadara University, P.O. Box 733, Irbid 21110, Jordan
| | - Mohanad M. Odeh
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Taghrid S. Hafez
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Dokki, Cairo 12622, Egypt;
| | - Ashraf S. Hassan
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Dokki, Cairo 12622, Egypt;
| |
Collapse
|
10
|
Rehman MU, He F, Shu X, Guo J, Liu Z, Cao S, Long S. Antibacterial and antifungal pyrazoles based on different construction strategies. Eur J Med Chem 2025; 282:117081. [PMID: 39608204 DOI: 10.1016/j.ejmech.2024.117081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/05/2024] [Accepted: 11/17/2024] [Indexed: 11/30/2024]
Abstract
The growing prevalence of microbial infections, and antimicrobial resistance (AMR) stemming from the overuse and misuse of antibiotics, call for novel therapeutic agents, particularly ones targeting resistant microbial strains. Scientists are striving to develop innovative agents to tackle the rising microbial infections and abate the risk of AMR. Pyrazole, a five-membered heterocyclic compound belonging to the azole family, is a versatile scaffold and serves as a core structure in many drugs with antimicrobial and other therapeutic effects. In this review, we have updated pyrazole-based antibacterial and antifungal agents mainly developed between 2016 and 2024, by combining with diverse pharmacophores such as coumarin, thiazole, oxadiazole, isoxazole, indole, etc. Meanwhile, the various strategies (molecular hybridization, bioisosterism, scaffold hopping, multicomponent reactions, and catalyst-free synthesis) for integrating different functional groups with the pyrazole ring are discussed. Additionally, structure-activity relationships of these pyrazole derivatives, i.e., how structural modifications impact their selectivity and therapeutic potential against bacterial and fungal strains, are highlighted. This review provides insights into designing next-generation antimicrobials to combat AMR, and offers valuable perspectives to the scientists working on heterocyclic compounds with diverse bioactivities.
Collapse
Affiliation(s)
- Muneeb Ur Rehman
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Fang He
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Xi Shu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Ju Guo
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Ziwei Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Shuang Cao
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China.
| | - Sihui Long
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China.
| |
Collapse
|
11
|
Khamees Thabet H, Ammar YA, Imran M, Hamdy Helal M, Ibrahim Alaqel S, Alshehri A, Ash Mohd A, Abusaif MS, Ragab A. Unveiling anti-diabetic potential of new thiazole-sulfonamide derivatives: Design, synthesis, in vitro bio-evaluation targeting DPP-4, α-glucosidase, and α-amylase with in-silico ADMET and docking simulation. Bioorg Chem 2024; 151:107671. [PMID: 39067419 DOI: 10.1016/j.bioorg.2024.107671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Diabetes mellitus type 2 (T2DM) can be managed by targeting dipeptidyl peptidase-4 (DPP-4), an enzyme that breaks down and deactivates peptides such as GIP and GLP-1. In this context, a new series of 2-(2-substituted hydrazineyl)thiazole derivatives 4, 5, 6, 8, 10, and 11 conjugated with the 2-hydroxy-5-(pyrrolidin-1-ylsulfonyl)benzylidene fragment were designed and synthesized. The virtual screening of the designed derivatives inside DPP-4 demonstrated good to moderate activity, with binding affinity ranging from -6.86 to -5.36 kcal/mol compared to Sitagliptin (S=-5.58 kcal/mol). These results encourage us to evaluate DPP-4 using in-vitro fluorescence-based assay. The in-vitro results exhibited inhibitory percentage (IP) values ranging from 40.66 to 75.62 % in comparison to Sitagliptin (IP=63.14 %) at 100 µM. Subsequently, the IC50 values were determined, and the 5-aryl thiazole derivatives 10 and 11 revealed strong potent IC50 values 2.75 ± 0.27 and 2.51 ± 0.27 µM, respectively, compared to Sitagliptin (3.32 ± 0.22 µM). The SAR study exhibited the importance of the substituents on the thiazole scaffold, especially with the hydrophobic fragment at C5 of the thiazole, which has a role in the activity. Compounds 10 and 11 were further assessed toward α-glucosidase and α-amylase enzymes and give promising results. Compound 10 showed good activity against α-glucosidase with IC50 value of 3.02 ± 0.23 µM compared to Acarbose 3.05 ± 0.22 µM and (11 = 3.34 ± 0.10 µM). On the other hand, for α-amylase, compound 11 was found to be most effective with IC50 value of 2.91 ± 0.23 µM compared to compound 10 = 3.30 ± 0.16 µM and Acarbose (2.99 ± 0.21 µM) indicating that these derivatives could reduce glucose by more than one target. The most active derivatives 10 and 11 attracted great interest as candidates for oral bioavailability and safe toxicity profiles compared to positive controls. The in-silico docking simulation was performed to understand the binding interactions inside the DPP-4, α-glucosidase, and α-amylase pockets, and it was found to be promising antidiabetic agents through a number of interactions.
Collapse
Affiliation(s)
- Hamdy Khamees Thabet
- Department of Chemistry, College of Sciences and Arts, Northern Border University, Rafha, 91911, Saudi Arabia.
| | - Yousry A Ammar
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City 11884, Cairo, Egypt
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Mohamed Hamdy Helal
- Department of Chemistry, College of Sciences and Arts, Northern Border University, Rafha, 91911, Saudi Arabia
| | - Saleh Ibrahim Alaqel
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Ahmed Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, King Faisal Road, Dammam 31441, Saudi Arabia
| | - Abida Ash Mohd
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Moustafa S Abusaif
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City 11884, Cairo, Egypt
| | - Ahmed Ragab
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City 11884, Cairo, Egypt.
| |
Collapse
|
12
|
Khamees Thabet H, Ragab A, Imran M, Helal MH, Ibrahim Alaqel S, Alshehri A, Ash Mohd A, Rakan Alshammari M, S Abusaif M, A Ammar Y. Discovery of new anti-diabetic potential agents based on paracetamol incorporating sulfa-drugs: Design, synthesis, α-amylase, and α-glucosidase inhibitors with molecular docking simulation. Eur J Med Chem 2024; 275:116589. [PMID: 38878516 DOI: 10.1016/j.ejmech.2024.116589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 07/12/2024]
Abstract
Uncontrolled diabetes can lead to hyperglycemia, which causes neuropathy, heart attacks, retinopathy, and nervous system damage over time, therefore, controlling hyperglycemia using potential drug target inhibitors is a promising strategy. This work focused on synthesizing new derivatives via the diazo group, using a hybridization strategy involving two approved drugs, paracetamol and several sulfonamides. The newly designed diazo-paracetamols 5-12 were fully characterized and then screened for in vitro α-amylase and α-glucosidase activities and exhibited inhibitory percentages (IP) = 92.5-96.5 % and 91.0-95.7 % compared to Acarbose IP = 96.5 and 95.8 %, respectively at 100 μg/mL. The IC50 values of the synthesized derivatives were evaluated against α-amylase and α-glucosidase enzymes, and the results demonstrated moderate to potent activity. Among the tested diazo-paracetamols, compound 11 was found to have the highest potency activity against α-amylase with IC50 value of 0.98 ± 0.015 μM compared to Acarbose IC50 = 0.43 ± 0.009 μM, followed by compound 10 (IC50 = 1.55 ± 0.022 μM) and compound 9 (IC50 = 1.59 ± 0.023 μM). On the other hand, for α-glucosidase, compound 10 with pyrimidine moiety demonstrated the highest inhibitory activity with IC50 = 1.39 ± 0.021 μM relative to Acarbose IC50 = 1.24 ± 0.029 μM and the order of the most active derivatives was 10 > 9 (IC50 = 2.95 ± 0.046 μM) > 11 (IC50 = 5.13 ± 0.082 μM). SAR analysis confirmed that the presence of 4,5-dimethyl-isoxazole or pyrimidine nucleus attached to the sulfonyl group is important for activity. Finally, the docking simulation was achieved to determine the mode of binding interactions for the most active derivatives in the enzyme's active site.
Collapse
Affiliation(s)
- Hamdy Khamees Thabet
- Department of Chemistry, College of Sciences and Arts, Northern Border University, Rafha, 91911, Saudi Arabia
| | - Ahmed Ragab
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, 11884, Cairo, Egypt.
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha, 91911, Saudi Arabia
| | - Mohamed Hamdy Helal
- Department of Chemistry, College of Sciences and Arts, Northern Border University, Rafha, 91911, Saudi Arabia
| | - Saleh Ibrahim Alaqel
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha, 91911, Saudi Arabia
| | - Ahmed Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, Northern Border University, Rafha, 91911, Saudi Arabia; Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, King Faisal Road, Dammam, 31441, Saudi Arabia
| | - Abida Ash Mohd
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha, 91911, Saudi Arabia
| | - Malek Rakan Alshammari
- Department of Chemistry, College of Sciences and Arts, Northern Border University, Rafha, 91911, Saudi Arabia
| | - Moustafa S Abusaif
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Yousry A Ammar
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| |
Collapse
|
13
|
Thabet HK, Abusaif MS, Imran M, Helal MH, Alaqel SI, Alshehri A, Mohd AA, Ammar YA, Ragab A. Discovery of novel 6-(piperidin-1-ylsulfonyl)-2H-chromenes targeting α-glucosidase, α-amylase, and PPAR-γ: Design, synthesis, virtual screening, and anti-diabetic activity for type 2 diabetes mellitus. Comput Biol Chem 2024; 111:108097. [PMID: 38772048 DOI: 10.1016/j.compbiolchem.2024.108097] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/01/2024] [Accepted: 05/13/2024] [Indexed: 05/23/2024]
Abstract
A new series of 2H-chromene-based sulfonamide derivatives 3-12 has been synthesized and characterized using different spectroscopic techniques. The synthesized 2H-chromenes were synthesized by reacting activated methylene with 5-(piperidin-1-ylsulfonyl)salicylaldehyde through one-step condensation followed by intramolecular cyclization. Virtual screening of the designed molecules on α-glucosidase enzymes (PDB: 3W37 and 3A4A) exhibited good binding affinity suggesting that these derivatives may be potential α-glucosidase inhibitors. In-vitro α-glucosidase activity was conducted firstly at 100 µg/mL, and the results demonstrated good inhibitory potency with values ranging from 90.6% to 96.3% compared to IP = 95.8% for Acarbose. Furthermore, the IC50 values were determined, and the designed derivatives exhibited inhibitory potency less than 11 µg/mL. Surprisingly, two chromene derivatives 6 and 10 showed the highest potency with IC50 values of 0.975 ± 0.04 and 0.584 ± 0.02 µg/mL, respectively, compared to Acarbose (IC50 = 0.805 ± 0.03 µg/mL). Moreover, our work was extended to evaluate the in-vitro α-amylase and PPAR-γ activity as additional targets for diabetic activity. The results exhibited moderate activity on α-amylase and potency as PPAR-γ agonist making it a multiplet antidiabetic target. The most active 2H-chromenes 6 and 10 exhibited significant activity to PPAR-γ with IC50 values of 3.453 ± 0.14 and 4.653 ± 0.04 µg/mL compared to Pioglitazone (IC50 = 4.884±0.29 µg/mL) indicating that these derivatives improve insulin sensitivity by stimulating the production of small insulin-sensitive adipocytes. In-silico ADME profile analysis indicated compliance with Lipinski's and Veber's rules with excellent oral bioavailability properties. Finally, the docking simulation was conducted to explain the expected binding mode and binding affinity.
Collapse
Affiliation(s)
- Hamdy Khamees Thabet
- Department of Chemistry, College of Sciences and Arts, Northern Border University, Rafha 91911, Saudi Arabia.
| | - Moustafa S Abusaif
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Mohamed Hamdy Helal
- Department of Chemistry, College of Sciences and Arts, Northern Border University, Rafha 91911, Saudi Arabia
| | - Saleh Ibrahim Alaqel
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Ahmed Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, King Faisal Road, Dammam 31441, Saudi Arabia
| | - Abida Ash Mohd
- Department of Pharmacology and Toxicology, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Yousry A Ammar
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Ahmed Ragab
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo 11884, Egypt.
| |
Collapse
|
14
|
Umar M, Rehman Y, Ambreen S, Mumtaz SM, Shaququzzaman M, Alam MM, Ali R. Innovative approaches to Alzheimer's therapy: Harnessing the power of heterocycles, oxidative stress management, and nanomaterial drug delivery system. Ageing Res Rev 2024; 97:102298. [PMID: 38604453 DOI: 10.1016/j.arr.2024.102298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/10/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024]
Abstract
Alzheimer's disease (AD) presents a complex pathology involving amyloidogenic proteolysis, neuroinflammation, mitochondrial dysfunction, and cholinergic deficits. Oxidative stress exacerbates AD progression through pathways like macromolecular peroxidation, mitochondrial dysfunction, and metal ion redox potential alteration linked to amyloid-beta (Aβ). Despite limited approved medications, heterocyclic compounds have emerged as promising candidates in AD drug discovery. This review highlights recent advancements in synthetic heterocyclic compounds targeting oxidative stress, mitochondrial dysfunction, and neuroinflammation in AD. Additionally, it explores the potential of nanomaterial-based drug delivery systems to overcome challenges in AD treatment. Nanoparticles with heterocyclic scaffolds, like polysorbate 80-coated PLGA and Resveratrol-loaded nano-selenium, show improved brain transport and efficacy. Micellar CAPE and Melatonin-loaded nano-capsules exhibit enhanced antioxidant properties, while a tetra hydroacridine derivative (CHDA) combined with nano-radiogold particles demonstrates promising acetylcholinesterase inhibition without toxicity. This comprehensive review underscores the potential of nanotechnology-driven drug delivery for optimizing the therapeutic outcomes of novel synthetic heterocyclic compounds in AD management. Furthermore, the inclusion of various promising heterocyclic compounds with detailed ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) data provides valuable insights for planning the development of novel drug delivery treatments for AD.
Collapse
Affiliation(s)
- Mohammad Umar
- Department of Pharmaceutical Chemistry, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi 110017, India
| | - Yasir Rehman
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Subiya Ambreen
- Department of Pharmaceutical Chemistry, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi 110017, India
| | - Sayed Md Mumtaz
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Mohd Shaququzzaman
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Mohammad Mumtaz Alam
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Ruhi Ali
- Department of Pharmaceutical Chemistry, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi 110017, India.
| |
Collapse
|
15
|
Ragab A, Salem MA, Ammar YA, Aboulthana WM, Helal MH, Abusaif MS. Explore new quinoxaline pharmacophore tethered sulfonamide fragments as in vitro α-glucosidase, α-amylase, and acetylcholinesterase inhibitors with ADMET and molecular modeling simulation. Drug Dev Res 2024; 85:e22216. [PMID: 38831547 DOI: 10.1002/ddr.22216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/05/2024] [Accepted: 05/18/2024] [Indexed: 06/05/2024]
Abstract
A new series of quinoxaline-sulfonamide derivatives 3-12 were synthesized using fragment-based drug design by reaction of quinoxaline sulfonyl chloride (QSC) with different amines and hydrazines. The quinoxaline-sulfonamide derivatives were evaluated for antidiabetic and anti-Alzheimer's potential against α-glucosidase, α-amylase, and acetylcholinesterase enzymes. These derivatives showed good to moderate potency against α-amylase and α-glucosidase with inhibitory percentages between 24.34 ± 0.01%-63.09 ± 0.02% and 28.95 ± 0.04%-75.36 ± 0.01%, respectively. Surprisingly, bis-sulfonamide quinoxaline derivative 4 revealed the most potent activity with inhibitory percentages of 75.36 ± 0.01% and 63.09 ± 0.02% against α-glucosidase and α-amylase compared to acarbose (IP = 57.79 ± 0.01% and 67.33 ± 0.01%), respectively. Moreover, the quinoxaline derivative 3 exhibited potency as α-glucosidase and α-amylase inhibitory with a minute decline from compound 4 and acarbose with inhibitory percentages of 44.93 ± 0.01% and 38.95 ± 0.01%. Additionally, in vitro acetylcholinesterase inhibitory activity for designed derivatives exhibited weak to moderate activity. Still, sulfonamide-quinoxaline derivative 3 emerged as the most active member with inhibitory percentage of 41.92 ± 0.02% compared with donepezil (IP = 67.27 ± 0.60%). The DFT calculations, docking simulation, target prediction, and ADMET analysis were performed and discussed in detail.
Collapse
Affiliation(s)
- Ahmed Ragab
- Department of Chemistry, Faculty of Science (boys), Al-Azhar University, Nasr, Cairo, Egypt
| | - Mohamed A Salem
- Department of Chemistry, Faculty of Science and Arts, King Khalid University, Mohail, Assir, Saudi Arabia
| | - Yousry A Ammar
- Department of Chemistry, Faculty of Science (boys), Al-Azhar University, Nasr, Cairo, Egypt
| | - Wael M Aboulthana
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Dokki, Cairo, Egypt
| | - Mohamed H Helal
- Department of Chemistry, Faculty of Arts and Science, Northern Border University, Rafha, Saudi Arabia
| | - Moustafa S Abusaif
- Department of Chemistry, Faculty of Science (boys), Al-Azhar University, Nasr, Cairo, Egypt
| |
Collapse
|
16
|
Hekal HA, Hammad OM, El-Brollosy NR, Salem MM, Allayeh AK. Design, synthesis, docking, and antiviral evaluation of some novel pyrimidinone-based α-aminophosphonates as potent H1N1 and HCoV-229E inhibitors. Bioorg Chem 2024; 147:107353. [PMID: 38615475 DOI: 10.1016/j.bioorg.2024.107353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/02/2024] [Accepted: 04/06/2024] [Indexed: 04/16/2024]
Abstract
Dialkyl/aryl aminophosphonates, 3a-g and 4a-e were synthesized using the LiClO4 catalyzed Kabachnic Fields-type reaction straightforwardly and efficiently. The synthesized phosphonates structures were characterized using elemental analyses, FT-IR, 1H NMR, 13C NMR, and MS spectroscopy. The new compounds were subjected to in-silico molecular docking simulations to evaluate their potential inhibition against Influenza A Neuraminidase and RNA-dependent RNA polymerase of human coronavirus 229E. Subsequently, the compounds were further tested in vitro using a cytopathic inhibition assay to assess their antiviral activity against both human Influenza (H1N1) and human coronavirus (HCoV-229E). Diphenyl ((2-(5-cyano-6-oxo-4-phenyl-1,6-dihydropyrimidin-2-yl) hydrazinyl) (furan-2-yl) methyl) phosphonate (3f) and diethyl ((2-(5-cyano-6-oxo-4-phenyl-1,6-dihydropyrimidin-2-yl) hydrazinyl) (1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl) methyl) phosphonate (4e) were demonstrated direct inhibition activity against Influenza A Neuraminidase and RNA-dependent RNA polymerase. This was supported by their highly favorable binding energies in-silico, with top-ranked values of -12.5 kcal/mol and -14.2 kcal/mol for compound (3f), and -13.5 kcal/mol and -9.89 kcal/mol for compound (4e). Moreover, they also displayed notable antiviral efficacy in vitro against both viruses. These compounds demonstrated significant antiviral activity, as evidenced by selectivity indices (SI) of 101.7 and 51.8, respectively against H1N1, and 24.5 and 5.1 against HCoV-229E, respectively.
Collapse
Affiliation(s)
- Hend A Hekal
- Chemistry Department, Faculty of Science, Tanta University, 31527 Tanta, Egypt.
| | - Omar M Hammad
- Chemistry Department, Faculty of Science, Tanta University, 31527 Tanta, Egypt.
| | | | - Maha M Salem
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt.
| | - Abdou K Allayeh
- Virology Lab 176, Water Pollution Research Department, Environment and Climate Change Institute, National Research Centre, 12622-Dokki, Cairo, Egypt
| |
Collapse
|
17
|
Naglah AM, Almehizia AA, Al-Wasidi AS, Alharbi AS, Alqarni MH, Hassan AS, Aboulthana WM. Exploring the Potential Biological Activities of Pyrazole-Based Schiff Bases as Anti-Diabetic, Anti-Alzheimer's, Anti-Inflammatory, and Cytotoxic Agents: In Vitro Studies with Computational Predictions. Pharmaceuticals (Basel) 2024; 17:655. [PMID: 38794225 PMCID: PMC11125359 DOI: 10.3390/ph17050655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
In this innovative research, we aim to reveal pyrazole-based Schiff bases as new multi-target agents. In this context, we re-synthesized three sets of pyrazole-based Schiff bases, 5a-f, 6a-f, and 7a-f, to evaluate their biological applications. The data from in vitro biological assays (including antioxidant and scavenging activities, anti-diabetes, anti-Alzheimer's, and anti-inflammatory properties) of the pyrazole-based Schiff bases 5a-f, 6a-f, and 7a-f showed that the six pyrazole-based Schiff bases 5a, 5d, 5e, 5f, 7a, and 7f possess the highest biological properties among the compounds evaluated. The cytotoxicity against lung (A549) and colon (Caco-2) human cancer types, as well as normal lung (WI-38) cell lines, was evaluated. The data from the cytotoxicity investigation demonstrated that the three Schiff bases 5d, 5e, and 7a are active against lung (A549) cells, while the two Schiff bases 5e and 7a exhibited the highest cytotoxicity towards colon (Caco-2) cells. Additionally, the enzymatic activities against caspase-3 and Bcl-2 of the six pyrazole-based Schiff bases 5a, 5d, 5e, 5f, 7a, and 7f were evaluated. Furthermore, we assessed the in silico absorption, distribution, metabolism, and toxicity (ADMT) properties of the more potent pyrazole-based Schiff bases. After modifying the structures of the six pyrazole-based Schiff bases, we plan to further extend the studies in the future.
Collapse
Affiliation(s)
- Ahmed M. Naglah
- Drug Exploration and Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Abdulrahman A. Almehizia
- Drug Exploration and Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Asma S. Al-Wasidi
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Amirah Senaitan Alharbi
- King Khalid Hospital, King Saud University Medical City, P.O. Box 7805, Riyadh 11472, Saudi Arabia;
| | - Mohammed H. Alqarni
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia;
| | - Ashraf S. Hassan
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Dokki 12622, Cairo, Egypt
| | - Wael M. Aboulthana
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Dokki 12622, Cairo, Egypt;
| |
Collapse
|
18
|
Punia R, Mor S, Sindhu S, Kumar D, Pradip Das P, Kumar Jindal D, Kumar A, Mohil R, Jakhar K. Design, synthesis, α-amylase and glucose diffusion inhibition, and molecular docking studies of new indenopyrazolones bearing benzothiazole derivatives. Bioorg Med Chem Lett 2024; 103:129692. [PMID: 38452826 DOI: 10.1016/j.bmcl.2024.129692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
An eco-friendly facile synthesis of a series of twenty 1-(4/6-substitutedbenzo[d]thiazol-2-yl)-3-(phenyl/substitutedphenyl)indeno[1,2-c]pyrazol-4(1H)-ones 7a-t was achieved by the reaction of 2-(benzoyl/substitutedbenzoyl)-(1H)-indene-1,3(2H)-dione 3a-t and 2-hydrazinyl-4/6-substitutedbenzo[d]thiazole 6a-t in presence of freshly dried ethanol and glacial acetic acid under reflux conditions in good yields. The newly synthesized derivatives were well characterized using different physical and spectral techniques (FTIR, 1H NMR & 13C NMR, and HRMS). All the compounds were subjected to assess their in vitro α-amylase and glucose diffusion inhibitory activity. Amongst them, the compounds 7i and 7l showed better α-amylase inhibitory activity demonstrating IC50 values of 92.99±1.94 µg/mL and 95.41±3.92 µg/mL, respectively in comparison to the standard drug acarbose (IC50 value of 103.60±2.15 µg/mL). The derivatives 7d and 7k exhibited good glucose diffusion inhibition with values of 2.25±1.16 µg/mL and 2.63±1.45 µg/mL, respectively with standard reference acarbose (2.76±0.55 µg/mL). The observed α-amylase inhibitory activity findings were corroborated through molecular docking investigations, particularly for the highly active compounds 7i (binding energy -8.0 kcal/mol) and 7l (binding energy -8.2 kcal/mol) respectively, in comparison to acarbose with a value of binding energy -6.9 kcal/mol for α-amylase.
Collapse
Affiliation(s)
- Ravinder Punia
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India
| | - Satbir Mor
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India.
| | - Suchita Sindhu
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan 173229, India
| | - Priyanku Pradip Das
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan 173229, India
| | - Deepak Kumar Jindal
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science & Technology, Hisar 125001, India
| | - Ashwani Kumar
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science & Technology, Hisar 125001, India
| | - Rajni Mohil
- Department of Chemistry, Government College, Nalwa, Hisar, Haryana 125001, India
| | - Komal Jakhar
- Department of Chemistry, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| |
Collapse
|
19
|
El-Sayed AF, Aboulthana WM, Sherief MA, El-Bassyouni GT, Mousa SM. Synthesis, structural, molecular docking, and in vitro biological activities of Cu-doped ZnO nanomaterials. Sci Rep 2024; 14:9027. [PMID: 38641640 PMCID: PMC11031592 DOI: 10.1038/s41598-024-59088-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/08/2024] [Indexed: 04/21/2024] Open
Abstract
Copper-doped ZnO nanoparticles with the formula Zn1-x(Cu)O, where x = 0.0, 0.03, 0.05, and 0.07 were produced using the co-precipitation process. Physical, chemical, and structural properties were properly examined. Powdered X-ray diffraction (P-XRD) patterns revealed the formation of hexagonal wurtzite crystal structure in all samples, through atomic substitutional incorporation in the Cu-doped ZnO lattice. The presence of Cu ions and their dissolution in the host ZnO crystal structure was supported by FT-IR spectra. HR-TEM images were used to assess the average size, morphology, and shape regularity of the synthesized samples. The form and homogeneity of the ZnO changed when Cu ions were substituted, as evidenced by FE-SEM/EDX analysis. The presence of copper signals in the Cu-doped samples indicates that the doping was successful. The decrease in zeta potential with an increased copper doping percentage designates that the nanoparticles (NPs) are more stable, which could be attributed to an increase in the ionic strength of the aqueous solution. The synthesized NPs were evaluated for their substantial in vitro antioxidant properties. In addition, the antimicrobial efficacy of the materials was tested against pathogenic microorganisms. Regarding the anti-diabetic activity, the 7Cu ZnO sample showed the highest inhibitory effect on the α-amylase enzyme. No variations were observed in the activities of the acetylcholinesterase enzyme (AChE) and proteinase enzymes with ZnO and samples doped with different concentrations of Cu. Therefore, further studies are recommended to reveal the in-vitro anti-diabetic activity of the studied doped samples. Finally, molecular docking provided valuable insights into the potential binding interactions of Cu-doped ZnO with α-amylase, FabH of E. coli, and Penicillin-binding proteins of S. aureus. These outcomes suggest that the prepared materials may have an inhibitory effect on enzymes and hold promise in the battle against microbial infections and diabetes.
Collapse
Affiliation(s)
- Ahmed F El-Sayed
- Microbial Genetics Department, Biotechnology Research Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), P.O. 12622, Dokki, Cairo, Egypt
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt
| | - Wael M Aboulthana
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), P.O. 12622, Dokki, Cairo, Egypt.
| | - Marwa A Sherief
- Inorganic Chemistry Department, Advanced Materials Technology and Mineral Resources Research Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), P.O. 12622, Dokki, Cairo, Egypt
| | - Gehan T El-Bassyouni
- Refractories, Ceramics and Building Materials Department, Advanced Materials Technology and Mineral Resources Research Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), P.O. 12622, Dokki, Cairo, Egypt
| | - Sahar M Mousa
- Inorganic Chemistry Department, Advanced Materials Technology and Mineral Resources Research Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), P.O. 12622, Dokki, Cairo, Egypt
| |
Collapse
|
20
|
Baddam SR, Avula MK, Akula R, Battula VR, Kalagara S, Buchikonda R, Ganta S, Venkatesan S, Allaka TR. Design, synthesis and in silico molecular docking evaluation of novel 1,2,3-triazole derivatives as potent antimicrobial agents. Heliyon 2024; 10:e27773. [PMID: 38590856 PMCID: PMC10999864 DOI: 10.1016/j.heliyon.2024.e27773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 04/10/2024] Open
Abstract
Chalcone and triazole scaffolds have demonstrated a crucial role in the advancement of science and technology. Due to their significance, research has proceeded on the design and development of novel benzooxepine connected to 1,2,3-triazolyl chalcone structures. The new chalcone derivatives produced by benzooxepine triazole methyl ketone 2 and different aromatic carbonyl compounds 3 are discussed in this paper. All prepared compounds have well-established structures to a variety of spectral approaches, including mass analysis, 1H NMR, 13C NMR, and IR. Among the tested compounds, hybrids 4c, 4d, 4i, and 4k exhibited exceptional antibacterial susceptibilities with MIC range of 3.59-10.30 μM against the tested S. aureus strain. Compounds 4c, 4d displayed superior antifungal activity against F. oxysporum with MIC 3.25, 4.89 μM, when compared to fluconazole (MIC = 3.83 μM) respectively. On the other hand, analogues 4d, 4f, and 4k demonstrated equivalent antitubercular action against H37Rv strain with MIC range of 2.16-4.90 μM. The capacity of ligand 4f to form a stable compound on the active site of CYP51 from M. tuberculosis (1EA1) was confirmed by docking studies using amino acids Leu321(A), Pro77(A), Phe83(A), Lys74(A), Tyr76(A), Ala73(A), Arg96(A), Thr80(A), Met79(A), His259(A), and Gln72(A). Additionally, the chalcone‒1,2,3‒triazole hybrids ADME (absorption, distribution, metabolism, and excretion), characteristics of molecules, estimations of toxicity, and bioactivity parameters were assessed.
Collapse
Affiliation(s)
- Sudhakar Reddy Baddam
- University of Massachusetts Chan Medical School, RNA Therapeutic Institute, Worcester, MA, 01655, United States
| | - Mahesh Kumar Avula
- Technology Development Center, Custom Pharmaceutical Services, Dr. Reddy's Laboratories Pvt. Ltd., Hyderabad, Telangana, 500049, India
- Department of Organic Chemistry and FDW, Andhra University, Visakhapatnam, Andhra Pradesh, 530003, India
| | - Raghunadh Akula
- Technology Development Center, Custom Pharmaceutical Services, Dr. Reddy's Laboratories Pvt. Ltd., Hyderabad, Telangana, 500049, India
| | - Venkateswara Rao Battula
- Department of Chemistry, AU College of Engineering (A), Andhra University, Visakhapatnam, Andhra Pradesh, 530003, India
| | - Sudhakar Kalagara
- Department of Chemistry and Biochemistry, University of the Texas at El Paso, El Paso, TX, 79968, United States
| | - Ravinder Buchikonda
- Technology Development Center, Custom Pharmaceutical Services, Dr. Reddy's Laboratories Pvt. Ltd., Hyderabad, Telangana, 500049, India
| | - Srinivas Ganta
- ScieGen Pharmaceutical Inc., Hauppauge, NY, 11788, United States
| | - Srinivasadesikan Venkatesan
- Department of Chemistry, School of Applied Science and Humanities, VIGNAN's Foundation for Science, Technology and Research, Vadlamudi, Andhra Pradesh, 522213, India
| | - Tejeswara Rao Allaka
- Centre for Chemical Sciences and Technology, Institute of Science and Technology, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad, Telangana, 500085, India
| |
Collapse
|
21
|
El-Shamarka MEA, Aboulthana WM, Omar NI, Mahfouz MM. Evaluation of the biological efficiency of Terminalia chebula fruit extract against neurochemical changes induced in brain of diabetic rats: an epigenetic study. Inflammopharmacology 2024; 32:1439-1460. [PMID: 38329710 PMCID: PMC11006788 DOI: 10.1007/s10787-024-01428-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/02/2024] [Indexed: 02/09/2024]
Abstract
Diabetes mellitus (DM) is a chronic and progressive metabolic disorder that can stimulate neuroinflammation and increase oxidative stress in the brain. Therefore, the present study was aimed to assess the efficacy of ethanolic Terminalia chebula extract against the neurochemical and histopathological changes induced in the brains of diabetic rats. The study clarified the reduction in oxidative stress induced in the brains of diabetic rats by the significant (P ≤ 0.05) increase in levels of the antioxidants with decreasing the peroxidation products via ethanolic T. chebula extract at both doses (400 and 600 mg/kg). Moreover, T. chebula extract improved the brain integrity by lowering levels of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), β-amyloid (Aβ) content, monocyte chemoattractant protein-1 (MCP-1) and acetylcholine esterase (ACHE) significantly (P ≤ 0.05) in a dose dependent manner compared to brain of diabetic rats. Severe nuclear pyknosis and degeneration were noticed in neurons of the cerebral cortex, hippocampus and striatum in brains of diabetic rats. The severity of these alterations decreased with T. chebula extract at a dose of 600 mg/kg compared to the other treated groups. The different electrophoretic protein and isoenzyme assays revealed that the lowest similarity index (SI%) values exist in the brains of diabetic rats compared to the control group. The quantity of the most native proteins and isoenzyme types increased significantly (P ≤ 0.05) in the brains of diabetic rats, and these electrophoretic variations were completely diminished by T. chebula extract. The study concluded that T. chebula extract ameliorated the biochemical, histopathological and electrophoretic abnormalities induced in the brains of diabetic rats when administered at a dose of 600 mg/kg.
Collapse
Affiliation(s)
- Marwa E A El-Shamarka
- Department of Narcotics, Ergogenic Aids and Poisons, Medical Research Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), P.O. 12622, Dokki, Giza, Egypt
| | - Wael Mahmoud Aboulthana
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), P.O. 12622, Dokki, Giza, Egypt.
| | - Nagwa Ibrahim Omar
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), P.O. 12622, Dokki, Giza, Egypt
| | - Marwa M Mahfouz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Menoufia University, Shibīn Al-Kawm, Egypt
| |
Collapse
|
22
|
Lekmine S, Benslama O, Tahraoui H, Ola MS, Laouani A, Kadi K, Martín-García AI, Ali A. Anti-Cholinergic Effects of the Phenolic Extract from the Astragalus crenatus Plant: A Computational and Network Pharmacology Study. Pharmaceuticals (Basel) 2024; 17:348. [PMID: 38543134 PMCID: PMC10976237 DOI: 10.3390/ph17030348] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/24/2024] [Accepted: 02/28/2024] [Indexed: 11/12/2024] Open
Abstract
Investigations into cholinesterase inhibition have received attention from researchers in recent years for the treatment of Alzheimer's disease. Cholinesterase enzymes, namely, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), hold pivotal significance in Alzheimer's disease (AD) treatment. In this study, we utilized the ethanolic extract of Astragalus crenatus followed by liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) to separate and identify at least 21 compounds in the extract. Rosmarinic acid exhibited the highest concentration (96.675 ± 1.3 mg/g extract), succeeded by hesperidin (79.613 ± 1.2 mg/g extract), hesperetin (75.102 ± 1.4 mg/g extract), rutin (68.156 ± 1.6 mg/g extract), chlorogenic acid (67.645 ± 1.5 mg/g extract), fisetin (66.647 ± 2.3 mg/g extract), and hyperoside (63.173 ± 1.5 mg/g extract). A. crenatus extract efficiently inhibited both AChE and BChE activities in a dosage-dependent manner. Molecular docking was employed to scrutinize the anticholinesterase mechanisms of the identified phytocompounds. Notably, a network pharmacology analysis was executed for the most efficacious compound. Based on binding energies, hesperidin emerged as the most potent inhibitor against both AChE and BChE, exhibiting scores of -10.5 Kcal/mol and -9.8 Kcal/mol, respectively. Due to its dual inhibition of AChE and BChE activities, hesperidin from Astragalus crenatus holds promise for the development of novel therapeutics aimed at neurological disorders, particularly AD.
Collapse
Affiliation(s)
- Sabrina Lekmine
- Biotechnology, Water, Environment and Health Laboratory, Abbes Laghrour University, Khenchela 40004, Algeria
| | - Ouided Benslama
- Laboratory of Natural Substances, Biomolecules, and Biotechnological Applications, Department of Natural and Life Sciences, Larbi Ben M’Hidi University, Oum El Bouaghi 04000, Algeria
| | - Hichem Tahraoui
- Laboratory of Biomaterials and Transport Phenomena, University of Medea, Medea 26000, Algeria
- Laboratoire de Génie des Procédés Chimiques, Department of Process Engineering, University of Ferhat Abbas, Setif 19000, Algeria
| | - Mohammad Shamsul Ola
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Aicha Laouani
- Laboratory of Metabolic Biophysics and Applied Pharmacology, Faculty of Medicine, University of Sousse, Sousse 4002, Tunisia
- USCR Analytical Platform UHPLC-MS & Research in Medicine and Biology, Faculty of Medicine, University of Sousse, Sousse 4023, Tunisia
| | - Kenza Kadi
- Biotechnology, Water, Environment and Health Laboratory, Abbes Laghrour University, Khenchela 40004, Algeria
| | | | - Ahmad Ali
- Department of Life Sciences, University of Mumbai, Vidyanagari, Mumbai 400098, India
| |
Collapse
|
23
|
Almehizia AA, Aboulthana WM, Naglah AM, Hassan AS. In vitro biological studies and computational prediction-based analyses of pyrazolo[1,5- a]pyrimidine derivatives. RSC Adv 2024; 14:8397-8408. [PMID: 38476172 PMCID: PMC10928850 DOI: 10.1039/d4ra00423j] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
There is a need for new pharmaceutical discoveries from bioactive nitrogenous derivatives due to the emergence of scourges, numerous pandemics, and diverse health problems. In this context, pyrazolo[1,5-a]pyrimidine derivatives 12a and 12b were synthesized and screened to evaluate their biological potentials in vitro as antioxidants, anti-diabetics, anti-Alzheimer's, anti-arthritics, and anti-cancer agents. Additionally, the computational pharmacokinetic and toxicity properties of the two pyrazolo[1,5-a]pyrimidines 12a and 12b were calculated and analyzed. The preliminary studies and results of this work represent the initial steps toward more advanced studies and define the bioactive chemical structure of pyrazolo[1,5-a]pyrimidine derivatives with the goal of exploring new drugs to address numerous health problems.
Collapse
Affiliation(s)
- Abdulrahman A Almehizia
- Drug Exploration & Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University Riyadh 11451 Saudi Arabia
| | - Wael M Aboulthana
- Biochemistry Department, Biotechnology Research Institute, National Research Centre Dokki 12662 Cairo Egypt
| | - Ahmed M Naglah
- Drug Exploration & Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University Riyadh 11451 Saudi Arabia
| | - Ashraf S Hassan
- Organometallic and Organometalloid Chemistry Department, National Research Centre Dokki 12622 Cairo Egypt
| |
Collapse
|
24
|
Khator R, Monga V. Recent advances in the synthesis and medicinal perspective of pyrazole-based α-amylase inhibitors as antidiabetic agents. Future Med Chem 2024. [PMID: 38230638 DOI: 10.4155/fmc-2023-0285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024] Open
Abstract
Diabetes is a serious health threat across the globe, claiming millions of lives worldwide. Among the various strategies employed, inhibition of α-amylase is a therapeutic protocol for the management of Type 2 diabetes mellitus. α-Amylase is a crucial enzyme involved in the breakdown of dietary starch into simpler units. However, the clinically used α-amylase inhibitors have various drawbacks. Therefore, design and development of novel α-amylase inhibitors have gained significant attention. The pyrazole motif has been identified as a versatile scaffold in medicinal chemistry, and recent studies have led to the identification of various pyrazole-based α-amylase inhibitors. This review compiles therapeutic implications of pyrazole-appended α-amylase inhibitors; their synthesis, biological activities, structure-activity relationships and molecular docking studies are discussed.
Collapse
Affiliation(s)
- Rakesh Khator
- Drug Design & Molecular Synthesis Laboratory, Department of Pharmaceutical Sciences & Natural Products, Central University of Punjab, VPO-Ghudda, 151401, Bathinda, Punjab, India
| | - Vikramdeep Monga
- Drug Design & Molecular Synthesis Laboratory, Department of Pharmaceutical Sciences & Natural Products, Central University of Punjab, VPO-Ghudda, 151401, Bathinda, Punjab, India
| |
Collapse
|
25
|
Abdel-Baky YM, Omer AM, El-Fakharany EM, Ammar YA, Abusaif MS, Ragab A. Developing a new multi-featured chitosan-quinoline Schiff base with potent antibacterial, antioxidant, and antidiabetic activities: design and molecular modeling simulation. Sci Rep 2023; 13:22792. [PMID: 38123716 PMCID: PMC10733428 DOI: 10.1038/s41598-023-50130-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
A new chitosan Schiff base was developed via the reaction of chitosan (CH) with 2-chloro-3-formyl-7-ethoxy quinoline (Q) derivative. The alteration in the chemical structure and morphology of CHQ derivative was confirmed by 1H NMR, FT-IR spectroscopy and SEM analysis. The antibacterial activity was considerably promoted with increasing quinoline concentration up to 1 M with maximal inhibition reached 96 and 77% against Staphylococcus haemolyticus and Escherichia coli, respectively. Additionally, CHQ derivative afforded higher ABTS·+ radical scavenging activity reached 59% compared to 13% for native chitosan, approving its acceptable antioxidant activity. Moreover, the developed CHQ derivative can stimulate the glucose uptake in HepG-2 and yeast cells, while better inhibition of α-amylase and α-glucosidase was accomplished with maximum values of 99.78 and 92.10%, respectively. Furthermore, the molecular docking simulation clarified the binding mode of CHQ derivative inside the active site of α-amylase and α-glucosidase, suggesting its potential use as diabetes mellitus drug. The DFT calculations indicated an improvement in the electronic properties of CHQ with a lower energy band gap reached 4.05eV compared to 5.94eV for CH. The cytotoxicity assay revealed the safety of CHQ towards normal HSF cells, hypothesizing its possible application as non-toxic antibacterial, antioxidant, and antidiabetic agent for biomedical applications.
Collapse
Affiliation(s)
- Yasser M Abdel-Baky
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Ahmed M Omer
- Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), P. O. Box: 21934, New Borg El-Arab City, Alexandria, Egypt.
| | - Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), P. O. Box: 21934, New Borg El-Arab City, Alexandria, Egypt
| | - Yousry A Ammar
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Moustafa S Abusaif
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Ahmed Ragab
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt.
| |
Collapse
|
26
|
Ragab A, Ibrahim SA, Aboul-Magd DS, Baren MH. One-pot synthesis of pyrazolo[4,3- d]thiazole derivatives containing α-aminophosphonate as potential Mur A inhibitors against MDR pathogens with radiosterilization and molecular modeling simulation. RSC Adv 2023; 13:34756-34771. [PMID: 38035237 PMCID: PMC10685179 DOI: 10.1039/d3ra07040a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/14/2023] [Indexed: 12/02/2023] Open
Abstract
The present study involves the synthesis of a new series of α-aminophosphonate derivatives in good yields with a simple workup via the Kabachnik-Fields reaction using lithium perchlorate (LiClO4) as a catalyst to facilitate the reaction. All the newly synthesized compounds were confirmed using various physical, spectroscopic, and analytical data, and the obtained results correlated with the proposed molecular structure. The in vitro antimicrobial activities of each compound were evaluated against different clinical isolates. The results indicated that among these derivatives, two compounds (5a and 5b) were the most active and displayed potent activity with MICs in the range from 0.06 to 0.25 μg mL-1 compared with fosfomycin and fluconazole as standard antibiotics. Moreover, the synthesized phosphonates displayed a broad spectrum of bactericidal and fungicidal activities depending on MICs, MBCs/MFCs, and the time-kill kinetics. In addition, the checkerboard assay showed synergistic and partial synergistic activities between the active compounds combined with fosfomycin and fluconazole. Furthermore, the SEM images showed distinct ruptures of the OM integrity of the FOS-R E. coli at their MICs, which was further indicated by the increased EtBr accumulation within the bacterial cells. Moreover, active derivatives revealed MurA inhibitory activity with IC50 values of 3.8 ± 0.39 and 4.5 ± 0.23 μM compared with fosfomycin (IC50 = 12.7 ± 0.27 μM). To our surprise, exposing 5a and 5b compounds to different gamma radiation doses revealed that 7.0 kGy eradicated the microbial load completely. Finally, the results of quantum chemical study supported the binding mode obtained from the docking study performed inside the active site of MurA (PDB: 1UAE), suggesting that these phosphonates may be promising safe candidates for MDR infection therapy clinical trials with no toxic effects on the normal human cells.
Collapse
Affiliation(s)
- Ahmed Ragab
- Chemistry Department, Faculty of Science (Boys), Al-Azhar University Nasr City Cairo 11884 Egypt
| | - Seham A Ibrahim
- Chemistry Department, Faculty of Science, Tanta University Tanta 31527 Egypt
| | - Dina S Aboul-Magd
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority Egypt
| | - Mohamed H Baren
- Chemistry Department, Faculty of Science, Tanta University Tanta 31527 Egypt
| |
Collapse
|
27
|
Ammar YA, Ragab A, Migahed MA, Al-Sharbasy S, Salem MA, Riad OKM, Selim HMRM, Abd-Elmaksoud GA, Abusaif MS. Design, green synthesis, and quorum sensing quenching potential of novel 2-oxo-pyridines containing a thiophene/furan scaffold and targeting a LasR gene on P. aeruginosa. RSC Adv 2023; 13:27363-27384. [PMID: 37711372 PMCID: PMC10498153 DOI: 10.1039/d3ra04230h] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023] Open
Abstract
The current trend in fighting bacteria is attacking the virulence and quorum-sensing (QS) signals that control bacterial communication and virulence factors, especially biofilm formation. This study reports new Schiff bases and tetracyclic rings based on a pyridine pharmacophore by two methods: a green approach using CAN and a conventional method. The structure of designed derivatives was confirmed using different spectroscopies (IR and 1H/13C NMR) and elemental analysis. The designed derivatives exhibited good to moderate inhibition zones against bacterial and fungal pathogens. In addition, six compounds 2a,b, 3a,b, and 6a,b displayed potency against tested pathogens with eligible MIC and MBC values compared to standard antimicrobial agents. Compound 2a displayed MIC values of 15.6 μg mL-1 compared to Gentamicin (MIC = 250 μg mL-1 against K. pneumoniae), while compound 6b exhibited super-potent activity against P. aeruginosa, and K. pneumoniae with MIC values of 62.5 and 125 μg mL-1, as well as MBC values of 31.25 and 15.6 μg mL-1 compared to Gentamicin (MIC = 250 and 125 μg mL-1 and MBC = 62.5 μg mL-1), respectively. Surprisingly, these six derivatives revealed bactericidal and fungicidal potency and remarkable anti-biofilm activity that could significantly reduce the biofilm formation against MRSA, E. coli, P. aeruginosa, and C. albicans. Furthermore, the most active derivatives reduced the LasR gene's production between 10-40% at 1/8 MICs compared with untreated P. aeruginosa. Besides, they demonstrated promising safety profile on Vero cells (normal cell lines) with IC50 values ranging between (175.17 ± 3.49 to 344.27 ± 3.81 μg mL-1). In addition, the in silico ADMET prediction was carried out and the results revealed that these compounds could be used with oral bioavailability with low toxicity prediction when administered as a candidate drug. Finally, the molecular docking simulation was performed inside LasR and predicted the key binding interactions responsible for the activity that corroborated the biological results.
Collapse
Affiliation(s)
- Yousry A Ammar
- Department of Chemistry, Faculty of Science (boys), Al-Azhar University 11884 Nasr City Cairo Egypt
| | - Ahmed Ragab
- Department of Chemistry, Faculty of Science (boys), Al-Azhar University 11884 Nasr City Cairo Egypt
| | - M A Migahed
- Egyptian Petroleum Research Institute (EPRI) 11727 Nasr City Cairo Egypt
| | - S Al-Sharbasy
- Department of Chemistry, Faculty of Science (girls), Al-Azhar University 11884 Nasr City Cairo Egypt
| | - Mohamed A Salem
- Department of Chemistry, Faculty of Science and Arts, King Khalid University Mohail Assir Saudi Arabia
| | - Omnia Karem M Riad
- Department of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al-Azhar University Nasr City Cairo Egypt
| | - Heba Mohammed Refat M Selim
- Department of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al-Azhar University Nasr City Cairo Egypt
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Al-Maarefa University Diriyah 13713 Riyadh Saudi Arabia
| | - Gehad A Abd-Elmaksoud
- Department of Chemistry, Faculty of Science (girls), Al-Azhar University 11884 Nasr City Cairo Egypt
| | - Moustafa S Abusaif
- Department of Chemistry, Faculty of Science (boys), Al-Azhar University 11884 Nasr City Cairo Egypt
| |
Collapse
|
28
|
Radwan EM, Abo-Elabass E, Abd El-Baky AE, Alshwyeh HA, Almaimani RA, Almaimani G, Ibrahim IAA, Albogami A, Jaremko M, Alshawwa SZ, Saied EM. Unveiling the antitumor potential of novel N-(substituted-phenyl)-8-methoxycoumarin-3-carboxamides as dual inhibitors of VEGFR2 kinase and cytochrome P450 for targeted treatment of hepatocellular carcinoma. Front Chem 2023; 11:1231030. [PMID: 37601910 PMCID: PMC10436493 DOI: 10.3389/fchem.2023.1231030] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Being the sixth most diagnosed cancer and the fourth leading cause of cancer-related deaths worldwide, liver cancer is considered as a serious disease with a high prevalence and poor prognosis. Current anticancer drugs for liver cancer have drawbacks, such as limited efficacy in later stages of the disease, toxicity to healthy cells, and the potential for drug resistance. There is ample evidence that coumarin-based compounds are potent anticancer agents, with numerous analogues currently being investigated in preclinical and clinical studies. The current study aimed to explore the antitumor potency of a new class of 8-methoxycoumarin-3-carboxamides against liver cancer. Toward this aim, we have designed, synthesized, and characterized a new set of N-(substituted-phenyl)-8-methoxycoumarin-3-carboxamide analogues. The assessment of antitumor activity revealed that the synthesized class of compounds possesses substantial cytotoxicity toward Hep-G2 cells when compared to staurosporine, without significant impact on normal cells. Out of the synthesized compounds, compound 7 demonstrated the most potent cytotoxic effect against Hep-G2 cells with an IC50 of 0.75 µM, which was more potent than the drug staurosporine (IC50 = 8.37 µM). The investigation into the mechanism behind the antiproliferative activity of compound 7 revealed that it interferes with DNA replication and induces DNA damage, leading to cell cycle arrest as demonstrated by a significant decrease in the percentage of cells in the G1 and G2/M phases, along with an increase in the percentage of cells in the S phase. Flow cytometric analysis further revealed that compound 7 has the ability to trigger programmed cell death by inducing necrosis and apoptosis in HepG-2 cells. Further explorations into the mechanism of action demonstrated that compound 7 displays a potent dual-inhibitory activity toward cytochrome P450 and vascular endothelial growth factor receptor-2 (VEGFR-2) proteins, as compared to sorafenib drug. Further, detailed computational studies revealed that compound 7 displays a considerable binding affinity toward the binding cavity of VEGFR2 and CYP450 proteins. Taken together, our findings indicate that the newly synthesized class of compounds, particularly compound 7, could serve as a promising scaffold for the development of highly effective anticancer agents against liver cancer.
Collapse
Affiliation(s)
- Eman M. Radwan
- The Division of Organic Chemistry, Chemistry Department, Faculty of Science, Port-Said University, Port-Said, Egypt
| | - Eman Abo-Elabass
- The Division of Biochemistry, Chemistry Department, Faculty of Science, Port-Said University, Port-Said, Egypt
| | - Atef E. Abd El-Baky
- Biochemistry Department, Faculty of Pharmacy, Port-Said University, Port-Said, Egypt
| | - Hussah Abdullah Alshwyeh
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- Basic and Applied Scientific Research Centre, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Riyad A. Almaimani
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ghassan Almaimani
- Department of Surgery, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ibrahim Abdel Aziz Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdulaziz Albogami
- Biology Department, Faculty of science, Al-Baha University, Al Aqiq, Saudi Arabia
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences (BESE) and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Samar Z. Alshawwa
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Essa M. Saied
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
- Institute for Chemistry, Humboldt Universität zu Berlin, Berlin, Germany
| |
Collapse
|
29
|
Simon A, Mazhar S, Khokhlova E, Leeuwendaal N, Phipps C, Deaton J, Rea K, Colom J. Solarplast ®-An Enzymatically Treated Spinach Extract. PLANTS (BASEL, SWITZERLAND) 2023; 12:2678. [PMID: 37514292 PMCID: PMC10384499 DOI: 10.3390/plants12142678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/30/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023]
Abstract
In the modern world we are constantly bombarded by environmental and natural stimuli that can result in oxidative stress. Antioxidant molecules and enzymes help the human body scavenge reactive oxygen species and prevent oxidative damage. Most organisms possess intrinsic antioxidant activity, but also benefit from the consumption of antioxidants from their diet. Leafy green vegetables such as spinach are a well-researched rich source of dietary antioxidant molecules. However, plant cell walls are difficult to digest for many individuals and the bio-accessibility of nutrients and antioxidants from these sources can be limited by the degree of digestion and assimilation. Through a specific enzymatic process, Solarplast® contains organic spinach protoplasts without the cell wall, which may facilitate higher yield and efficacy of beneficial antioxidant molecules. In this study, analytical techniques coupled to in vitro bioassays were used to determine the potential antioxidant activity of Solarplast® and determine its antioxidant enzymatic capabilities. Solarplast® demonstrated superior antioxidant activity when compared to frozen spinach leaves in TOC, FRAP and TEAC antioxidant assays. Several antioxidant enzymes were also increased in Solarplast®, when compared to frozen spinach. As a functional readout, Solarplast® attenuated hydrogen peroxide-, ethanol- and acetaminophen-induced increases in oxidative stress and cytotoxicity in both intestinal (HT-29) and liver (HepG2) cell lines. These findings suggest that Solarplast® may represent a non-GMO, plant-based food supplement to help reduce oxidative stress in the human body.
Collapse
Affiliation(s)
- Annie Simon
- ADM Cork H&W Limited, Food Science Building, University College Cork, T12 Y337 Cork, Ireland
| | - Shahneela Mazhar
- ADM Cork H&W Limited, Food Science Building, University College Cork, T12 Y337 Cork, Ireland
| | - Ekaterina Khokhlova
- ADM Cork H&W Limited, Food Science Building, University College Cork, T12 Y337 Cork, Ireland
| | - Natasha Leeuwendaal
- ADM Cork H&W Limited, Food Science Building, University College Cork, T12 Y337 Cork, Ireland
| | - Christopher Phipps
- ADM Deerland Probiotics and Enzymes, 3800 Cobb International Boulevard, Kennesaw, GA 30152, USA
| | - John Deaton
- ADM Deerland Probiotics and Enzymes, 3800 Cobb International Boulevard, Kennesaw, GA 30152, USA
| | - Kieran Rea
- ADM Cork H&W Limited, Food Science Building, University College Cork, T12 Y337 Cork, Ireland
| | - Joan Colom
- ADM Cork H&W Limited, Food Science Building, University College Cork, T12 Y337 Cork, Ireland
| |
Collapse
|
30
|
Ismail MA, Abusaif MS, El-Gaby MSA, Ammar YA, Ragab A. A new class of anti-proliferative activity and apoptotic inducer with molecular docking studies for a novel of 1,3-dithiolo[4,5- b]quinoxaline derivatives hybrid with a sulfonamide moiety. RSC Adv 2023; 13:12589-12608. [PMID: 37101951 PMCID: PMC10123497 DOI: 10.1039/d3ra01635h] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/10/2023] [Indexed: 04/28/2023] Open
Abstract
A new series of 6-(pyrrolidin-1-ylsulfonyl)-[1,3]dithiolo[4,5-b]quinoxaline-2-ylidines 10a-f, 12, 14, 16, and 18 were designed, synthesized, and evaluated for their in vitro anticancer activity. The structures of the novel compounds were systematically characterized by 1H NMR, 13C NMR, and elemental analysis. The synthesized derivatives were evaluated for their in vitro antiproliferative activity against three human cancer cell lines (HepG-2, HCT-116, and MCF-7) with more sensitivity to MCF-7. Moreover, three derivatives 10c, 10f, and 12 were the most promising candidates with sub-micromole values. These derivatives were further evaluated against MDA-MB-231, and the results displayed significant IC50 values ranging from 2.26 ± 0.1 to 10.46 ± 0.8 μM and showed low cellular cytotoxicity against WI-38. Surprisingly, the most active derivative 12 revealed sensitivity towards the breast cell lines MCF-7 (IC50 = 3.82 ± 0.2 μM) and MDA-MB-231 (IC50 = 2.26 ± 0.1 μM) compared with doxorubicin (IC50 = 4.17 ± 0.2 and 3.18 ± 0.1 M). Cell cycle analysis showed that compound 12 arrests and inhibits the growth of MCF-7 cells in the S phase with values of 48.16% compared with the untreated control 29.79% and exhibited a significantly higher apoptotic effect in MCF-7 with a value of 42.08% compared to control cell at 1.84%. Furthermore, compound 12 decreased Bcl-2 protein 0.368-fold and activation on pro-apoptotic genes Bax and P53 by 3.97 and 4.97 folds, respectively, in MCF-7 cells. Compound 12 exhibited higher inhibitory activity to EGFRWt, EGFRL858R, and VEGFR-2 with IC50 values (0.19 ± 0.009, 0.026 ± 0.001, and 0.42 ± 0.021 μM) compared with erlotinib (IC50 = 0.037 ± 0.002 and 0.026 ± 0.001 μM) and sorafenib (IC50 = 0.035 ± 0.002 μM). Finally, in silico ADMET prediction presented that 1,3-dithiolo[4,5-b]quinoxaline derivative 12 obeys the Lipinski rule of five and the Veber rule with no PAINs alarms and moderately soluble properties. Additionally, toxicity prediction revealed that compound 12 demonstrated inactivity to hepatotoxic carcinogenicity, immunotoxicity, mutagenicity, and cytotoxicity. Moreover, molecular docking studies showed good binding affinity with lower binding energy inside the active site of Bcl-2 (PDB: 4AQ3), EGFR (PDB: 1M17), and VEGFR (PDB: 4ASD).
Collapse
Affiliation(s)
- Mostafa A Ismail
- Chemistry Department, Faculty of Science, Al-Azhar University Assiut 71524 Egypt
| | - Moustafa S Abusaif
- Chemistry Department, Faculty of Science (Boys), Al-Azhar University Nasr City Cairo 11884 Egypt
| | - Mohamed S A El-Gaby
- Chemistry Department, Faculty of Science (Boys), Al-Azhar University Nasr City Cairo 11884 Egypt
| | - Yousry A Ammar
- Chemistry Department, Faculty of Science (Boys), Al-Azhar University Nasr City Cairo 11884 Egypt
| | - Ahmed Ragab
- Chemistry Department, Faculty of Science (Boys), Al-Azhar University Nasr City Cairo 11884 Egypt
| |
Collapse
|
31
|
Hassan AS, Morsy NM, Aboulthana WM, Ragab A. Exploring novel derivatives of isatin-based Schiff bases as multi-target agents: design, synthesis, in vitro biological evaluation, and in silico ADMET analysis with molecular modeling simulations. RSC Adv 2023; 13:9281-9303. [PMID: 36950709 PMCID: PMC10026821 DOI: 10.1039/d3ra00297g] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/10/2023] [Indexed: 03/24/2023] Open
Abstract
Recently, scientists developed a powerful strategy called "one drug-multiple targets" to discover vital and unique therapies to fight the most challenging diseases. Novel derivatives of isatin-based Schiff bases 2-7 have been synthesized by the reaction of 3-hydrazino-isatin (1) with aryl aldehydes, hetero-aryl aldehydes, and dialdehydes. The structure of the synthesized derivatives was proved by physical and spectral analysis. Additionally, in vitro biological studies were performed, including antioxidant, anti-diabetic, anti-Alzheimer, and anti-arthritic activities. The four derivatives 3b, 5a, 5b, and 5c possess the highest activities. Among the four potent derivatives, compound 5a exhibited the highest antioxidant (TAC = 68.02 ± 0.15 mg gallic acid per g; IRP = 50.39 ± 0.11) and scavenging activities (ABTS = 53.98 ± 0.12% and DPPH = 8.65 ± 0.02 μg mL-1). Furthermore, compound 5a exhibited an α-amylase inhibitory percentage of 57.64 ± 0.13% near the acarbose (ACA = 69.11 ± 0.15%) and displayed inhibitor activity of the acetylcholinesterase (AChE) enzyme = 36.38 ± 0.08%. Moreover, our work extended to determining the anti-arthritic effect, and compound 5a revealed good inhibitor activities with very close values for proteinase denaturation (PDI) = 39.59 ± 0.09% and proteinase inhibition (PI) = 36.39 ± 0.08%, compared to diclofenac sodium PDI = 49.33 ± 0.11% and PI = 41.88 ± 0.09%. Additionally, the quantum chemical calculations, including HOMO, LUMO, and energy band gap were determined, and in silico ADMET properties were predicted, and their probability was recorded. Finally, molecular docking simulations were performed inside α-amylase and acetylcholinesterase enzymes.
Collapse
Affiliation(s)
- Ashraf S Hassan
- Organometallic and Organometalloid Chemistry Department, National Research Centre Dokki 12622 Cairo Egypt
| | - Nesrin M Morsy
- Organometallic and Organometalloid Chemistry Department, National Research Centre Dokki 12622 Cairo Egypt
| | - Wael M Aboulthana
- Biochemistry Department, Biotechnology Research Institute, National Research Centre Dokki 12622 Cairo Egypt
| | - Ahmed Ragab
- Chemistry Department, Faculty of Science (Boys), Al-Azhar University Nasr City Cairo 11884 Egypt
| |
Collapse
|
32
|
Ragab A, Fouad SA, Ammar YA, Aboul-Magd DS, Abusaif MS. Antibiofilm and Anti-Quorum-Sensing Activities of Novel Pyrazole and Pyrazolo[1,5- a]pyrimidine Derivatives as Carbonic Anhydrase I and II Inhibitors: Design, Synthesis, Radiosterilization, and Molecular Docking Studies. Antibiotics (Basel) 2023; 12:128. [PMID: 36671329 PMCID: PMC9854762 DOI: 10.3390/antibiotics12010128] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 01/11/2023] Open
Abstract
Nowadays, searching for new anti-infective agents with diverse mechanisms of action has become necessary. In this study, 16 pyrazole and pyrazolo[1,5-a]pyrimidine derivatives were synthesized and assessed for their preliminary antibacterial and antibiofilm activities. All these derivatives were initially screened for their antibacterial activity against six clinically isolated multidrug resistance by agar well-diffusion and broth microdilution methods. The initial screening presented significant antibacterial activity with a bactericidal effect for five compounds, namely 3a, 5a, 6, 9a, and 10a, compared with Erythromycin and Amikacin. These five derivatives were further evaluated for their antibiofilm activity against both S. aureus and P. aeruginosa, which showed strong biofilm-forming activity at their MICs by >60%. The SEM analysis confirmed the biofilm disruption in the presence of these derivatives. Furthermore, anti-QS activity was observed for the five hybrids at their sub-MICs, as indicated by the visible halo zone. In addition, the presence of the most active derivatives reduces the violacein production by CV026, confirming that these compounds yielded anti-QS activity. Furthermore, these compounds showed strong inhibitory action against human carbonic anhydrase (hCA-I and hCA-II) isoforms with IC50 values ranging between 92.34 and 168.84 nM and between 73.2 and 161.22 nM, respectively. Finally, radiosterilization, ADMET, and a docking simulation were performed.
Collapse
Affiliation(s)
- Ahmed Ragab
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Sawsan A. Fouad
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar University, Nasr City, Cairo 11754, Egypt
| | - Yousry A. Ammar
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Dina S. Aboul-Magd
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Egypt
| | - Moustafa S. Abusaif
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo 11884, Egypt
| |
Collapse
|
33
|
Raslan RR, Ammar YA, Fouad SA, Hessein SA, Shmiess NAM, Ragab A. Evaluation of the anti-proliferative activity of 2-oxo-pyridine and 1′ H-spiro-pyridine derivatives as a new class of EGFR Wt and VEGFR-2 inhibitors with apoptotic inducers †. RSC Adv 2023; 13:10440-10458. [PMID: 37020892 PMCID: PMC10069231 DOI: 10.1039/d3ra00887h] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
Developing new agents for cancer treatment remains a top priority because it is one of the deadliest worldwide. A new series of 2-oxo-pyridine and 1′H-spiro-pyridine derivatives were designed and synthesized based on an N-(ethyl benzoate) moiety. The structure of the designed derivatives was confirmed by different spectroscopic techniques (FT-IR and NMR) and elemental analysis and then evaluated as antiproliferative against HepG-2 and Caco-2 cell lines compared with Doxorubicin. The spiro-pyridine derivatives 5, 7, and 8 exhibited a remarkably higher activity against Caco-2 cell lines than that of other derivatives. Additionally, these derivatives exhibited activation in the Bax and suppressed Bcl-2 expression with variable degrees. Interestingly, compound 7 showed the lowest cytotoxicity value on Caco-2 cells (IC50 = 7.83 ± 0.50 μM) compared with Doxorubicin (IC50 = 12.49 ± 1.10 μM). Additionally, this compound showed activation of the Bax gene (7.508-fold) and suppressed Bcl-2 (0.194-fold) compared to untreated Caco-2 cells, as revealed by the qRT-PCR technique. Moreover, compound 7 could inhibit EGFR and VEGFR-2 with sub-micromole values of 0.124 μM and 0.221 μM compared with Erlotinib (IC50 = 0.033 μM) and Sorafenib (IC50 = 0.043 μM), respectively. Further, cell cycle and apoptosis analysis demonstrated that compound 7 promoted apoptosis by increasing the apoptosis rate from 1.92 to 42.35% and the S cell accumulation ratio from 31.18 to 42.07% compared to untreated Caco-2 cells. Finally, the most active compound 7 showed good drug-likeness and toxicity profiles. Besides, molecular docking studies were performed to determine the binding mode, which is in agreement with the in vitro results. Design and synthesis a novel of 2-oxo-pyridine and 1′H-spiro-pyridine derivatives as a new apoptotic inducers agents.![]()
Collapse
Affiliation(s)
- Reham R. Raslan
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar UniversityNasr CityCairoEgypt
| | - Yousry A. Ammar
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar UniversityNasr City11884CairoEgypt
| | - Sawsan A. Fouad
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar UniversityNasr CityCairoEgypt
| | - Sadia A. Hessein
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar UniversityNasr CityCairoEgypt
| | - Nadia A. M. Shmiess
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar UniversityNasr CityCairoEgypt
| | - Ahmed Ragab
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar UniversityNasr City11884CairoEgypt
| |
Collapse
|