1
|
Yates JR, Broderick MR, Berling KL, Gieske MG, Osborn E, Nelson MR, Wright MR. Effects of adolescent methylphenidate administration on methamphetamine conditioned place preference in an animal model of attention-deficit/hyperactivity disorder: Examination of potential sex differences. Drug Alcohol Depend 2023; 252:110970. [PMID: 37748422 PMCID: PMC10615784 DOI: 10.1016/j.drugalcdep.2023.110970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/21/2023] [Accepted: 09/18/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND Individuals with attention-deficit/hyperactivity disorder (ADHD) are more likely to be diagnosed with a substance use disorder; however, the effects of long-term psychostimulant treatment on addiction are mixed. Preclinical studies are useful for further elucidating the relationship between ADHD and addiction-like behaviors, but these studies have focused on male subjects only. The goal of the current study was to determine if early-life administration of methylphenidate (MPH) augments methamphetamine (METH) conditioned place preference (CPP) and/or potentiates reinstatement of CPP in both male and female rats. METHODS Male and female spontaneously hypertensive rats (SHRs) and Wistar-Kyoto rats (WKYs) received either MPH (1.5mg/kg; p.o.) or vehicle (1.0ml/kg) during adolescence (postnatal day [PND] ~29-57). Two weeks after cessation of MPH treatment, rats were tested for METH CPP (1.0mg/kg or 2.0mg/kg; s.c.). Rats were then given extinction sessions. Once rats met extinction criteria, they were tested for reinstatement of CPP following a priming injection of METH (0.25mg/kg; s.c.). RESULTS All groups developed METH CPP, except vehicle-treated SHR males and vehicle-treated WKY females conditioned with the higher dose of METH (2.0mg/kg). Female SHRs treated with MPH showed greater reinstatement of METH CPP compared to female SHRs treated with vehicle. Adolescent MPH treatment did not augment the locomotor-stimulant effects of METH in adulthood. CONCLUSIONS These results demonstrate the importance of considering biological sex when prescribing psychostimulant medications for ADHD as long-term MPH administration may increase the risk of continued drug use in females with ADHD following a period of abstinence.
Collapse
Affiliation(s)
- Justin R Yates
- Department of Psychological Science, Northern Kentucky University, 1 Nunn Drive, Highland Heights, KY 41099, USA.
| | - Maria R Broderick
- Department of Biological Sciences, Northern Kentucky University, 1 Nunn Drive, Highland Heights, KY 41099, USA
| | - Kevin L Berling
- Department of Biological Sciences, Northern Kentucky University, 1 Nunn Drive, Highland Heights, KY 41099, USA
| | - M Grace Gieske
- Department of Biological Sciences, Northern Kentucky University, 1 Nunn Drive, Highland Heights, KY 41099, USA
| | - Ethan Osborn
- Department of Biological Sciences, Northern Kentucky University, 1 Nunn Drive, Highland Heights, KY 41099, USA
| | - M Ray Nelson
- Department of Psychological Science, Northern Kentucky University, 1 Nunn Drive, Highland Heights, KY 41099, USA
| | - Makayla R Wright
- Department of Biological Sciences, Northern Kentucky University, 1 Nunn Drive, Highland Heights, KY 41099, USA
| |
Collapse
|
2
|
Reemst K, Ruigrok SR, Bleker L, Naninck EFG, Ernst T, Kotah JM, Lucassen PJ, Roseboom TJ, Pollux BJA, de Rooij SR, Korosi A. Sex-dependence and comorbidities of the early-life adversity induced mental and metabolic disease risks: Where are we at? Neurosci Biobehav Rev 2022; 138:104627. [PMID: 35339483 DOI: 10.1016/j.neubiorev.2022.104627] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/15/2022] [Accepted: 03/13/2022] [Indexed: 01/02/2023]
Abstract
Early-life adversity (ELA) is a major risk factor for developing later-life mental and metabolic disorders. However, if and to what extent ELA contributes to the comorbidity and sex-dependent prevalence/presentation of these disorders remains unclear. We here comprehensively review and integrate human and rodent ELA (pre- and postnatal) studies examining mental or metabolic health in both sexes and discuss the role of the placenta and maternal milk, key in transferring maternal effects to the offspring. We conclude that ELA impacts mental and metabolic health with sex-specific presentations that depend on timing of exposure, and that human and rodent studies largely converge in their findings. ELA is more often reported to impact cognitive and externalizing domains in males, internalizing behaviors in both sexes and concerning the metabolic dimension, adiposity in females and insulin sensitivity in males. Thus, ELA seems to be involved in the origin of the comorbidity and sex-specific prevalence/presentation of some of the most common disorders in our society. Therefore, ELA-induced disease states deserve specific preventive and intervention strategies.
Collapse
Affiliation(s)
- Kitty Reemst
- University of Amsterdam, Swammerdam Institute of Life Sciences, Center for Neuroscience, Brain Plasticity Group, Amsterdam, The Netherlands
| | - Silvie R Ruigrok
- University of Amsterdam, Swammerdam Institute of Life Sciences, Center for Neuroscience, Brain Plasticity Group, Amsterdam, The Netherlands
| | - Laura Bleker
- Amsterdam University Medical Center, University of Amsterdam, Department of Epidemiology and Data Science, Amsterdam, The Netherlands
| | - Eva F G Naninck
- University of Amsterdam, Swammerdam Institute of Life Sciences, Center for Neuroscience, Brain Plasticity Group, Amsterdam, The Netherlands
| | - Tiffany Ernst
- Wageningen University, Department of Animal Sciences, Experimental Zoology &Evolutionary Biology Group, Wageningen, The Netherlands
| | - Janssen M Kotah
- University of Amsterdam, Swammerdam Institute of Life Sciences, Center for Neuroscience, Brain Plasticity Group, Amsterdam, The Netherlands
| | - Paul J Lucassen
- University of Amsterdam, Swammerdam Institute of Life Sciences, Center for Neuroscience, Brain Plasticity Group, Amsterdam, The Netherlands; Centre for Urban Mental Health, University of Amsterdam, The Netherlands
| | - Tessa J Roseboom
- Amsterdam University Medical Center, University of Amsterdam, Department of Epidemiology and Data Science, Amsterdam, The Netherlands
| | - Bart J A Pollux
- Wageningen University, Department of Animal Sciences, Experimental Zoology &Evolutionary Biology Group, Wageningen, The Netherlands
| | - Susanne R de Rooij
- Amsterdam University Medical Center, University of Amsterdam, Department of Epidemiology and Data Science, Amsterdam, The Netherlands
| | - Aniko Korosi
- University of Amsterdam, Swammerdam Institute of Life Sciences, Center for Neuroscience, Brain Plasticity Group, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Sprowles JLN, Vorhees CV, Williams MT. Impact of preweaning stress on long-term neurobehavioral outcomes in Sprague-Dawley rats: Differential effects of barren cage rearing, pup isolation, and the combination. Neurotoxicol Teratol 2021; 84:106956. [PMID: 33524508 DOI: 10.1016/j.ntt.2021.106956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/06/2021] [Accepted: 01/17/2021] [Indexed: 12/23/2022]
Abstract
Two developmental stressors were compared in preweaning rats exposed to either one stressor or both. Stressors were barren cage rearing or maternal separation (pup isolation). 40 gravid Sprague-Dawley CD/IGS rats were randomly assigned to two cage conditions: standard (Std) cage or barren cage (Bar), 20 litters/condition throughout gestation and lactation. After delivery, litters were randomly culled to 4 males and 4 females. The second stressor was maternal separation: Two male/female pairs per litter were isolated from their dam 4 h/day (Iso) and two pairs were not (Norm). Hence, there were 4 conditions: Std-Norm, Std-Iso, Bar-Norm, and Bar-Iso. One pair/litter/stress condition received the following: elevated zero-maze (EZM), open-field, swim channel, Cincinnati water maze, conditioned fear, and open-field with methamphetamine challenge. The second pair/litter/condition received the light-dark test, swim channel, Morris water maze, forced swim, and EZM with diazepam challenge. Barren rearing reduced EZM time-in-open, whereas isolation rearing reduced open-field activity in males and increased it in females. Effects on straight channel swimming were minor. In the Cincinnati water maze test of egocentric learning, isolation rearing increased errors whereas barren cage housing reduced errors in combination with normal rearing. Barren cage with maternal separation (pup isolation) increased Cincinnati water maze escape latency but not errors. Barren cage housing reduced hyperactivity in response to methamphetamine. Isolation rearing increased time in open in the EZM after diazepam challenge. Trends were seen in the Morris water maze. These suggested that barren cage and isolation rearing in combination reduced latency on acquisition on days 1 and 2 in males, whereas females had increased latency on days 2 and 3. Combined exposure to two developmental stressors did not induce additive or synergistic effects, however the data show that these stressors had long-term effects with some evidence that the combination of both caused effects when either stressor alone did not, but synergism was not observed.
Collapse
Affiliation(s)
- Jenna L N Sprowles
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Charles V Vorhees
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, USA.
| | - Michael T Williams
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, USA.
| |
Collapse
|
4
|
Yates JR, Ellis AL, Evans KE, Kappesser JL, Lilly KM, Mbambu P, Sutphin TG. Pair housing, but not using a controlled reinforcer frequency procedure, attenuates the modulatory effect of probability presentation order on amphetamine-induced changes in risky choice. Behav Brain Res 2020; 390:112669. [PMID: 32417278 DOI: 10.1016/j.bbr.2020.112669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/09/2020] [Accepted: 04/21/2020] [Indexed: 10/24/2022]
Abstract
Probability discounting is often measured with independent schedules. Independent schedules have several limitations, such as confounding preference for one alternative with frequency of reward presentation and generating ceiling/floor effects at certain probabilities. To address this potential caveat, a controlled reinforcer frequency schedule can be used, in which the manipulandum that leads to reinforcement is pseudo-randomly determined before each trial. This schedule ensures subjects receive equal presentations of the small and large magnitude reinforcers across each block of trials. A total of 24 pair-housed and 11 individually housed female Sprague Dawley rats were tested in a controlled reinforcer frequency procedure. For half of the rats, the odds against (OA) receiving the large magnitude reinforcer increased across the session (ascending schedule); the OA decreased across the session for half of the rats (descending schedule). Following training, rats received treatments of amphetamine (AMPH; 0, 0.25, 0.5, 1.0 mg/kg; s.c.). For pair-housed rats, AMPH (0.5 mg/kg) increased risky choice, regardless of probability presentation order, whereas a higher dose of AMPH (1.0 mg/kg) decreased discriminability of reinforcer magnitude for rats trained on the descending schedule only. For individually housed rats, probability presentation order modulated the effects of AMPH on probability discounting, as AMPH (0.25 and 0.5 mg/kg) increased risky choice in rats trained on the ascending schedule but not on the descending schedule. These results show that pair-housing animals, but not using a controlled reinforcer frequency procedure, attenuates the modulatory effects of probability presentation order on drug effects on risky choice.
Collapse
Affiliation(s)
- Justin R Yates
- Department of Psychological Science, Northern Kentucky University, 1 Nunn Drive, Highland Heights, KY, 41099, USA.
| | - Alexis L Ellis
- Department of Psychological Science, Northern Kentucky University, 1 Nunn Drive, Highland Heights, KY, 41099, USA
| | - Karson E Evans
- Department of Psychological Science, Northern Kentucky University, 1 Nunn Drive, Highland Heights, KY, 41099, USA
| | - Joy L Kappesser
- Department of Biological Sciences, Northern Kentucky University, 1 Nunn Drive, Highland Heights, KY, 41099, USA
| | - Kadyn M Lilly
- Department of Psychological Science, Northern Kentucky University, 1 Nunn Drive, Highland Heights, KY, 41099, USA
| | - Prodiges Mbambu
- Department of Psychological Science, Northern Kentucky University, 1 Nunn Drive, Highland Heights, KY, 41099, USA
| | - Tanner G Sutphin
- Department of Psychological Science, Northern Kentucky University, 1 Nunn Drive, Highland Heights, KY, 41099, USA
| |
Collapse
|
5
|
Wang DM, Zhang JJ, Huang YB, Zhao YZ, Sui N. Peripubertal stress of male, but not female rats increases morphine-induced conditioned place preference and locomotion in adulthood. Dev Psychobiol 2019; 61:920-929. [PMID: 30860298 DOI: 10.1002/dev.21839] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 12/22/2022]
Abstract
Animal studies demonstrate that peripubertal social stress markedly increases the risk for subsequent substance use in adulthood. However, whether non-social stress has a similar long-term impact is not clear, and whether male and female animals show different sensitivity to peripubertal non-social stress has not been examined. In the present study, we addressed these issues by introducing two non-social stressors (elevated platform and predator odor 2,5-Dihydro-2,4,5-trimethylthiazoline) to male and female Wistar rats during adolescence (postnatal days 28-30, 34, 36, 40, and 42), then tested reward-related behaviors during adulthood, including morphine-induced conditioned place preference (CPP, 1 mg/kg morphine or 5 mg/kg morphine) and hyperlocomotor activity (5 mg/kg morphine). We found that adult male rats, but not females who were exposed to peripubertal non-social stressors showed enhanced morphine-induced CPP. Moreover, morphine-induced increase in locomotor activity was also significantly increased in adult male rats, but not in females. These results indicate that peripubertal exposure to repeated non-social stress may enhance sensitivity to the rewarding effects of opioids in adulthood in a sex-dependent manner, with males being even more sensitive than females in this regard.
Collapse
Affiliation(s)
- Dong-Mei Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jian-Jun Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yan-Bei Huang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yin-Zhu Zhao
- School of Life Sciences, University of Science and Technology of China, China
| | - Nan Sui
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Andersen SL. Stress, sensitive periods, and substance abuse. Neurobiol Stress 2019; 10:100140. [PMID: 30569003 PMCID: PMC6288983 DOI: 10.1016/j.ynstr.2018.100140] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/18/2018] [Accepted: 11/26/2018] [Indexed: 12/14/2022] Open
Abstract
Research on the inter-relationship between drug abuse and social stress has primarily focused on the role of stress exposure during adulthood and more recently, adolescence. Adolescence is a time of heightened reward sensitivity, but it is also a time when earlier life experiences are expressed. Exposure to stress early in postnatal life is associated with an accelerated age of onset for drug use. Lifelong addiction is significantly greater if drug use is initiated during early adolescence. Understanding how developmental changes following stress exposure interact with sensitive periods to unfold over the course of maturation is integral to reducing their later impact on substance use. Arousal levels, gender/sex, inflammation, and the timing of stress exposure play a role in the vulnerability of these circuits. The current review focuses on how early postnatal stress impacts brain development during a sensitive period to increase externalizing and internalizing behaviors in adolescence that include social interactions (aggression; sexual activity), working memory impairment, and depression. How stress effects the developmental trajectories of brain circuits that are associated with addiction are discussed for both clinical and preclinical studies.
Collapse
|
7
|
McDonnell-Dowling K, Miczek KA. Alcohol, psychomotor-stimulants and behaviour: methodological considerations in preclinical models of early-life stress. Psychopharmacology (Berl) 2018; 235:909-933. [PMID: 29511806 DOI: 10.1007/s00213-018-4852-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 02/06/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND In order to assess the risk associated with early-life stress, there has been an increase in the amount of preclinical studies investigating early-life stress. There are many challenges associated with investigating early-life stress in animal models and ensuring that such models are appropriate and clinically relevant. OBJECTIVES The purpose of this review is to highlight the methodological considerations in the design of preclinical studies investigating the effects of early-life stress on alcohol and psychomotor-stimulant intake and behaviour. METHODS The protocols employed for exploring early-life stress were investigated and summarised. Experimental variables include animals, stress models, and endpoints employed. RESULTS The findings in this paper suggest that there is little consistency among these studies and so the interpretation of these results may not be as clinically relevant as previously thought. CONCLUSION The standardisation of these simple stress procedures means that results will be more comparable between studies and that results generated will give us a more robust understanding of what can and may be happening in the human and veterinary clinic.
Collapse
Affiliation(s)
| | - Klaus A Miczek
- Department of Psychology, Tufts University, 530 Boston Avenue, Medford, MA, 02155, USA
| |
Collapse
|
8
|
Majcher‐Maślanka I, Solarz A, Wędzony K, Chocyk A. The effects of early‐life stress on dopamine system function in adolescent female rats. Int J Dev Neurosci 2017; 57:24-33. [DOI: 10.1016/j.ijdevneu.2017.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/02/2017] [Accepted: 01/03/2017] [Indexed: 12/16/2022] Open
Affiliation(s)
- Iwona Majcher‐Maślanka
- Institute of Pharmacology, Polish Academy of SciencesLaboratory of Pharmacology and Brain Biostructure31‐343KrakówSmętna Street 12Poland
| | - Anna Solarz
- Institute of Pharmacology, Polish Academy of SciencesLaboratory of Pharmacology and Brain Biostructure31‐343KrakówSmętna Street 12Poland
| | - Krzysztof Wędzony
- Institute of Pharmacology, Polish Academy of SciencesLaboratory of Pharmacology and Brain Biostructure31‐343KrakówSmętna Street 12Poland
| | - Agnieszka Chocyk
- Institute of Pharmacology, Polish Academy of SciencesLaboratory of Pharmacology and Brain Biostructure31‐343KrakówSmętna Street 12Poland
| |
Collapse
|
9
|
Sexual dimorphisms in swimming behavior, cerebral metabolic activity and adrenoceptors in adult zebrafish (Danio rerio). Behav Brain Res 2016; 312:385-93. [PMID: 27363927 DOI: 10.1016/j.bbr.2016.06.047] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 06/13/2016] [Accepted: 06/26/2016] [Indexed: 02/06/2023]
Abstract
Sexually dimorphic behaviors and brain sex differences, not only restricted to reproduction, are considered to be evolutionary preserved. Specifically, anxiety related behavioral repertoire is suggested to exhibit sex-specific characteristics in rodents and primates. The present study investigated whether behavioral responses to novelty, have sex-specific characteristics in the neurogenetic model organism zebrafish (Danio rerio), lacking chromosomal sex determination. For this, aspects of anxiety-like behavior (including reduced exploration, increased freezing behavior and erratic movement) of male and female adult zebrafish were tested in a novel tank paradigm and after habituation. Male and female zebrafish showed significant differences in their swimming activity in response to novelty, with females showing less anxiety spending more time in the upper tank level. When fish have habituated, regional cerebral glucose uptake, an index of neuronal activity, and brain adrenoceptors' (ARs) expression (α2-ARs and β-ARs) were determined using in vivo 2-[(14)C]-deoxyglucose methodology and in vitro neurotransmitter receptors quantitative autoradiography, respectively. Intriguingly, females exhibited higher glucose utilization than males in hypothalamic brain areas. Adrenoceptor's expression pattern was dimorphic in zebrafish telencephalic, preoptic, hypothalamic nuclei, central gray, and cerebellum, similarly to birds and mammals. Specifically, the lateral zone of dorsal telencephalon (Dl), an area related to spatial cognition, homologous to the mammalian hippocampus, showed higher α2-AR densities in females. In contrast, male cerebellum included higher densities of β-ARs in comparison to female. Taken together, our data demonstrate a well-defined sex discriminant cerebral metabolic activity and ARs' pattern in zebrafish, possibly contributing to male-female differences in the swimming behavior.
Collapse
|
10
|
Chronic caffeine produces sexually dimorphic effects on amphetamine-induced behavior, anxiety and depressive-like behavior in adolescent rats. Pharmacol Biochem Behav 2016; 143:26-33. [DOI: 10.1016/j.pbb.2016.01.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 01/29/2016] [Accepted: 01/31/2016] [Indexed: 11/17/2022]
|
11
|
Vassoler FM, Wright SJ, Byrnes EM. Exposure to opiates in female adolescents alters mu opiate receptor expression and increases the rewarding effects of morphine in future offspring. Neuropharmacology 2015; 103:112-21. [PMID: 26700246 DOI: 10.1016/j.neuropharm.2015.11.026] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/18/2015] [Accepted: 11/25/2015] [Indexed: 12/22/2022]
Abstract
Prescription opiate use and abuse has increased dramatically over the past two decades, including increased use in adolescent populations. Recently, it has been proposed that use during this critical period may affect future offspring even when use is discontinued prior to conception. Here, we utilize a rodent model to examine the effects of adolescent morphine exposure on the reward functioning of the offspring. Female Sprague Dawley rats were administered morphine for 10 days during early adolescence (post-natal day 30-39) using an escalating dosing regimen. Animals then remained drug free until adulthood at which point they were mated with naïve males. Adult offspring (F1 animals) were tested for their response to morphine-induced (0, 1, 2.5, 5, and 10 mg/kg, s.c.) conditioned place preference (CPP) and context-independent morphine-induced sensitization. Naïve littermates were used to examine mu opiate receptor expression in the nucleus accumbens and ventral tegmental area. Results indicate that F1 females whose mothers were exposed to morphine during adolescence (Mor-F1) demonstrate significantly enhanced CPP to the lowest doses of morphine compared with Sal-F1 females. There were no differences in context-independent sensitization between maternal treatment groups. Protein expression analysis showed significantly increased levels of accumbal mu opiate receptor in Mor-F1 offspring and decreased levels in the VTA. Taken together, these findings demonstrate a shift in the dose response curve with regard to the rewarding effects of morphine in Mor-F1 females which may in part be due to altered mu opiate receptor expression in the nucleus accumbens and VTA.
Collapse
Affiliation(s)
- Fair M Vassoler
- Department of Biomedical Sciences, Cummings School of Veterinary Medicine, Tufts University, Peabody Pavilion, 200 Westborough Road, Grafton, MA 01536, USA.
| | - Siobhan J Wright
- Department of Biomedical Sciences, Cummings School of Veterinary Medicine, Tufts University, Peabody Pavilion, 200 Westborough Road, Grafton, MA 01536, USA
| | - Elizabeth M Byrnes
- Department of Biomedical Sciences, Cummings School of Veterinary Medicine, Tufts University, Peabody Pavilion, 200 Westborough Road, Grafton, MA 01536, USA
| |
Collapse
|
12
|
Weiss VG, Hofford RS, Yates JR, Jennings FC, Bardo MT. Sex differences in monoamines following amphetamine and social reward in adolescent rats. Exp Clin Psychopharmacol 2015; 23:197-205. [PMID: 26237317 PMCID: PMC4523899 DOI: 10.1037/pha0000026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Interaction with social peers may increase rates of drug self-administration, but a recent study from our laboratory showed that social interaction may serve as a type of alternative reward that competes with drug taking in adolescent male rats. Based on those previous results, the current study examined sex differences in preference for social interaction compared with amphetamine (AMPH) in adolescent rats using the conditioned place preference (CPP) paradigm. Similar to previous results with males, females showed AMPH CPP regardless of whether they were individual- or pair-housed. In contrast to males, however, females failed to show social CPP, and they did not prefer a peer-associated compartment over an AMPH-associated compartment in a free-choice test. In separate experiments, dopamine (DA) and serotonin (5-HT) metabolite levels were measured in adolescent males and females that were exposed acutely to peer interaction, no peer interaction, AMPH, or saline. In amygdala, levels of the DA metabolite dihydroxyphenylacetic acid (DOPAC) were altered more in response to peer interaction in males than females; in contrast, there was a greater amygdala DOPAC response to AMPH in females. Furthermore, there were greater changes in the 5-HT metabolite hydroxyindoleacetic acid (5-HIAA) in females than in males following social interaction. These results indicate that the ability of peer interactions to reduce drug reward is greater in adolescent males than females, perhaps due to a greater ability of social cues to activate limbic reward mechanisms in males or a greater ability of AMPH cues to activate limbic reward mechanisms in females.
Collapse
Affiliation(s)
- Virginia G Weiss
- Dept Psychology, BBSRB, University of Kentucky, 741 S. Limestone, Lexington, KY 40536-0509, Phone: 859-257-4641,
| | - Rebecca S Hofford
- Dept Psychology, BBSRB, University of Kentucky, 741 S. Limestone Lexington, KY 40536-0509, Phone: 859-257-4641,
| | - Justin R Yates
- Department of Psychological Science, MEP 301, Northern Kentucky University, Nunn Drive, Highland Heights, KY 41099. Phone: 859-572-7821
| | - Faith C Jennings
- College of Pharmacy, Biological Pharmaceutical Complex, University of Kentucky, 789. S. Limestone, Lexington, KY 40536-0509, Phone: 859-806-3493
| | - Michael T Bardo
- Dept Psychology, BBSRB, University of Kentucky, 741 S. Limestone, Lexington, KY 40536-0509, Phone: 859-257-6456,
| |
Collapse
|
13
|
The effect of early environmental manipulation on locomotor sensitivity and methamphetamine conditioned place preference reward. Behav Brain Res 2014; 268:66-71. [PMID: 24713150 DOI: 10.1016/j.bbr.2014.03.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 03/25/2014] [Accepted: 03/29/2014] [Indexed: 11/20/2022]
Abstract
Early life stress leads to several effects on neurological development, affecting health and well-being later in life. Instances of child abuse and neglect are associated with higher rates of depression, risk taking behavior, and an increased risk of drug abuse later in life. This study used repeated neonatal separation of rat pups as a model of early life stress. Rat pups were either handled and weighed as controls or separated for 180 min per day during postnatal days 2-8. In adulthood, male and female rats were tested for methamphetamine conditioned place preference reward and methamphetamine induced locomotor activity. Tissue samples were collected and mRNA was quantified for the norepinephrine transporter in the prefrontal cortex and the dopamine transporter in the nucleus accumbens. Results indicated rats given methamphetamine formed a conditioned place preference, but there was no effect of early separation or sex. Separated males showed heightened methamphetamine-induced locomotor activity, but there was no effect of early separation for females. Overall females were more active than males in response to both saline and methamphetamine. No differences in mRNA levels were observed across any conditions. These results suggest early neonatal separation affects methamphetamine-induced locomotor activity in a sex-dependent manner but has no effects on methamphetamine conditioned place preference.
Collapse
|
14
|
Contextual fear conditioning in maternal separated rats: the amygdala as a site for alterations. Neurochem Res 2013; 39:384-93. [PMID: 24368626 DOI: 10.1007/s11064-013-1230-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 11/23/2013] [Accepted: 12/13/2013] [Indexed: 12/16/2022]
Abstract
The first 2 weeks of life are a critical period for neural development in rats. Repeated long-term separation from the dam is considered to be one of the most potent stressors to which rat pups can be exposed, and permanently modifies neurobiological and behavioral parameters. Prolonged periods of maternal separation (MS) usually increase stress reactivity during adulthood, and enhance anxiety-like behavior. The aim of this study was to verify the effects of maternal separation during the neonatal period on memory as well as on biochemical parameters (Na(+), K(+)-ATPase and antioxidant enzymes activities) in the amygdala of adult rats. Females and male Wistar rats were subjected to repeated maternal separation (incubator at 32 °C, 3 h/day) during postnatal days 1-10. At 60 days of age, the subjects were exposed to a Contextual fear conditioning task. One week after the behavioral task, animals were sacrificed and the amygdala was dissected for evaluation of Na(+), K(+)-ATPase and antioxidant enzymes activities. Student-t test showed significant MS effect, causing an increase of freezing time in the three exposures to the aversive context in both sexes. Considering biochemical parameters Student-t test showed significant MS effect causing an increase of Na(+), K(+)-ATPase activity in both sexes. On the other hand, no differences were found among the groups on the antioxidant enzymes activities [superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT)] in male rats, but in females, we found a significant MS effect, causing an increase of CAT activity and no differences were found among the groups on SOD and GPx activities. Our results suggest a role of early rearing environment in programming fear learning and memory in adulthood. An early stress experience such as maternal separation may increase activity in the amygdala (as pointed by the increased activity of Na(+), K(+)-ATPase), affecting behaviors related to fear in adulthood, and this effect could be task-specific.
Collapse
|
15
|
Zimmer C, Boogert NJ, Spencer KA. Developmental programming: cumulative effects of increased pre-hatching corticosterone levels and post-hatching unpredictable food availability on physiology and behaviour in adulthood. Horm Behav 2013; 64:494-500. [PMID: 23891687 PMCID: PMC3791420 DOI: 10.1016/j.yhbeh.2013.07.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 06/24/2013] [Accepted: 07/17/2013] [Indexed: 01/01/2023]
Abstract
Prolonged exposure to stress during development can have long-term detrimental effects on health and wellbeing. However, the environmental matching hypothesis proposes that developmental stress programs physiology and behaviour in an adaptive way that can enhance fitness if early environments match those experienced later in life. Most research has focused on the harmful effects that stress during a single period in early life may exert in adulthood. In this study, we tested the potential additive and beneficial effects that stress experienced during both pre- and post-hatching development may have on adult physiology and behaviour. Japanese quail experienced different stress-related treatments across two developmental life stages: pre-hatching corticosterone (CORT) injection, post-hatching unpredictable food availability, both pre- and post-hatching treatments, or control. In adulthood, we determined quails' acute stress response, neophobia and novel environment exploration. The pre-hatching CORT treatment resulted in attenuated physiological responses to an acute stressor, increased activity levels and exploration in a novel environment. Post-hatching unpredictable food availability decreased adults' latency to feed. Furthermore, there were cumulative effects of these treatments across the two developmental stages: quail subjected to both pre- and post-hatching treatments were the most explorative and risk-taking of all treatment groups. Such responses to novel environments could enhance survival in unpredictable environments in later life. Our data also suggest that these behavioural responses may have been mediated by long-term physiological programming of the adrenocortical stress response, creating phenotypes that could exhibit fitness-enhancing behaviours in a changing environment.
Collapse
Affiliation(s)
| | | | - Karen A. Spencer
- Corresponding author at: School of Psychology and Neuroscience, University of St. Andrews, South Street, St. Andrews, KY16 9JP, United Kingdom.
| |
Collapse
|
16
|
Early maternal deprivation-induced modifications in the neurobiological, neurochemical and behavioral profile of adult rats. Behav Brain Res 2013; 244:29-37. [DOI: 10.1016/j.bbr.2013.01.040] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 01/11/2013] [Accepted: 01/15/2013] [Indexed: 01/14/2023]
|
17
|
Bardo MT, Neisewander JL, Kelly TH. Individual differences and social influences on the neurobehavioral pharmacology of abused drugs. Pharmacol Rev 2013; 65:255-90. [PMID: 23343975 PMCID: PMC3565917 DOI: 10.1124/pr.111.005124] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The interaction of drugs with biologic targets is a critical area of research, particularly for the development of medications to treat substance use disorders. In addition to understanding these drug-target interactions, however, there is a need to understand more fully the psychosocial influences that moderate these interactions. The first section of this review introduces some examples from human behavioral pharmacology that illustrate the clinical importance of this research. The second section covers preclinical evidence to characterize some of the key individual differences that alter drug sensitivity and abuse vulnerability, related primarily to differences in response to novelty and impulsivity. Evidence is presented to indicate that critical neuropharmacological mechanisms associated with these individual differences involve integrated neurocircuits underlying stress, reward, and behavioral inhibitory processes. The third section covers social influences on drug abuse vulnerability, including effects experienced during infancy, adolescence, and young adulthood, such as maternal separation, housing conditions, and social interactions (defeat, play, and social rank). Some of the same neurocircuits involved in individual differences also are altered by social influences, although the precise neurochemical and cellular mechanisms involved remain to be elucidated fully. Finally, some speculation is offered about the implications of this research for the prevention and treatment of substance abuse.
Collapse
Affiliation(s)
- M T Bardo
- Department of Psychology, University of Kentucky, BBSRB Room 447, 741 S. Limestone, Lexington, KY 40536-0509, USA.
| | | | | |
Collapse
|
18
|
Hall FS, Perona MTG. Have studies of the developmental regulation of behavioral phenotypes revealed the mechanisms of gene-environment interactions? Physiol Behav 2012; 107:623-40. [PMID: 22643448 PMCID: PMC3447116 DOI: 10.1016/j.physbeh.2012.05.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 05/15/2012] [Accepted: 05/15/2012] [Indexed: 12/30/2022]
Abstract
This review addresses the recent convergence of our long-standing knowledge of the regulation of behavioral phenotypes by developmental experience with recent advances in our understanding of mechanisms regulating gene expression. This review supports a particular perspective on the developmental regulation of behavioral phenotypes: That the role of common developmental experiences (e.g. maternal interactions, peer interactions, exposure to a complex environment, etc.) is to fit individuals to the circumstances of their lives within bounds determined by long-standing (evolutionary) mechanisms that have shaped responses to critical and fundamental types of experience via those aspects of gene structure that regulate gene expression. The phenotype of a given species is not absolute for a given genotype but rather variable within bounds that is determined by mechanisms regulated by experience (e.g. epigenetic mechanisms). This phenotypic variation is not necessarily random, or evenly distributed along a continuum of description or measurement, but often highly disjointed, producing distinct, even opposing, phenotypes. The potentiality for these varying phenotypes is itself the product of evolution, the potential for alternative phenotypes itself conveying evolutionary advantage. Examples of such phenotypic variation, resulting from environmental or experiential influences, have a long history of study in neurobiology, and a number of these will be discussed in this review: neurodevelopmental experiences that produce phenotypic variation in visual perception, cognitive function, and emotional behavior. Although other examples will be discussed, particular emphasis will be made on the role of social behavior on neurodevelopment and phenotypic determination. It will be argued that an important purpose of some aspects of social behavior is regulation of neurobehavioral phenotypes by experience via genetic regulatory mechanisms.
Collapse
Affiliation(s)
- F Scott Hall
- Molecular Neurobiology Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 333 Cassel Drive, Baltimore, MD 21224, United States.
| | | |
Collapse
|
19
|
Pritchard LM, Hensleigh E, Lynch S. Altered locomotor and stereotyped responses to acute methamphetamine in adolescent, maternally separated rats. Psychopharmacology (Berl) 2012; 223:27-35. [PMID: 22414962 PMCID: PMC3398239 DOI: 10.1007/s00213-012-2679-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 02/24/2012] [Indexed: 12/14/2022]
Abstract
RATIONALE Neonatal maternal separation (MS) has been used to model the effects of early life stress in rodents. MS alters behavioral responses to a variety of abused drugs, but few studies have examined its effects on methamphetamine sensitivity. OBJECTIVES We sought to determine the effects of MS on locomotor and stereotyped responses to low-to-moderate doses of methamphetamine in male and female adolescent rats. METHODS Male and female rat pups were subjected to 3 h per day of MS on postnatal days (PN) 2-14 or a brief handling control procedure during the same period. During adolescence (approximately PN 40), all rats were tested for locomotor activity and stereotyped behavior in response to acute methamphetamine administration (0, 1.0, or 3.0 mg/kg, s.c.). RESULTS MS rats of both sexes exhibited increased locomotor activity in a novel environment, relative to handled controls. MS increased the locomotor response to methamphetamine (METH), and this effect occurred at different doses for male (3.0 mg/kg) and female (1.0 mg/kg) rats. MS also increased stereotyped behavior in response to METH (1.0 mg/kg) in both sexes. CONCLUSIONS MS enhances the locomotor response to METH in a dose- and sex-dependent manner. These results suggest that individuals with a history of early life stress may be particularly vulnerable to the psychostimulant effects of METH, even at relatively low doses.
Collapse
|
20
|
Cyrenne DLM, Brown GR. Ontogeny of sex differences in response to novel objects from adolescence to adulthood in lister-hooded rats. Dev Psychobiol 2011; 53:670-6. [PMID: 21455938 PMCID: PMC3258548 DOI: 10.1002/dev.20542] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 02/02/2011] [Indexed: 11/16/2022]
Abstract
In humans, novelty-seeking behavior peaks in adolescence and is higher in males than females. Relatively, little information is available regarding age and sex differences in response to novelty in rodents. In this study, male and female Lister-hooded rats were tested at early adolescence (postnatal day, pnd, 28), mid-adolescence (pnd 40), or early adulthood (pnd 80) in a novel object recognition task (n = 12 males/females per age group). Males displayed a higher preference for the novel object than females at mid-adolescence, with no sex difference at early adolescence. Adult females interacted with the novel object more than adult males, but not when side biases were removed. Sex differences at mid-adolescence were not found in other measures, suggesting that the difference at this age was specific to situations involving choice of novelty. The results are considered in the context of age- and sex-dependent interactions between gonadal hormones and the dopamine system. © 2011 Wiley Periodicals, Inc. Dev Psychobiol 53:670–676, 2011.
Collapse
|